在 autodl 平台中租赁一个 3090 等 24G 显存的显卡机器,如下图所示镜像选择 PyTorch-->2.0.0-->3.8(ubuntu20.04)-->11.8 。
接下来打开刚刚租用服务器的 JupyterLab,并且打开其中的终端开始环境配置、模型下载和运行演示。
创建本次phi3实践的工作目录/root/autodl-tmp/phi3
# 创建工作目录
mkdir -p /root/autodl-tmp/phi3
# 升级pip
python -m pip install --upgrade pip
# 更换 pypi 源加速库的安装
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
pip install fastapi==0.104.1
pip install uvicorn==0.24.0.post1
pip install requests==2.25.1
pip install modelscope==1.9.5
pip install streamlit==1.24.0
pip install sentencepiece==0.1.99
pip install accelerate==0.24.1
由于phi3要求的transformers的版本为4.41.0.dev0版本
。
各位可以先通过下面命令查看你的Transformers包的版本
pip list |grep transformers
如果版本不对,可以通过下面命令升级
# phi3升级transformers为4.41.0.dev0版本
pip uninstall -y transformers && pip install git+https://github.com/huggingface/transformers
使用 modelscope 中的napshot_download
函数下载模型,第一个参数为模型名称,参数cache_dir
为模型的下载路径。
在 /root/autodl-tmp 路径下新建download.py
文件并在其中输入以下内容,粘贴代码后记得保存文件,如下图所示。并运行python /root/autodl-tmp/download.py
执行下载,模型大小为 8 GB,下载模型大概需要 10~15 分钟
#模型下载
from modelscope import snapshot_download
model_dir = snapshot_download('LLM-Research/Phi-3-mini-4k-instruct', cache_dir='/root/autodl-tmp/phi3', revision='master')
在/root/autodl-tmp
路径下新建api.py
文件并在其中输入以下内容,粘贴代码后记得保存文件。下面的代码有很详细的注释,大家如有不理解的地方,欢迎提出issue。
from fastapi import FastAPI, Request
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
import uvicorn
import json
import datetime
import torch
# 设置设备参数
DEVICE = "cuda" # 使用CUDA
DEVICE_ID = "0" # CUDA设备ID,如果未设置则为空
CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE # 组合CUDA设备信息
# 清理GPU内存函数
def torch_gc():
if torch.cuda.is_available(): # 检查是否可用CUDA
with torch.cuda.device(CUDA_DEVICE): # 指定CUDA设备
torch.cuda.empty_cache() # 清空CUDA缓存
torch.cuda.ipc_collect() # 收集CUDA内存碎片
# 创建FastAPI应用
app = FastAPI()
# 处理POST请求的端点
@app.post("/")
async def create_item(request: Request):
global model, tokenizer # 声明全局变量以便在函数内部使用模型和分词器
json_post_raw = await request.json() # 获取POST请求的JSON数据
json_post = json.dumps(json_post_raw) # 将JSON数据转换为字符串
json_post_list = json.loads(json_post) # 将字符串转换为Python对象
prompt = json_post_list.get('prompt') # 获取请求中的提示
history = json_post_list.get('history', []) # 获取请求中的历史记录
print(prompt)
messages = [
{"role": "user", "content": prompt}
]
# 调用模型进行对话生成
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = model.generate(input_ids.to('cuda'),max_new_tokens=2048)
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
now = datetime.datetime.now() # 获取当前时间
time = now.strftime("%Y-%m-%d %H:%M:%S") # 格式化时间为字符串
# 构建响应JSON
answer = {
"response": response,
"status": 200,
"time": time
}
# 构建日志信息
log = "[" + time + "] " + '", prompt:"' + prompt + '", response:"' + repr(response) + '"'
print(log) # 打印日志
torch_gc() # 执行GPU内存清理
return answer # 返回响应
# 主函数入口
if __name__ == '__main__':
# 加载预训练的分词器和模型
model_name_or_path = '/root/autodl-tmp/phi3/model/LLM-Research/Phi-3-mini-4k-instruct'
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
device_map="cuda",
torch_dtype="auto",
trust_remote_code=True,
).eval()
# 启动FastAPI应用
# 用6006端口可以将autodl的端口映射到本地,从而在本地使用api
uvicorn.run(app, host='0.0.0.0', port=6006, workers=1) # 在指定端口和主机上启动应用
默认部署在 6006 端口,通过 POST 方法进行调用,可以使用curl调用,如下所示:
curl -X POST "http://127.0.0.1:6006" \
-H 'Content-Type: application/json' \
-d '{"prompt": "你好", "history": []}'
响应如下:
{
"response": "你好!如果你需要帮助或者有任何问题,请随时告诉我。",
"status": 200,
"time": "2024-05-09 16:36:43"
}
SSH端口映射
ssh -CNg -L 6006:127.0.0.1:6006 -p 【你的autodl机器的ssh端口】 root@[你的autodl机器地址]
ssh -CNg -L 6006:127.0.0.1:6006 -p 36494 [email protected]
端口映射后,用postman访问