forked from pfnet-research/distilled-feature-fields
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshow_gui.py
193 lines (160 loc) · 6.78 KB
/
show_gui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import torch
from opt import get_opts
import numpy as np
from einops import rearrange
import dearpygui.dearpygui as dpg
from scipy.spatial.transform import Rotation as R
import time
from datasets import dataset_dict
from datasets.ray_utils import get_ray_directions, get_rays
from models.networks import NGP
from models.rendering import render
from train import depth2img
from utils import load_ckpt
import warnings; warnings.filterwarnings("ignore")
class OrbitCamera:
def __init__(self, K, img_wh, r):
self.K = K
self.W, self.H = img_wh
self.radius = r
self.center = np.zeros(3)
self.rot = np.eye(3)
@property
def pose(self):
# first move camera to radius
res = np.eye(4)
res[2, 3] -= self.radius
# rotate
rot = np.eye(4)
rot[:3, :3] = self.rot
res = rot @ res
# translate
res[:3, 3] -= self.center
return res
def orbit(self, dx, dy):
rotvec_x = self.rot[:, 1] * np.radians(0.05 * dx)
rotvec_y = self.rot[:, 0] * np.radians(-0.05 * dy)
self.rot = R.from_rotvec(rotvec_y).as_matrix() @ \
R.from_rotvec(rotvec_x).as_matrix() @ \
self.rot
def scale(self, delta):
self.radius *= 1.1 ** (-delta)
def pan(self, dx, dy, dz=0):
self.center += 1e-4 * self.rot @ np.array([dx, dy, dz])
class NGPGUI:
def __init__(self, hparams, K, img_wh, radius=2.5):
self.hparams = hparams
rgb_act = 'None' if self.hparams.use_exposure else 'Sigmoid'
self.model = NGP(scale=hparams.scale, rgb_act=rgb_act).cuda()
load_ckpt(self.model, hparams.ckpt_path)
self.cam = OrbitCamera(K, img_wh, r=radius)
self.W, self.H = img_wh
self.render_buffer = np.ones((self.W, self.H, 3), dtype=np.float32)
# placeholders
self.dt = 0
self.mean_samples = 0
self.img_mode = 0
self.register_dpg()
def render_cam(self, cam):
t = time.time()
directions = get_ray_directions(cam.H, cam.W, cam.K, device='cuda')
rays_o, rays_d = get_rays(directions, torch.cuda.FloatTensor(cam.pose))
# TODO: set these attributes by gui
if self.hparams.dataset_name in ['colmap', 'nerfpp']:
exp_step_factor = 1/256
else: exp_step_factor = 0
results = render(self.model, rays_o, rays_d,
**{'test_time': True,
'to_cpu': True, 'to_numpy': True,
'T_threshold': 1e-2,
'exposure': torch.cuda.FloatTensor([dpg.get_value('_exposure')]),
'max_samples': 100,
'exp_step_factor': exp_step_factor})
rgb = rearrange(results["rgb"], "(h w) c -> h w c", h=self.H)
depth = rearrange(results["depth"], "(h w) -> h w", h=self.H)
torch.cuda.synchronize()
self.dt = time.time()-t
self.mean_samples = results['total_samples']/len(rays_o)
if self.img_mode == 0:
return rgb
elif self.img_mode == 1:
return depth2img(depth).astype(np.float32)/255.0
def register_dpg(self):
dpg.create_context()
dpg.create_viewport(title="ngp_pl", width=self.W, height=self.H, resizable=False)
## register texture ##
with dpg.texture_registry(show=False):
dpg.add_raw_texture(
self.W,
self.H,
self.render_buffer,
format=dpg.mvFormat_Float_rgb,
tag="_texture")
## register window ##
with dpg.window(tag="_primary_window", width=self.W, height=self.H):
dpg.add_image("_texture")
dpg.set_primary_window("_primary_window", True)
def callback_depth(sender, app_data):
self.img_mode = 1-self.img_mode
## control window ##
with dpg.window(label="Control", tag="_control_window", width=200, height=150):
dpg.add_slider_float(label="exposure", default_value=0.2,
min_value=1/60, max_value=32, tag="_exposure")
dpg.add_button(label="show depth", tag="_button_depth",
callback=callback_depth)
dpg.add_separator()
dpg.add_text('no data', tag="_log_time")
dpg.add_text('no data', tag="_samples_per_ray")
## register camera handler ##
def callback_camera_drag_rotate(sender, app_data):
if not dpg.is_item_focused("_primary_window"):
return
self.cam.orbit(app_data[1], app_data[2])
def callback_camera_wheel_scale(sender, app_data):
if not dpg.is_item_focused("_primary_window"):
return
self.cam.scale(app_data)
def callback_camera_drag_pan(sender, app_data):
if not dpg.is_item_focused("_primary_window"):
return
self.cam.pan(app_data[1], app_data[2])
with dpg.handler_registry():
dpg.add_mouse_drag_handler(
button=dpg.mvMouseButton_Left, callback=callback_camera_drag_rotate
)
dpg.add_mouse_wheel_handler(callback=callback_camera_wheel_scale)
dpg.add_mouse_drag_handler(
button=dpg.mvMouseButton_Middle, callback=callback_camera_drag_pan
)
## Avoid scroll bar in the window ##
with dpg.theme() as theme_no_padding:
with dpg.theme_component(dpg.mvAll):
dpg.add_theme_style(
dpg.mvStyleVar_WindowPadding, 0, 0, category=dpg.mvThemeCat_Core
)
dpg.add_theme_style(
dpg.mvStyleVar_FramePadding, 0, 0, category=dpg.mvThemeCat_Core
)
dpg.add_theme_style(
dpg.mvStyleVar_CellPadding, 0, 0, category=dpg.mvThemeCat_Core
)
dpg.bind_item_theme("_primary_window", theme_no_padding)
## Launch the gui ##
dpg.setup_dearpygui()
dpg.set_viewport_small_icon("assets/icon.png")
dpg.set_viewport_large_icon("assets/icon.png")
dpg.show_viewport()
def render(self):
while dpg.is_dearpygui_running():
dpg.set_value("_texture", self.render_cam(self.cam))
dpg.set_value("_log_time", f'Render time: {1000*self.dt:.2f} ms')
dpg.set_value("_samples_per_ray", f'Samples/ray: {self.mean_samples:.2f}')
dpg.render_dearpygui_frame()
if __name__ == "__main__":
hparams = get_opts()
kwargs = {'root_dir': hparams.root_dir,
'downsample': hparams.downsample,
'read_meta': False}
dataset = dataset_dict[hparams.dataset_name](**kwargs)
NGPGUI(hparams, dataset.K, dataset.img_wh).render()
dpg.destroy_context()