|
| 1 | +""" |
| 2 | +This file contains a Processor that can be used to process images with controlnet aux processors |
| 3 | +""" |
| 4 | +import io |
| 5 | +from typing import Union |
| 6 | + |
| 7 | +from PIL import Image |
| 8 | +import numpy as np |
| 9 | +import torch |
| 10 | +from controlnet_aux import (HEDdetector, |
| 11 | + MidasDetector, |
| 12 | + MLSDdetector, |
| 13 | + OpenposeDetector, |
| 14 | + PidiNetDetector, |
| 15 | + NormalBaeDetector, |
| 16 | + LineartDetector, |
| 17 | + LineartAnimeDetector, |
| 18 | + CannyDetector, |
| 19 | + ContentShuffleDetector, |
| 20 | + ZoeDetector, |
| 21 | + MediapipeFaceDetector) |
| 22 | + |
| 23 | + |
| 24 | +MODELS = { |
| 25 | + # checkpoint models |
| 26 | + 'hed': {'class': HEDdetector, 'checkpoint': True}, |
| 27 | + 'midas': {'class': MidasDetector, 'checkpoint': True}, |
| 28 | + 'mlsd': {'class': MLSDdetector, 'checkpoint': True}, |
| 29 | + 'openpose': {'class': OpenposeDetector, 'checkpoint': True}, |
| 30 | + 'pidinet': {'class': PidiNetDetector, 'checkpoint': True}, |
| 31 | + 'normalbae': {'class': NormalBaeDetector, 'checkpoint': True}, |
| 32 | + 'lineart': {'class': LineartDetector, 'checkpoint': True}, |
| 33 | + 'lineart_coarse': {'class': LineartDetector, 'checkpoint': True}, |
| 34 | + 'lineart_anime': {'class': LineartAnimeDetector, 'checkpoint': True}, |
| 35 | + 'zoe': {'class': ZoeDetector, 'checkpoint': True}, |
| 36 | + # instantiate |
| 37 | + 'content_shuffle': {'class': ContentShuffleDetector, 'checkpoint': False}, |
| 38 | + 'mediapipe_face': {'class': MediapipeFaceDetector, 'checkpoint': False}, |
| 39 | + 'canny': {'class': CannyDetector, 'checkpoint': False}, |
| 40 | +} |
| 41 | + |
| 42 | +# @patrickvonplaten, I can change this so people can pass their own parameters |
| 43 | +# but for my use case I'm using this Dictionary |
| 44 | +MODEL_PARAMS = { |
| 45 | + 'hed': {'resize': False}, |
| 46 | + 'midas': {'resize': 512}, |
| 47 | + 'mlsd': {'resize': False}, |
| 48 | + 'openpose': {'resize': False, 'hand_and_face': True}, |
| 49 | + 'pidinet': {'resize': False, 'safe': True}, |
| 50 | + 'normalbae': {'resize': False}, |
| 51 | + 'lineart': {'resize': False, 'coarse': True}, |
| 52 | + 'lineart_coarse': {'resize': False, 'coarse': True}, |
| 53 | + 'lineart_anime': {'resize': False}, |
| 54 | + 'canny': {'resize': False}, |
| 55 | + 'content_shuffle': {'resize': False}, |
| 56 | + 'zoe': {'resize': False}, |
| 57 | + 'mediapipe_face': {'resize': False}, |
| 58 | +} |
| 59 | + |
| 60 | + |
| 61 | +class Processor: |
| 62 | + def __init__(self, processor_id: str) -> 'Processor': |
| 63 | + """Processor that can be used to process images with controlnet aux processors |
| 64 | +
|
| 65 | + Args: |
| 66 | + processor_id (str): processor name |
| 67 | +
|
| 68 | + Returns: |
| 69 | + Processor: Processor object |
| 70 | + """ |
| 71 | + print(f"Loading {processor_id} processor") |
| 72 | + self.processor_id = processor_id |
| 73 | + self.processor = self.load_processor(self.processor_id) |
| 74 | + self.params = MODEL_PARAMS[self.processor_id] |
| 75 | + self.resize = self.params.pop('resize', False) |
| 76 | + if self.resize: |
| 77 | + # print warning: image will be resized |
| 78 | + print(f"Warning: {self.processor_id} will resize image to {self.resize}x{self.resize}") |
| 79 | + |
| 80 | + def load_processor(self, processor_id: str): |
| 81 | + """Load controlnet aux processors |
| 82 | +
|
| 83 | + Args: |
| 84 | + processor_id (str): processor name |
| 85 | + """ |
| 86 | + processor = MODELS[processor_id]['class'] |
| 87 | + |
| 88 | + if MODELS[processor_id]['checkpoint']: |
| 89 | + processor = processor.from_pretrained("lllyasviel/Annotators") |
| 90 | + else: |
| 91 | + processor = processor() |
| 92 | + return processor |
| 93 | + |
| 94 | + def __call__(self, image: Union[Image.Image, bytes], |
| 95 | + to_bytes: bool = True) -> Union[Image.Image, bytes]: |
| 96 | + """processes an image with a controlnet aux processor |
| 97 | +
|
| 98 | + Args: |
| 99 | + image (Union[Image.Image, bytes]): input image in bytes or PIL Image |
| 100 | + to_bytes (bool): whether to return bytes or PIL Image |
| 101 | +
|
| 102 | + Returns: |
| 103 | + Union[Image.Image, bytes]: processed image in bytes or PIL Image |
| 104 | + """ |
| 105 | + # check if bytes or PIL Image |
| 106 | + if isinstance(image, bytes): |
| 107 | + image = Image.open(io.BytesIO(image)).convert("RGB") |
| 108 | + |
| 109 | + if self.resize: |
| 110 | + image = image.resize((self.resize, self.resize)) |
| 111 | + |
| 112 | + processed_image = self.processor(image, **self.params) |
| 113 | + |
| 114 | + if to_bytes: |
| 115 | + output_bytes = io.BytesIO() |
| 116 | + processed_image.save(output_bytes, format='JPEG') |
| 117 | + return output_bytes.getvalue() |
| 118 | + else: |
| 119 | + return processed_image |
0 commit comments