|
| 1 | +import os |
| 2 | + |
| 3 | +import cv2 |
| 4 | +import numpy as np |
| 5 | +import torch |
| 6 | +from huggingface_hub import hf_hub_download |
| 7 | +from PIL import Image |
| 8 | + |
| 9 | +from ..util import HWC3, resize_image |
| 10 | +from .leres.depthmap import estimateboost, estimateleres |
| 11 | +from .leres.multi_depth_model_woauxi import RelDepthModel |
| 12 | +from .leres.net_tools import strip_prefix_if_present |
| 13 | +from .pix2pix.models.pix2pix4depth_model import Pix2Pix4DepthModel |
| 14 | +from .pix2pix.options.test_options import TestOptions |
| 15 | + |
| 16 | + |
| 17 | +class LeresDetector: |
| 18 | + def __init__(self, model, pix2pixmodel): |
| 19 | + self.model = model |
| 20 | + self.pix2pixmodel = pix2pixmodel |
| 21 | + |
| 22 | + @classmethod |
| 23 | + def from_pretrained(cls, pretrained_model_or_path, filename=None, pix2pix_filename=None, cache_dir=None): |
| 24 | + filename = filename or "res101.pth" |
| 25 | + pix2pix_filename = pix2pix_filename or "latest_net_G.pth" |
| 26 | + |
| 27 | + if os.path.isdir(pretrained_model_or_path): |
| 28 | + model_path = os.path.join(pretrained_model_or_path, filename) |
| 29 | + else: |
| 30 | + model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir) |
| 31 | + |
| 32 | + checkpoint = torch.load(model_path, map_location=torch.device('cpu')) |
| 33 | + |
| 34 | + model = RelDepthModel(backbone='resnext101') |
| 35 | + model.load_state_dict(strip_prefix_if_present(checkpoint['depth_model'], "module."), strict=True) |
| 36 | + del checkpoint |
| 37 | + |
| 38 | + if os.path.isdir(pretrained_model_or_path): |
| 39 | + model_path = os.path.join(pretrained_model_or_path, pix2pix_filename) |
| 40 | + else: |
| 41 | + model_path = hf_hub_download(pretrained_model_or_path, pix2pix_filename, cache_dir=cache_dir) |
| 42 | + |
| 43 | + opt = TestOptions().parse() |
| 44 | + if not torch.cuda.is_available(): |
| 45 | + opt.gpu_ids = [] # cpu mode |
| 46 | + pix2pixmodel = Pix2Pix4DepthModel(opt) |
| 47 | + pix2pixmodel.save_dir = os.path.dirname(model_path) |
| 48 | + pix2pixmodel.load_networks('latest') |
| 49 | + pix2pixmodel.eval() |
| 50 | + |
| 51 | + return cls(model, pix2pixmodel) |
| 52 | + |
| 53 | + def to(self, device): |
| 54 | + self.model.to(device) |
| 55 | + # TODO - refactor pix2pix implementation to support device migration |
| 56 | + # self.pix2pixmodel.to(device) |
| 57 | + return self |
| 58 | + |
| 59 | + def __call__(self, input_image, thr_a=0, thr_b=0, boost=False, detect_resolution=512, image_resolution=512, output_type="pil"): |
| 60 | + device = next(iter(self.model.parameters())).device |
| 61 | + if not isinstance(input_image, np.ndarray): |
| 62 | + input_image = np.array(input_image, dtype=np.uint8) |
| 63 | + |
| 64 | + input_image = HWC3(input_image) |
| 65 | + input_image = resize_image(input_image, detect_resolution) |
| 66 | + |
| 67 | + assert input_image.ndim == 3 |
| 68 | + height, width, dim = input_image.shape |
| 69 | + |
| 70 | + with torch.no_grad(): |
| 71 | + |
| 72 | + if boost: |
| 73 | + depth = estimateboost(input_image, self.model, 0, self.pix2pixmodel, max(width, height)) |
| 74 | + else: |
| 75 | + depth = estimateleres(input_image, self.model, width, height) |
| 76 | + |
| 77 | + numbytes=2 |
| 78 | + depth_min = depth.min() |
| 79 | + depth_max = depth.max() |
| 80 | + max_val = (2**(8*numbytes))-1 |
| 81 | + |
| 82 | + # check output before normalizing and mapping to 16 bit |
| 83 | + if depth_max - depth_min > np.finfo("float").eps: |
| 84 | + out = max_val * (depth - depth_min) / (depth_max - depth_min) |
| 85 | + else: |
| 86 | + out = np.zeros(depth.shape) |
| 87 | + |
| 88 | + # single channel, 16 bit image |
| 89 | + depth_image = out.astype("uint16") |
| 90 | + |
| 91 | + # convert to uint8 |
| 92 | + depth_image = cv2.convertScaleAbs(depth_image, alpha=(255.0/65535.0)) |
| 93 | + |
| 94 | + # remove near |
| 95 | + if thr_a != 0: |
| 96 | + thr_a = ((thr_a/100)*255) |
| 97 | + depth_image = cv2.threshold(depth_image, thr_a, 255, cv2.THRESH_TOZERO)[1] |
| 98 | + |
| 99 | + # invert image |
| 100 | + depth_image = cv2.bitwise_not(depth_image) |
| 101 | + |
| 102 | + # remove bg |
| 103 | + if thr_b != 0: |
| 104 | + thr_b = ((thr_b/100)*255) |
| 105 | + depth_image = cv2.threshold(depth_image, thr_b, 255, cv2.THRESH_TOZERO)[1] |
| 106 | + |
| 107 | + detected_map = depth_image |
| 108 | + detected_map = HWC3(detected_map) |
| 109 | + |
| 110 | + img = resize_image(input_image, image_resolution) |
| 111 | + H, W, C = img.shape |
| 112 | + |
| 113 | + detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) |
| 114 | + |
| 115 | + if output_type == "pil": |
| 116 | + detected_map = Image.fromarray(detected_map) |
| 117 | + |
| 118 | + return detected_map |
0 commit comments