-
Notifications
You must be signed in to change notification settings - Fork 16
/
fasthessian.cpp
375 lines (308 loc) · 12 KB
/
fasthessian.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
/***********************************************************
* --- OpenSURF --- *
* This library is distributed under the GNU GPL. Please *
* use the contact form at http://www.chrisevansdev.com *
* for more information. *
* *
* C. Evans, Research Into Robust Visual Features, *
* MSc University of Bristol, 2008. *
* *
************************************************************/
#include "integral.h"
#include "ipoint.h"
#include "utils.h"
#include <vector>
#include "responselayer.h"
#include "fasthessian.h"
using namespace std;
//-------------------------------------------------------
//! Constructor without image
FastHessian::FastHessian(std::vector<Ipoint> &ipts,
const int octaves, const int intervals, const int init_sample,
const float thresh)
: ipts(ipts), i_width(0), i_height(0)
{
// Save parameter set
saveParameters(octaves, intervals, init_sample, thresh);
}
//-------------------------------------------------------
//! Constructor with image
FastHessian::FastHessian(IplImage *img, std::vector<Ipoint> &ipts,
const int octaves, const int intervals, const int init_sample,
const float thresh)
: ipts(ipts), i_width(0), i_height(0)
{
// Save parameter set
saveParameters(octaves, intervals, init_sample, thresh);
// Set the current image
setIntImage(img);
}
//-------------------------------------------------------
FastHessian::~FastHessian()
{
for (unsigned int i = 0; i < responseMap.size(); ++i)
{
delete responseMap[i];
}
}
//-------------------------------------------------------
//! Save the parameters
void FastHessian::saveParameters(const int octaves, const int intervals,
const int init_sample, const float thresh)
{
// Initialise variables with bounds-checked values
this->octaves =
(octaves > 0 && octaves <= 4 ? octaves : OCTAVES);
this->intervals =
(intervals > 0 && intervals <= 4 ? intervals : INTERVALS);
this->init_sample =
(init_sample > 0 && init_sample <= 6 ? init_sample : INIT_SAMPLE);
this->thresh = (thresh >= 0 ? thresh : THRES);
}
//-------------------------------------------------------
//! Set or re-set the integral image source
void FastHessian::setIntImage(IplImage *img)
{
// Change the source image
this->img = img;
i_height = img->height;
i_width = img->width;
}
//-------------------------------------------------------
//! Find the image features and write into vector of features
void FastHessian::getIpoints()
{
// filter index map
static const int filter_map [OCTAVES][INTERVALS] = {{0,1,2,3}, {1,3,4,5}, {3,5,6,7}, {5,7,8,9}, {7,9,10,11}};
// Clear the vector of exisiting ipts
ipts.clear();
// Build the response map
buildResponseMap();
// Get the response layers
ResponseLayer *b, *m, *t;
for (int o = 0; o < octaves; ++o) for (int i = 0; i <= 1; ++i)
{
b = responseMap.at(filter_map[o][i]);
m = responseMap.at(filter_map[o][i+1]);
t = responseMap.at(filter_map[o][i+2]);
// loop over middle response layer at density of the most
// sparse layer (always top), to find maxima across scale and space
for (int r = 0; r < t->height; ++r)
{
for (int c = 0; c < t->width; ++c)
{
if (isExtremum(r, c, t, m, b))
{
interpolateExtremum(r, c, t, m, b);
}
}
}
}
}
//-------------------------------------------------------
//! Build map of DoH responses
void FastHessian::buildResponseMap()
{
// Calculate responses for the first 4 octaves:
// Oct1: 9, 15, 21, 27
// Oct2: 15, 27, 39, 51
// Oct3: 27, 51, 75, 99
// Oct4: 51, 99, 147,195
// Oct5: 99, 195,291,387
// Deallocate memory and clear any existing response layers
for(unsigned int i = 0; i < responseMap.size(); ++i)
delete responseMap[i];
responseMap.clear();
// Get image attributes
int w = (i_width / init_sample);
int h = (i_height / init_sample);
int s = (init_sample);
// Calculate approximated determinant of hessian values
if (octaves >= 1)
{
responseMap.push_back(new ResponseLayer(w, h, s, 9));
responseMap.push_back(new ResponseLayer(w, h, s, 15));
responseMap.push_back(new ResponseLayer(w, h, s, 21));
responseMap.push_back(new ResponseLayer(w, h, s, 27));
}
if (octaves >= 2)
{
responseMap.push_back(new ResponseLayer(w/2, h/2, s*2, 39));
responseMap.push_back(new ResponseLayer(w/2, h/2, s*2, 51));
}
if (octaves >= 3)
{
responseMap.push_back(new ResponseLayer(w/4, h/4, s*4, 75));
responseMap.push_back(new ResponseLayer(w/4, h/4, s*4, 99));
}
if (octaves >= 4)
{
responseMap.push_back(new ResponseLayer(w/8, h/8, s*8, 147));
responseMap.push_back(new ResponseLayer(w/8, h/8, s*8, 195));
}
if (octaves >= 5)
{
responseMap.push_back(new ResponseLayer(w/16, h/16, s*16, 291));
responseMap.push_back(new ResponseLayer(w/16, h/16, s*16, 387));
}
// Extract responses from the image
for (unsigned int i = 0; i < responseMap.size(); ++i)
{
buildResponseLayer(responseMap[i]);
}
}
//-------------------------------------------------------
//! Calculate DoH responses for supplied layer
void FastHessian::buildResponseLayer(ResponseLayer *rl)
{
float *responses = rl->responses; // response storage
unsigned char *laplacian = rl->laplacian; // laplacian sign storage
int step = rl->step; // step size for this filter
int b = (rl->filter - 1) / 2; // border for this filter
int l = rl->filter / 3; // lobe for this filter (filter size / 3)
int w = rl->filter; // filter size
float inverse_area = 1.f/(w*w); // normalisation factor
float Dxx, Dyy, Dxy;
for(int r, c, ar = 0, index = 0; ar < rl->height; ++ar)
{
for(int ac = 0; ac < rl->width; ++ac, index++)
{
// get the image coordinates
r = ar * step;
c = ac * step;
// Compute response components
Dxx = BoxIntegral(img, r - l + 1, c - b, 2*l - 1, w)
- BoxIntegral(img, r - l + 1, c - l / 2, 2*l - 1, l)*3;
Dyy = BoxIntegral(img, r - b, c - l + 1, w, 2*l - 1)
- BoxIntegral(img, r - l / 2, c - l + 1, l, 2*l - 1)*3;
Dxy = + BoxIntegral(img, r - l, c + 1, l, l)
+ BoxIntegral(img, r + 1, c - l, l, l)
- BoxIntegral(img, r - l, c - l, l, l)
- BoxIntegral(img, r + 1, c + 1, l, l);
// Normalise the filter responses with respect to their size
Dxx *= inverse_area;
Dyy *= inverse_area;
Dxy *= inverse_area;
// Get the determinant of hessian response & laplacian sign
responses[index] = (Dxx * Dyy - 0.81f * Dxy * Dxy);
laplacian[index] = (Dxx + Dyy >= 0 ? 1 : 0);
#ifdef RL_DEBUG
// create list of the image coords for each response
rl->coords.push_back(std::make_pair<int,int>(r,c));
#endif
}
}
}
//-------------------------------------------------------
//! Non Maximal Suppression function
int FastHessian::isExtremum(int r, int c, ResponseLayer *t, ResponseLayer *m, ResponseLayer *b)
{
// bounds check
int layerBorder = (t->filter + 1) / (2 * t->step);
if (r <= layerBorder || r >= t->height - layerBorder || c <= layerBorder || c >= t->width - layerBorder)
return 0;
// check the candidate point in the middle layer is above thresh
float candidate = m->getResponse(r, c, t);
if (candidate < thresh)
return 0;
for (int rr = -1; rr <=1; ++rr)
{
for (int cc = -1; cc <=1; ++cc)
{
// if any response in 3x3x3 is greater candidate not maximum
if (
t->getResponse(r+rr, c+cc) >= candidate ||
((rr != 0 || cc != 0) && m->getResponse(r+rr, c+cc, t) >= candidate) ||
b->getResponse(r+rr, c+cc, t) >= candidate
)
return 0;
}
}
return 1;
}
//-------------------------------------------------------
//! Interpolate scale-space extrema to subpixel accuracy to form an image feature.
void FastHessian::interpolateExtremum(int r, int c, ResponseLayer *t, ResponseLayer *m, ResponseLayer *b)
{
// get the step distance between filters
// check the middle filter is mid way between top and bottom
int filterStep = (m->filter - b->filter);
assert(filterStep > 0 && t->filter - m->filter == m->filter - b->filter);
// Get the offsets to the actual location of the extremum
double xi = 0, xr = 0, xc = 0;
interpolateStep(r, c, t, m, b, &xi, &xr, &xc );
// If point is sufficiently close to the actual extremum
if( fabs( xi ) < 0.5f && fabs( xr ) < 0.5f && fabs( xc ) < 0.5f )
{
Ipoint ipt;
ipt.x = static_cast<float>((c + xc) * t->step);
ipt.y = static_cast<float>((r + xr) * t->step);
ipt.scale = static_cast<float>((0.1333f) * (m->filter + xi * filterStep));
ipt.laplacian = static_cast<int>(m->getLaplacian(r,c,t));
ipts.push_back(ipt);
}
}
//-------------------------------------------------------
//! Performs one step of extremum interpolation.
void FastHessian::interpolateStep(int r, int c, ResponseLayer *t, ResponseLayer *m, ResponseLayer *b,
double* xi, double* xr, double* xc )
{
CvMat* dD, * H, * H_inv, X;
double x[3] = { 0 };
dD = deriv3D( r, c, t, m, b );
H = hessian3D( r, c, t, m, b );
H_inv = cvCreateMat( 3, 3, CV_64FC1 );
cvInvert( H, H_inv, CV_SVD );
cvInitMatHeader( &X, 3, 1, CV_64FC1, x, CV_AUTOSTEP );
cvGEMM( H_inv, dD, -1, NULL, 0, &X, 0 );
cvReleaseMat( &dD );
cvReleaseMat( &H );
cvReleaseMat( &H_inv );
*xi = x[2];
*xr = x[1];
*xc = x[0];
}
//-------------------------------------------------------
//! Computes the partial derivatives in x, y, and scale of a pixel.
CvMat* FastHessian::deriv3D(int r, int c, ResponseLayer *t, ResponseLayer *m, ResponseLayer *b)
{
CvMat* dI;
double dx, dy, ds;
dx = (m->getResponse(r, c + 1, t) - m->getResponse(r, c - 1, t)) / 2.0;
dy = (m->getResponse(r + 1, c, t) - m->getResponse(r - 1, c, t)) / 2.0;
ds = (t->getResponse(r, c) - b->getResponse(r, c, t)) / 2.0;
dI = cvCreateMat( 3, 1, CV_64FC1 );
cvmSet( dI, 0, 0, dx );
cvmSet( dI, 1, 0, dy );
cvmSet( dI, 2, 0, ds );
return dI;
}
//-------------------------------------------------------
//! Computes the 3D Hessian matrix for a pixel.
CvMat* FastHessian::hessian3D(int r, int c, ResponseLayer *t, ResponseLayer *m, ResponseLayer *b)
{
CvMat* H;
double v, dxx, dyy, dss, dxy, dxs, dys;
v = m->getResponse(r, c, t);
dxx = m->getResponse(r, c + 1, t) + m->getResponse(r, c - 1, t) - 2 * v;
dyy = m->getResponse(r + 1, c, t) + m->getResponse(r - 1, c, t) - 2 * v;
dss = t->getResponse(r, c) + b->getResponse(r, c, t) - 2 * v;
dxy = ( m->getResponse(r + 1, c + 1, t) - m->getResponse(r + 1, c - 1, t) -
m->getResponse(r - 1, c + 1, t) + m->getResponse(r - 1, c - 1, t) ) / 4.0;
dxs = ( t->getResponse(r, c + 1) - t->getResponse(r, c - 1) -
b->getResponse(r, c + 1, t) + b->getResponse(r, c - 1, t) ) / 4.0;
dys = ( t->getResponse(r + 1, c) - t->getResponse(r - 1, c) -
b->getResponse(r + 1, c, t) + b->getResponse(r - 1, c, t) ) / 4.0;
H = cvCreateMat( 3, 3, CV_64FC1 );
cvmSet( H, 0, 0, dxx );
cvmSet( H, 0, 1, dxy );
cvmSet( H, 0, 2, dxs );
cvmSet( H, 1, 0, dxy );
cvmSet( H, 1, 1, dyy );
cvmSet( H, 1, 2, dys );
cvmSet( H, 2, 0, dxs );
cvmSet( H, 2, 1, dys );
cvmSet( H, 2, 2, dss );
return H;
}
//-------------------------------------------------------