forked from BoyuanJiang/matching-networks-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mainOmniglot.py
46 lines (40 loc) · 1.99 KB
/
mainOmniglot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# Created by: BoyuanJiang
# College of Information Science & Electronic Engineering,ZheJiang University
# Email: [email protected]
# Copyright (c) 2017
# @Time :17-8-29 22:26
# @FILE :mainOmniglot.py
# +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
from data_loader import OmniglotNShotDataset
from OmniglotBuilder import OmniglotBuilder
import tqdm
# Experiment setup
batch_size = 20
fce = True
classes_per_set = 20
samples_per_class = 1
channels = 1
# Training setup
total_epochs = 100
total_train_batches = 1000
total_val_batches = 250
total_test_batches = 500
best_val_acc = 0.0
data = OmniglotNShotDataset(batch_size=batch_size, classes_per_set=classes_per_set,
samples_per_class=samples_per_class, seed=2017, shuffle=True, use_cache=False)
obj_oneShotBuilder = OmniglotBuilder(data)
obj_oneShotBuilder.build_experiment(batch_size=batch_size, num_channels=1, lr=1e-3, image_size=28, classes_per_set=20,
samples_per_class=1, keep_prob=0.0, fce=True, optim="adam", weight_decay=0,
use_cuda=True)
with tqdm.tqdm(total=total_train_batches) as pbar_e:
for e in range(total_epochs):
total_c_loss, total_accuracy = obj_oneShotBuilder.run_training_epoch(total_train_batches)
print("Epoch {}: train_loss:{} train_accuracy:{}".format(e, total_c_loss, total_accuracy))
total_val_c_loss, total_val_accuracy = obj_oneShotBuilder.run_val_epoch(total_val_batches)
print("Epoch {}: val_loss:{} val_accuracy:{}".format(e, total_val_c_loss, total_val_accuracy))
if total_val_accuracy>best_val_acc:
best_val_acc = total_val_accuracy
total_test_c_loss, total_test_accuracy = obj_oneShotBuilder.run_test_epoch(total_test_batches)
print("Epoch {}: test_loss:{} test_accuracy:{}".format(e, total_test_c_loss, total_test_accuracy))
pbar_e.update(1)