forked from cnunescoelho/kiroku
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkiroku_app.py
executable file
·599 lines (542 loc) · 22 KB
/
kiroku_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
# Copyright (c) 2024 Claudionor Coelho Jr, Fabrício José Vieira Ceolin, Luiza Nacif Coelho
from agents.states import *
from copy import deepcopy
import gradio as gr
from IPython.display import display, Image
from langchain_openai import ChatOpenAI
from langgraph.checkpoint.memory import MemorySaver
from langchain_core.runnables.graph import CurveStyle, MermaidDrawMethod
from langgraph.graph import StateGraph, START, END
import logging
import markdown
import os
import shutil
import subprocess
import re
import yaml
try:
from yaml import CLoader as Loader
except ImportError:
from yaml import Loader
logging.basicConfig(level=logging.WARNING)
class DocumentWriter:
def __init__(
self,
suggest_title=False,
generate_citations=True,
model_name="openai",
temperature=0.0):
self.suggest_title = suggest_title
self.generate_citations = generate_citations
self.state = None
self.set_thread_id(1)
models = {
"openai": "gpt-4o-mini",
"openai++": "gpt-4o"
}
assert model_name in ["openai", "openai++"]
model = models.get(model_name, "openai")
# if user did not specify the beefed up models upfront, we try to
# use cheaper models whenever possible for simpler tasks.
if model_name in ["openai", "openai++"]:
self.model_m = ChatOpenAI(
model=model, temperature=temperature)
self.model_p = ChatOpenAI(
model=models["openai++"], temperature=temperature)
self.state_nodes = {
node.name : node
for node in [
SuggestTitle(self.model_m),
SuggestTitleReview(self.model_m),
InternetSearch(self.model_p),
TopicSentenceWriter(self.model_m),
TopicSentenceManualReview(self.model_m),
PaperWriter(self.model_p),
WriterManualReviewer(self.model_m),
ReflectionReviewer(self.model_p),
ReflectionManualReview(self.model_m),
WriteAbstract(self.model_p),
GenerateReferences(self.model_m),
GenerateCitations(self.model_m),
GenerateFigureCaptions(self.model_m),
] if self.mask_nodes(node.name)
}
self.create_graph(suggest_title)
def mask_nodes(self, name):
'''
We do not process nodes if user does not want to run that phase.
:param name: name of the node.
:return: True if we keep nodes, False otherwise
'''
if (
name in ["suggest_title", "suggest_title_review"] and
not self.suggest_title):
return False
if name in ["generate_references", "generate_citations"] and not self.generate_citations:
return False
return True
def create_graph(self, suggest_title):
'''
Builds a graph to execute the different phases of a document writing.
:param suggest_title: If we are to suggest a better title for the paper.
:return: Nothing.
'''
memory = MemorySaver()
builder = StateGraph(AgentState)
# Add nodes to the graph
for name, state in self.state_nodes.items():
builder.add_node(name, state.run)
# Add edges to the graph
if suggest_title:
builder.add_conditional_edges(
"suggest_title_review",
self.is_title_review_complete,
{
"next_phase": "internet_search",
"review_more": "suggest_title"
}
)
builder.add_conditional_edges(
"topic_sentence_manual_review",
self.is_plan_review_complete,
{
"topic_sentence_manual_review": "topic_sentence_manual_review",
"paper_writer": "paper_writer"
}
)
builder.add_conditional_edges(
"writer_manual_reviewer",
self.is_generate_review_complete,
{
"manual_review": "writer_manual_reviewer",
"reflection": "reflection_reviewer",
"finalize": "write_abstract"
}
)
if suggest_title:
builder.add_edge("suggest_title", "suggest_title_review")
builder.add_edge("internet_search", "topic_sentence_writer")
builder.add_edge("topic_sentence_writer", "topic_sentence_manual_review")
builder.add_edge("paper_writer", "writer_manual_reviewer")
builder.add_edge("reflection_reviewer", "additional_reflection_instructions")
builder.add_edge("additional_reflection_instructions", "paper_writer")
if self.generate_citations:
builder.add_edge("write_abstract", "generate_references")
builder.add_edge("generate_references", "generate_citations")
builder.add_edge("generate_citations", "generate_figure_captions")
else:
builder.add_edge("write_abstract", "generate_figure_captions")
builder.add_edge("generate_figure_captions", END)
# Starting state is either suggest_title or planner.
if suggest_title:
builder.set_entry_point("suggest_title")
else:
builder.set_entry_point("internet_search")
self.interrupt_after = []
self.interrupt_before = [ "suggest_title_review" ] if suggest_title else []
self.interrupt_before.extend([
"topic_sentence_manual_review",
"writer_manual_reviewer",
"additional_reflection_instructions",
])
if self.generate_citations:
self.interrupt_before.append("generate_citations")
# Build graph
self.graph = builder.compile(
checkpointer=memory,
interrupt_before=self.interrupt_before,
interrupt_after=self.interrupt_after,
debug=False
)
def is_title_review_complete(self, state: AgentState) -> str:
'''
Checks if title review is complete based on an END instruction.
:param state: state of agent.
:return: next state of agent.
'''
if not state["messages"]:
return "next_phase"
else:
return "review_more"
def is_plan_review_complete(self, state: AgentState, config: dict) -> str:
'''
Checks if plan manual review is complete based on an empty instruction.
:param state: state of agent.
:return: next state of agent.
'''
if config["configurable"]["instruction"]:
return "topic_sentence_manual_review"
else:
return "paper_writer"
def is_generate_review_complete(self, state: AgentState, config: dict) -> str:
'''
Checks if review of generation phase is complete based on number of revisions.
:param state: state of agent.
:return: next state to go.
'''
if config["configurable"]["instruction"]:
return "manual_review"
elif state["revision_number"] <= state["max_revisions"]:
return "reflection"
else:
return "finalize"
def invoke(self, state, config):
'''
Invokes the multi-agent system to write a paper.
:param state: state of initial invokation.
:return: draft
'''
config = { "configurable": config }
config["configurable"]["thread_id"] = self.get_thread_id()
response = self.graph.invoke(state, config)
self.state = response
draft = response.get("draft", "").strip()
# we have to do this because the LLM sometimes decide to add
# this to the final answer.
if "```markdown" in draft:
draft = "\n".join(draft.split("\n")[1:-1])
return draft
def stream(self, state, config):
'''
Invokes the multi-agent system to write a paper.
:param state: state of initial invokation.
:return: full state information
'''
config = { "configurable": config }
config["configurable"]["thread_id"] = self.get_thread_id()
for event in self.graph.stream(state, config, stream_mode="values"):
pass
draft = event["draft"]
# we have to do this because the LLM sometimes decide to add
# this to the final answer.
if "```markdown" in draft:
draft = "\n".join(draft.split("\n")[1:-1])
return draft
def get_state(self):
"""
Returns the full state of the document writing process.
:return: Generated state from invoke
"""
config = { "configurable": { "thread_id": self.get_thread_id() }}
return self.graph.get_state(config)
def update_state(self, new_state):
"""
Updates the state of langgraph.
:param new_state:
:return: None
"""
config = { "configurable": { "thread_id": self.get_thread_id() }}
self.graph.update_state(config, new_state.values)
def get_thread_id(self):
return str(self.thread_id)
def set_thread_id(self, thread_id):
self.thread_id = str(thread_id)
def draw(self):
display(
Image(
self.graph.get_graph().draw_mermaid_png(
draw_method=MermaidDrawMethod.API,
)
)
)
class KirokuUI:
def __init__(self, working_dir):
self.working_dir = working_dir
self.first = True
self.next_state = -1
self.references = []
def read_initial_state(self, filename):
'''
Reads initial state from a YAML 'filename'.
:param filename: YAML file containing initial paper configuration.
:return: initial state dictionary.
'''
stream = open(filename, 'r')
try:
state = yaml.load(stream, Loader=Loader)
except yaml.parser.ParserError:
logging.error("Cannot load YAML file")
return {}
if not "sentences_per_paragraph" in state:
state["sentences_per_paragraph"] = 4
self.suggest_title = state.pop("suggest_title", False)
self.generate_citations = state.pop("generate_citations", False)
self.model_name = state.pop("model_name", "openai++")
self.temperature = state.pop("temperature", 0.0)
state["hypothesis"] = (
state["hypothesis"] + "\n\n" + state.pop("instructions", "")
)
return state
def step(self, instruction, state_values=None):
"""
Performs one step of the graph invocation, stopping at the next break point.
:param instruction: instruction to execute.
:param state_values: initial state values or None if continuing.
:return: draft of the paper.
"""
config = { "instruction": instruction }
draft = self.writer.invoke(state_values, config)
return draft
def update(self, instruction):
"""
Updates state upon submitting an instruction or updating references.
:param instruction: instruction to be executed.
:return: new draft, atlas message and making input object non-interactive.
"""
draft = self.step(instruction)
state = self.writer.get_state()
current_state = state.values["state"]
try:
next_state = state.next[0]
except:
next_state = "NONE"
# if state is in reflection stage, draft to be shown is in the critique field.
if (
current_state == "reflection_reviewer" and
next_state == "additional_reflection_instructions"
):
draft = state.values["critique"]
# if next state is going to generate citations, we populate the references
# for the Tab References.
if next_state == "generate_citations":
self.references = state.values.get("references", []).split('\n')
# if we have reached the end, we will save everything.
if next_state == END or next_state == "NONE":
dir = os.path.splitext(self.filename)[0]
logging.warning(f"saving final draft in {dir}")
self.save_as()
self.next_state = next_state
return (
draft,
self.atlas_message(next_state),
gr.update(interactive=False)
)
def atlas_message(self, state):
"""
Returns the Echo message for a given state.
:param state: Next state of the multi-agent system.
:return:
"""
message = {
"suggest_title_review":
"Please suggest review instructions for the title.",
"topic_sentence_manual_review":
"Please suggest review instructions for the topic sentences.",
"writer_manual_reviewer":
"Please suggest review instructions for the main draft.",
"additional_reflection_instructions":
"Please provide additional instructions for the overall paper review.",
"generate_citations":
"Please look at the references tab and confirm the references."
}
instruction = message.get(state, "")
if instruction or state == "generate_citations":
if state == "generate_citations":
return instruction
else:
return instruction + " Type <RETURN> when done."
else:
return "We have reached the end."
def initial_step(self):
"""
Performs initial step, in which we need to providate a staet to the graph.
:return: draft and Echo message.
"""
state_values = deepcopy(self.state_values)
if self.suggest_title:
state_values["state"] = "suggest_title"
else:
state_values["state"] = "topic_sentence_writer"
# initialize a bunch of variables users should not care about.
# in principle this could be initialized in the Pydantic object,
# but I could not make this work there.
state_values["references"] = state_values.get("references", [])
state_values["draft"] = ""
state_values["revision_number"] = 1
state_values["messages"] = []
state_values["review_instructions"] = []
state_values["review_topic_sentences"] = []
draft = self.step("", state_values)
state = self.writer.get_state()
current_state = state.values["state"]
try:
next_state = state.next[0]
except:
next_state = "NONE"
return draft, self.atlas_message(next_state)
def process_file(self, filename):
"""
Processes file uploaded.
:param filename: file name where to read the file.
:return: State that was read and make input non-interactive.
"""
pwd = os.getcwd()
logging.warning(f"Setting working directory to {pwd}")
self.filename = pwd + "/" + filename.split('/')[-1]
self.state_values = self.read_initial_state(filename)
if self.state_values:
self.writer = DocumentWriter(
suggest_title=self.suggest_title,
generate_citations=self.generate_citations,
model_name=self.model_name,
temperature=self.temperature)
return self.state_values, gr.update(interactive=False)
def save_as(self):
"""
Saves project status. We save all instructions given by the user.
:return: message where the project was saved.
"""
filename = self.filename
state = self.writer.get_state()
draft = state.values.get("draft", "")
# need to replace file= by empty because of gradio problem in Markdown
draft = re.sub(r'\/?file=', '', draft)
plan = state.values.get("plan", "")
review_topic_sentences = "\n\n".join(state.values.get("review_topic_sentences", []))
review_instructions = "\n\n".join(state.values.get("review_instructions", []))
content = "\n\n".join(state.values.get("content", []))
dir = os.path.splitext(filename)[0]
try:
shutil.rmtree(dir)
except:
pass
os.mkdir(dir)
os.symlink(self.images, dir + "/images")
base_filename = dir + "/" + dir.split("/")[-1]
with open(base_filename + ".md", "w") as fp:
fp.write(draft)
logging.warning(f"saved file {base_filename + '.md'}")
html = markdown.markdown(draft)
with open(base_filename + ".html", "w") as fp:
fp.write(html)
try:
# Use pandoc to convert to docx
subprocess.run(
[
"pandoc",
"-s", f"{base_filename + '.html'}",
"-f", "html",
"-t", "docx",
"-o", f"{base_filename + '.docx'}"
])
except:
logging.error("cannot find 'pandoc'")
#with open(base_filename + ".docx", "wb") as fp:
# buf = html2docx(html, title=state.values.get("title", ""))
# fp.write(buf.getvalue())
logging.warning(f"saved file {base_filename + '.docx'}")
with open(base_filename + "_ts.txt", "w") as fp:
fp.write(review_topic_sentences)
logging.warning(f"saved file {base_filename + '_ts.txt'}")
with open(base_filename + "_wi.txt", "w") as fp:
fp.write(review_instructions)
logging.warning(f"saved file {base_filename + '_wi.txt'}")
with open(base_filename + "_plan.md", "w") as fp:
fp.write(plan)
logging.warning(f"saved file {base_filename + '_plan.md'}")
with open(base_filename + "_content.txt", "w") as fp:
fp.write(content)
logging.warning(f"saved file {base_filename + '_content.txt'}")
return f"Saved project {dir}"
def update_refs(self):
"""
Updates the reference for Gradio
:return: list of gr.update objects.
"""
ref_list = [gr.update() for _ in range(1000)]
for i in range(len(self.references)):
ref_list[i] = gr.update(
value=True,
visible=True,
label=self.references[i])
return [gr.update(
visible=self.generate_citations and len(self.references) > 0)
] + ref_list
def submit_ref_list(self, *ref_list):
"""
Invokes step of generating citations with user reference feedback.
:param ref_list: List of references that were unselected.
:return: Everything returned by self.update.
"""
ref_list = ref_list[:len(self.references)]
state = self.writer.get_state()
references = [self.references[i] for i in range(len(self.references)) if ref_list[i]]
logging.warning("Keeping the following references")
for ref in references:
logging.warning(ref)
state.values["references"] = '\n'.join(references)
self.writer.update_state(state)
return self.update("")
def create_ui(self):
with gr.Blocks(
theme=gr.themes.Default(),
fill_height=True) as self.kiroku_agent:
with gr.Tab("Initial Instructions"):
with gr.Row():
file = gr.File(file_types=[".yaml"], scale=1)
js = gr.JSON(scale=5)
with gr.Tab("Document Writing"):
out = gr.Textbox(label="Echo")
inp = gr.Textbox(
placeholder="Instruction",
label="Rider")
markdown = gr.Markdown("")
doc = gr.Button("Save")
with gr.Tab("References") as self.ref_block:
ref_list = [
gr.Checkbox(
value=False,
visible=False,
label=False,
interactive=True)
for _ in range(1000)
]
submit_ref_list = gr.Button("Submit", visible=False)
inp.submit(
self.update, inp, [markdown, out, inp]).then(
lambda : gr.update(
value="",
interactive=self.next_state not in [
END, "generate_citations", "NONE"]), [], inp
).then(self.update_refs, [], [submit_ref_list] + ref_list)
file.upload(self.process_file, file, [js, inp]).then(
self.initial_step, [], [markdown, out]).then(
lambda : gr.update(placeholder="", interactive=True), [], inp)
doc.click(self.save_as, [], out)
submit_ref_list.click(
self.submit_ref_list,
ref_list,
[markdown, out, submit_ref_list])
def launch_ui(self):
logging.warning(f"... using KIROKU_PROJECT_DIRECTORY working directory of {self.working_dir}")
try:
os.chdir(self.working_dir)
except:
logging.warning(f"... directory {self.working_dir} does not exist")
os.mkdir(self.working_dir)
self.images = self.working_dir + "/images"
logging.warning(
f"... using directory {self.working_dir}/images to store images")
try:
os.mkdir(self.images)
except:
pass
self.kiroku_agent.launch(server_name='localhost') #allowed_paths=[working_dir])
def run():
working_dir = os.environ.get("KIROKU_PROJECT_DIRECTORY", os.getcwd())
# need this to allow images to be in a different directory
gr.set_static_paths(paths=[working_dir + '/images'])
kiroku = KirokuUI(working_dir)
kiroku.create_ui()
kiroku.launch_ui()
if __name__ == "__main__":
n_errors = 0
if not os.environ.get("OPENAI_API_KEY"):
logging.error("... We presently require an OPENAI_API_KEY.")
n_errors += 1
if not os.environ.get("TAVILY_API_KEY"):
logging.error("... We presently require an TAVILY_API_KEY.")
n_errors += 1
if n_errors > 0:
exit()
run()