From b0b01ea2140fbf0470e5c7714c827300b5719c80 Mon Sep 17 00:00:00 2001 From: Luis Pineda Date: Mon, 6 Dec 2021 16:44:19 -0500 Subject: [PATCH 01/15] Added clearer explanation at the end of Tutorial 0 and fixed doc typos (#2) * Added clearer explanation at the end of Tutorial 0 and fixed typo in wget for motion planning example. * Added license header to tactile_pose_estimation.py. --- examples/motion_planning_2d.py | 2 +- examples/tactile_pose_estimation.py | 5 +++++ tutorials/00_introduction.ipynb | 6 +++--- 3 files changed, 9 insertions(+), 4 deletions(-) diff --git a/examples/motion_planning_2d.py b/examples/motion_planning_2d.py index a6d0c7cfb..ccb867905 100644 --- a/examples/motion_planning_2d.py +++ b/examples/motion_planning_2d.py @@ -25,7 +25,7 @@ # From the root project folder do: # mkdir expts # cd expts -# wget https://dl.fbaipublicfiles.com/theseus/motion_planning_dataset.tar.gz +# wget https://dl.fbaipublicfiles.com/theseus/motion_planning_data.tar.gz # tar -xzvf motion_planning_data.tar.gz # cd .. # python examples/motion_planning_2d.py diff --git a/examples/tactile_pose_estimation.py b/examples/tactile_pose_estimation.py index 9c0045ac1..3c77064ce 100644 --- a/examples/tactile_pose_estimation.py +++ b/examples/tactile_pose_estimation.py @@ -1,3 +1,8 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# +# This source code is licensed under the MIT license found in the +# LICENSE file in the root directory of this source tree. + import pathlib import random diff --git a/tutorials/00_introduction.ipynb b/tutorials/00_introduction.ipynb index 28257d77a..f603335ef 100644 --- a/tutorials/00_introduction.ipynb +++ b/tutorials/00_introduction.ipynb @@ -537,11 +537,11 @@ "id": "d9cc32be", "metadata": {}, "source": [ - "The `TheseusLayer` allows for backpropagation, and is semantically similar to a layer in a PyTorch neural network. Backpropagating through the `TheseusLayer` allows for learning of any necessary quantities of the problem, e.g., `CostWeight`, `Variable`, etc. The following tutorials will illustrate several applications for learning with a `TheseusLayer`.\n", + "The `TheseusLayer` allows for backpropagation, and is semantically similar to a layer in a PyTorch neural network. Backpropagating through the `TheseusLayer` allows for learning of any necessary quantities of the problem, such as cost weights, initial values for the optimization variables, and other parameters for the optimization. The following tutorials will illustrate several applications for learning with a `TheseusLayer`.\n", "\n", - "To distinguish between the optimization done by the Theseus optimizers, and those done outside the Theseus optimizers (e.g., by PyTorch's autograd during learning), we will refer to them as *inner loop optimization* and *outer loop optimization* respectively. Note that the inner loop optimization optimizes only the optimization variables, and the outer loop optimization can optimize only (selected) auxiliary variables provided to the PyTorch autograd optimizers. A call to `TheseusLayer` `forward()` performs only inner loop optimization; typically the PyTorch autograd learning steps will perform the outer loop optimizations. We will see examples of this in the following tutorials.\n", + "To distinguish between the optimization done by the Theseus optimizers, and those done outside the Theseus optimizers (e.g., by PyTorch's autograd during learning), we will refer to them as *inner loop optimization* and *outer loop optimization*, respectively. Note that the inner loop optimization optimizes only the optimization variables, and the outer loop optimization can optimize torch tensors associated with selected variables provided to the PyTorch autograd optimizers. A call to `TheseusLayer` `forward()` performs only inner loop optimization; typically the PyTorch autograd learning steps will perform the outer loop optimizations. We will see examples of this in the following tutorials.\n", "\n", - "Any updates to the auxiliary variables during the learning loop are best done via the `forward` method of the `TheseusLayer`. While variables and objectives can be updated independently without going through the `TheseusLayer`, this may result in an error during optimization, depending on the states of the internal data structures. Therefore, we recommend that any updates during learning be performed only via the `TheseusLayer`." + "During the outer loop, we will commonly want to update Theseus variables before running inner loop optimization; for example, to set initial values for optimization variables, or to update auxiliary variables with tensors learned by the outer loop. We recommend that such updates to Theseus variables are done via `TheseusLayer.forward()`. While variables and objectives can be updated independently without going through `TheseusLayer.forward()`, following this convention makes it explicitly what the latest inputs to the `TheseusLayer` are, helping to avoid hidden errors and unwanted behavior. Therefore, we recommend that any updates during learning be performed only via the `TheseusLayer`." ] } ], From c3f6ce3653fbc6438867d362398a549b5a600a55 Mon Sep 17 00:00:00 2001 From: Luis Pineda Date: Mon, 6 Dec 2021 17:18:51 -0500 Subject: [PATCH 02/15] Default SE2/SO2 is zero element rather than torch empty. (#3) --- theseus/geometry/se2.py | 2 +- theseus/geometry/so2.py | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/theseus/geometry/se2.py b/theseus/geometry/se2.py index aaa7fdb9b..3c2f78179 100644 --- a/theseus/geometry/se2.py +++ b/theseus/geometry/se2.py @@ -36,7 +36,7 @@ def __init__( @staticmethod def _init_data() -> torch.Tensor: # type: ignore - return torch.empty(1, 4) # x, y, cos and sin + return torch.tensor([0.0, 0.0, 1.0, 0.0]).view(1, 4) def dof(self) -> int: return 3 diff --git a/theseus/geometry/so2.py b/theseus/geometry/so2.py index ce251ad13..fe48a2898 100644 --- a/theseus/geometry/so2.py +++ b/theseus/geometry/so2.py @@ -37,7 +37,7 @@ def __init__( @staticmethod def _init_data() -> torch.Tensor: # type: ignore - return torch.empty(1, 2) # cos and sin + return torch.tensor([1.0, 0.0]).view(1, 2) def update_from_angle(self, theta: torch.Tensor): self.update(torch.cat([theta.cos(), theta.sin()], dim=1)) From 50a755605b05aa35dc72e8dcdd5835c49985110f Mon Sep 17 00:00:00 2001 From: Brandon Amos Date: Fri, 17 Dec 2021 12:49:27 -0500 Subject: [PATCH 03/15] Add plots to tutorials (#25) * Add plots to tutorials * add semicolon to stop spurious matplotlib prints; fix typo; rerun all cells * rerun tutorials 1 and 2 with python 3.8 Co-authored-by: Mustafa Mukadam --- tutorials/01_least_squares_optimization.ipynb | 105 +++++++++++-- tutorials/02_differentiable_nlls.ipynb | 147 +++++++++++++++++- 2 files changed, 228 insertions(+), 24 deletions(-) diff --git a/tutorials/01_least_squares_optimization.ipynb b/tutorials/01_least_squares_optimization.ipynb index 66cb5da86..daf65da1e 100644 --- a/tutorials/01_least_squares_optimization.ipynb +++ b/tutorials/01_least_squares_optimization.ipynb @@ -18,7 +18,20 @@ "cell_type": "code", "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAaMElEQVR4nO3dfYxc1XnH8d+z4yGMIWHd2KlgwDGtwATjEiebQEqVAEmxQ4JxISG4oZQoCVJaUEvQtqCi2HlRIbLSNJUSUTehNG+8o5WTEDlVcYVEasS6izEmmLiQgIdEbBIWqXgb1uunf8yMmZ29987d3blz7537/UhRdmauZ8/FcJ57znPOc8zdBQAoroG0GwAASBeBAAAKjkAAAAVHIACAgiMQAEDBLUq7AXO1dOlSX7FiRdrNAIBc2bVr16/cfVnQZ7kLBCtWrNDo6GjazQCAXDGzn4d9xtQQABQcgQAACo5AAAAFRyAAgIIjEABAweVu1RAAFM3IWE1btu/TCxOTOmGwouG1K7VhTbVr308gAIAMGxmr6cb792hyalqSVJuY1I3375GkrgUDpoYAIMO2bN93JAg0TU5Na8v2fV37HQQCAMiwFyYm5/T+fBAIACDDThiszOn9+SAQAECGDa9dqUq5NOO9Srmk4bUru/Y7SBYDQIY1E8KsGgKAgghbKtrNjr8dgQAAMqIXS0WDkCMAgIzoxVLRIAQCAMiIXiwVDUIgAICM6MVS0SAEAgDIiF4sFQ1CshgAMqIXS0WDEAgAIEOSXioahEAAAD2SdDnp+SIQAEAPpLVHIA6SxQDQA2ntEYgjsUBgZreZ2Ytm9kSH695hZofM7ENJtQUA0pbWHoE4khwR3C5pXdQFZlaS9EVJP0qwHQCQurT2CMSRWCBw94ck/abDZddKuk/Si0m1AwDSNjJW08FXD816vxd7BOJILVlsZlVJfyLpPEnvSKsdAJCk9iRx02ClrM3rV6WeKJbSTRb/o6S/dffDnS40s6vNbNTMRsfHx5NvGQB0SVCSWJKOed2iTAQBKd3lo0OS7jQzSVoq6UIzO+TuI+0XuvtWSVslaWhoyHvZSACYj+aegVqGk8RNqQUCdz+5+bOZ3S7p+0FBAADyJmw6qFUWksRNiQUCM7tD0rmSlprZAUmbJJUlyd1vTer3AkDawqaDmsoly0SSuCmxQODuG+dw7VVJtQMAemlkrBY6HdR0zFHZyQ9I7CwGgK5pTgl18vLkVA9aEx+BAAC6pNOUUFOW8gMSRecAYEFaK4rGWdKYlU1krQgEADBPcVYHtapmqPR0KwIBAMxT3KkgqR4EHr7h/IRbND/kCABgnuJuCsvidFArAgEAzNNxlXLg+4OVsqqDFZnqI4GbL1mduemgVkwNAcA8jIzV9EpARdHygGWmmFxcjAgAYB62bN+nqenZ64SOPTpbm8XiIBAAwDyE5QcmDmZrs1gcTA0BQAyt+wVOGKxocHFZLwV0+lnbLBYHgQAAOmjfL1CbmFR5wFQu2YzpoayvDgrD1BAAdBC0X2DqsOuYoxblanVQGEYEANCmfRoorJroy5NTemzTBT1uXfcRCACgRdA0kEmBdYTymA8IwtQQALQImgZySdZ2XV7zAUEIBADQImxZqEt9kQ8IwtQQALQIywlkuWjcQjEiAIAWw2tXqlIuzXivn6aBgjAiAIAWzeme1lVDWTxDoJsIBADQZsOaal93/O0IBADQ0L5/oN9HAk0EAgBQ8P6BG+/fI0l9HwxIFgOAgvcPTE5Na8v2fSm1qHcIBACg8P0DcY+jzDMCAQAovFxEv5SRiEKOAEAhtSeGzzttme7bVZsxPdTv+weaGBEAKJxmYrg2MSlXPTF8366aLn17tW/LSERhRACgb4UtBw1LDO94arxvy0hEIRAA6EtRy0GLnBgOwtQQgL4UtRy0yInhIIkFAjO7zcxeNLMnQj7/qJk9bmZ7zOzHZnZmUm0BUDxRT/1FLCwXJckRwe2S1kV8/qyk97j7akmfl7Q1wbYAKJiop/4Na6q6+ZLVhUwMB0ksR+DuD5nZiojPf9zycqekE5NqC4DiGV67ckaOQJr51F+0wnJRspIs/rikH4Z9aGZXS7pakpYvX96rNgHIsSKWk54vcw86krlLX14fEXzf3c+IuOY8SV+T9Efu/utO3zk0NOSjo6PdayQAFICZ7XL3oaDPUh0RmNkfSPq6pPfHCQIAgO5LLRCY2XJJ90v6M3d/Oq12AOgfRT1PYKESCwRmdoekcyUtNbMDkjZJKkuSu98q6TOS3ijpa2YmSYfChi0A0EmRzxNYqCRXDW3s8PknJH0iqd8PoFiiNpARCKJlZdUQAMzLyFhNn/3eXr10cCrw86KWjZgLAgGA3BoZq2n43t2amg5f/VjUshFzQSAAkDvNpHCtw9N+kctGzAWBAECutCeFoxS5bMRcUH0UQK4EJYWDVBs1hdAZIwIAuRB3OkiSygPGlNAcEAgAZN5cpoMGK2VtXr+K0cAcEAgAZF6n6aBKuUQ+YAEIBAAyL2ovQJVSEgtGIACQOe01g46rlDUxOXvDWHWwUsjD5ruNQAAgU4JqBpVLpvKAaerwaxvH2CPQPSwfBZApQfmAqWnXsUcv4mjJhDAiAJApYfmAiYNTGvvMBT1uTTEwIgCQKVGHziMZBAIAmTK8dqUq5dKM98gHJIupIQCZwqHzvUcgAJAZ7ctGv/yRtxIAeoBAACATOGoyPeQIAGRC1FGTSBYjAgA91z4FNLx2ZeiyUY6aTB6BAEBPhU0BhZWRYNlo8pgaAtBTYVNAU9OHWTaaEgIBgJ4Km+p55dVpXfr2KmUkUsDUEICeOmGwEnrK2I6nxqkmmgICAYCuGxmrafO2vUfm/JcsLmvTRaskSa/89lDonyMxnA4CAYCuGhmrafie3TNKRr90cErX37NbA9KM99uRGE4HgQBAV23Zvi+ws58+7Io6cZjEcHoIBAC6aj7TOxw3mS4CAYCuikoGB+G4yfSxfBRAVw2vXanygM16vzRgs95nOigbEhsRmNltkj4o6UV3PyPgc5P0FUkXSjoo6Sp3/++k2gOgu4LKRGxYUz0yvRO2aojy0tlj7uEZ/AV9sdm7Jf2vpG+GBIILJV2reiA4S9JX3P2sTt87NDTko6Oj3W4ugDm4aWSPvrPzObX2HpVyiQ1gGWZmu9x9KOizxKaG3P0hSb+JuORi1YOEu/tOSYNmdnxS7QHQHSNjtVlBQKJSaJ6lmSOoSnq+5fWBxnuzmNnVZjZqZqPj4+M9aRyAYFu275sVBJrYEJZPHQOBmV1rZkt60Zgw7r7V3YfcfWjZsmVpNgUovKjOng1h+RRnRPC7kh41s7vNbF0jydsNNUkntbw+sfEegAw7rlIO/ey803hQy6OOgcDdb5J0iqRvSLpK0k/N7O/N7PcX+Lu3SbrS6s6W9LK7/2KB3wkgYa8eCt8fvOMppm7zKNbyUXd3M/ulpF9KOiRpiaR7zezf3f1vgv6Mmd0h6VxJS83sgKRNksqN77tV0gOqrxjar/ry0Y8t7FYAJGlkrKbPfm+vDk4dDr2GHEE+dQwEZvZXkq6U9CtJX5c07O5TZjYg6aeSAgOBu2+M+l6vr1v9yzm3GEDPtZ8qFoYcQT7FGRH8jqRL3P3nrW+6+2Ez+2AyzQKQFSNjNV1392PqtOWoPGDsEs6pjoHA3TdFfPaT7jYHQJY0S0p3CgJm0pYPn8lmspyi1hCAUGElpVtVyiV9+bK3EgRyjEAAIFSn5O9gpUxZiT5AGWoAoaJKSg9Wynps0wU9bhGSwIgAQKiwktLlkmnz+lUptAhJYEQAFFhYKemmqJLSTAf1DwIBUFDtewNqE5O68f49kjQrGNDp9zemhoCC2rJ936wNYpSSLiZGBEBBtE8DhSWBKRNRPAQCoACCpoFMCjxXgDIRxcPUEFAAQdNALql9PRCHyRcTgQAogLDpHpdUHazIGv/P5rBiYmoIKIDjKuUjyz9bVQcreviG81NoEbKEQAD0mfak8HmnLdMrrx6adR3VQtFEIAD6QLPzb08C1yYm9Z2dzwUmhY89ehHTQJBEIAByr31FUHunH1Y7dOLg7KkiFBPJYiDnglYExcEyUTQRCICci7MBjGWiiEIgAHJsZKymAZtdHbRVpVzSR89ezjJRhCJHAORUMzcwHXCOZDNhXA2oKAq0IxAAORWWGyiZ6UuXcX4w4mNqCMihm0b2hBaNO+xOEMCcMCIAcqQ+HfS4JqcOh17DaiDMFSMCICde2y8QHgRYDYT5IBAAORFnvwCrgTAfBAIgJzrtFyiZEQQwL+QIgAzodIi8pMhTxSRp41knJd1M9ClGBEDKmnP/tYlJuV47RH5krDbjuuG1K1Upl2b9+QGTrjh7ub6wYXWPWox+Yx6wGSXLhoaGfHR0NO1mAF1zzi0PBj7pD1bKOuZ1i2aMEiR1HDkAQcxsl7sPBX3G1BCQsrC5/4nJqSOHyTRHCTdfspqDZNB1iU4Nmdk6M9tnZvvN7IaAz5eb2Q4zGzOzx83swiTbA2RR3HX/k1PT2rJ9X8KtQRElFgjMrCTpq5LeL+l0SRvN7PS2y26SdLe7r5F0uaSvJdUeIKvC5v6DxKk0CsxVkiOCd0ra7+7PuPurku6UdHHbNS7pDY2fj5P0QoLtATJpw5qqbr5k9YzqoEsWlwOvZdcwkpBkjqAq6fmW1wckndV2zWZJPzKzayUdI+l9QV9kZldLulqSli9f3vWGAmlpXzb65Y+8VRvWVGedOiaxaxjJSTtZvFHS7e7+JTN7l6RvmdkZ7j5jD727b5W0VaqvGkqhncC8RO0PaO/smwlhSUeuYYUQeiGx5aONjn2zu69tvL5Rktz95pZr9kpa5+7PN14/I+lsd38x7HtZPoq8CHqql+rLQjevX3XksPl21cEKK4PQdVHLR5PMETwq6RQzO9nMjlI9Gbyt7ZrnJL230ci3SDpa0niCbQJ6Jqw20MTk1JENZEFICKPXEgsE7n5I0jWStkv6ieqrg/aa2efMbH3jsuslfdLMdku6Q9JVnrcdbkCIqHIQk1PTKoUcMUlCGL2WaI7A3R+Q9EDbe59p+flJSeck2QYgLSWzwGMkm6bdVSmXSAgjddQaAhISFQSk1w6R51B5pC3tVUNA36pGVAttPvlvWFOl40fqGBEA8zQyVtM5tzyok2/4gc655cHY1UKXLC7z5I9MYUQAzEFzX0BtYlKm+tZ4KXgPAHsBkBcEAiCm9n0B7RmAZlG41o6eqR/kAVNDQExxzgxmDwDyiEAAxBSnk2cPAPKIQADEFKeTf+W3h2YljYGsIxAALaJWAsU5N6BZPoJggDwhEAANnQ6RDzo3YLAy+9wAThJD3rBqCGgISga3rwRqXwV08g0/CPwuksbIE0YEQENY5x3VqYflDUgaI08IBEDDfDr1oLwBheOQN0wNobDaTw8777Rlum9XbU7VQNk9jH6Q2AllSeGEMnRD2JnAl769qh1PjdOpo+9EnVDGiAB9L+jc4LDE8I6nxjkmEoVDIEBfCzsgPqxUBKt9UEQki9HXwp78OSYSeA2BAH0t7GCY5jGRrVjtg6IiEKCvhTz4q2TGMZFAAzkC9IXWA2Oah8YPVsoKWxQ37c5ZAUADgQC5EbT6Z8Oa6qyEcPPQ+InJqdDvqpILAI4gECAXwlb/SPEOjGlHLgB4DTkC5EJUQbi5LvkcrJSZEgJaMCJApoRN/0QVhDthsBK6OqhdpVzS5vWrutlkIPcYESAzos4DiCoIF3VgTHnAtGRxmZVBQARGBMiMqOmf4bUrA2sDtdYCal81VKVWEBALgQCZETX906nKJ0tBgfkjECAzwub6m9NCdPZAMsgRoCeiDoVv4pAXIB2JBgIzW2dm+8xsv5ndEHLNZWb2pJntNbPvJtkepKPTofBNQYfDk9wFkpfYwTRmVpL0tKQ/lnRA0qOSNrr7ky3XnCLpbknnu/tLZvYmd38x6ns5mCYfRsZq+uz39uqlg9G7e6n9D/RG1ME0SY4I3ilpv7s/4+6vSrpT0sVt13xS0lfd/SVJ6hQEkA8jYzUN37s7MghI1P4HsiLJQFCV9HzL6wON91qdKulUM3vYzHaa2bqgLzKzq81s1MxGx8fHE2ouumXL9n2amu480qT2P5ANaa8aWiTpFEnnSjpR0kNmttrdJ1ovcvetkrZK9amhHrcRAdqnfgYrZX3wzOO146nxWLt8SQID2ZFkIKhJOqnl9YmN91odkPSIu09JetbMnlY9MDyaYLuwACNjNW3etndWZc+JySl9e+dzsb6DjV5AtiQZCB6VdIqZnax6ALhc0p+2XTMiaaOkfzWzpapPFT2TYJsQIazOT+vnw/fs1tTh+Q3KygOmLR8+kwAAZExigcDdD5nZNZK2SypJus3d95rZ5ySNuvu2xmcXmNmTkqYlDbv7r5NqE8JFlXludtybt+2ddxAYrJS1ef0qggCQQYnmCNz9AUkPtL33mZafXdKnG/9DiqLq/DQ776iDXsKwRBTIvrSTxeiBTlM+Uvgh73HLOwchIQzkAyUm+lzcXb2lkFPeB1reXrK4HPp7BitlXXH2cnYFAznEiKBPBD31S9J1dz826wD39ikf6bVzftsd9vp3b1hT1aaLVmn43t0z9giUS6YtHyIBDOQZgSDD4kzpNK9rXc1Tm5jUp+96TDZgs4JAU/uu3mrEKV/NoNGpFDSAfCIQZFScVTw3jezRHY88H/g0f1iqP86HOK4yc5pneO1K/fVdjwVe2xo0KAUN9B9yBD0WpxyzFL2KR6oHgW/vfC50SqeTV149NON3b1hT1WAlOAdAKQigvxEIeqhT4rY1SESt4hkZq8XexRtmatqPBJWmzetXcR4AUECJlaFOSp7LUJ9zy4OBHfySxWW5x1+nXx6weW/samWSnr3lAzPei5uXAJAvUWWoyRG0idMRzrezDHvK71SuuV03goAUPOVDDgAonkIEgrgd900je/Sdnc+p2c0GJWjjJHHD2tArUSuAmpjyAdDU9zmCuBuqmvPu7c/arQlaqXMSNywZvHnb3q7fW7srzl6un93yAT18w/mqRiR42ewFoFXfjwjCOu7r794945qoJ+jW5ZNhp2q90Ejiho0W5lOnpzxgkqnjIS+VcmlWxz68duWMtoRdBwB9HwjCOu5pdw3fu1vyznPurXPpJ4RMu5wwWOk4WghTKZdm/bkli8vadNEqSdL1d+8OXSYaVtufzV8A4ur7QBDWcUudn7SbWufSw560h9eu1HURG7KWLC4HJoWbHX6nDns+T/ckfgHE0feBIKjjnoujSjajM4160g6bYmpeE1SnZ9NFqzp22DzdA0hS3weCZmcZNb0SZfFRs/8RhXXcUaOFhXbmPN0DSErfBwLptWDQ3kmXS9YxR/DyHJK8nTp7OnMAWVSIQCCFd9LN98LyCHOts0NnDyBvChMIpPBOesOa6qylnxKbrgAUQ6ECQRQSsgCKikDQgmkdAEXU9yUmAADRCAQAUHAEAgAoOAIBABQcgQAACi53R1Wa2bikn8/zjy+V9KsuNicPuOdiKOI9S8W87/ne85vdfVnQB7kLBAthZqNhZ3b2K+65GIp4z1Ix7zuJe2ZqCAAKjkAAAAVXtECwNe0GpIB7LoYi3rNUzPvu+j0XKkcAAJitaCMCAEAbAgEAFFxfBgIzW2dm+8xsv5ndEPD568zsrsbnj5jZihSa2VUx7vnTZvakmT1uZv9hZm9Oo53d1OmeW6671MzczHK/zDDOPZvZZY2/671m9t1et7HbYvy7vdzMdpjZWOPf7wvTaGc3mdltZvaimT0R8rmZ2T81/pk8bmZvW9AvdPe++p+kkqT/kfR7ko6StFvS6W3X/IWkWxs/Xy7prrTb3YN7Pk/S4sbPnyrCPTeue72khyTtlDSUdrt78Pd8iqQxSUsar9+Udrt7cM9bJX2q8fPpkn6Wdru7cN/vlvQ2SU+EfH6hpB9KMklnS3pkIb+vH0cE75S0392fcfdXJd0p6eK2ay6W9G+Nn++V9F4zsx62sds63rO773D3g42XOyWd2OM2dlucv2dJ+rykL0r6v142LiFx7vmTkr7q7i9Jkru/2OM2dluce3ZJb2j8fJykF3rYvkS4+0OSfhNxycWSvul1OyUNmtnx8/19/RgIqpKeb3l9oPFe4DXufkjSy5Le2JPWJSPOPbf6uOpPE3nW8Z4bw+WT3P0HvWxYguL8PZ8q6VQze9jMdprZup61Lhlx7nmzpCvM7ICkByRd25umpWqu/81H4oSygjGzKyQNSXpP2m1JkpkNSPoHSVel3JReW6T69NC5qo/6HjKz1e4+kWajErZR0u3u/iUze5ekb5nZGe5+OO2G5UU/jghqkk5qeX1i473Aa8xskerDyV/3pHXJiHPPMrP3Sfo7Sevd/bc9altSOt3z6yWdIek/zexnqs+jbst5wjjO3/MBSdvcfcrdn5X0tOqBIa/i3PPHJd0tSe7+X5KOVr0wWz+L9d98XP0YCB6VdIqZnWxmR6meDN7Wds02SX/e+PlDkh70RgYmpzres5mtkfTPqgeBvM8bSx3u2d1fdvel7r7C3VeonhdZ7+6j6TS3K+L8uz2i+mhAZrZU9amiZ3rYxm6Lc8/PSXqvJJnZW1QPBOM9bWXvbZN0ZWP10NmSXnb3X8z3y/puasjdD5nZNZK2q77i4DZ332tmn5M06u7bJH1D9eHjftUTMpen1+KFi3nPWyQdK+meRl78OXdfn1qjFyjmPfeVmPe8XdIFZvakpGlJw+6e29FuzHu+XtK/mNl1qieOr8r5g53M7A7VA/rSRu5jk6SyJLn7rarnQi6UtF/SQUkfW9Dvy/k/LwDAAvXj1BAAYA4IBABQcAQCACg4AgEAFByBAAAKjkAAAAVHIACAgiMQAAtkZu9o1IQ/2syOaZwDcEba7QLiYkMZ0AVm9gXVSxtUJB1w95tTbhIQG4EA6IJGHZxHVT/34A/dfTrlJgGxMTUEdMcbVa/l9HrVRwZAbjAiALrAzLapfnrWyZKOd/drUm4SEFvfVR8Fes3MrpQ05e7fNbOSpB+b2fnu/mDabQPiYEQAAAVHjgAACo5AAAAFRyAAgIIjEABAwREIAKDgCAQAUHAEAgAouP8HDFHlL2ASrMgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "import torch\n", "\n", @@ -31,7 +44,14 @@ " data_y = a * data_x.square() + b + noise\n", " return data_x, data_y\n", "\n", - "data_x, data_y = generate_data()" + "data_x, data_y = generate_data()\n", + "\n", + "# Plot the data\n", + "import matplotlib.pyplot as plt\n", + "fig, ax = plt.subplots()\n", + "ax.scatter(data_x, data_y);\n", + "ax.set_xlabel('x');\n", + "ax.set_ylabel('y');" ] }, { @@ -143,11 +163,11 @@ "output_type": "stream", "text": [ "Nonlinear optimizer. Iteration: 0. Error: 38.42743682861328\n", - "Nonlinear optimizer. Iteration: 1. Error: 9.609882354736328\n", - "Nonlinear optimizer. Iteration: 2. Error: 2.4054908752441406\n", - "Nonlinear optimizer. Iteration: 3. Error: 0.6043919324874878\n", + "Nonlinear optimizer. Iteration: 1. Error: 9.609884262084961\n", + "Nonlinear optimizer. Iteration: 2. Error: 2.405491828918457\n", + "Nonlinear optimizer. Iteration: 3. Error: 0.6043925285339355\n", "Nonlinear optimizer. Iteration: 4. Error: 0.15411755442619324\n", - "Nonlinear optimizer. Iteration: 5. Error: 0.04154859483242035\n", + "Nonlinear optimizer. Iteration: 5. Error: 0.04154873266816139\n", "Nonlinear optimizer. Iteration: 6. Error: 0.013406438753008842\n", "Nonlinear optimizer. Iteration: 7. Error: 0.006370890885591507\n", "Nonlinear optimizer. Iteration: 8. Error: 0.0046120136976242065\n", @@ -160,6 +180,18 @@ "Nonlinear optimizer. Iteration: 15. Error: 0.00402575358748436\n", "Best solution: {'a': tensor([[0.9945]]), 'b': tensor([[0.5018]])}\n" ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAwK0lEQVR4nO3deXiTVdr48e+dNN0LxS4sRQQUUATZirKog6Ky7yoybuiMjuOLg4pVHHkVdxRHx9+4zyviLiJacdRBERQVFwoFWaQIsjXspaWUpm3ant8faUPSBUppkqa5P9fVy+ackzz3I/Dcec45zzlijEEppVTosgQ6AKWUUoGliUAppUKcJgKllApxmgiUUirEaSJQSqkQFxboAE5UYmKiad++faDDUEqpoLJy5coDxpikmuqCLhG0b9+ejIyMQIehlFJBRUS211anXUNKKRXiNBEopVSI00SglFIhLujGCGridDrJzs6mqKgo0KGoRioyMpK2bdtis9kCHYpSjU6TSATZ2dnExcXRvn17RCTQ4ahGxhhDTk4O2dnZdOjQIdDhKNXoNImuoaKiIhISEjQJqBqJCAkJCXrHqFQtmsQdAaBJQB2T/v1QwSo9087sRVnsynPQJj6KtCFdGNsrpUGP0STuCJRSqilKz7Rz+78+YNUraZQeycWe5+DeD9eSnmlv0ONoImgg2dnZjBkzhk6dOnH66aczdepUSkpKjvmevLw8XnjhBffrXbt2cfnll5/Qce+//34WL15cr5g9xcbGnvRnnIjJkyfzwQcfnNB70tPT2bBhg/t1Q527Uo3VYwt+IvuDRynauordc2+n2L4Rh7OM2YuyGvQ4mggagDGG8ePHM3bsWH777Tc2bdpEQUEB99133zHfVzURtGnT5oQvjg899BCXXHJJveJujMrKymqtq5oImtq5K+WprKyMtW89RNnh/a7XBTnseWc6zrw97MpzNOixmmQiEJF6/fTp06dex1uyZAmRkZHccMMNAFitVp555hnmzJlDYWEhc+fOZcyYMQwaNIhOnTrx4IMPAjB9+nS2bNlCz549SUtLY9u2bXTr1g2AuXPnMnbsWC699FLat2/Pc889x9NPP02vXr3o168fBw8eBI5+s87IyKBnz5707NmT7t27u/vEt2zZwtChQ+nTpw8XXHABGzduBGDr1q3079+f7t27M2PGjFrP7dFHH6Vz586cf/75TJo0iaeeegqAQYMGuZf6OHDgAJXrP23bto0LLriA3r1707t3b5YvXw64kuWUKVPo0qULl1xyCfv27XMfo3379txzzz307t2b+fPn8+9//5u+ffvSo0cPJkyYQGFhIcuXL2fhwoWkpaXRs2dPtmzZ4nVXsWLFCgYMGECPHj0499xzOXz4cL3+LJVqLGbMmEHR9jVeZXG9R2CLb0Wb+KgGPVaTGSwOpPXr11dLIs2aNaNdu3Zs3rwZgJ9//pl169YRHR1N3759GTFiBLNmzWLdunWsXr0acF1EPa1bt47MzEyKioo444wzeOKJJ8jMzOSOO+7gjTfe4Pbbb3e3TU1NdX9OWloaQ4cOBeDmm2/mpZdeolOnTvz000/ceuutLFmyhKlTp/LXv/6V6667jueff77G81q5ciXvvfceq1evprS0lN69ex83WSYnJ/Pll18SGRnJb7/9xqRJk8jIyOCjjz4iKyuLDRs2sHfvXrp27cqNN97ofl9CQgKrVq0CICcnh5tuuglw/WN49dVXue222xg9ejQjR46s1n1WUlLCxIkTmTdvHn379iU/P5+oqIb9h6KUP3344YfMmjXLqyyi7dm0GHQDUTYraUO6NOjxNBH4yaWXXkpCQgIA48eP57vvvmPs2LHHfM9FF11EXFwccXFxNG/enFGjRgHQvXt3fvnllxrfM2/ePFatWsUXX3xBQUEBy5cv54orrnDXFxcXA/D999+zYMECAK699lruueeeap/17bffMm7cOKKjowEYPXr0cc/T6XQyZcoUVq9ejdVqZdOmTQAsW7aMSZMmYbVaadOmDRdffLHX+yZOnOj+fd26dcyYMYO8vDwKCgoYMmTIMY+ZlZVF69at6du3L+BKwkoFq19//ZXrr7/eq8wWl0DSmOm0TYjzyawhTQQNoGvXrtX69vPz89mxYwdnnHEGq1atqjZ9sS7TGSMiIty/WywW92uLxUJpaWm19uvWrWPmzJksW7YMq9VKeXk58fHx7juFqk5mSmVYWBjl5eUAXvPzn3nmGVq2bMmaNWsoLy8nMjKyTp8XExPj/n3y5Mmkp6fTo0cP5s6dy9dff13vOJUKJu98u5E/TxiCo6DAXRYWFsaSz9I5//zzfXbcJjlGYIyp18/KlSvrdbzBgwdTWFjIG2+8AbgGeaZNm8bkyZPd36a//PJLDh48iMPhID09nYEDBxIXF9dgfdl5eXlMmjSJN954g6Qk15LjzZo1o0OHDsyfPx9w/X9Zs8bV5zhw4EDee+89AN5+++0aP/PCCy8kPT0dh8PB4cOH+eSTT9x17du3d///8kyChw4donXr1lgsFt5880334O+FF17IvHnzKCsrY/fu3SxdurTWczl8+DCtW7fG6XR6xVbb/68uXbqwe/duVqxY4X5/TYlSqcbsw5U7+ctNN+LYv9Or/IZpM32aBKCJJgJ/ExE++ugj5s+fT6dOnejcuTORkZE89thj7jbnnnsuEyZM4JxzzmHChAmkpqaSkJDAwIED6datG2lpaScVw8cff8z27du56aab3IPG4LrIv/rqq/To0YOzzz6bjz/+GIBnn32W559/nu7du2O31zwnuXfv3kycOJEePXowbNgwd9cLwF133cWLL75Ir169OHDggLv81ltv5fXXX6dHjx5s3LjR/U1/3LhxdOrUia5du3LdddfRv3//Ws/l4Ycf5rzzzmPgwIGceeaZ7vKrrrqK2bNn06tXL7Zs2eIuDw8PZ968edx222306NGDSy+9VJ8iVkHn9nsfoCDrB6+ymG6DWde8n8+PLcYYnx+kIaWmppqqG9P8+uuvnHXWWQGK6Pjmzp1LRkYGzz33XKBDOSkzZ84kNjaWu+66K9Ch1Etj/3uiQtenn37KyJGjgKPX4/CWp9Py6iex2iLYOmvESR9DRFYaY1JrqtM7AqWUCqDNmzdz9dVX45kELFHNSBr3dyy2iAafKloTHSz2g8mTJzN58uRAh3HSZs6cGegQlGpykpOTueiii0hPT3cViIXEMfcQ1rylT6aK1qTJ3BEEWxeX8i/9+6Eaq2bNmrFgwQIefvhhRIT2w24m+rQepMRH8fj47g0+VbQmTeKOIDIykpycHF2KWtWocj+Cuk5lVcrfLBYLM2bMYPjw4fTq1cvv17EmkQjatm1LdnY2+/fvD3QoqpGq3KFMqUCpy3LSvXv3DkhsTSIR2Gw23XlKKdVopWfauffDtTicZZjyMvdy0oBfun6Op8mMESilVGM1e1EWDmcZZUUF7J47lSO/LvPJctL15bNEICJzRGSfiKw7Tru+IlIqIie2EL9SSgWJXXkOTHkZBz5+Auf+bRxY+CS5y97Ennsk0KEBvr0jmAsMPVYDEbECTwBf+DAOpZQKqDbxUeQunUPRtkx3Wf4P87Bs/DKAUR3ls0RgjFkGHDxOs9uABcC+47RTSqmglJ5pJ/vnzzmc8bFXeVTbrjzx99sDE1QVARsjEJEUYBzwYh3a3iwiGSKSoTODlFLBIj3TztRn57Fj4T+9ym3NEnl+zltccV7HwARWRSAHi/8J3GOMKT9eQ2PMK8aYVGNMauXKmkop1dg9Mm8Z2fMfhrKjq+FKWDhnXfsQN1zaK4CReQvk9NFU4L2KBycSgeEiUmqMSQ9gTEopddLSM+3M+mQ1v7w2g/LCPK+6hGFTyY9tF5jAahGwRGCMcU/8F5G5wH80CSilgl16pp3pC9awc/5jOPf97lXXrP9EYrr+wS8LyZ0InyUCEXkXGAQkikg28ABgAzDGvOSr4yqlVKCkZ9qZ9v4acpa9SeGm5V51UZ36EX/B1dis4peF5E6EzxKBMWbSCbSd7Ks4lFLKHyqfHs5f/zWHlr/nVWdLak/iyGmIWIgJD2sUTxN70ieLlVKqAcxelEXe9g0c+OyfXuWW6OYkT7gfS7irO+iQwxmA6I6tSaw1pJRSgeC5kJwBHJt/hjKPC701jKRx9xHWPNld1NjGB0ATgVJK1YvnQnKV4i+8FktMPLlf/RtMOQlDbyOybVd3vb82mjlRmgiUUqoeKheSq6pZn1HYWrShePcmYrsNdpen1LL0dGOgiUAppephV56j1rqojn2I6tjH9bvN6redxupLB4uVUqoeauvrj4+ykRIfhYBft5s8GXpHoJRS9XBp8708v3gp0X1Gu7eWtFmEmaPPbvQX/qo0ESil1AnasGEDs+/+C4UFh4k9uItTLrkZsVghSLdM164hpZQ6AXv37mXEiBEUFhwGoCDzU/YteAhjynGWmUaz69iJ0DsCpZQ6jsrnBbL353Lw/RkUZG/zqo86rQciru/VxxpEbqw0ESil1DFUPi9QWOLkwH+epjB7o1d9bI8hxPUd537dGB8YOx7tGlJKqWOofF4g7+u51RaSi+nYm1Mu/at7sLixPjB2PJoIlFLqGHblOTi86lPyf/7Qq9yWeBovv/YWbRPigmqqaE20a0gppTx4rh/UJj4Kdqzk4OKXvdpYY1pwzp8e5+oLz+LqC88KUKQNRxOBUkpVqLp+0O+//sLeDx4Djx11xRbJqVc9yIyJFwYqzAanXUNKKVXBc/0gZ94e9n3wIMZZfLSBWDjzj/fzzP+MD8ouoNroHYFSSlWonPpZ5shn3/wHqu03/OILz3PLLbcEIDLf0jsCpZSqUDn1s2hrJqUH7V51d999d5NMAqCJQCml3NKGdCHKZiWm6x9IHH03WF2dJucPGcPjjz8e4Oh8R7uGlFKqQmW//+xFWew660JatmpN7G+LWPzxPCyWpvu9WROBUkpRfdroMxN7MrbXCOD2QIfmc5oIlFIhr+q0UXueg3s/XAvQpGYH1abp3usopVQdfPHFF9x621QKS5xe5Q5nWVCuJFofekeglApZGRkZjB8/niNHjhCds4/EEXciYTZ3fTCuJFofekeglApJv/32G8OHD+fIkSMAFG78ln0fzMSUH92QPhhXEq0PTQRKqZCze/duhgwZwv79+73Ko84417XTGMG7kmh9aNeQUiqkHDp0iGHDhrF161av8v7jbkTOvco9ayhtSJeQGCgGTQRKqRBSVFTE6NGjWbNmjVd5TLeLOdj1cmaF0MXfkyYCpVST5flsQOu4cMq/+gc/LVvm1SaqYyoJQ/9GUWk5sxdlaSJQSqmmwvPZAGMMv8ybzZG1X3q1iWhzJoljpyMVS0mEyiyhqnw2WCwic0Rkn4isq6X+ahH5RUTWishyEenhq1iUUqHHc0npvK9fq5YEbAntSLr8ASy2SHdZqMwSqsqXs4bmAkOPUb8V+IMxpjvwMPCKD2NRSoWYym/3h378oNo2k0mtUmh39SNYo+LcZaE0S6gqnyUCY8wy4OAx6pcbY3IrXv4ItPVVLEqp0NMmPorDq/9L3jdzvcrDYuL57pslPDX5YlLio4J+v+GG0FjGCP4EfF5bpYjcDNwM0K5dO3/FpJQKYmlDujBlZbxrKemyUgAs4VHMeuVdOnfuTGdCYx2hugj4A2UichGuRHBPbW2MMa8YY1KNMalJSUn+C04pFbTG9krhub/fQtfrH0VsEUiYjQefe51pfzxWj3VoCugdgYicA/wfMMwYkxPIWJRSTc/YXimMffVufvjzBeTk5DBy5MhAh9QoBSwRiEg74EPgWmPMpkDFoZRqGqruJ+D5ZHD//v0DHF3j5rNEICLvAoOARBHJBh4AbADGmJeA+4EE4AURASg1xqT6Kh6lVNOVnmnnrjmLcUa1QCzWkNtP4GT5LBEYYyYdp/7PwJ99dXylVOh4+J2lbJt7p+sBsdFpiNXm3k9AE8HxBXywWCmlTsaOHTtY88qdlBUcpHDTcvYteIRyZxEQuk8KnyhNBEqpoDXni1V06T2Asvyjy0kXbV1JwZpFQOg+KXyiGstzBEopdUJeX/ILf716HCU5dq/ymG4XE9dnFDarhOyTwidKE4FSKqikZ9p57KMVrH55Gs4DO7zqorucT8KwqYhYiAkP0/GBOtJEoJQKGumZdu5+50e2v3Uvzn2/e9VFnd6XxFHT3DuMHXI4a/oIVQNNBEqpoJCeaeeON39g97z/pWTPb151kaf1JGnsvYj16MbzOj5QdzpYrJRq9NIz7dzz3gp2z59J8a6NXnURp3YjacIMJCzcXRbKK4nWh94RKKUavVmfrGH7ew9QnL3eqzyizZkkT7gfiy0SqwhlxpASYvsNNwRNBEqpRq2oqIg1r82geMcvXuXhrTqRfOWDxMTGhfQS0g1BE4FSqlGpumbQuFOLKLFv8GoT3vJ0kic+jC0yVpNAA9AxAqVUo1G5z7A9z4EB7HkOXt1oYdL/Po+ERQBgS+5A8sSHiY1rzj+u7KFJoAFoIlBKNRqe+wxXcjjL2GrrwEMvvEnsqWfRauIjtGvdUu8EGpB2DSmlGo3a1gbaledgxvQruO/Pl1OxWrFqQHpHoJRqNFrFWCl3Flcrr3wmQJOAb2giUEo1Cg6Hg6LPZnEw/TFMaYm7XJ8J8D1NBEqpgCssLGT06NGs/vEbjvy+kvxPHseUlpASH6VjAX6gYwRKqYAqKChg1KhRfP311+6yvE0rGGj/hP88NSdwgYUQvSNQSgXM4cOHGTZsmFcSALAlnkZW68tIz7TX/EbVoDQRKKUCIi8vjyFDhvDdd995lduSO9By0mM4w+OYvSgrQNGFFk0ESim/e2PpOtqefS4//PCDV3l4y9NpedVjWKObA7rVpL/oGIFSyq/mfrWGW/44luJ927zKw1t3IvnKh7FGxrrLdClp/9BEoJTyG7vdzq2TRlO833tnsYiUrrS8YiYSEe0u02mj/qNdQ0opv9i6dSsXXHABjqpJoN05JF/5IBIRTUp8FAI6bdTP9I5AKeVzWVlZDB48GLvdexZQZIfeJI27D4stAgHdRyBANBEopRpc1aWkJ5zmJPfQYa82UZ36kTT6HiTMtb2kwbXonCYC/9OuIaVUg0rPtJP2wRqvpaSfX1tGi3H/i9hcS0lHd/0DSWOmu5NAJZ0lFBh6R6CUalAPfrIeZ5nxKisrN4S1OYukcffh2PwTLQbfjFis1d6rs4QCQxOBUqpB5RY6a62L6tCbqA69a67TWUIBo11DSqkGdWTjd5QXH6lTW6uIzhJqBPSOQCnVYJ588kkOfDyLiLZnk3zlg1hskbW2jbJZ9eLfSGgiUErVi+fMoNbNIkje+AEfv/kyAMXZ6znw8RMkjbsPsYZhswgTzz2VpRv3u2cS6VTRxsNniUBE5gAjgX3GmG411AvwLDAcKAQmG2NW+SoepVTDmZG+lrd/3IEBTFkpv7z7DEfWfeXVpmj7apx7t9Cha0+96DdyvrwjmAs8B7xRS/0woFPFz3nAixX/VUo1YumZdncSKHcWceDjJ3BsWeHVJi4ujoULFzJo0KCAxKhOjM8Gi40xy4CDx2gyBnjDuPwIxItIa1/Fo5RqGLMXZWGAMkc++96bUS0JJCcn880332gSCCLHTQQicpuItPDBsVOAnR6vsyvKaorhZhHJEJGM/fv3+yAUpVRd2fMclObvY89bd1O8a6NXXUSL1nz//ff06tUrQNGp+qjLHUFLYIWIvC8iQyv69v3KGPOKMSbVGJOalJTk78MrpSqkZ9px7t/GnjfTKD2Y7VVnS2rPC+/9hzPOOCNA0an6Om4iMMbMwNWP/yowGfhNRB4TkdNP8th24FSP120rypRSjdRdz77N7rfupqwgx6s8ol13xtz3CjdeVvPDYqpxq9MYgTHGAHsqfkqBFsAHIvLkSRx7IXCduPQDDhljdp/E5ymlfGjarBfY8uZ9mJJCr/LoLgNpecWD7HJUXzJCBYfjzhoSkanAdcAB4P+ANGOMU0QswG/A3bW8711gEJAoItnAA4ANwBjzEvAZrqmjm3FNH73hZE9GKeUbDoeDf816CMpLvcrjeo+kxeCbEItVF4wLYnWZPnoKMN4Ys92z0BhTLiIja3uTMWbSsT604i7jf+oUpVIqYCqfGUiccD973r4bU7F8RPygyTQ7dwKVw4a6YFzwqssYwQNVk4BH3a8NH5JSqrGYkb6WtyqeGQhPOo3k8fchtkgSRk6j+XmXu5OALhgX3HSJCaVUrd79aafX68h255Byy6tYo5u7y+KjbMwcfbY+ORzENBEopbysW7eOmJgYOnToQJkx1eo9k0CLaBuZ91/mz/CUD+gy1Eopt0WLFjFw4ECGDx9Obm4u1mM8NhRls/LAqLP9GJ3yFU0ESikAXnzxRUaMGEF+fj4bN25kwoQJXNm7VY1tY8J1CemmRBOBUiGurKyMO++8k1tvvZWysjJ3+dKlS+latJ5r+rVz3xlYRbimXzvWPzRUk0ATomMESoWwd77dyJSbJpOb9ZNXuYjw1FNPcc011yAiPDK2e4AiVP6giUCpEPXKpz/ytxsmUbx/m1d5RGQU7897j9GjRwcmMOV3mgiUCgGeu4m1iY9iRPIhHvjbjZQeyfNqZ409hS6TH9UkEGI0ESjVxKVn2rn3w7U4nK7+/43ffMzyL16otlxEeKszSBo/g/yYxECEqQJIE4FSTdzsRVk4nGWY8jJyl7zK4ZULq7WJ7jKQhBF3YLFF6lIRIUgTgVJN3K48B+VFBexPn0XR9tXV6psPmETz8ychYtGlIkKUJgKlmrg28VHs3F9MeXGBV7nFFsGdjzzL8vJO7rED3WQ+NGkiUKqJqTow3D4hCnueg6Rx97H79TsoL8zDGpfI9Q88x+xpEwMdrmoENBEo1YRUHRi25znc+wSENUsiady95H37Nkmj09jo1G1flYsmAqWCnOcdgEWE0rJSxHJ0tzDPZeMi255Ny6seRUR0IxnlpktMKBXEKu8A7HkODODY+zu750yh2L6x1vfoRjKqKk0ESgWxyqmhAAXrl7Lnzbtw5uxkf/pjlBXkuttVXUNUZwcpT5oIlApi9jwHpszJwcUvk/Off2BKiwEoKzjI/vTHMWVOomxWru7XjpT4KARIiY/SlUOVFx0jUCpIpWfaKcvfz76PZ1GyK6tavS2pHW2aR3LPCL3oq2PTRKBUkLrvubfZ9e6jlDvyvSusNqbMmMW/Zt4ZmMBU0NFEoFSQKSsr46Krp7Bh3st4zwkCa7Nkksb9nX/NnBqY4FRQ0kSgVJBIz7Tz6IIfWffWIzUuFRHZsQ+JI++iXetk/wengpomAqWCQHqmnanPvI39oycoKzhYpVZofv4faT5gItHhNp0NpE6YJgKlgsDU6fez48u5YMq9yi3R8SSOuouo9j0BdDaQqhdNBEoFgUOHj1RLAhGndiNxVBphcQmAaz9hTQKqPvQ5AqWCQNcRfyLi1G4Vr4Rm/a+k5VWPupMAwKTzTg1McCro6R2BUo1A1RVDqy4Hfffwrty17x52vHMfLS7+M1EdervrrCJMOu9U3WBe1ZsYY47fqhFJTU01GRkZgQ5DqQbjuWKoM28PYXGJhNtsxEaGkVfodCcGgCc//5Xd+cW6d4A6YSKy0hiTWlOd3hEoFWCzF2VRWFLKkbVfcnDxyzRLHUv8hdeSW+gEXMtI3PvhWh4f353lf78kwNGqpsinYwQiMlREskRks4hMr6G+nYgsFZFMEflFRIb7Mh6lGqOdu/dyIP1xcj7/fxhnMYd+eJ+iHWu92jicZcxeVH0ZCaUags8SgYhYgeeBYUBXYJKIdK3SbAbwvjGmF3AV8IKv4lGqMVq8eDF7595G4ablHqWGA//5B+XFhV5tdf8A5Su+vCM4F9hsjPndGFMCvAeMqdLGAM0qfm8O7PJhPEo1Gg6Hg9tvv51LL72UkvwcrzqxRdB84CQk3Hu/AN0/QPmKL8cIUoCdHq+zgfOqtJkJfCEitwExQI0doCJyM3AzQLt27Ro8UKX8aeXKlVx77bX8+uuv1erCW51Bh8unU9asNc6yoxM5dP8A5UuBfo5gEjDXGNMWGA68KSLVYjLGvGKMSTXGpCYl6T6rKjg5nU4eeugh+vXrV0MSEJr1u4IONzzNrBuHMvvyHrp/gPIbX94R2AHPJ1zaVpR5+hMwFMAY84OIRAKJwD4fxqWUX3g+GxBZsIvtHz2FY9emau2szVuSOOIOIk/tRlG5axbR99Mv1gu/8htfJoIVQCcR6YArAVwF/LFKmx3AYGCuiJwFRAL7fRiTUn6Rnmkn7YM1lDhLyV+RTt63b0GZs1q72HMuo8XFf8YSEe0u00Fh5W8+SwTGmFIRmQIsAqzAHGPMehF5CMgwxiwEpgH/FpE7cA0cTzbB9oSbUjV48JP1OMsMptRJwer/VksCluh4koZOIbJTv2rv1UFh5W8+faDMGPMZ8FmVsvs9ft8ADPRlDEoFQuXDYJbwSBKGT2XvO0cfo4nuPIBThvwP1ujmRNms7s3nQQeFVWAEerBYqSYv8tRuxPUZhSUylsRRd5E49l6s0c3dg8A6KKwCTZeYUKoBFBcXs3LlSgYMGABAfJSNPMfR7qD4C6+nWb8rCIs9BTj6zX9srxS98KuA0zsCpeopPdPOwFlLaH3NU7Ro15mLBg9my5YtAMwcfTY2i7jbWsIj3UlAv/mrxkbvCJSqh/RMO3e/8yO7v3qNgszPqNxEfvwfJ7P6x2Xui/yxlpZWqrHQZaiVOgHpmXae/O9Gfvv5K3IXv1zD/sHw+uuvc9111wUgOqVqp8tQK9UA0jPtTJuzmN2fP49jy4oa28SecxmjRo3yc2RKnRxNBErVQUlJCVPvncnOr97ElBZXqw9r0ZpThkzhjB79aNGiRQAiVKr+NBEodRxLlixhypQp7KhhkTgsVpqddznN+1+J1RbBRWfqWlgq+GgiUMqD5/pAiZYjRK56h+8WfVxj24iUrpwy5FbCk9oDruHiBSvtpJ52ig4Kq6CiiUCpCp57BxtjWPNKGs6cHdXaWSLjaHHRDcR0v4Sqi+VW7iSmiUAFE32OQKkKsxdluZd7EBGan191jUQYPGYife56nbhzLquWBCrponEq2OgdgVIVql7Ao7sMJKLdORTv+IWePXvywgsv0L9/f3f9wFlLsNdw0ddF41Sw0TsCFdJyc3NZsmQJUP0CLiKccslf6DD6NjIyMrySAEDakC5E2axeZbponApGmghUSPrg5210HH0biW1O47Lho5j71ZoaL+zN23Tk6Zn3YLVaq33G2F4pumicahL0yWIVUowx/P2ZOTz96AOUHDy6YV587+G89n+vALoshGqa9MliFdIqp4Ru3bCagm9f4/C2ddXa5GX+l5mv/5fV//yTXvhVyNFEoJq09Ew7d/77c/Z+9RqFm5bX2EbCo2je7wpyrfpEsApNmghUk5Wdnc0tf7mFvRmfgymv3kAsxHa/hPgLrsUa24IUne2jQpQmAtXk5OTk8Pjjj/Pcc89RXFx9XSCAqI6pxA+6gfCk01yvdbaPCmGaCFST8s033zBq1CgOHz5cY314q07ED5pMdPsetGkepYPCSqGJQDURlQPCO/fmcKRUqtWHtWhN/IXXE91lICKCMfD99IsDEKlSjY8mAhU0PBeE8/wW77lGkCUimmbnjSfv67kAWGMTaD5wErHdL0GsR/+663iAUkdpIlBBwfNiX1ZUwIZFC5iePw7wXiMIIK7XSI6sW0ps98HE9hqBxRZR7fN0PECpozQRqKAwe1EWBXk55K9cyOGVn2BKHFgiY5ndLKbaGkGW8Eha3/gcItW7iADio2w6HqCUB00EqtHbvn07a+c/Q8EvX3rtDpb/43zs3S8h5ZTYaou/1ZYEomxWZo4+26fxKhVsNBGoRsVzHKC5Yxcttiziu0UfU1paWq1tad4ebNt+IG3SFHe3UVU2ixAbGUZeoVNnBylVC00EqtFIz7QzfcEv5G5eRf7PH7Ft68pa21qimpHQbwIP3na9+8I+e1EW9jwHVhHKjCFFL/xK1YkmAtUoFBcXk/b4v9j+zfs4922ttV148yRi+oyl8x/GMH1UT/dFfmyvFL3gK1VPmghUwC1evJhrrrmGvXv31tqmc+fO3HPPPVxzzTWEh4f7MTqlmj5NBMovansGAFwX+QMHDtT4voiUs+hw8STWz70Pi0W3z1DKF3z6L0tEhopIlohsFpHptbS5UkQ2iMh6EXnHl/GowKh8BiA7txAD2PMc3PvhWtIzXfsBtGvXjnHjxnm8Q4juPICWV8+mww1P8/gdN2oSUMqHfHZHICJW4HngUiAbWCEiC40xGzzadALuBQYaY3JFJNlX8Sj/Ss+08+An68ktdOLM2cnh1f+lZM9mWv5xFiKCw1nG7EVZ7ruC22+/nUWLFnHhyCvYnXIRB60tdJaPUn7iy66hc4HNxpjfAUTkPWAMsMGjzU3A88aYXABjzD4fxqP8JD3TzrR3f+bQhu8oWLOI4uz17rri7PVEntoN8N4sfsCAAdjtduLi4vwer1KhzpeJIAXY6fE6GzivSpvOACLyPWAFZhpj/lv1g0TkZuBmcHUjqMbJGENGRga33PYw+1YvwRQfqdbm8OrP3YnAc7N4EdEkoFSABHqwOAzoBAwC2gLLRKS7MSbPs5Ex5hXgFXDtWeznGFUNPLt+Sg8foHzTtzizvubAzi3HfF/xjrWYUifRUZG63o9SjYQvE4EdONXjdduKMk/ZwE/GGCewVUQ24UoMK3wYlzoJ6Zl2Zi5cz8G8QxRu+oEjG76maPuamncA8xBxajdiewwhpstA2iY2075/pRoRXyaCFUAnEemAKwFcBfyxSpt0YBLwmogk4uoq+t2HMaljONYUz8r6ez9cS6GjCPtLN1JeVHDMz7NExxPb7WJiz7kMW0JbbBZh9hU9NAEo1cj4LBEYY0pFZAqwCFf//xxjzHoReQjIMMYsrKi7TEQ2AGVAmjEmx1cxqdp5LvMMR6d4Al5LODicZUiYjch259S8GbxYiOrYh9hzLiPq9L7uPQDio2zMHH22JgGlGiGfjhEYYz4DPqtSdr/H7wa4s+JHBZDnmv7lJUU4tq4kZ+sqnoyc5r54e67wGXP2IK9EYEvuSGy3wcR0vRBrTAt3eUp8lO4EplQjF+jBYuUHx+vyAdhh34VjywoKN/9M0dZVmNISALaceQGuR0FwL+YGENWxL7bkDkR1TCWm6yD3JvCedEN4pYKDJoImrrYuH2MM7WU/n376KZ9++inZP/4EVJ+Q5cj6zv17ZRIAkDAbbW74l/t1fJSNkT1as3Tjft0QXqkgo4mgiajpWz/AHe+vpvL6XebIp2hrJge2ZjLx2Uych48/HHMkazkLVmxnQt/TSImPqrYBDGj3j1LBThNBI1aXLp3Kdmnz1+Asd13x7XkO7py3GrEIxkBpwUH2L3iIkj1bqOlbf02szZKJ7tyf6M79+ceXvzGh72mkDelSbQMY7f5RKvhpImik6jKLZ0b6Wt79aae7y8aYckRci7OVA1QkBmt0c0rz9nC8JBDe8nSizjiP6E7nYUvu6N7ucXd+sddx65KclFLBQxOBn9X1W77nLJ5Kngu1zUhfy9zFqym2/+r6yf4VS0Q0LSc+XO2zxGKtcbpnZFQ0Qy67lBEjRjBs2DBGvrqBPIez2vs9l4LQDWCUano0EfhRXb7lV9pVpS++vLiQkr2b2fDTZgZ89TQ///QzZYf3e7WRsHBMqRMJs1U7dmT7nhRuWu6a6dOhN1Ed+tDh7F6kzxjqbjNztGjXj1IhSBOBHx3rW35lvT3PgSnMo2jPFkr2baVk3++U7N1C6cGjq3P8UMvnm9ISivdsJrLtWdXqYrr+gejOA7DGxLvL9hR4x6JdP0qFJk0EVdSl66au3TtVeX7LN8a4++Ar7wwqk8SBL1+mcOO39YrfuW9LjYnAEhEDEd5lnl0+lbTrR6nQEzKJoK4X+Kqzb9LmrwGOfls+ke4dp9PJzp072b59O7///juHv/sSR84uSnN34czdRdu/voYlMhYRvO4UwpPa1y0RWMMITz6diLZnEZHi+gmLPaXWaZ6etMtHKVUpJBJBXS/eMxeudyeBSs5yw8yF66utt1OpZP92CvZuZmrGAr45M5af1v3G2qzfceTuo+xI7jFX5XQetBPRpgumymQeW1L7GloLtoS2hLc6g/DWnYlo3Znw5I5e4wHX9GvHI2O7AzBw1pJak0GKdvkopTyERCKovHgX79nsmkZpyjliDH9b9xWLz2nJ57/Yyc0/gikrwThLMM4iyp1FmBIH5SWF7CkuZM9fvqRVq1bVBnGP/LqM/B/mkQP8s9qWOsfmzN1FRJvq38rDk9sT3qoT4ckdsCV3ILxlR8KTOmCJiK7xc6JsVh4f393rwl7bnP+q7ZRSKiQSQeXFu2DNfylY7X21fj69bp+Rk5NDq1ataFOl28Ua3azecZXm7gKgRbSNIme5+6Id1rwlra9/BgCbRSg1ptpdQ6Xavt3rwK9Sqq5CIhG4L94VD1vVx6FDh4Dq37St0fHHfJ81pgXWZsnEJbXGGZOMLb4VYfGtCDulLdaYFgjwwKizgaOzhioXd0vxWCqiPt/udeBXKVUXIZEI0oZ04fZ5qwGp92fk5+cDNXzTPq0jZ142mtSuHflo4xEKwpoRFpeANS4Ra2wCFluE+4Je9WIuwNX92rk/83gXbf12r5TyBTG19Tk0UqmpqSYjI+OE39froS/Y8cN/KNq6yn1nINYwsFgRSxgSZkPCwhFrOBIegcUWhdgisUREMWVID6ZccQmnnHLKMY9RdVAavL+513faqVJKnSwRWWmMSa2xLlQSQU0XaZtVwFBtplBV22aNOKHj6MVeKdXYHCsRhETXENQ+eFpZdqyplid6HL3wK6WCScgkAqj9Il3ZbaPr7CilQlFIJYJj0emWSqlQpYnAg3brKKVCUf0n1iullGoSNBEopVSI00SglFIhThOBUkqFOE0ESikV4oLuyWIR2Q9sr+fbE4EDDRhOMNBzDg16zqHhZM75NGNMUk0VQZcIToaIZNT2iHVTpeccGvScQ4Ovzlm7hpRSKsRpIlBKqRAXaonglUAHEAB6zqFBzzk0+OScQ2qMQCmlVHWhdkeglFKqCk0ESikV4ppkIhCRoSKSJSKbRWR6DfURIjKvov4nEWkfgDAbVB3O+U4R2SAiv4jIVyJyWiDibEjHO2ePdhNExIhI0E81rMs5i8iVFX/W60XkHX/H2NDq8He7nYgsFZHMir/fwwMRZ0MRkTkisk9E1tVSLyLy/yr+f/wiIr1P+qDGmCb1A1iBLUBHIBxYA3St0uZW4KWK368C5gU6bj+c80VAdMXvfw2Fc65oFwcsA34EUgMdtx/+nDsBmUCLitfJgY7bD+f8CvDXit+7AtsCHfdJnvOFQG9gXS31w4HPAQH6AT+d7DGb4h3BucBmY8zvxpgS4D1gTJU2Y4DXK37/ABgsIuLHGBvacc/ZGLPUGFNY8fJHoK2fY2xodflzBngYeAIo8mdwPlKXc74JeN4YkwtgjNnn5xgbWl3O2QDNKn5vDuzyY3wNzhizDDh4jCZjgDeMy49AvIi0PpljNsVEkALs9HidXVFWYxtjTClwCEjwS3S+UZdz9vQnXN8ogtlxz7nilvlUY8yn/gzMh+ry59wZ6Cwi34vIjyIy1G/R+UZdznkmcI2IZAOfAbf5J7SAOdF/78elO5SFGBG5BkgF/hDoWHxJRCzA08DkAIfib2G4uocG4brrWyYi3Y0xeYEMyscmAXONMf8Qkf7AmyLSzRhTHujAgkVTvCOwA6d6vG5bUVZjGxEJw3U7meOX6HyjLueMiFwC3AeMNsYU+yk2XzneOccB3YCvRWQbrr7UhUE+YFyXP+dsYKExxmmM2QpswpUYglVdzvlPwPsAxpgfgEhci7M1VXX6934immIiWAF0EpEOIhKOazB4YZU2C4HrK36/HFhiKkZhgtRxz1lEegEv40oCwd5vDMc5Z2PMIWNMojGmvTGmPa5xkdHGmIzAhNsg6vJ3Ox3X3QAikoirq+h3P8bY0OpyzjuAwQAichauRLDfr1H610LguorZQ/2AQ8aY3SfzgU2ua8gYUyoiU4BFuGYczDHGrBeRh4AMY8xC4FVct4+bcQ3KXBW4iE9eHc95NhALzK8YF99hjBkdsKBPUh3PuUmp4zkvAi4TkQ1AGZBmjAnau906nvM04N8icgeugePJwfzFTkTexZXMEyvGPR4AbADGmJdwjYMMBzYDhcANJ33MIP7/pZRSqgE0xa4hpZRSJ0ATgVJKhThNBEopFeI0ESilVIjTRKCUUiFOE4FSSoU4TQRKKRXiNBEodZJEpG/FuvCRIhJTsQ9At0DHpVRd6QNlSjUAEXkE19IGUUC2MebxAIekVJ1pIlCqAVSsg7MC174HA4wxZQEOSak6064hpRpGAq61nOJw3RkoFTT0jkCpBiAiC3HtntUBaG2MmRLgkJSqsya3+qhS/iYi1wFOY8w7ImIFlovIxcaYJYGOTam60DsCpZQKcTpGoJRSIU4TgVJKhThNBEopFeI0ESilVIjTRKCUUiFOE4FSSoU4TQRKKRXi/j/BrITJH5J20gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" } ], "source": [ @@ -171,7 +203,22 @@ "}\n", "with torch.no_grad():\n", " updated_inputs, info = theseus_optim.forward(theseus_inputs, track_best_solution=True, verbose=True)\n", - "print(\"Best solution:\", info.best_solution)" + "print(\"Best solution:\", info.best_solution)\n", + "\n", + "# Plot the optimized function\n", + "fig, ax = plt.subplots()\n", + "ax.scatter(data_x, data_y);\n", + "\n", + "a = info.best_solution['a'].squeeze()\n", + "b = info.best_solution['b'].squeeze()\n", + "x = torch.linspace(0., 1., steps=100)\n", + "y = a*x*x + b\n", + "ax.plot(x, y, color='k', lw=4, linestyle='--',\n", + " label='Optimized quadratic')\n", + "ax.legend()\n", + "\n", + "ax.set_xlabel('x');\n", + "ax.set_ylabel('y');" ] }, { @@ -222,9 +269,9 @@ "output_type": "stream", "text": [ "Nonlinear optimizer. Iteration: 0. Error: 13.170896530151367\n", - "Nonlinear optimizer. Iteration: 1. Error: 5.595991134643555\n", - "Nonlinear optimizer. Iteration: 2. Error: 2.604552984237671\n", - "Nonlinear optimizer. Iteration: 3. Error: 1.2485320568084717\n", + "Nonlinear optimizer. Iteration: 1. Error: 5.595989227294922\n", + "Nonlinear optimizer. Iteration: 2. Error: 2.6045525074005127\n", + "Nonlinear optimizer. Iteration: 3. Error: 1.248531460762024\n", "Nonlinear optimizer. Iteration: 4. Error: 0.6063637733459473\n", "Nonlinear optimizer. Iteration: 5. Error: 0.2966576814651489\n", "Nonlinear optimizer. Iteration: 6. Error: 0.14604422450065613\n", @@ -235,6 +282,18 @@ "Nonlinear optimizer. Iteration: 11. Error: 0.0060737887397408485\n", "Best solution: {'a': tensor([[1.0039]]), 'b': tensor([[0.5112]])}\n" ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAwDUlEQVR4nO3deXhURfbw8e/pTifpbIRs7BiEgAKRxbAoiqAioLJvoqKoo+O+EgVlBIFRkFFwFHVwGYQRxQUi+sNBfFGZ0QEJAoIoCCKYgIJggEACnaTePzpp0kmHJJBOd6fP53l4TNet27cuxHvurap7SowxKKWUCl4WXzdAKaWUb2kgUEqpIKeBQCmlgpwGAqWUCnIaCJRSKsiF+LoB1ZWQkGCSk5N93QyllAoo69at+90Yk+hpW8AFguTkZDIzM33dDKWUCigisquibdo1pJRSQU4DgVJKBTkNBEopFeQCbozAE4fDQVZWFvn5+b5uivJT4eHhNG3aFJvN5uumKOV36kQgyMrKIjo6muTkZETE181RfsYYw4EDB8jKyqJFixa+bo5SfqdOdA3l5+cTHx+vQUB5JCLEx8frE6NSFagTgQDQIKBOSX8/lKpYnQkESilVF61Zs4YrrriC3377zWvH0EBQQ7Kyshg0aBApKSm0bNmS++67jxMnTpxyn5ycHF588UXX5z179jB8+PBqHffxxx/n008/Pa02lxYVFXXG31EdY8eO5b333qvWPhkZGWzZssX1uabOXSl/9dtvvzFs2DBWrFjB+eefz5o1a7xyHA0ENcAYw9ChQxk8eDA//vgj27ZtIzc3l8cee+yU+5UNBI0bN672xXHKlClcfvnlp9Vuf1RYWFjhtrKBoK6du1KlFRQUMGrUKLKzswHIzs6mZ8+e7Ny5s8aPVScDgYic1p/zzz//tI63cuVKwsPDuemmmwCwWq3MmjWL119/nWPHjjFv3jwGDRpEr169SElJ4YknngBg/Pjx7Nixg44dO5Kens7PP/9M+/btAZg3bx6DBw+mT58+JCcn88ILL/Dss8/SqVMnunfvzsGDB4GTd9aZmZl07NiRjh07kpqa6uoT37FjB/369eP888/n4osv5ocffgBg586dXHDBBaSmpjJx4sQKz+2vf/0rrVu35qKLLmL06NH87W9/A6BXr16uVB+///47Jfmffv75Zy6++GI6d+5M586d+eqrrwBnsLz77rtp06YNl19+Ofv27XMdIzk5mUceeYTOnTvz7rvv8sorr9ClSxc6dOjAsGHDOHbsGF999RVLly4lPT2djh07smPHDrenirVr13LhhRfSoUMHunbtypEjR07r31Ipf/HII4/wxRdfuJUldBvExpzQGj9WnZg+6mvfffdduSASExND8+bN2b59OwBff/01mzdvJiIigi5dunDVVVcxffp0Nm/ezIYNGwDnRbS0zZs3s379evLz82nVqhUzZsxg/fr1PPDAA8yfP5/777/fVTctLc31Penp6fTr1w+A2267jZdffpmUlBTWrFnDnXfeycqVK7nvvvu44447uOGGG5gzZ47H81q3bh1vv/02GzZsoKCggM6dO1caLJOSklixYgXh4eH8+OOPjB49mszMTJYsWcLWrVvZsmULv/32G23btuXmm2927RcfH88333wDwIEDB7j11lsBmDhxIq+99hr33HMPAwcO5Oqrry7XfXbixAlGjRrFokWL6NKlC4cPH8Zut5+ynUr5s7feeotnn33WrSyseSoh3a9nwuJNAAzu1KTGjqeBoJb06dOH+Ph4AIYOHcp///tfBg8efMp9evfuTXR0NNHR0dSrV48BAwYAkJqayrfffutxn0WLFvHNN9/wySefkJuby1dffcWIESNc248fPw7Al19+yfvvvw/AmDFjeOSRR8p913/+8x+GDBlCREQEAAMHDqz0PB0OB3fffTcbNmzAarWybds2AFatWsXo0aOxWq00btyYSy+91G2/UaNGuX7evHkzEydOJCcnh9zcXPr27XvKY27dupVGjRrRpUsXwBmElQpUGzdu5JZbbnErs0YnkDjwEcRiJc9RyMzlWzUQ+Ju2bduW69s/fPgwu3fvplWrVnzzzTflpi9WZTpjWFiY62eLxeL6bLFYKCgoKFd/8+bNTJ48mVWrVmG1WikqKiI2Ntb1pFDWmUypDAkJoaioCMBtfv6sWbNo0KABGzdupKioiPDw8Cp9X2RkpOvnsWPHkpGRQYcOHZg3bx6ff/75abdTqUBy4MABBg8eTF5e3slCq43EIY9ijYx1Fe3JySu/8xmok2MExpjT+rNu3brTOt5ll13GsWPHmD9/PuAc8HzooYcYO3as6256xYoVHDx4kLy8PDIyMujRowfR0dE11pedk5PD6NGjmT9/PomJzpTjMTExtGjRgnfffRdw/r1s3LgRgB49evD2228D8Oabb3r8zp49e5KRkUFeXh5Hjhzhww8/dG1LTk52/X2VDoKHDh2iUaNGWCwWFixY4Br87dmzJ4sWLaKwsJC9e/fy2WefVXguR44coVGjRjgcDre2VfT31aZNG/bu3cvatWtd+3sKlEr5s4KCAkaPHl2uizj+ijsJa9TaraxxbM12fdbJQFDbRIQlS5bw7rvvkpKSQuvWrQkPD+fJJ5901enatSvDhg3jvPPOY9iwYaSlpREfH0+PHj1o37496enpZ9SGDz74gF27dnHrrbe6Bo3BeZF/7bXX6NChA+3ateODDz4A4LnnnmPOnDmkpqa6ZiWU1blzZ0aNGkWHDh3o37+/q+sFYNy4cbz00kt06tSJ33//3VV+55138sYbb9ChQwd++OEH153+kCFDSElJoW3bttxwww1ccMEFFZ7L1KlT6datGz169OCcc85xlV9zzTXMnDmTTp06sWPHDld5aGgoixYt4p577qFDhw706dNH3yJWAWfChAmsWLHCraz/yBtJPL+fW5ndZiW9b5saPbYYY2r0C70tLS3NlF2Y5vvvv+fcc8/1UYsqN2/ePDIzM3nhhRd83ZQzMnnyZKKiohg3bpyvm3Ja/P33RAWvN998k+uvv96tLDq5Pa8tWorNFsrM5VvZk5NH41g76X3bnNb4gIisM8akedqmYwRKKeVjcXFxRETFcCz3MADWqHjqXfUIj3+4laeGpvLl+Esr+YYzo08EKmjo74nyZ50feoPNb/wFR86vNLxuhmtcoEmsvUYCQVA8ERhjNLGYqlCg3fCo4POHLYGGY57h+N5tboPDNT1DyJM6MVgcHh7OgQMH9H925VHJegRVncqqlC80jrVjCYvAntyxXLm31YkngqZNm5KVlcX+/ft93RTlp0pWKFPKX6X3bcOExZvIc5zMt+WNGUKe1IlAYLPZdOUppVRA+OKLL3j66adZsGABcXFxrvKSmUA1MUOouurEYLFSSgWCnTt30qVLFw4cOEDLli354IMPaNeuXa0c+1SDxXVijEAppfzdW//dSvsLLuPAgQOAMzPwhRde6JaJ11c0ECillJctXvcLt91yE8d+c19L4MprbyUpKclHrTpJA4FSSnnZvePGk7vtf25lEW0uYlfz/j5qkTuvBQIReV1E9onI5krqdRGRAhGp3hqNSikVAN58802yP1/oVhbaoCXxV93P3kP+kRPLm08E84B+p6ogIlZgBvCJF9uhlFI+sWbNmnJrC1giY0kcOhGLLbxW3hGoCq8FAmPMKuBgJdXuAd4HfD9aopRSNeiXX35h0KBBrsWgALDaSBoykZCYxFp7R6AqfDZGICJNgCHAS1Woe5uIZIpIpr40ppTyd7m5uQwYMIDffvvNrTy+/72ENTmHWLuNp4am1so7AlXhy8Hi2cAjxpiiyioaY+YaY9KMMWkli64opZQ/Kiws5LrrrnMtAlUipvtwotr1BiAyLMRvggD49s3iNODt4kRxCcCVIlJgjMnwYZuUUuqMTJgwgaVLl7qV2VO6E9vzBtfn2kgkVx0+CwTGGFdOCBGZB3ykQUApFcgOHjzIa/Pmu5XZks4m4eqHEDnZAeMvg8QlvDl99C3gf0AbEckSkVtE5HYRud1bx1RKKV9atSuPqJFPE9qgJQDWyPokDXscS+jJC7/NKn4zSFzCa08ExpjR1ag71lvtUEqp2pCxPpsJizchUfE0uHYGB5e/QHTaQEJiEtzqRYb61/gA1JHso0op5Wszl291pZC2hIaTMMDz2t6H8hy12awq0UCglFKnKWN9tittdFXzOPvb+ABoriGllDotS77J4k/3prNr964qBwF/eomsNA0ESil1Gu5Nf5QD/32LX+c/xPG9P1Zav0ms3a9eIitNu4aUUqqa5s+fT9bKBQAUHv2D3xaOJ3HIo9jPPr9cXbvN6rcBoIQGAqWUqoaVK1eWSyQntjBC6jcGINZuIzIspNaXmzwTGgiUUqqKvvvuO4YOHUpBQcHJQquNxKETsdVvhM0iTB7Yzu8v/GXpGIFSSlXB3r17ufLKKzl06JBbecJVDxDetK3zg/igYTVAA4FSSlUiNzeXq6++mt27d7uVx/YaS+S5PV2fHYWGmcu31nbzzpgGAqWUOoWCggIu6TeQb775xq08qmM/YroOK1ff3xLKVYUGAqWUqoAxhitH3sg3X37mVh7ZMo2WA++lOHuyG398YawyGgiUUqoCTz75JCuWlF9vOG7gI2CxYrdZ3bb56wtjldFAoJRSHsybN4+JEye6lVljkkgaPhlLqJ1DeQ6eGppKk1g7gn+/MFYZnT6qlFKlZKzP5ullW1j3/DS3ckt4FA1GPIE1qj7g7AIa3KlJQF74y9InAqWUKlaSSnrPkRM0GP0kYc3PA0BK3hVIaAYEbhdQRfSJQCmlirmlkg6LpMGIJzjw8XMktr+IxqldAupt4erQQKCUUsXKTv2UEJtrXYEvx1/qiybVCu0aUkqpYhVN/QzEKaHVoYFAKRXUTpw4wdixY9m4cSPpfdvUmSmh1aGBQCkVtIqKirjpppt444036NmzJ/VyttWZKaHVoWMESqmgZIzhwQcfZOFC5wtjhw8f5rI+fUkcOpFWnS9i1qiOdT4AlNAnAqVUUJo+fTrPPfecW5k1JoHQBi3JzsljwuJNZKzP9lHrapcGAqVU0HnllVd49NFH3cqskfVJGjkVa2QsAHmOwoDMJHo6NBAopYLK4sWLuf32293KJDSCpJFPYItt6FYeiJlET4eOESilgsbKlSsZPXo0RUVFrrKwsDBa3TCN3Lizy9Wv69NGS+gTgVIqKKxdu5ZBgwZx4sSJk4UWC/Wuehhb03bYLO4ppYNh2mgJDQRKqTpvy5Yt9O/fn9zcXLfy+H73YU/pxh/HHCDOheeDadpoCe0aUkrVWRnrs5n69hdsfPFeCnMPuG2r3/tmolIvc312FBoiw0LYMOmK2m6mz2kgUErVSRnrs0mf/wU/vzGuXBCod8FIYroOLbdPsAwOl6VdQ0qpOmnm8q0cl1BCYhLdyht0G0jbAbd53CdYBofL8logEJHXRWSfiGyuYPt1IvKtiGwSka9EpIO32qKUCj57cvKwhNpJGj4Ze6tuAEScewnhl/yJh/udE5Q5hSrizSeCeUC/U2zfCVxijEkFpgJzvdgWpVSQKbm7l5BQEgdPoP6lfyLhqvtpUj+SwZ2aBGVOoYp4bYzAGLNKRJJPsf2rUh9XA0291RalVPBJ79uGCYs3kecoRKwhxHQZ7HbXX1eWmawJ/jJGcAvwcUUbReQ2EckUkcz9+/fXYrOUUoGioKCALVu2uD7rXX/ViTHGe1/ufCL4yBjT/hR1egMvAhcZYw5UVK9EWlqayczMrLlGKqUCXlFREWPHjmXx4sV89NFH9OrVy9dN8jsiss4Yk+Zpm0+fCETkPOBVYFBVgoBSSpVljOH2229nwYIFHD16lP79+/PxxxV2MCgPfBYIRKQ5sBgYY4zZ5qt2KKUClzGG++67j1deecVVlp+fz9AbbuO9r3/2XcMCjNcGi0XkLaAXkCAiWcAkwAZgjHkZeByIB14UEYCCih5blFKqLGMMjzzyCM8//7xbuTUqjrihk/jLhz8QYrPpmEAVeHPW0OhKtv8J+JO3jq+UqtsmTZrEzJkz3cosEbE0uOav2Oo3cq0noIGgcv4ya0gppaps6tSpTJ061a3MYo+hwTXTsMU3c5UFa8qI6tJAoJQKKDNmzODxxx93K5OwSJJGTiE0MdmtPFhTRlSXBgKlVMB45plnGD9+vFuZhNppMHIKYQ1buZdD0KaMqC4NBEqpgDBr1izGjRvnVia2cJJGTCGscfkLvgEdH6giDQRKKb/397//nQcffNCtTELCSBoxmfCm53rcp4l2C1WZBgKllF8rKipi5cqVbmUSEkbi8McJb+Y5aUEwZxI9HRoIlFJ+zWKxcN2js4hqfQFQnE102F+wn+Weud7qfB9JcwqdBl2hTCnl92av3EncwIcpWjabqPaXY0/u6Npmt1n1wn+GNBAopfxKxvpsZi7fyp6cPBrH2knv24Y9OXmI1UbigPRy9TUInDntGlJK+Y2M9dk89NonZOfkYYDsnDwmLN5EPbvNY/0msXYNAjVAA4FSym/cN2ESP718G3k7Tqaaz3MUIoIuLelFGgiUUj5njGHKlCnsXv4aFBawb8lfydv5jWt7zjGHLjLjRTpGoJTyKWMMEydO5MknnzxZWOjg9w//RpPbX8MSaqdxcReQXvi9QwOBUspnjDGMGzeOZ5991q1cQu0kDnkUS6hdu4BqgQYCpZRPFBUVce+99zJnzhy38oioaM6+/q/k1jvbNWtInwS8SwOBUqrWFRYWcuutt/LPf/7TrdwaHkW9oU8Qc1Y7pmoAqDUaCJRStcrhcDBmzBgWLVrkVm61x5A0ahqhDc52TRsFTRxXG3TWkFKq1uTn5zN8+PByQcAWHUfS6CcJbXC2q6xkhTHlffpEoJSqFbm5uQwaNKhcArnQekkkjJyKLa78nb+uMFY7NBAopbwuNzeXPn36sHr1arfykNhGJF7zV2z1kjAe9tMVxmqHdg0ppbwuIiKC1q1bu5XZ4pvT4NrphBQHASmzj04brT0aCJRSXmexWHjttdcYMmQIAKENW9Hg2qcIiY531TGgbw77iHYNKaVqRUhICG+99RYt+47F0mkIlrBIt+0lawzrxb/2aSBQStU4T6mkAWYu30pI9+s97mOKt2sgqH0aCJRSNeqJl9/mxWVrsbe9FHCmkn7o3Y1YAEeRpyHhk3SWkG9oIFBK1Zj33nuPJ+6+AVNUSKItkoiUbgAUFhkKq7C/zhLyDR0sVkrViJdeeomRI0diCh1gitj/wXTyd2+q8v46S8h3NBAopc6IMYZJkyZx5513Ykyprp9CB47fd51yX6uIzhLyA9o1pJQ6bQUFBdx1113MnTvXfYNYiL/yPqLaX1bhvrrovP/w2hOBiLwuIvtEZHMF20VE/i4i20XkWxHp7K22KKVq3qKvtpN03iXlgkBoeDiNhv/FLQjYLML13ZvrewJ+yptPBPOAF4D5FWzvD6QU/+kGvFT8X6WUn3tw/n94ccJtHN/zg1t5VL1YVvz7Y34Na1Zu+qhe9P1XpYFARO4B/mWM+aM6X2yMWSUiyaeoMgiYb5ydiqtFJFZEGhlj9lbnOEqp2jX3/1bz/APXUnAwy63cGp1Iq5tn0L17d0DTRweSqnQNNQDWisg7ItJPRMqmBDldTYBfSn3OKi5TSvmpdevWcfc1V5YLArbEZBqOmUlOaJKPWqbORKWBwBgzEWf3zWvAWOBHEXlSRFp6uW0uInKbiGSKSOb+/ftr67BKqVI+/vhjLrnkEhy57p0DYc1TaXjtdEKiE/Q9gABVpcHi4u6bX4v/FAD1gfdE5OkzOHY20KzU56bFZZ6OP9cYk2aMSUtMTDyDQyqlTte6des4evSoW1nEORfTYMQULOFRrlxBKvBUGghE5D4RWQc8DXwJpBpj7gDOB4adwbGXAjcUzx7qDhzS8QGl/Ndjjz1G/Y5XuD7HdB1KwsB0JMQGwIUt43RcIEBVZdZQHDDUGOP2ZogxpkhErq5oJxF5C+gFJIhIFjAJsBXv+zKwDLgS2A4cA246nRNQStWOv3ywmejL7yQvZz/2Vl2JOX+A2/afD2ieoEBVaSAwxkw6xbbvT7FtdCXfa4C7Kju+Usr3MtZn8+bq3Yg1hKSRTyBSvjNBE8YFLk0xoZRy8/333/PMM8+4Pk/M2MT9iza4lpL0FARAE8YFMk0xoZRy+fTTTxkxYgQ5OTnUq1ePnxO68a/VuyvdTxPGBTZ9IlBKAfDyyy/Tr18/cnJyALjjjjt4fdGHle4Xa7dpuogAp08ESgW5wsJCxo0bx+zZs93KCwoKyN3+NXFndfC4nwDXdW/OtMGp3m+k8ioNBEoFsUOHDnHNNdfw73//261cRJg+fTovH2xHUQX7zhrVUZ8C6gjtGlIqSG3fvp3u3buXCwIREREsXryYhx9+mGu7N/e47/Xdm2sQqEP0iUCpILRy5UqGDx/OH3+4p4uIT2rIin8vo1OnTgCubp+31vxCoTFYRRjdrZl2B9UxGgiUCiLGGJ5//nkefPBBCgvdVxEObdSG+iMfZxdJdCpVPm1wql746zgNBEoFgYz12cz4v01sfudZcjetKLc9sm0v4vvfiyMklJnLt2q3T5DRQKBUHZexPpvx73/Lrn+NJ3/Xt2W2CrE9xxDTfQQlGeb1DeHgo4PFStVxM5dvJb+giMjUPm7lEmoncdhE6l0wktLLjOgbwsFHA4FSdVzJHX5Uu95EdxkMQEj9RjQc8wzx517oVlffEA5O2jWkVB3XONZOdnEwqN/rJiwhYUR3HULzhomk922jawsrDQRK1TVZWVnExsYSFRUFOBeLSX93I44ig1isxPYcg80irou+XviVBgKl6pCVK1cyZPhIbE1Tier/EE3qR9D7nERnPojSamrlcVUn6BiBUgEuY302Fz71/4jrdROXXd6Hw38c4MCmzzn09RKyc/J4c/VuHIXGbR9HoWHm8q2+abDyO/pEoFQAy1ifzcML/0fWB8+Q9+Nqt205X8wj/KzzCGvYyuO+Ok1UldBAoFQAm/T6h+z81xMU5PxaZotQr8doQhucXeG+Ok1UldBAoFQAMsbwyiuv8O1L90Khw22bJTyahAHjsJ99vqtMgNKdQzpNVJWmYwRKBZgjR45w3XXX8ec//7lcEAhtlEKjsbPdgoDdZuW67s1pEmtHgCaxdl1IRrnRJwKlAsi3337LiBEj2LZtW7lt0Z2von7vPxESGkp0WAiH8hz6boCqEg0ESgUAYwz/+Mc/uP/++zl+/LjbNrGFE9/vbiLb9gIgOiyEDZOu8EErVaDSQKBUAJgyZQqTJ08uV25LOIvEweOxxTdzlR3Kc5Srp9Sp6BiBUgHgxhtvJDK6nltZ1HlX0PCGZ9yCAOhsIFV9GgiUCgAb/rAR2/cewJk1NP7qh4jvfy8WW7hbPZ0NpE6Hdg0pFQBmLt9KSMvu1O99M/ZW3bDFeR781dlA6nToE4FSfmTJkiWsWrWqXHnJW8AxXYdWGARi7TYNAuq0aCBQyg+89eU2GnS9iqFDh9Jn4HAWfL7ZbXtl/f42izB5YDtvNlHVYRoIlPKxGW8s5cYBvdm3dhkAJw7t564772DJN1muOul922C3Wd32K0kg2iTWzswRHfRpQJ02McZUXsuPpKWlmczMTF83Q6kz5nA4mDZtGlOmTYOiIveNlhCa3vQcIQlnuV4KA3QRGXXaRGSdMSbN0zavDhaLSD/gOcAKvGqMmV5me3PgDSC2uM54Y8wyb7ZJKX/w/fffM2bMGNatW1duW0hcUxIGjMOacBYGyM7JY8LiTTw1NJUvx19a+41VdZ7XuoZExArMAfoDbYHRItK2TLWJwDvGmE7ANcCL3mqPUv6gqKiI2bNn06lTJ49BIKrTVTQaO7tc6ug8R6GuH6C8xptPBF2B7caYnwBE5G1gELClVB0DxBT/XA/Y48X2KOVTP/30EzfffDNffPFFuW3WyPrE978Xe8suFe6v6wcob/FmIGgC/FLqcxbQrUydycAnInIPEAlc7umLROQ24DaA5s2b13hDlfKmkjxB48aN4+jRo+W2x7W/mIjetxMaGUuhMVhFKPQwdqdvDCtv8fWsodHAPGNMU+BKYIGIlGuTMWauMSbNGJOWmJhY641U6nQZY7j66qu54447ygWBiKgYGg1KJ+rKh7FG1KPQGOw2K6O7NSs3Q0jfGFbe5M1AkA2UToLStListFuAdwCMMf8DwoEEL7ZJqVqTsT6bi2Z8xle55X+lO11wCefePZfQcy5B5ORK8nmOQj77YT9PDU3V9QNUrfFm19BaIEVEWuAMANcA15apsxu4DJgnIufiDAT7vdgmpWpFxvps0t/biKPQENNtGMe2fcWJX7cjoXbq976FY2lXkl9Q5HHfPTl5DO7URC/8qtZ4LRAYYwpE5G5gOc6poa8bY74TkSlApjFmKfAQ8IqIPIBz4HisCbQXG5Ty4IkPv8NR6PxVFouV+CvvJ+fzecRdcQch9RqQX1CkYwHKb3j1PYLidwKWlSl7vNTPW4Ae3myDUrVh3bp1PP3007zxxhuEh4fzx7EyS0gmJpM0YrJbWcmYQJ6j0FWmYwHKF3w9WKxUQDt69CgPPfQQXbt25Z133uHJJ5+s8r4lff86FqB8TdNQK3WaPvroI+666y52797tKps+fTqjRo0i1m4j5xQrhZXc+etYgPIH+kSgVDVlZWUxfPhwBgwY4BYEwJk/KCMjg8kD22GziMf99c5f+Rt9IlCqihwOB88//zyTJk0iNze33PaQekmMn/Y3Hrt7jKtMk8SpQKCBQKkq+O9//8udd97Jpk2bym8UCzFpg6h30bWszI1janGxdvuoQKGBQKlT+PXXX3n44YdZsGCBx+2hjVoT3/duQhucDWg+IBWYNBAoVYE5c+bw6KOPcvjw4XLbJCyS+pfcSFSHvojlZDoIfQdABSINBEpVICsry2MQiGzXm/q9b8YaWd+tXIDe52guLBV4NBAoVUrG+mzXAG8D+0XEJTbg4P7fAIho2ILoS/9MeLP2Hvc1wPvrskk7K07HBlRA0emjKuiVZDXJWJ/NhMWbyM7JwwC/5kHYhTcQERXN7Nmzmb/0M+qf3eGU36ULyKhApE8EKmg5HA7mzp3Lu+++y6effsrM5Vvd0j0A2Nr0pF3qBdx33xAArCEhrieGipJi6YCxCjQaCFTQMcbw0UcfkZ6eztatzrv3V199lT05zcrVFRH2O0Jdn0tPCe0xfSXZHi76OmCsAo12Damg8vXXX9OrVy8GDhzoCgIAjz/+OEnhntNCV3RhT+/bRheQUXWCBgIVFLZt28aoUaPo1q0bq1atKrf9SO5RrmqUV60L++BOTTRpnKoTtGtI1Wl79uxhypQpvPrqqxQWFnqoIUSd14eGvW/kvK49OK9r9dJC6NvDqi7QQKDqpN9//50ZM2bwwgsvkJ+f77FO+NnnU/+SsYQmtcCBMwB8Of5SvbCroKOBQNUphw4dYtasWTz77LMcOXLEY53QBi2J7XUT9uSObuU620cFKw0Eqk7Zt28f06ZN89gNFFK/EbEXjyHinIsQKT88prN9VLDSwWJVp6SkpDBmzBi3MmtUHHFX3EnjW14i8tyeHoOAzvZRwUwDgQpIhw8fdr0RXNZf/vIXrFYr8fHx1O99M41ve4XoTlciVvcHYJ3to5STdg2pgLJv3z5mzZrFnDlzWLp0Kb169QJO5gjKzsnDKkLc4Mdo0LoTR4psHr+nfoSNL8dfWostV8p/aSBQAWHXrl3cNf4JPn5/IUWO4wDcP/5xNqxe5coRVJIeotAYIlp15Yjn98MAmDSgXW00W6mAoIFA+bVNmzYxc+ZM3ly4kKIyA8Ab1/yHpxd8xAfZEeVyBFVGu4GUOkkDgfI7xhhWrlzJzJkzWb58eYX1LBH1eH35Oo43TavW9zfR2UFKudFAoPzG8ePHSZ/xEq+9/ALH9u6osJ41Kp6YrkOJ6tiX47ZwGsfaPSZ/80RnBylVngYC5XP79+/npZdeYvbzc/jj930V1guJa0q9bsOIbNcLsToHgUvSQJQeIyjNZhGiwkPIOeaoUsoIpYKRBgLlczt27GDSpEkVbo8+qx133fsASw42Ir/g5JTRkrv7kgt76VlDhcbQRC/8SlWJVDQX21+lpaWZzMxMXzdD1SBjDN26dWPt2rWlSgV76+7EdBmKvem57Jx+ldsyknp3r1T1iMg6Y4zHATV9IlC1Ys6SVTw7fwlFbS4vdxEXEe69917GjBmDhNqJSu1DdNpAbLENgZOpHzTTp1LeoYFAeU1eXh7vv/8+02fP4bt1qwGh8Z/bk01DJizeBJycxjlixAhWbd7F54XncMIa7voOHdxVyvu8mmJCRPqJyFYR2S4i4yuoM1JEtojIdyKy0JvtUd5njCEzM5P+I8cSHZfImDFjioMAgCF347+B8ou8h4WFMXf6Yzx9bXdN/aBULfPaE4GIWIE5QB8gC1grIkuNMVtK1UkBJgA9jDF/iEiSt9qjvOvXX39l4cKF/POf/2Tz5s0V1sv9dgWxF12HWG0e0z5r949Stc+bXUNdge3GmJ8ARORtYBCwpVSdW4E5xpg/AIwxFc8dVH4nNzeXpUuXsmDBAj755BOKik6R0wEIa9qWqI79AQE07bNS/sKbgaAJ8Eupz1lAtzJ1WgOIyJeAFZhsjPl32S8SkduA2wCaN2/ulcaqqisoKODGG28kIyODY8eOnbKuxR5DVPvLiDrvCmwJzVzl2vevlP/w9WBxCJAC9AKaAqtEJNUYk1O6kjFmLjAXnNNHa7mNqpSSKZzrvtjA8YqCgFiwn30+Ual9sLfq4nr5q4TO71fKv3gzEGQDzUp9blpcVloWsMYY4wB2isg2nIFhLcqn8vPzWbVqFX369EHE2ZVTOstnZNtLOJ69xW0fW1ILotpdSkTbSwiJivP4vU1i7Zr+WSk/481AsBZIEZEWOAPANcC1ZepkAKOBf4pIAs6uop+82CZ1Cv/64jumvLSQ7A1fkL9zHUUn8tm4cSPnnXce4HxztySNQ8Q5F3Hw/83FGhlHZNueRLbtRWhSi1N+v3YHKeWfvBYIjDEFInI3sBxn///rxpjvRGQKkGmMWVq87QoR2QIUAunGmAPeapNyZ4xh69atLFu2jH++9R6b160B4z7gO+2F13ln7mwAt8Ru1oh6NBr7HLaE5h6XfnTVE6HIGH0TWCk/pikmgsyRI0f47LPPWL58OcuWLePnn38+Zf2wxObk79sFQMsJyyisxu+L3WbV9wCU8hOaYiLIvbnqeyZMfZp9WzM5kf09pqhqi7hYo+KwNW3P8ePHCQsLqzQIWARiwm0cytNMn0oFEg0EdYSnhGwAT3z4HQcO5fLLZ29CoaPS77ElNMfeqisRKRcQ2igFEQthYWGAc6C3orz/sXYbkwe20wu/UgFIA4Efq0q2zcOHDzNr4TL+vvAjCouKiL3oOrJz8nhw0QasVsFRaLDYwghvei75u74td4ywsDB69erFZmmBOSvNleitbDsGd2riMe+/dv8oFfg0EPipsguyZ+fkMf69Dez68XuijuxizZo1fLDiC/bt2u4a4LWER1Ovx2hELBQBRYUnu3LCz+roCgQhcU2wt+jMwsm30bt3byIjI8lYn839izZ4bMvM5VvdUj9oKmil6hYNBLWsqjn1Z3y0iZxftuLY9xMnfvuJE79u58S+ndxfcLzC7y7KP4LjQBahCeXfvo5o0wNLRCz25A6E1GuAAAVNOhIZGQk4c/xUFAhK5wTSXEBK1T0aCGqRp7v8sumYAe666y5Wv/wPqOKgbmnHs77zGAhscU2wxZ08huHknX6JisYANCeQUnWbBoJa4HA42L17N4+98D77snZR8MdeHH9kkzDwYfIId6VjLllq8dD636sVBGzxzQhrci5hTc4hPLlzlfcrm/2zojEAfQlMqbpNA0EZVem6KV2nYaSVmzrHkhpn2Lt3L9nZ2WRlZZGVlcXu3bvZtWsX2dnZHjNzFvyxl9CkFq4ng5ILcEjCWRW2zxIRS1jDVoQ2bkNYo9aENmqN1R59Wuda9k5fxwCUCk5BFQgOHTrE0aNHKSoqoqioCIfD4fqTn5/Pim9/Yc6KLThO5FHkOM4PJ/L40yd5/KtFFK8+M4XY2Nhy3Ttb/u9V/vz4+6fVHscfewhNaoEIbnfhtkRnILDGJBHa4GxCE1sQ2rAloQ1aYY2Od+X+qcippnmWqOhOX8cAlAo+QRMIMtZnc/vtt/Pb1x9Ve9/3P4O/PnwXsbGxbvl2wJlq4XQVHHTm4Cv7npYtvhnN7nsbS3hUtb7v+u7NmTY4FYAe01dWGAw0+6dSqrSgCAQld/FHHadeOOVUDh06BJTvV7dUMRDYouOwxDQkJLYBIbGNsMU1IbSx5753sViRagQBT3P5dc6/UqqqgiIQnLyLP3WXyqmUBILGZbpdrJH1sUbFER4TT2h0HI7wWKzRCYREJzj/Wy+J5s2a8+vRQipK0FA/wka+o8jtol3CZhEKjCn31FCiort77e9XSlVVUASCkrt4S3gk1qg4QEAEsVjBGuK8Aw8JRayhSEgIYgtHbHYstjAkLAJLWCTJyclA+Ttte4vOpNz/Jk8NTeWBRRs8Xux/PVpYLoCUEGDSgHbAyVlDVhEKjXFd5IHTurvX/n6lVFUERSAouQjX73kD9XveUO39Y+02UlJSgFPfaZdcyD0d31NXjQDXdW/u+s7KLtp6d6+U8oagSEOdsT67wrv1qpg9qmOVLrplZxSB+517Vd8qVkqpmhb0aagHd2pC5q6DvLl6t1swsFkFDDiKTh0iqnqxrqxfXrtqlFL+KCgCAcC0wamknRXnMVVzRV064ByMrQ692CulAk3QBAKo+CJd0m2j6RWUUsEoqALBqeh0S6VUsNJAUIp26yilgpHF1w1QSinlWxoIlFIqyGkgUEqpIKeBQCmlgpwGAqWUCnIBl2JCRPYDu05z9wTg9xpsTiDQcw4Oes7B4UzO+SxjTKKnDQEXCM6EiGRWlGujrtJzDg56zsHBW+esXUNKKRXkNBAopVSQC7ZAMNfXDfABPefgoOccHLxyzkE1RqCUUqq8YHsiUEopVYYGAqWUCnJ1MhCISD8R2Soi20VkvIftYSKyqHj7GhFJ9kEza1QVzvlBEdkiIt+KyP8TkbN80c6aVNk5l6o3TESMiAT8VMOqnLOIjCz+t/5ORBbWdhtrWhV+t5uLyGcisr749/tKX7SzpojI6yKyT0Q2V7BdROTvxX8f34pI5zM+qDGmTv0BrMAO4GwgFNgItC1T507g5eKfrwEW+brdtXDOvYGI4p/vCIZzLq4XDawCVgNpvm53Lfw7pwDrgfrFn5N83e5aOOe5wB3FP7cFfvZ1u8/wnHsCnYHNFWy/EvgYEKA7sOZMj1kXnwi6AtuNMT8ZY04AbwODytQZBLxR/PN7wGUiIrXYxppW6TkbYz4zxhwr/rgaaFrLbaxpVfl3BpgKzADya7NxXlKVc74VmGOM+QPAGLOvlttY06pyzgaIKf65HrCnFttX44wxq4CDp6gyCJhvnFYDsSLS6EyOWRcDQRPgl1Kfs4rLPNYxxhQAh4D4Wmmdd1TlnEu7BecdRSCr9JyLH5mbGWP+rzYb5kVV+XduDbQWkS9FZLWI9Ku11nlHVc55MnC9iGQBy4B7aqdpPlPd/98rpSuUBRkRuR5IAy7xdVu8SUQswLPAWB83pbaF4Owe6oXzqW+ViKQaY3J82SgvGw3MM8Y8IyIXAAtEpL0xpsjXDQsUdfGJIBtoVupz0+Iyj3VEJATn4+SBWmmdd1TlnBGRy4HHgIHGmOO11DZvqeyco4H2wOci8jPOvtSlAT5gXJV/5yxgqTHGYYzZCWzDGRgCVVXO+RbgHQBjzP+AcJzJ2eqqKv3/Xh11MRCsBVJEpIWIhOIcDF5aps5S4Mbin4cDK03xKEyAqvScRaQT8A+cQSDQ+42hknM2xhwyxiQYY5KNMck4x0UGGmMyfdPcGlGV3+0MnE8DiEgCzq6in2qxjTWtKue8G7gMQETOxRkI9tdqK2vXUuCG4tlD3YFDxpi9Z/KFda5ryBhTICJ3A8txzjh43RjznYhMATKNMUuB13A+Pm7HOShzje9afOaqeM4zgSjg3eJx8d3GmIE+a/QZquI51ylVPOflwBUisgUoBNKNMQH7tFvFc34IeEVEHsA5cDw2kG/sROQtnME8oXjcYxJgAzDGvIxzHORKYDtwDLjpjI8ZwH9fSimlakBd7BpSSilVDRoIlFIqyGkgUEqpIKeBQCmlgpwGAqWUCnIaCJRSKshpIFBKqSCngUCpMyQiXYrzwoeLSGTxOgDtfd0upapKXyhTqgaIyDScqQ3sQJYx5ikfN0mpKtNAoFQNKM6DsxbnugcXGmMKfdwkpapMu4aUqhnxOHM5ReN8MlAqYOgTgVI1QESW4lw9qwXQyBhzt4+bpFSV1bnso0rVNhG5AXAYYxaKiBX4SkQuNcas9HXblKoKfSJQSqkgp2MESikV5DQQKKVUkNNAoJRSQU4DgVJKBTkNBEopFeQ0ECilVJDTQKCUUkHu/wO679uS86yYRgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" } ], "source": [ @@ -262,7 +321,22 @@ "\n", "with torch.no_grad():\n", " _, info = theseus_optim.forward(theseus_inputs, track_best_solution=True, verbose=True)\n", - "print(\"Best solution:\", info.best_solution)" + "print(\"Best solution:\", info.best_solution)\n", + "\n", + "# Plot the optimized function\n", + "fig, ax = plt.subplots()\n", + "ax.scatter(data_x, data_y);\n", + "\n", + "a = info.best_solution['a'].squeeze()\n", + "b = info.best_solution['b'].squeeze()\n", + "x = torch.linspace(0., 1., steps=100)\n", + "y = a*x*x + b\n", + "ax.plot(x, y, color='k', lw=4, linestyle='--',\n", + " label='Optimized quadratic')\n", + "ax.legend()\n", + "\n", + "ax.set_xlabel('x');\n", + "ax.set_ylabel('y');" ] }, { @@ -278,7 +352,7 @@ "hash": "cc5406e9a0deef8e8d80dfeae7f152b84172dd1229ee5c42b512f2c6ec6850e3" }, "kernelspec": { - "display_name": "Python 3.8.8 64-bit (conda)", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -292,10 +366,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.8" - }, - "orig_nbformat": 4 + "version": "3.8.12" + } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/tutorials/02_differentiable_nlls.ipynb b/tutorials/02_differentiable_nlls.ipynb index 39fb87dac..2940bdf48 100644 --- a/tutorials/02_differentiable_nlls.ipynb +++ b/tutorials/02_differentiable_nlls.ipynb @@ -26,9 +26,23 @@ "cell_type": "code", "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEKCAYAAAAVaT4rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABCRUlEQVR4nO2de5gcVZ33v7+q7pnpTMJMhlsmhIhkCUEQhKAiCIrxQVhEUFcW3V3UdWXfdXdfvL5ylYgo7KMryz66r4urr7ILcjcQEEEjKxclLCEmXHJBQoBkZgiQzJBM5tKX8/5RfXqqqs+pOlVd1dff53l8pqe7uro6jN/+9fd8f79DQggwDMMwnYPV6AtgGIZh6gsLP8MwTIfBws8wDNNhsPAzDMN0GCz8DMMwHQYLP8MwTIeRmvAT0cFE9CARPUtEzxDRheX7lxPRdiL6Q/l/f5rWNTAMwzDVUFo5fiIaBDAohHiSiOYAWAPgHADnAtgjhPhOKi/MMAzDBJJJ68RCiGEAw+Xbu4loA4CD0no9hmEYxozUKn7PixAdAuAhAEcB+CKATwF4A8ATAL4khNileM4FAC4AgN7e3qVLlixJ/ToZhmHaiTVr1rwmhNjff3/qwk9EswH8FsA3hRB3EtGBAF4DIAB8A44d9NdB5zj++OPFE088kep1MgzDtBtEtEYIcbz//lRTPUSUBXAHgBuFEHcCgBDiFSFEUQhRAvBDAO9I8xoYhmEYL2mmegjAjwBsEEJ813X/oOuwDwN4Oq1rYBiGYapJbXEXwEkA/grAU0T0h/J9lwD4OBG9DY7VsxXA36Z4DQzDMIyPNFM9jwAgxUO/SOs1GYZhmHC4c5dhGKbDSNPqYRiGYSJwx8hOXL1lGNun8jioO4uLDx3ER+cNJP46LPwMwzANQgr9tqk8CM7Cp2TbVB5f3vQyACQu/iz8DMMwKeGu4PttC9MAxosl5bGqjqqJksDVW4ZZ+BmGYZoRv02zbN85uHVkFyZKjqTv0gh+GNun8kleJgAWfoZhmEiofPjHx/bghqGdlap921Te83stHNSdTeAsXlj4GYZhDLhjZCcu27zNU7lvm8rj8xtfRl4x+iYJ0c9ZhIsPHQw/MCIs/AzDdDQmSZo7Rnbiy5tertg2blSinwRzMzauOuwgTvUwDMMkha6CVyVprt4yrBT9MPxJnSBsAEUAC1KMcUpY+BmGaSuCkjRzbQtXLV4AANoKXpWkibPASgDOnz+AVa/v1qZ60qzqg2DhZximJbljZCcue247dhWKAIAsgAK8FbY/SbOrWMLnN7yE2bYVWMH7hf6g7iy2acQ/SwQIAfejUvT/6fCF5m+ojrDwMwzTEgQ1OwGAaU2eR3i00p+kufjQQeU3BFmxA6hLx21SsPAzDNMw/LYMiDBaKFaJp39xNc3to1RJGnkdQeLezELvh4WfYZi68tVNL+G/hnai6Ls/aJE17uKqjrkZG5OlkraCV4n4R+cNtJS4B8HCzzBMTag6Vu9+ZbQi5BaAEpy0yptzXXh4dNzovO5F1iS7V7NAS9ozScLCzzCMMWFjCbZN5fHToZ2e58g6fttUXrtAqkMKftDiahBZAF22VZXqkQLfKULvh4WfYZhA/OkZSZJjCXTIRVbd4qqbLJwcfAlOJv4vmzhV02hY+BmmA1B1pwLhVscdIzu1IwmA+i2yuhdXt03l69rs1I6QSKndOEmOP/548cQTTzT6Mhim6fBX424rIyj+mAUAIo+g5yzCdw4/2COix//umVgWSxzmBqR6mHgQ0RohxPH++7niZ5gWQFex+6vxXcUS/n7DS7h5+HU88cZebfwxDwC+oi9ux2qUsQQ5i3D8PrPwu9FxFMGWTKNg4WeYBhNkw2ybyldSMRIZdeyxLK0FY5qc8ROlYxVwhPzceXMrYwnCUj1cxTcHLPwMkyBRvXR/Y5Ic8+seAaDqMZ0oCUyU/En42lF1rOo8/qDMO1fwZmzY+DUMDd0MlL//zJ9/Ho5YcmXqr8vCzzCG6DxzAvDu/l48vWfSk3zZNpXHP254CTZmxgmYNCalNebXjc7j13Ws6tYRmPg4on+j655i5fe0xZ8Xd5mORTeH3TNGIGMDQmBXsRTJyw5jQXcWT5x4JAYf/EPsc861LewpCe0Hhf965e8LIqR6GDPiVO6rfrO4fLwfG8vetzmR6+LFXabjuGNkJ/7P5m1Vm1vLDtJHRsc9W+V9edPLeHxsj3efVFcFn2SJVGtjUs6iynhh1XtUee8qYWehj8bwyF3Y8vx3MDk1jIzdB4FpFIt7fUeZVu46qy55C88PCz/TdLgr7hwBk8Lrcy/QVOf+qv1/b3wJRYVa6zpIJ0pCOUMmDYIak1Rjft34vfWgfwcmHsMjd2HDhkshxIT2mEJxNPAcQ0M3hwi/7EZQ3Z8uLPxMYug88LkZGx86oK+q+gTg2QGp17YgSiXsdYn1Xo1wq6pzt39+9ZZhpeiHUQ/R1zUm6VI9Js1K7TRArN64q/ie7kEM7HsqhoZ+BvWyehSC/5rmzz/P5/HP3J827PF3MCove7RYQo4Ik0KgBCeK516cnEWEbtuqNNks23cOVr2+O7JdkSVCsfwacdHVSwu6s9g+lY9lzejOGZcsET4xGG65MOniF/dDF30ZALB58zdQKOzyHZ3Uak64V592qkfn8bPwNxGq2eS7CsWqig/wVspBYqyqFr+66SX859DOmuuZZoUQzzuXuya5v0WojhGAMtXzwsQ0jxNoAlQV/MjInSiVZmwbomy5fy29ruT58/+iLtHMIDpW+KN6nyYbQ5ie0219SDGoVYhrqZRl12Tc5p5mI6jiv/jQQa3Hr8K9VZ7umxBX683P8Mhd2LjxUo/IJ1fBm9PffyKWHvefdX1NFR0p/P7mGEA9jyToeDcyKeGvCFXnDDuXfF47CXE9MflvEZTqkd+K2H5pLx599GRMTg2l/CrO7r6qVE/G7sfiw7+GwXlnp3wNZnSk8OsGTMkMtenxboKqTPc56zncqhUx/ebiHrUrMUn1MM3PjCUzBF1VTjQLRxxxlbGQrvrNnyjPEwXLymHevI9gePjOqlRPs1TypnRkjl83YCrq/W50C3/+5ya5Y1CrEyXV0wVEslU4zdLceBcvg9CMfRZ78eyzzkKsifj3dA9qKn7vB4vO43dX7I3259OkrYVft8Dnn0cSdrwbXcXvP2fcxpww0vL4swBm21ZNqZ44i5os2q2PKjEzOO9sxUiCuJSw5fnvGAn/oYu+XOXxywp+5+sPVqV6VNfdCbS18KuaY1TzSIKOdxPkK/vPabJjkKnHn0aqRzYq8VhcJgyvJeP8RfV0z6+Ip1toJ6eGsHHjpQBQrvSTYXJq2Og4Kdymgt4pQu+nrT1+oHVSPf6OUY4CMvVkeOQubNp0mWehkmgWhNgLnf9uWTlY1K3sYO3pnp/oImtP93ycdNLDiZ2vU+jIxV2GYdT4Z84Uim+g9k5VNwTHKEyiHc7CW95iZvUwXjpycZdhOoWg4WH+iKE/6x42cyYOM6MPavP4o6Z6GDNSE34iOhjADQAOhPM98XohxHVENADgFgCHANgK4FwhhL9nmmE6Ht2YAdV9QUJeKI7i2We/CsDxtLc8/x1fg1N8Mpm5KJUmqxZT3b56WKpHrhewuNeP1KweIhoEMCiEeJKI5gBYA+AcAJ8CsFMIcQ0RXQRgrhDiq0HnYquHaWdUIwaGh2+HEFO+I7NwBnfOpMWCfHY/0idPIusuX3vJkm8C6Nx0TNKsX78eq1atwtjYGIgIQgj09fVh2bJlOProoyOfr+5WjxBiGMBw+fZuItoA4CAAZwN4b/mwnwL4bwCBws8wrcTwyF2e4V9EOdh2DwqFUWTsPoAIhcKoco7M5NRQgD2S9++PjlJpAiWYVe8yGaPPugchF3i9qR4p8Cz08XALfS6Xw/T0NIpF59uRLMrHxsawcuVKAIgl/irq4vET0SEAjgWwGsCB5Q8FABiBYwUxTFOjijRm7H6PiEvbZcOGr3qqciEmUChU2zCOyN+Ees2R6el2osCqrLvzbcLyfMtwUj0TXMXXgFvY/ZX7+vXrsXLlSuTzzt/KxIT+Azyfz2PVqlWtI/xENBvAHQA+L4R4g4gqjwkhBBEp/+qJ6AIAFwDAwoWcMWfSxb84KgU9k+lHobAH3g5PpyLzi/jGjZfCom6P6IdTu+irfPZqspUPpqhZdyYYnT1z2GGHYd26dRVh91fuq1atqjxmwtjYWGLXnKrwE1EWjujfKIS4s3z3K0Q0KIQYLq8D7FA9VwhxPYDrAcfjT/M6mfZB10Ua9hzd4mj1rHY9UWyXuDijBrwe/+LFlwOAcaoHcMSfhT46/gp+YGAAL7zwQuVxtz2jWpd0V+5Rhbyvr6+2i3eRZqqHAPwIwAYhxHddD90N4JMArin/vCuta2Bak+GRu8opFG81JOebe6rzTD8gBArFMWTsPhRL4xVhdHeRBolckimXeJiNDe7vPxHz5/+Z9oONhTxZ/CKvquDjVOHyOX19fcbPz2azWLZsWeTX0pFmxX8SgL8C8BQR/aF83yVwBP9WIvoMgBcBnJviNTBNgDOzxb2VXRaZzOyqajqXOwz5/GvaKnto6Ebs3fsC3nhj7Ux17jpWlWwplSZC57yYjgMwIZOZi2Jxj7Hdo5ojM7DvqXjllZ+7umgJ8+d/ojI0jAU+WVQ+PACP/66r4OMgK/dly5Z5XgMALMtCd3c3JiYmEkn16Egz1fMInFJGRXIfXUwoQfaH39t2V8ySnu75GNj31FhDrtSDuvJKcZ+YeC70vYyO/i7CO3cIE/Z4KZdq3LaLaapHZ0W182TIZsK/wCp9+EwmE8l/N8VduUsh1y3+pgmPbGggwyN3YfOmKyuVKtEs2HZ3qCjocETWnRJRbRQIg8fCUY21lblu9zWv+s1i1GcLcz1hc17UuzaFo0r1cDXeXASlagDg2muvTXTR1E02m8UxxxyD5557ru7CLunIkQ1ROh/jJBzCzh9U3akqYSH2olBwvt6b+tMSdWUtfD9NHwtHZWWobZXGir7sIg3Cn3Lxp3qKxcnKhhyZzFwsXnw5C3yDUfnvfoEFqu0afx4+LdFvhMhHoW0rflUVp6pSTSvXuOd34+50fPbZL8FEdE2nEjZDZe1AWPa+P1Z+S/q6+vtP9Hj81cj1A67C2xW/PaMim80ik8kos/F9fX34whe+AEBf8edyORQKBc9rqCp41QdOM4l9x1X8qqSGqko1r1zjnV913vLRgcdKzBcem0H0Z5qEJPPnn5fQZhzhqR4W+tZClX/P5XIAnGYmnZCa5N/z+bz2GLfQqxZYs9kszjjjjMprNauo10LbCn+tSY2w58c9f9Tn+YVUj25vsHTQfVPy2ypykdI01SNK46GWG2fQW4+waKR0HtwVum5UQa32jDsPH7bA2i5C76dthb/WpEaY4MY9vzyvyXNN/GlJkpW1n1pSPYAj/pxSaW/Wr1+P++67ryLcbqvFP4MmSjRSNarANP+us2v8efijjz66bQVeR9sKv2oeSRSPP0xwTc/vxn1edYokvj89U1lXp3rc2+SpttBTibrp63Ll3b6orBj/Tx1uqyVoBo0JfpFX2TN+OsGuqYW2FX7dPBLT+8IEzeT8YZntpGelmFTWLNSMCpUVs2bNmoq4637WA/+oApU9E7TIykJfTdumehiGCcdv0TQb2WwWZ511Fot3TDou1cMwnYROwIPsDZNYZFr4o5FRUj1M7bDwM0wLEFSZ53I5TE1NoVSq3iw9aBOPqGOBa8E9g4YFvfGw8DNMAwgbJeA/dsWKFUphB8IXT3WbeKTVtQp4Uz0s9MGMr92BsZXPo7S34NyRJVhZG6W9Bdj93djnA4eg99gDEn1NFn6GSQCTBEyUUQJuVq1apRV9U1QiHxSLDEvtqB5ngQ9nfO0OvHH/VhRHp/RjsvICpbzzIVAcncLonc7wwiTFn4WfYULQVef33HOPJ/ki0SVggiY/Bm2tl0RlrtrEQxeLzOVyOOOMM/DSSy9V3h8RYenSpfjgBz9Y87V0Em6ht2ZlUJoszPQxGuZqRL6EN+7fysLPMHFwC3g2m0WhUAiNJWazWZRKJU/z0cqVK7F27VrPzkummI4ScBNlww4Vuk08TLpWWejDqbJqNIQ9HkRxdCr8oAiw8DNtgVvU/WSzWWWFbYLquHw+H0v0w9Btrbds2bJAjx9wFk8zmQymp6erzhlkv3Ri12qSjK/dgV23bwaK6cbi7f7uRM/Hws80BboNq2WlqtohSd4XlGoBzEW+XpiOEpBIYdalethbT4fxtTsw+vPnIKa9f1fuBdc37t+auuhT1sI+Hzgk2XNyAxcTF511Iv3ghQsXKgXbLWC5XA5HHnmkZ2CXG9u2IYTwiLplWSCiiv3SSsiGJIBHCTSa8bU7MHr3HyEmnL8ja1YGfWctQu+xBziV/G2bZvx4H5S10P+Rw7Drlk3JX5gFWD2ZRFI9ugYuFv4OQtWW/8wzz1SJcNh8cdPGH3/yw7IsCCHq2u6fBtlsFgsWLAi1e3SpHhb4xlC10Kry3G3C3D9bPJO8CUDaL5H8d5tAXZbzYeNL9VDORv+H/iTRRVwW/jqi27xZZ2WohFVVDQZlv/2PDQwMJOJD+1vmwzLl7Uoul6vKpKtSPZx+aRx+YRdCQEwUYfd3o3vJXEys2QGRD/+7tfu7jcV87p8fbuzxu79R1IuOFv6wZpk4/wfWVb3+EbSA2q6QWJaFc845xyOsqo0hjjnmmCo7xG0bpNl6b7JjUathmuqR0Uau0psPv1WTJCbib/d3Y/Cid4SmetJqwjKhY2f1+IXU3yxzzz33KGeDCyEq9/vFf/369bjzzjuVr6dafAvyokulEu677z5PtE6VQFHlxWX2W95OC7fQ11v0TT1+27bR1dWl/PeXqR62WloDd+WuE80wD74W5GuGefxywbX32AMaIuq10PbCrxNS2SyzZs2awOevWbOmSvil2CaFf9chFbrKtB5C7I4ZRsmUm3r8tm3j2GOPrRrYZZrqYUFvTXaueA57V484PjcByBCQ9/5t6DpX37h/ayqiD5s8HzRhqZ5Wpe2FXydS8v6wr/qqx9MUW52w6lropSindU3+mKFJpjxqqsfESlE9zkLf3Ogq9/G1O7Drzs1ekReoEv3KQ4rO1UQammwCrJnX9XvwrVjJm9L2wq8TUimYJjNJTM+pI8jjB1AZRQvoN3/Wefyq2S8myARP1FSPKlMeJN4s2J1Bld+eJaciLy96ysp96sUxTKzZoRV5HX6hj7IACzjWTG7pAZjauCvQQuoU2l74dUIqBXPp0qWB+38uXbpUeU6dxw+oR9AC6gYc27YrW8QBwW30qgraLaImqR5/SidO+oS7PTsHvx0z653z0P2mPk8l371kLvY+PuK1XhTCLvKlmXNFxN+5GubB+1M9nSzyKjjVg2RTPSYjdtmbZhpNUPRRiuTOFc9h72Mj1U/WTZVMCdkspVrg1TVgMQ4dHedkmE5EJ4xTL46pBb1MpSv11k3JC3zEDw2u1mujY+OcDNMphOXaS3sLRhFIuZiatOhLn13bSJV1Uj0s9unDws8wTY6/QUi29gMIH0HgxzACGbhRiCkEWLnqmTPjvjUCFvn6w8LPMHXCpDFJ9Rz/SAAxUXSGg9lUub+WWe8qKou2Bh5/pZJf96qR397OMclWgYWfYWpAtZWeFE0ZHVRhuqVe4NjflMYBy65UeV1hqZ7Ksecclsr1MMnDws8wLpRzV2SF6xJ22a4/eudzM351WYeLo1OBi6cSky31kt55CVb5p9/y0fjrA+cchgGFoHPFbs6Ghx/EwzffgN2vv4Y5++6Hk887H0ecfGpDr4mFn2lbVNYKgOrNrss/KWdDTBWrRVF4f1aq9QwZTXsMwmQQWFLiL+0XAOyxJ4BK0AF47jv02Lfjmd+uQmHa+W+4+7VX8cD13wOAhoo/xzmZtkBlubQCcsKjjsCt/Vwef+V31wgCIJ0Z74wj+g9c/72KoAOAlSn3QxhsEDRnv/1xwff/X5qXCIDjnEwTo1v0VHWNqmyH8bU7lJZLs2OypZ4U7LBUD1fuybLh4QfxwA+/h8JUWdiJcMz7z8D7/+ZzAJyq3i36AFAqmC+w7379tcSuNQ4s/EwkdNFCKThhs8kl2UX74MDPHlMl2tJG2fPEMPLPvzHzBIGKb+4X/zfu31qz5RIHa1YGIl+K9dpRukyDUjAs9PHxWzWHHvt2bFn7P9j92qvVBwuBdb/6BQDg/X/zuZqFe86++9X0/Fph4W9zTFrz/cepHtM1BomJotMUVMZ0N6L882/glR+uQ+n1qSrhFPmSV/Rd7F09UiX8iS+AGkBZq8ovN0n18FiBxqASeb/3LoU9iPWrfon3/83nMGff/dQfEAZkuror6wGNIjXhJ6IfA/gggB1CiKPK9y0H8FkA8l/sEiFE+L92ExE0atbTTJMvase96s7nx/+8qmraBuDSYuqy0P/hw7yC7aqm3VW4O04IQFl1S0K7PUvl2CEQKWKoE/dAVFZ3ggugsADKWN4Z7JpUj3t8L9M4wlIzfj/eVORViPKE3ZPPO9/I4890dePI9yxzvkl0SKrnJwC+B+AG3/3XCiG+k+LreghLduiqYN3zVAIpR82qBFb+vuv2zQC8IlHlTftwPw9QVNO+AlxMlyrVd++xB4RaIJXW/PJt3WMm3Z5xhTeyaFdPycY+Hzgk8N8x8FwBgs40HxsefhC/+en1mNy9GwCQ6e5GsVCoiK0qNaPy4+NCllV17qBUTzOIvIrUhF8I8RARHZLW+U1Q+ce7btsEkLrjUSfk8n7KWkqBNBo1WxRVmW0jb7r8PHk7lHL13XvsAUaCGnRMFEGWY3OjfgCoRJuyFjILZyu/Ecx657yq++S/qcpy8X/Qs7g3P7oKfsPDD+KXP7jOs4haWXx1UZiewsM331AR3CQXUo9ednrl9hEnn6oU9WYUej+N8Pj/gYjOB/AEgC8JIXal9UJKYS0BQSqtE/LARTxDd8MviqYiGVVM5fGmG0brXsNYzC1UBNbU4wecBV6/aMdJ9QDhYwBY6FsDlS0jK/iHb77BODnjFvta/PgKvlRPq1Nv4f+/AL4B5//K3wDwzwD+WnUgEV0A4AIAWLhwYawXi+37Ro0DGubG/ZtJmNocUatpeXyYBeKOE6qq7oqYB206rciJR0n1AHrR1nWNMs2Nu2Lv7p0NImBy926QZUGUSpiz3/5aC0Rly8gKPkrl7k7NqPx4lfdeSfU0uU2TBHUVfiHEK/I2Ef0QwD0Bx14P4HrAaeCK83qxF/00Qk45GyiIKoEMHDVbuRiqymwbedOu5xlV067q219Nh+1KFGSHmG54wQO4OgO3uPfMno389DSKCttlas/uym25MBrUvaoTdynGJpW7PzWj8+PbVdRNqKvwE9GgEGK4/OuHATyd5usphdWCx+OvukaNkFPWCmyacY+aNU31VHnTPlTPi5Lqka+RRFacxbxz2fDwg1j1k+s9Iu5GLrRGwe/DS3TiLsXa7/EDAIjQ3TsbU+N7tKKu8+M7lTTjnD8D8F4A+xHRNgBXAHgvEb0NTj29FcDfpvX6QLWwRkr1BMwMT7LSjfI8FmAmCbSNS6p0Sq3eeACq6l5ny7jF3J3q6Z49B8s+dQGLekR4Vg/DtDFhjUsqosycqQXdvJpmnGbZqvCsHoZpc5LqTo0ycyYuQd2rbMukDws/wzQpJpaMFMgku1OTpHv2nEipHgbYvHoEv7/reezZOYXZA91419mLsFjRv1ILLPwM0wRErdb9yZgku1NrpWfOHLzvk+y7R2Xz6hH8+oZnIVwO256dU3jwxo0AkKj4s/AzTEwqYq1YAJXiB4THCONW6+5kTJLdqaEePxEgBFfwMdi8egQP37oZk+OOndbda+OUcw8HAPzqJ88qY+SF6RJ+f9fzLPwMkxb+WTCq1Miv/+PfsO7X9wEBwYjJ3btx379dCxAFzpEBapslIwU/SsbdpHFJXhcvsEbDbdOYMDVexK9veBZdPXZgE6jp+Uxh4Wfankhz131M7dmN+/7vvwBwxPrX//Fvxt65bFhyo8qv11Ktyw5V0+7UKALOQh+NzatH8OCNG1GYjjYsUBSdD4AgZg90Bz4eFRZ+piXQVeKAekKi+1g3cRY9RbFYEev1q35Z4zupFvq4s2TcyRjuTq0vqgXY39/1fGTRN+VdZy9K9Hws/ExdcVffma4uFKanK37x0ctOrwzB8s97md477qmgp/bsxi++/11Ytl2JH+5+7VWnOhdCWW3XghTrJM7r330pqVkyHIOsDdM0jb+ylwuwtYh+T28Gk3sLSrtnweH99U/1ENE/AvivNKdoMs2JSSONvxJ3k+3pgZXJVlrp/UkV90hdUSpVKvGDDj/CI4S6UQEQoipznlbTkRRruaBpAlmWx+MH1Pl1rtbri0rgh58fxdMPDVWOCUrTqCr7wnQJZAEihvaTDZx87mIAwIM3bkBhuqz+BBx18ny85xNLop807DXDOneJ6CoA5wF4EsCPAdwv6tzuy5274ahEGoBRDvzX//FvWL/qlxClEsiysOAtb8WrL26pEnOybXTPmoXJPTNC/tSDDyTa8EOWhdkD+6Y6KiAqZNs44+8+H8njj5LqYZJFJ+zPPDKkFGbLJpQ0s7tmD3Tjk986yXPf9//Xb7SvnemyIlX+MtWTdEUv0XXuGo1sICICcBqATwM4HsCtAH4khHg+6QtVEVf4gypWk/SG6jx2V1fVFEJdbjko7jdnv/3RP28+tj37VFUFaWezyHT3YGrPTNOL/FlpiNmzBz2zZ0MIdUVs0naf6erG4OIlePnpddpjGkI5LtgM6FI97g9Kt0XF1Be/yPfvn8O2TaOeY2r9c/r7H7zP8/tPL3lUmbJxe/26FA5ZwJHvTqeKV75eLcJfPsExcIT/dAAPAjgBwK+EEP8nyQtVEUf4/dnoOPTMmYPDTzg5dLYJ4Ajt6f/rQm0nJWNGpIqfyOPxA051HuTxz9lv/9BUDw/+aj6UMUm5DWeKNYKq4leldzJdFk79iyWpVe5xiT2rh4guBHA+gNcA/AeArwgh8kRkAXgOQOrCH4ckOhknd+82ToCUCgVPTK+ZOilbiaOXnV7l8QOOoGeyWeQnJwFES/WwkLcG/ur9kKP2xdanX9dn2OvwpVCVppHinvZYhTQxSfUMAPiIEOJF951CiBIRfTCdy6qdJDsZ47xmI16/2fEnVYJSPYC5N96q+552Ir+9aWPFaycLOOiwfoy+OlEl7nt2TnkWW9PEsgkCwjMqAQCOOmW+VswXv3NeSwm9n1DhF0JcEfDYhmQvJzkS2Wczxms28vXdJO3x293dEMWix1aRQr7psYeNUj1Rm4dYvFsT08pdlFDlx9cbWa0DrV3BR6Vt5/HX22NvJo9fzk4B4qd6RkeGqo7jOemMjqijCuoKAQsW92P7c6OVbxr1XGBtJDUv7jaSmlM9NVTeViaDt556WkUwmzLVE6OiZpggdELe05vByecu9lTDcUcVJEWmi1CYFpVvF39cs6NqCFo7V+9BdKTwu9GJcKa7G0eeskyZ8uDxsky74RZ02XCU6SIU8sJZLCWnIvb73W4sm7Ds/CMqYqqLN6ZNJ1Xucen4HbjYM2banSBvXf6+8bGRSmUum5kqnaIAIIJFHwBKReEZE5yG6Kuuv91993rSMcLPMK2KbobM5tUj+O+bNiE/Va3U/lRM0ikZt9jPHuiOJf7+VI9K3N+TyNUyflj4GaZJuOvaJ0NTLnKGjDOCYBii1Bir1j0m+F1nL9J6/Fy5Nycs/AzTAPxVfLbLwq6RCaPnFqZL2rkz9cCyydPYZNLQxJV7OGMrV2LHtf+CwvAwMoODOOALn0ffWWel8los/AyTMLrt9aQQqsb6RqVRoq9K9QCt39BUDyrCPjRUNUCIcjmgUIDI5wEAhaEhDF/+NQBIRfxZ+BkG3grc7iIUyykXmRwZXNRvPKt91Q0bPNMe5fZ6gCOQSWzYEWcEcKbLwpIT5lVsF12qJ5OdiUeyLRMNXdU+tnIlhi//GkR55Ih/apyYqP62JyYnsePaf2HhZxhT3ELe05uBgMDUeLEidvKnKu1SdKVcRAl4+qEhPP3wUGU2TNisdtWIX1FEJQlTawpGCniQxx/krbPtkhxbP/1pTPz+MeVj7qp9x7X/MiP6ESgMD9d0fTpY+Jm2wC303b028pOligBLywWYqZLlT+O0i09fC9MlT6RREiTq8rG4KRjAa7UMLuqvSvUcdYo3184iXztjK1di+JvfghgdBQDY/f2Yc8bpGL39DqBszeiQVXtcAc8MDsZ6Xuh5Uzkrw9QRv2cetnF1UuhmsutEXSZhVCmYTJeFOQPdVQu87m8mftuFffVk8Xjwtg1o5lwVR0cx+rObjc8rbZ/CULQ4LfX04IAvfD7Sc0xh4Wci4YjsBk/Tj50hlIR3uqFlE7I9FqbGi6l7xWluch2EO9IoedfZi6o8fsDZXk8mYdphrG+r4/fiZ7/nFIz9fMWMHZPgFp7S6/d4/CosC/Y++6A4NsapHsYMVSu+avIgCBXbIuock82rR/CrnzxbZXsUC9U+c6koKpV3kCeeBHUZF+D6dwOcCj1oVntQqkcex0KfHmMrV2L4iuUQe/d67s/Mn18l8oWhoUgVfBRk1S4FXJfqsfv7ceCll6Qm9FXX1a6zetxzv91ku21YGXgW+uSWbXJ6nzwuP1XUftUOao/3pCRcqGaLqK5TVwEGdXDqGmjIBgj6PUXJBt5//luMRKjWmSyq3YySoNbr8qddakn1MPVlbOVKvPLNb6FY9t+N9lms09aemfnzU63aTeioIW2/vWljaps49PRm8CdLD/CkQKIiF+CCrtO/lVvQdm+1jsM1FeSgTaZN8e9fmgSqfxuyge6eDCbHC6GpHhbx1kBpz9x+RyX73gxQVxcGv3lVQ8XeTUcNaXvmkfR27pkcL9T8ofLMI0N4zyeWBF6nPzWi8rHlMbVaHabPryWNIp+fBuyZtzYmHav+HHxhaAijN9+SbOVu+E1Apnr2/PahunTZpkFbCn+juhpN8UcKdbhFVie4UujqIcjvOnuR0uM3QeeJJwV75s2NaWOTrmNVmYNPUPSppwd9Hz7HEXNVqse20X/uxzB4hXZDwpaiLYU/TldjPSFr5mfQdboFWSfusrqtxeM3FWQprM2W6mEaj8qGkRWx3deH4p49QHnbzrDGJlXHapKNTB6Rb9GKvVbaUviPfPf8um3UHIcj3z2/8jPI43cLsi777RbUtFM9AFfWnY6qcgdQbcO4UjKVhVcXYY1N/vvj5OBVNMOCazPQlou7gFmqJwiZ6vHH+IDqFEijUz0MkxT+lAz192Pw0ksAwNO9KqGeHqCnp+p+I4i0gp6ZPx+H/WaV57r8OXhZue++75dVqR4WeIeOSvWY4hbdoG3cWHCZdiHIkqG+Pojdu6ubl4hAmUzi6RkpzipBH/zGlcoF3nqNLW4XWPgZpk1RjRqQogqgIpbU06OcAtkI3OLOgp4eLPwM04aMrVyJoYsvqSycuqFsFkII5WNJYvf3ozQ5GTiOgLJZoLcXog7jCJgZ6p7jJ6IfA/gggB1CiKPK9w0AuAXAIQC2AjhXCLErrWtgmFbBXfXafX0oAY5v7qvg/WI5/M1vaYW9Ho1N1NODA8trADoLiYU+GvduuRfXPH4NRqdGK/f1d/fjondchDMPPTOR10gz1fMTAN8DcIPrvosArBJCXENEF5V//2qK18AwDcVvY2TftBATj/+P46MTAT09wMSEp3nIk4Ip++26fHusRdWoaDx+/3wZFvbaUAm+ZHRqFJc/ejkAJCL+qVo9RHQIgHtcFf8mAO8VQgwT0SCA/xZCHB52HrZ6mFbDP8M9Kfxplw1Ljkj0/MhkQF1dleFm7lQP+/Dxueqxq3Db5ttQEiVYZOFjiz+Gy064rPL4vVvuxfLfLcdkMXizlsHeQTzwZw8Yv26zjGw4UAghA7ojAA7UHUhEFwC4AAAWLlxYh0tjmBmCFkzDBE8VPUwKf77d7u9X5uQBA4+fCLkT3on8iy8ZCToLvRn3brkX1z15HUbGRzCvdx7eNOdNeGxkZpeukijhlk23AEBF/K978rpQ0QeAkfGRRK6xYQ1cQghBRNqvG0KI6wFcDzgVf90ujGkLhr/+dYzeepvZXHVfO36VcIfYLX7ibrNngn9HpgMvvQTDl1yqtWHk9ci4pgXUZd57O3PVY1dVhNtNX1cfTn/z6bjrj3dVRHx4fBjD4+omtds231YRflNBn9ebTIy83sL/ChENuqyeHXV+fabFUAq4yw+n/n70uQZm2X19KI6Ph26J56FYrHSaDl5xRaBwm2yAndY+qaodmTxz3jVVO4t7cuhEHwDGpse0j6koubo25/XO035ASLJWFhced6Hx+YOot/DfDeCTAK4p/7yrzq/PNBnuxc9KRepKsyhxrUsJ3zZ4OtvDhNFbb8PgFVeECnfY47WOF7D7+41TPYAj7CzuyeC3aS487kLPYuptm29L7LUsObQLwIXHXRjo8bdMqoeIfgbgvQD2I6JtAK6AI/i3EtFnALwI4Ny0Xp+pja2f/jQmfj/jS8KyQPvsU5XDrqX5xm+piNFRVKQ+wa3vjCm/Zphwh22Ardtmz+7vR9cRS6pTPZOTbL00Af4F1uHxYSz/3XIAM0maUoLTHz+2+GOV2/L8QR86ScINXC2KMvc9NubxccM8XY+N4vK5q0RfgZyT4tmnFPp2exXPvW9ZIoO3EsO2ccQzTwcuzpq+P+5GbRyqqh0IF9XTbj9Nabe4kzTH3HBMZPHvsXvwtv3fhsdfeVyb6kkL7tyFfrKgavHLLaa6hhTAO7hKbtDgGRoFKAdHDX/9696NJLJZ2L29Xpuj/JP6+z0CXrUxtCFu0Rr++teV+4z2f/w88/1HNXaMP3KoY8MRb6nLFnim9H/8PM8Cb9xUD5MuQXaMKhaZoQyICPnSzLpPj92D5Scu94j/0T89GkKx2QSBsP6T6wEEe/zytT66+KN4aNtDdancw+h44VdWcRnnDyJOhyNlsxCFQmThop4e9Bz7ttCKOi2kKG848ii1nRLkrZtChCM2PBt6WNNU/G22yUa74Rb6fbr2wZ78HhRdmz9krSy+cdI3cOahZ2qrdhX+TLxJxQ8Ep3oufufFDRN5Fc2S428YyqRGoRBnMykA8dvhxeRkw0QfcC1M6sQ9iujrKv4QD1yi88JDCUn1uL+pcYXe3LgbmwBgVmYWJgoT6Ovuw1RhChNF71C5semxqnPkS3lc8/g1OPPQMyPl3P3HqhZYe+yeqiTNZSdcVhebJk06RvjTiti1GhVR1lX2to3cO95ek8fvjxzq8EcRVaketlfaA1WVbMNGEd6/wb0Fp2NYNbYgCHm8SSxS4s/E13uBtZF0jPAntYNP02C4MbTnKS5R7j/3Y2qPX7fAq0n1zDruuJoWMTmK2J4EzZ2R+EU/CVRVu87jV2Xizzz0zLYUej/s8begx+/fMzTpVA/DBOFfXD1lwSmexcxTFpyCO5+70yO0adPX1YdHPv6I8vpMUz3tSMcv7gLtk+ph64NJi8/e/1nPXJkT5p2AH37gh5XfTYeJ1ZMMZXDVu6/qCCGPCgs/w3Q4shIeHh+GRZZxHt0t/lFSM2kg5+E0S1yy2en4VA/DdAo6q8NdqUdpQnJ/A0hqOqQOXaon6ZEFnQ4LP8O0KP4FVN10yOW/W45uuzsReyZKaiaMnJ3DZHGSq/YGwMLPME2CSsh1DUH3brkXlz96uWcBVTcdcrI4mZgnHzZMDHASM2f/ydm4f+v9qW4f2LasvxVYdSUwtg3oWwAs+xpwdLJjzVj4GSZh3F46gSpjAIL8aZ2QX/aI0yjkF8vrnryubqmZE+adULmtyrr7Uz3yPbV6k1NDWH8rsPJ/A/ly49rYy87vQKLiz4u7DBMDnY8ell33I2fGyA8KFart9nRzZXT0d/djshC98venepiUufYoR+z99B0MfOHpyKfjxV2GKeOuyCVRJiaqxvde/ujlEEKgIDTbHGqYLE5WPkB0qB6L4rX32D246B0XAUBoqmewd5D99lpw2zS5uc59E7vMLZuxbdHujwkLP9NR6HLoqn1Qdaj2R63FdpHfGnRCrtpu78LjLqyyhoDw6ZAs6DXy0w8BL/x25ne7Gzj7e46g+22aiZ0zx5laNn0LNBX/gtqv3QULP9NU3LvlXly9+urKMC65IAjM+Mp93X0QQuCN6Tc8t03SIWGbWrv3QdWRdKRRXrdOyHWjBQAYLwYzMVl/K3DfV70i7qY4Bfz8b53bq66cEX0V+QnnmCDhX/Y174cHAGRzzv0JwsLPJIZ/fC4RYXRqtGIr+G0E/2RGFaNTo7j0kUtBoIqN4vbQ3bdVOyb5CRNtk3x7kpFGOTMmjpB3ylyZ1KnYMy8DZAOi6Hjqh50GrP1PoDgd/HxRmrF3wgg7Rn4opJzq4cXdDiNojok/hQKYR/DCNqiQyMXMtTvWRtqYOgqqxVBJWOepRRbWnb8u8PwquyhrZUM9fu46bRL8PvzUbkBp1RFgvIBOepvGTcxF2rjw4m6T4hZinW1x1WNX4dZNt1YEOWfncMWJV2gFQ3dO/yYWw+PDuOThS2BbdsVi8CdFRqdGcfmjlwPQV9H3brnXWMTlYuYre18xOj4OQVX9hcddiIsevkj7uHsfVB268b2q+1jUG4w/E3/YacC6m9Q+fBURimJZmfttGjcpWDZx6YiK3y+cEmlB9HX1gYgwNjUW2ioeZmf0d/d7hHa6OF05l6ympeUBILQZZtE+i/D8G89X3W/BwrdO/laVsKQ1RKuWKtqP/1tF0gRdK6D/dsLRxTYgtJqPUsUbQhbw4X+fWeCtJdWTMB07pM3UgghCbu0GhAu1KT12D3oyPZE3nHCjEri0hmi59x31EzVTPtg7iFf2vmI8L8Ym2+PxB6HaS1VF0L6tTBOg614N6mr1p2rqgTvV04R0rNVz2+bbaj5HvpTHdU9eBwCJVdJJtNGrLI20hmipIoXux6Jkyi887kJjj7/L6sKVJ10JIJlUj4QXRpuAIHFXda++9JjXpvFHJMNSNVHJ5oBjPgE88/MZSyg3AJzxT00r9Ka0vfBHmUIYRNpTCeOgEuMkEyeSrJVVRgoluvktszKzsLewV5nqkaKrS/WoGqpYqFsYvwVSmALy4zOPu0VcJeD5CWDNT5zEjf9+GZE0bnLy2T12F9A12xF3d6pHfhB98LsR32zz0/bCH2XueBBSZJMU1b6uPkwVp2JV/hYspRibDNFy4274iZvqibtXaTtsWs24uOeLM+JMNrD0U45oBjU2uZEirhNwv+hL5PEmqRpZxT/3QKpxyWan7YX/Y4s/lojHb7oYa0qP3YOL33kxgBnBzGVylc2m3ce9bf+3YfXIaqNUj1+E/VaIbqBWrbB10qYoFytdlbH82dULTLsqeFEEnviRc/u5B8wtGCnGKgGXr+VHdrWqUjWVar5xC6zNSNsv7gLNm+rRjdvlRUemrii7UxNKv5DtNDiZnktaLKru1WM+4fX45f1n/at3gTfl5qdWomNTPQzT0bi7Uv3stwQY3xGSZU+AvoPDLRjAK+JxUj1MFSz8DNNuhGXGgfrHG/2QDXz4B+HX0SZpmWajY+OcDNOy+C0YshzbpOJ1u+wY1STITK6xog84C7z++TNN0NjU6bDwM0yjUQ0Jyw0Ak2PexUyZTqvcF/BtPT9Rf9G3bKBU9vPdqR7AEXYWd2NWrN2Ob9+/CUOjE5jfn8NXPnA4zjn2oMTOz8LPMEkRx3/2Rx2lqKftu8ehq9fpVFWlety5dyYSfpE/dcn+uGPNdkzknb+F7aMTuPjOpwAgMfFn4WcYU1QDv9xdnW7GXgZWfM65HSSGSXebuskNAIW4lb/LRmL/PTZhlfuKtdtx8Z1PeUT+xsdeqvouN5Ev4tv3b2LhZ5jYhM178Yv7cw+UUykuMRx7eSanrqOUdzz6IMFMeEu9CtmcI9ZAcKonP84JmRpZsXY7vr7yGezaG7wLm6py//b9myqiL9EZeEOjyRUILPxM++HxzK0Zbzzb62j3tGZUAFA9I8Yj7jEScGGWjUm3aSDlD6PcQPn1FAumLOaJctmKp/Cz1S+jKASo/M9v+pfhr9yjiPn8/lz0i9XAws80B6omIpXFoBsL4D6PxzN3jetwz4ZxI0cFyNv1JGiGu5V1Ok/ldftTPeyrp4rKpnnixZ34r8deqhwTJw3vFvv5/TlsV4i/v30ul7XxlQ8cHv3FNLDwM+ngF/LcANB7APDaRu9xuQHgyA+rt7ib2Anc9ffO7aPPdUTfXYG7xwJI8Y/rmadluchKXIcn6vgyi3qdkeK+fXQCNhGKQuCggAXWqYJmXlAE3JX7Vz5wuMfjBxyR/+jSg/DgxldTS/VwA1ensv5WYOXnvdXk0k87AnrPF4E1/89bLfur7zCffMXnNNvZxUBuV/f1AfWsFrKBK8ofMMv7EcuS6TvY+VmT7eLD7gLO/j6LdxPhruL7Z2WxZ7KAfKn67yWF7VoAOKJ+9UfeWrXAm1Z0kxu4moko7eiAt3LO9gIZX6QuNwAUp1zetd/39Y2bPey06hG3ouRUz1sfra7K5Tlk9Q2o56UDM3PRkxJ9YKYa101ndN8fxzN3b4kX2ula/reV/47+VI+0Y7hibxg6IfUnaIIWY9MQ/f5cFss/dGSVqJ9z7EGJVvMmNKTiJ6KtAHYDKAIoqD6R3MSu+LUJDcPuQdNt1HRDrt58CrBzS7WQ+6thKwu86UTghYfg+ZOzsgBKQKn2r5deaqhngipjWZnHrbqDXtO04o+6C1PYNxn33wwnX5oCtz1DNOOzz52VxZlHD3osGmCmypbPqYVc1sJEvnrMe5dNmC6q/+bnzsriirOqBb8eNNWsnrLwHy+EeM3k+FjCH1UAVFP+wjZOPutfndumtkY2B8DSLzK2BFT+qfq7IWD5KHDtUclZJm67xO/xS47/TPUCry7Vk+nmUQEthMqDj1O2HNSfw9DoRKTnqRZYr/7IW/HEizsrqR6bCB9/58G46py3Rryi+tB5wh9HfGRlafr8NHzhZsek4o/q8VtZ4Ljzq22TOKkepqXQLa7KBIt/4TMuBH2CRkU9FljrQbMJ/wsAdsH5QP13IcT1imMuAHABACxcuHDpiy++GO1FYtkN5YrV+PlB1W+Lst8StccPzFTfgHpeuv8bk2mqh7tC2xa3396TtTBVKKEkAJsIJxw6F0++NKYU9lzWRnfGwuhEMmtF8sPE/0GStQm9XRmMTuSrPnhaTeRVNNvi7ruFENuJ6AAAvyKijUKIh9wHlD8Mrgecij/yK8RZ5JM7+Zg+Xx4f5XXc1oMJlp28x1/Z1OLm+KkeIHguDQ/l6ihWrN2O5Xc/UxFqld/u9saLQuDR5/XNbRP5YuxKX5eBd3fLtnIVnwQNj3MS0XIAe4QQ39Ed01Ye/zGfqM6sWzYAy3cOAo7/a2DhCcmnetjbZiKgG0nQ22Xjmx92vO2v3LZOGYusN1mb8OdvP7jlLZqkaJqKn4h6AVhCiN3l26cBuDLxF/LPAI+a6ok6Q9w01XP0uY6Yq2KbugqaRZqpM5eteEo5LMzN+HQRX7ptHeZ0Z1IR/bmzspjMl5SVv6zq/ameRqVnWo26V/xEdCiAn5d/zQC4SQjxzaDncAMXw0RHlWcHwq2Oy1Y85RlL0AhkggaAdvGXBT6cplrcjQoLP8N4Uc1wd9sbpy7ZH7c8/rKnErcA2DYh78qbqzpJF138CxQT0oWw6OVJiwaw9fUJFvaUaBqrh2EYc3SpGDfbRyc8Fbr/d0kJQMnXZKSa8x5V9OdqRh/4/XZ/qqeZ8+/tDgs/wzQIk6pdl4pJEv9oYFl5m2BbhCvOOhIAqlI97Lc3Lyz8DJMg7lntkoN882Iq4wYwY4OoqvawxdWk8M95//g7Dzby+GWqR4o7i3zrwMLPMCGouktVfrRuUVSO9H3ixZ2eCj5M1Osh+qo579J+cX/w+EWeaW14cZfpGIKmNuqSLv6JjirkAumXbl0XaJFEsVBqJWsTiiXhWQ/gjHvnwYu7TNuhm/NyyL45/H7Lzoro5bIWPrp0gXJjDX8V7t8XVbUnqh+5QBom6nFE32QgGQE4sZyOiRrdZDoTrviZhhK2CYXpbPW46Krwg/pzePSi9+HNF91rZLkQACukoo9a8fsHhalSPRx9ZILgip9JBbcw9+WyyBdLGJ92xDiXtdCTtTG6N68Vdbd4+6vtoMdNKnETdEIsky6mEx1lCke3KCpF3D8rXlb0BylSPSzoTFqw8Hc4f/HD33uGZZ20aAA3fvZdld/9w7fc1sOsrIV8UVTy2/5JihP5UiWC6Bd1QC3e7lx50OP+CGJcdFW4TLqoJjr68Q8BC0r1HP+mAbZfmIbDVk/KqKYWytyzbpPne9YNzwhteRbJ3FlZCOEVV7cIy4YYALhp9UtVTT6qXLVf9CVS/Fes3Z748C1poQDQ2igE4IVrzgx8PMpsdffz/FMbVVW4v5vVNNXDMM1GR1o9YaIrfVN3YwwB+IsTFlZ1FIYlP3Q+9Bdv+QPcbTe79ubxpdvWwQIqgiqrQ1XHpfxcVu0P6haxohCB2etde/P4yu3rAMxU3LqxuPL+b9+/KfHhW+5KXSfestoOetykEndjAfjECQuVVkpYFd6IPVEZJk3aVvhV1apKdP3dkAKoCKgU/yCvGYD2seV3PwNVr2WxJJD0Lrom5Iuiqj0/iKTsFDfuZiGVeLtz5UGPu+0ik1TP1R85Wvu+WdiZTqNthV9XrZqK7s9Wv1wR/iCvWd5WPZbU7kFJEkXM49gpQfibhcI2xjB5nAWbYaLTtsJfa7XqXpzTnSvoNdKolpPAXXGftGhA6/EDTsUd5vFbBOzTk8XYRD5yqgcIF28Wd4ZJnrYV/lqrVZuocjvMi9Y9tne6oPTmASBrUd13LMra5Km4b/zsuwJTPVJwdame/lwWyz/Eg7gYptVoW+HXVau2RR6PX4dMyMhzBXnRgT717es8888B4C9PWFhZUGxkqgeAJ7qpgituhmk/2lb4VdVq3FSPySbNcR7TCWqtM8p5xjnDMEFwjp9hGKZN0eX4rUZcDMMwDNM4WPgZhmE6DBZ+hmGYDoOFn2EYpsNg4WcYhukwWiLVQ0SvAngx5tP3A/BagpfTCvB77gz4PXcGtbznNwkh9vff2RLCXwtE9IQqztTO8HvuDPg9dwZpvGe2ehiGYToMFn6GYZgOoxOE//pGX0AD4PfcGfB77gwSf89t7/EzDMMwXjqh4mcYhmFcsPAzDMN0GG0j/ER0OhFtIqI/EtFFise7ieiW8uOrieiQBlxmohi85y8S0bNEtJ6IVhHRmxpxnUkS9p5dx32UiAQRtXz0z+Q9E9G55f/WzxDRTfW+xqQx+NteSEQPEtHa8t/3nzbiOpOCiH5MRDuI6GnN40RE/1r+91hPRMfV9IJCiJb/HwAbwPMADgXQBWAdgLf4jvkcgB+Ub58H4JZGX3cd3vOpAGaVb/9dJ7zn8nFzADwE4DEAxzf6uuvw3/kwAGsBzC3/fkCjr7sO7/l6AH9Xvv0WAFsbfd01vudTABwH4GnN438K4D44W4acAGB1La/XLhX/OwD8UQixRQgxDeBmAGf7jjkbwE/Lt28HsIzItb9i6xH6noUQDwoh9pZ/fQzAgjpfY9KY/HcGgG8A+CcAk/W8uJQwec+fBfB9IcQuABBC7KjzNSaNyXsWAPYp3+4DMFTH60scIcRDAKo3wJ7hbAA3CIfHAPQT0WDc12sX4T8IwMuu37eV71MeI4QoABgDsG9dri4dTN6zm8/AqRhamdD3XP4KfLAQ4t56XliKmPx3XgxgMRE9SkSPEdHpdbu6dDB5z8sB/CURbQPwCwD/WJ9LaxhR//8eSNtuvcjMQER/CeB4AO9p9LWkCRFZAL4L4FMNvpR6k4Fj97wXzre6h4jorUKI0UZeVMp8HMBPhBD/TETvAvCfRHSUEKIU9kSmfSr+7QAOdv2+oHyf8hgiysD5evh6Xa4uHUzeM4jo/QAuBfAhIcRUna4tLcLe8xwARwH4byLaCscLvbvFF3hN/jtvA3C3ECIvhHgBwGY4HwStisl7/gyAWwFACPF7AD1whpm1K0b/fzelXYT/fwAcRkRvJqIuOIu3d/uOuRvAJ8u3/wzAb0R51aRFCX3PRHQsgH+HI/qt7vsCIe9ZCDEmhNhPCHGIEOIQOOsaHxJCtPKGzSZ/2yvgVPsgov3gWD9b6niNSWPynl8CsAwAiOgIOML/al2vsr7cDeD8crrnBABjQojhuCdrC6tHCFEgon8AcD+cRMCPhRDPENGVAJ4QQtwN4Edwvg7+Ec4iynmNu+LaMXzP3wYwG8Bt5XXsl4QQH2rYRdeI4XtuKwzf8/0ATiOiZwEUAXxFCNGy32YN3/OXAPyQiL4AZ6H3U61cyBHRz+B8eO9XXre4AkAWAIQQP4CzjvGnAP4IYC+AT9f0ei38b8UwDMPEoF2sHoZhGMYQFn6GYZgOg4WfYRimw2DhZxiG6TBY+BmGYToMFn6GYZgOg4WfYRimw2DhZ5gYENHby3PRe4iotzwH/6hGXxfDmMANXAwTEyK6Cs6ogByAbUKIqxt8SQxjBAs/w8SkPEfmf+DM/T9RCFFs8CUxjBFs9TBMfPaFMwtpDpzKn2FaAq74GSYmRHQ3nN2h3gxgUAjxDw2+JIYxoi2mczJMvSGi8wHkhRA3EZEN4HdE9D4hxG8afW0MEwZX/AzDMB0Ge/wMwzAdBgs/wzBMh8HCzzAM02Gw8DMMw3QYLPwMwzAdBgs/wzBMh8HCzzAM02H8f529XFbK1uFCAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "import torch\n", + "import matplotlib.pyplot as plt\n", "\n", "torch.manual_seed(0)\n", "\n", @@ -49,7 +63,13 @@ " return data_batches\n", "\n", "num_models = 10\n", - "data_batches = generate_learning_data(100, num_models)" + "data_batches = generate_learning_data(100, num_models)\n", + "\n", + "fig, ax = plt.subplots()\n", + "for i in range(num_models):\n", + " ax.scatter(data_batches[i][0], data_batches[i][1])\n", + "ax.set_xlabel('x');\n", + "ax.set_ylabel('y');" ] }, { @@ -218,6 +238,43 @@ " print(f\" ----------------------------------------------------- \")" ] }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEKCAYAAAAVaT4rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACSaElEQVR4nOydd5gj1ZW330rKuXOYnu7JAWaAwSSbnE20vWDANl4bL9/aXhuMvU5gg2FsHFgHlnUAJ5LBYOIQTM7RzAyTE9PTOQdJLbWy6vtDLbVCqRPdE3rqfZ56VLqlunXVLf106txzzxFUVUVHR0dH5+BB3NcD0NHR0dHZu+jCr6Ojo3OQoQu/jo6OzkGGLvw6Ojo6Bxm68Ovo6OgcZOjCr6Ojo3OQMWPCLwjCHEEQXhIEYasgCFsEQbhqpP0GQRDaBUF4f2T7+EyNQUdHR0enEGGm4vgFQagCqlRVXScIgh1YC1wIXAwEVFW9ZUYurKOjo6MzJvJMdayqaifQObI/JAjCNqBmpq6no6OjozMxZsziz7mIINQDrwKHANcA/w74gfeAb6qqOjjW+aWlpWp9ff3MDlJHR0dnlrF27do+VVXL8ttnXPgFQbABrwA/VlX1YUEQKoA+QAVuIuUO+qLGeVcCVwLU1dWtam5untFx6ujo6Mw2BEFYq6rqkfntMxrVIwiCAjwE3Kuq6sMAqqp2q6qaUFU1CdwBHKV1rqqqt6uqeqSqqkeWlRX8YOno6OjoTJGZjOoRgD8B21RV/WVWe1XWyz4BbJ6pMejo6OjoFDJjk7vAR4HPAZsEQXh/pO37wKWCIBxGytXTBPy/GRyDjo6Ojk4eMxnV8zogaBx6ajr6j8VitLW1EQ6Hp6M7nQMck8lEbW0tiqLs66Ho6Oz3zKTFP6O0tbVht9upr68n5VXSOVhRVZX+/n7a2tpoaGjY18PR0dnvOWBTNoTDYUpKSnTR10EQBEpKSvS7Px2dCXLAWvyALvo6GfTPgs6ByENdA9zc2ElbJIYExIIBko27iO7eibHpA6695htcfeJx037dA1r4dXR0dA4EsgVeIBXZEm9vIb57F/HGXcR37yTeuJNEZ3vmnCFg9aKlzFm8hE9VeqZ1PAesq2d/wGaz7eshFPDXv/6V//qv/9qr15zK3+EnP/lJzvPjjpt+q0ZHZ1/zUNcAS1/dyFe3tdAWiQEp0QcY/NZ/4rvhWwTv+gORN17KEf00w7t2cnNj57SPS7f49yPi8TiyPDv+JeO9l5/85Cd8//vfzzx/880398awdHRmhIe6Bvj+5t307d5FfM8HyE27cbY30xmJ4fzZ/2meI89bSLR7bFGPN+6kfeQHYzqZHSrD1H28RxxxBGvXrp22cezevZuvfvWr9Pb2YrFYuOOOO1iyZAlr1qxh9erVRKNRSkpKuPfee6moqOCGG25g9+7dNDY2UldXx+LFi2lpaaGxsZGWlhauvvpqvv71rwNwzz33cOuttxKNRjn66KP57W9/iyRJ/OUvf+Hmm2/G5XKxcuVKjEZjwbj6+/u59NJLaW9v59hjj+W5555j7dq1BAIBzj33XDZvTq2ju+WWWwgEAtxwww3ccccd3H777USjURYsWMDdd9+NxWJhz549XHbZZQQCAS644ILMNV5++WV+8IMf4Ha72b59Ozt37uTCCy+ktbWVcDjMVVddxZVXXsl3v/tdQqEQhx12GMuXL+fee+/FZrMRCAQA+NnPfsY999yDKIqcffbZ/PSnP+XWW2/l97//PbIss2zZMu6///5p+5/p6IxH2lXTHonhTCaItrcwsHsXlpY92Nr3sGfbNuLtrZCVAmcAQFFwxGMIcmGYsTJvEdG3Xs1tFEWkOXOR5y1Cmb8IeclyaowzEKKsqup+v61atUrNZ+vWrTnPSd1BTXo74ogjCvqeKFartaDtlFNOUXfu3Kmqqqq+/fbb6sknn6yqqqoODAyoyWRSVVVVveOOO9RrrrlGVVVVvf7669UjjjhCHR4ezjw/9thj1XA4rPb29qoej0eNRqPq1q1b1XPPPVeNRqOqqqrql7/8ZfXOO+9UOzo61Dlz5qg9PT1qJBJRjzvuOPWrX/1qwbi+9rWvqT/60Y9UVVXVJ554QgXU3t5edc+ePery5cszr/vFL36hXn/99aqqqmpfX1+m/dprr1VvvfVWVVVV9bzzzlPvvPNOVVVV9bbbbsv8HV566SXVYrGojY2NmfP6+/tVVVXV4eFhdfny5Zk+8/926edPPfWUeuyxx6rBYDDn/KqqKjUcDquqqqqDg4MF709VCz8TOjrTwT86+1XPN76vGk88XZXmzlOR5ElpTMmf/6FWvLi+YHP9+DeqcthHVMsnL1Md/3296vn9vWr502/lvKb+5ffVf3T2T3nswHuqhqbOGot/fyAQCPDmm29y0UUXZdoikQiQWnfw6U9/ms7OTqLRaE68+fnnn4/ZbM48P+ecczAajRiNRsrLy+nu7uaFF15g7dq1fOQjHwEgFApRXl7OO++8w0knnUQ6n9GnP/1pdu7cWTC2V199lYcffjjTv9vtHvf9bN68meuuuw6v10sgEODMM88E4I033uChhx4C4HOf+xzf+c53MuccddRROe/t1ltv5ZFHHgGgtbWVXbt2UVJSUvSazz//PF/4whewWCwAeDypSa0VK1bwmc98hgsvvJALL7xw3LHr6IxFtgXvSMSJtjXj7exg/omn8L15VTmTqTc3dhJ89y0ib7w0pWvF93yAXD+/oN147AkYjz0h81wCElmPtUalYCzThS7800gymcTlcvH+++8XHPva177GNddcw/nnn8/LL7/MDTfckDlmtVpzXpvtqpEkiXg8jqqqfP7zn+fmm2/Oee2jjz76ocYsyzLJZDLzPDsW/t///d959NFHWblyJX/96195+eWXM8eKuday38vLL7/M888/z1tvvYXFYuGkk06acqz9k08+yauvvsqaNWv48Y9/zKZNm2bNfIjOzPFQ1wDX7WpnMJ4gGQxgaW9hubebNzZuJtzcSLx5D10dbZBMgCjR+vRbfGtHK0BGcNsjMeT6+RMSfqmqBrlhQda2EGlOXdHXu2WJ1QtrZkTcx2LWfHPUvVBXYDwcDgcNDQ08+OCDXHTRRaiqysaNG1m5ciU+n4+amlQdmjvvvHPSfZ966qlccMEFfOMb36C8vJyBgQGGhoY4+uijueqqq+jv78fhcPDggw+ycuXKgvNPOOEE/va3v3Hdddfx9NNPMziYKoFQUVFBT08P/f392Gw2nnjiCc466ywAhoaGqKqqIhaLce+992bG/9GPfpT777+fz372s9x7771Fx+zz+XC73VgsFrZv387bb7+dOaYoCrFYrCDFwumnn86NN97IZz7zGSwWCwMDA7hcLlpbWzn55JP52Mc+xv33308gEMDlck3676gze8gWdQCFlKUc6+sh3tRIorWJeEsTidY9xJv3kOzvBaBogvdkgkRbC6GG+dzc2JkR4xqjwq76eTkvFUvLkevnI9fPSwl8/QKk+nmIZkvmNQpwWbWHF/qHaI/EqJlBC36yzBrh3xcMDw9TW1ubeX7NNddw77338uUvf5nVq1cTi8W45JJLWLlyJTfccAMXXXQRbrebU045hT179kzqWsuWLWP16tWcccYZJJNJFEXh//7v/zjmmGO44YYbOPbYY3G5XBx22GGa519//fVceumlLF++nOOOO466upQVoigKP/zhDznqqKOoqalhyZIlmXNuuukmjj76aMrKyjj66KMZGhoC4De/+Q2XXXYZP/vZz3Imd/M566yz+P3vf8/SpUtZvHgxxxxzTObYlVdeyYoVKzjiiCNyfjzOOuss3n//fY488kgMBgMf//jH+dGPfsRnP/tZfD4fqqry9a9/XRf9g5DsWHg1FELIco8CpGNfhn73P0ReenZK14i3NCI3zM+JpPnevCquXrkK9ZrrUmI/dx6i3ZE5bhYFLq5083iPL/Mj5JZEVi+q3S9EXou9UoHrw3LkkUeq7733Xk7btm3bWLp06T4a0YFPfX097733HqWlpft6KNOG/pk4sMn2u9cYFb5VW8Jhw1527drFP9a+z8PrNhBpbSbR2kxyoI/yJ99AMJkL+gn89fcE7/rDpK4tllciz52H5d8+g/Ejx1FrVHjvuOWaY3NJIggC3nhiv7LitShWiEW3+HV0dPYq39nRwj0dAyQAIR5D7ukk0NpCor2FeFsLifZWettauLS7A7Lmn/KJt7egzF9c0C7X1WufIEpINXOQ6+qR6xqQ5jYg181DqqtHtIzOTZlFge/Nq8o59VOVnv1W3KeCLvwHKU1NTft6CDqzlGxhFwFDLEJEMVJjVGgwG3jNG8y81vs/qwk/8/iUrpNoLSL8DQtQlh6aioeva0CaU49cV49UPQdBUQp87weSBT9dHNDCr6qqnpxLB9g/JvcPVv7R2c/q9dtobWpC6mxluKOdREcbic42Eh1tJPt6KHvsFdqwZ9IWpJFq5kztoqJEcrBf85DcsADP/92leWx/973vLQ5Y4TeZTPT39+upmXUy+fhNJtO+HsqsJB0909fWSrxpN4nOdhJd7Ri6OzD0dNHb0ow6HByzj0RHK+KiZQXt8jjCr5RV8LFDliHXzuU9mwe1di5S7VykquqC1bDpqJ5s59BMxsIfyBywwl9bW0tbWxu9vb37eig6+wHpClw6Eyd7wrKKJF8wxFkc9HL66adnjKmHuga4ensrMVUleN9fCK35R+b84UlcK9HRhqIh/FJNHWJJKVL1HKTaOuSaOqTaOqSaOmy1dfzysEUZ0c5PYTzTi5xmMwes8CuKoldb0tEZg2xht4eHiXV14u1sx97fQ5Wvj82Ne4h1dZLo7qRroI/1I+d1dXVRUVEBpFatxkbcaFJVzdQGIggkB/o0DymLllL24HOjLyWV50BL0GfbBOu+5IAVfh0dncJFTJDyY9e9/BSvPf0UsZ6ulLAHA5njXqB1jD6bmpoywp8dzy5VVhc/yWhKrVqtrkWqqkWqHtmqapEqqxEMBiAVMXOkw8Kb3mBm8tckQEjloJlY3R/QhV9HZz8kLegDwyESfT0Y+nsQ+nsZ6urCPNhLfcDLQFcnoV/cTlyUcs4dTCRp3rCR0NuvTenaTU1NHH300UBKjNMTstKcepTDjkSqrEGqqk49VtciV9UguEfn2tJFPpLowr6/ogu/js4Mk78wqSAJ2JPP8IfX3qa/uwvTYD8Obz+t7e3E+3pQvYMF/Q0BPSP7pf19SGUVBa+RyionN0hRRCwpw1Jdm5Nv6XvzqjI+fmX+Ijy/vCPntPSq1f0xLcGBwLbtP6Sj434gQSgkEAiciN93NBs2bGDDhg3ccsstOSvepwtd+HV0JslDXQN8e2cbwUQqfkQAPuaysnkoxEAsTtI7SHKgD4t3gENjQd5qbCIaDGK/8iraIrGcJGAPdQ2w+pb/YfjllJ87AGh7w7VJ9HRpC395XpuiIJVXIlVUIZZXIVVkbZXViGXlWAwGblk8h3Pz/OpAjjtpLD+8zsT53e8u4d1/PUtjY5TG3VHa22Oo6m7gz5nXvPfee7rw6+jsDXKW58sSqCreRBKXJOLftplgeyvJgX4Sg/0kB/pJDvbz6EA/yYFekoODqUyPpApxtGX1a/vCVxAUhVBSzSQBu7mxE0rKpzzWZG+3ZrtyyOG4rv85YkU1YnklosuNII5WWp2Mpa5Pqk6dcDhcNMz45psfprV17OpaWpl+pwNd+HVmLfkTn9mW6vFmicd37sE7MEDSO4BpyMdpUhxfXx+v+kOYvvQ1gJxJ08FEkoHf/ZLYhqlVbEsO9iOVp1ww6UnT9kgMsXQM4RdFRHcJYmk5UnkFYlkFUmk5YlkFrooq4vXzSWicZior57JLPz26OjXrB0x3x0wPnV2PsXPnTcTjg0SjSVpaYuzZE6WpSaW3p46dO3uw2Wxs27ZN8/yGeYZxhX/Dhg0zMXRd+HUODIr5ycdqv+KmnxDr6iTp95L0eUn6Bkl6B+n2eVkbKawLcM/Io+ByZ4Q/H9FdvIjMeCT7+zLCny6nV2NUaFy4BNNp5yCWliGVlqVEvqwCsbQc0VOCIBV+Tc2iwC2LU4uftKJ69NWp00Nn12M07r6FcKQTk7EKu+MENm74Jzt3tdHUFKVpT4ymppSbJjetUMphJ4oioVAop9BSmnnzTLz6yujCN0GA6mqZefNMnH76t1m5cmXRbLsfFl34dfYKWgINcN3ONgYTSVRVxRIJIQ35GfT7EIaGiPt9KAE/Eb+fRMCPOuQj6fcz4Pdx2ZAPY3CI+Nx5OH7yvwA5/vObGzsJrHmIRGvTpMeq+ryoibim4Iru8cVUsNoQS8oQPaVIJaWp/ZJSxNJUlbTsJGDfm1fFt2JHYzjiqMz5Wml+LQIYJUkzn4wu8B+OfHGfN/9beL1r6egYTRd+xx39vPN2C21trxOPT7zvZDLJtm3bOOKIIwqOnXbaeQwOPEzDPAPz5hloaDBgNotUV3+GpUt+MB1vrSi68OsUkO/jjiQSDI+kwrEIAkZJzAjQqSV2XugfonUoiBAKEg8EUIMB1OEgyeAQajCAEgwQCwwhzJ2H6YTTaIvEuHp7KwlVJQmoiQQ9Zx0DiUl8o4AoIJtzq5el/eftkRii00VirID1YqgqSZ8PyVNo3SuLl5H82CmIbg+ipxTRU5La3CVII88Fw2gFtfGKcaQfte5aflaYf0xnmkiLvX+onba2GM3NUfr74vzbRSpbt36L3MQP0N0Vp6lpbLeMFpIk0dzcrCn8n7nsLxxxxJxMVA9IVFdfwtIlN07tTU0CXfgPQMYLDxxvafu3tzVx954O4qEQajiEGhrGHouSHA7iDwZRwyHkeQtR5i/KcSEADHV30vbj76MOB+kdHmbdcErkiY3/pTCdchamE04DyKwGBRAkCcFoRB2enPADJH3egrb032XQ6Sp+oqIgOt2ILvfoo8uDtaSEpNONUGRCznzGeZjPOC+nLTuqZzAxKhgTdbnok6czz46df+OVl3/O7t0dtLaJNDUFaWmO0Nk56qIRBDjnXAcaXhnq6w3A2PmIystlGhoMNMwz0FCvsHhxLZdc8lZOKdV8li65ca8IfT6zXvjHE8mxXl8sXetE+9QSYC0h/s6OFu7a3UY8MIQajUIsCrEYxkScUDiMEIuSiEbwJOMsUUTe6R0kGolANMz2SIT/d8pZfHveAoYTSVyyRCCeIAZEN6xl6Lf/gxoJ0xsOcXEkghAJkdCoezuQ99z6ha+gzF+k+TeKbVqv2T4eycBQ0WOCzT5uoi/NPv2+giyt6f/JFaefg3Lo4YgO14jAuxAcTkSXB8FiLUjupwgCv16S8psXi+o52NL3Hog88eTPee7Z37OnqZ/2NoHW1gS9vYFxz1NVaGuNsXBRoVDXNxgy+yUlEnPnGqhvUKifa6C+wcDcuQasVjHrDJFly64fU/T3JbNa+B/qGuA/bvwxkYFU+la/qvJF4E6PnYUWI6qqZrZkMsmuwDBvDPiJJ5Mgyahf/26mr7T/+F1fgDtuvZXh999DTSYZSCT4bCLB9SYFtwixWIxYLEZ/OEJHMEQyHkONxSARR43HKfndvUiV1Zn+7u/s5zVvkODD9xH4021jvh8foFWwUZ6/iODcVE3QbAtdjUaI79KOKBgPNaSdgkuwWDXbJ9RnsPiXT7TZSfq8iDY7gt2BaHcg2OyIDieizYHgcKQE3O5AsDswO12cN7+Op8Mqkax+0v7zT1V6ePeSi7mzI/8nLVXg+vxyJ493ezMWen7Ra13Q91+8Xi+7d+9m1apVBcc6ux7jf2/9Cc8+65tS3y0tUU3hX7HCxK9+XU19vYLdLmmcOYogWFi6dDVVlcXLku5rZrXw39zYif+pR0k0N+a0r5nIySYTjizhh5T/+J6OAUI7thJ585WcY1smOCY1Gs3pL1OUIq/o+GRQIxHN9mxf86T7DIW0+8wqJp2DJCNYrQgWK6LVlrKorXZEmw3BmtqyU/AqgpDx8QN4/vA3zclULSyCwC+WzBn37utni+s4ymkb87jOvmd0crUj0xaJJOnslEH9FH19bnbu3JnZenpS65a9Xi9OpzOnr8bdt1BbKzIZystl5s5VqKszUFOrkEo0kevjdzgkDj00Jfiy5CKe8GUmgvdngS/GrBb+7ARTkyapXdgjASBO7oOV24G2Hzs/t/hkUKNFhH+s/PRGE4LJhGC2IJjMCCYzotmCYDYjmC0oiwtT6ELKH+/+1R9Tr7NYESw2RIsl1d8YdREkARyimBNHDqNRPYIkY5VEDKTi5dMuMYsAYTX1NZSAz1Z7cgR7PP+47j/ff0ilJ/gbqdUUKTo7U7Hv7W0x2ttTW1t7jN6e9J3rz4r2t3PnTj7ykY/ktIUjncypMxS8VpKgpkahri4l8HV1CnNGHs1mkfQqD5OxWjOqB0AQzCxd+uMDUujzmdXCX2NUmHK2/qTWspiU+CCOfas3FmqRSVDBlgoBFAwGUAwIipKy2BUFQTEgGI1gMKbajSYwGBAMRgSDEWXhEs0+5bp5eH57D4LRhGA2YzabWVXu4c1QImcV52SwCALuVUcVRPW0RWIadlKKfDdKNrooz27eW/sd1q69n/nzJU3D4L77vDz1ZPG5n7HQEn6TsYr585s58ywbc2oN1M1VqJujUFllQM5SO0FQkERrUcu9qvKCfTLpureY1cL/vXlV/L+LP0ckK/JDEQXOLXezwm5BEITMJkkSGwMhHunxEhNETXFPx1ff/clLGP7oSQiSBKKIUZH5ckM1p5S5URQFRVF42Rvkl219REQp5cKQZQRZQXA4cvo70mHhNW9QM1pEi/Q5r3uDFCs2qAgCNlFg0GzGtGS55mRyuiZqGnf2JKa+ylNHA61494ry83h/w195681f09zcRU+PCb+/gY6OCLt2bWJgIDVX9I+H5uJyFX6namomf6erKArz58/X/CGZN/9bRGPX8t//PdqvKJqprPwkA/0v5Yx9NljuU2VWC/+nKj1wzdcnFdVz9gSiesbyG6dZBdRPIqonX4gFwCKJBLPcHrVFIosmG23ys8V1un9bZ0yyRV6WnKhE2bhxgC1bwnR1xuns7KCr62K6uxNEo/l3x4WLJzraY5MSfkGAigqZmhqFuXNdnHjid1m4cCGLFy+mrq4OWdaWrrSY5/9AHcwir4VwIBSpPvLII9X33ntvXw9DR2dWkC3qRkMlJaVfZtu2V9i8aQ1d3TEuvNCBJBVa07fd1sejj/indM3vfreM0063F7S3tka59dZ+aqpTIl9Tq1BTo1BVpWAwCKTCIm/RhXuKCIKwVlXVI/PbZ7XFr6NzsJEbISORTMYZDpYiyf9GMDCXzVueZtOmNXR3henujtPd08hw8I2cPk44wUpZWaE0VFZOXi5kGSoqirtz5swx8ItfVGkeOxDCIg9UZkz4BUGYA9wFVJCaxr9dVdXfCILgAf4O1ANNwMWqqhZWm9DR0Skg31qfv+C/qaq8IJUpcseNxBNeAO68c4DnngvQ1xsnHt8D/GvC1+jqimsKf1WltoDb7SKVlTJV1QrV1QpVVTL1cytZtvxkksknNO8eCsmNqtHFfmaZSYs/DnxTVdV1giDYgbWCIDwH/DvwgqqqPxUE4bvAd4HvzOA4dHT2a/InTT0lJ9PV9TCDgwF6e+P09SXo7xcJDc9jT9NmensiI+2NPPrY9/B619LV9TDJ5Ojai9CwSlfn5FNgAHR3xTj00MJQ4IZ5Bs4/30FllUxlpUx1tY3DDvsUw8NP5VxbFM0sWZKy1Ldtd+2TXDQHKhs3buSFF17A50stQEsmk7jdbk499VRWrFgxbdeZMeFXVbUT6BzZHxIEYRtQA1wAnDTysjuBl9GFX2eWkT85iiAQj3tz9tMif//9f2HrliH6+uL09bXT1/82/X0JYrH8+beOguv09ASQpLSwjlJePvGvtsEgUFEhU14hU1UpU1mlbdlXVyt8/apSILWIadHiH47cbXy06GTqvspFcyCQLfJmsxlFUXj11Vfp6Oigu7ub7u5uLrroIkRRZM2a1LLT6RL/veLjFwShHjgceAeoGPlRAOgi5QrS0TkgKCboRkMlpWVfBnUVb7/zE3bufIbBgTj9Awn6+7sJDSe5aXVlxhUDEI500NHxN15/3cuLL4yfS0aL3t44VVWFa07KsoTfbhcpL5epqrKxaPGxKMp7lJerVFTIVJTLuNwKglA8yEOWXDk/Vlox77prZnJs3LiRb3/727S2ttLd3c3AwABagTZdXV3Mnz+fWCzGCy+8cOAIvyAINuAh4GpVVf3ZsbeqqqpCkU+cIAhXAlcC1NXpoYc6M0tRC112kUiEUdWUK+PllwM0N0UZGEgwONjJwGAC72CCgYFGotE3xrxGJJLEaMxfOKdSUjL1BYG9vdlBwqMcfriZP/2plvIKGbNZHHG//DgzH6Cdf350Va0+sfrhef3111mzZg1msxmn05njrnnhhRd4//336e7WLp2ZJvt42v0zHcyo8AuCoJAS/XtVVX14pLlbEIQqVVU7BUGoAnq0zlVV9XbgdkiFc87kOHUOHoLBIL29vTnbB7tfYtfOJxgcjOD1JjAau7j+htSNaDyeG3fw5BN+1q8vzG46EQYGElRVFa6YLi3V/hpaLAKlpfLIJlFWLlOWtV9aKuNyWamq+lSBj99mE7HZjGhNmGpZ6LN9pepMsHHjRp5++mn8fj99fX309/fT29tLR0cHPT09+P1+nE4nV199NT6fL8dd4/P5qKioGFf4BwdHP3/5eYk+DDMZ1SMAfwK2qar6y6xDjwOfB3468vjYTI1B58BGyzJNW6y7P/gFXl8HiYQDl1PKLL33lJycWaH5f7cN099fztCQSF9fH319fYSKJJ/Lxm4vns7C7Zn6VyYl/IX+8xWHmvniFW5KS2VKSqSM2Oem+QVBkKiqukRzBarLtUpftDTNZPvgnU4nJ5xwAk1NTTz22GM0NTXR29tLT08Pg4ODmm4aSFnpkUgEo9GY465xOp1UVOR6uT0eDxUVFZmtsrIyI/aKonDqqadO23ubSYv/o8DngE2CILw/0vZ9UoL/gCAIVwDNwMUzOAad/YBUcq77GM3koyDLtow1raoqbW0xhoZEAkNRQiEzXp+foaEkgaEkQ0MJhoY6GRq6lFDIxsDAIENDcWIxOPTQVLpcSPvMRxNrrVvXR3NzJ5NlaChJLKaiKIVhiG6N1adpjEYBj0fG7RbxlEiUeOTUY4mMxyMxd26h6IuimRNP+gyHHvpSTlRPd/cjJBKjqbElycLixcVdL7qffWrki3vaHbNx40bWrFlDbCS31p/+9Ce+9a1vkUxqZaMam56eHubMSWWmTbtrTj31VJqamjAajVRUVFBeXo7VamXlypXs2rULn8+HIAioqlrgJpoOZjKq53VSwblaTN9Pl8600dn1GNu2XYeq5ubiNxmrcyzptEUZicTYvOkWBr2dJOIenM6LkOVD8fl8+P1+fD4fjY1P0NW1iWAwybLlJj7xCScQy3GhqCp88QttTGwRea7F7vdrJ9MDcDolYGoZWn3eBKUaseyrjjRjNAm43RIej4THLeH2yLjdEjabRdPtAinhTiRCBVE9xSxz3e0y87zzzjvcdddddHZ20tvbSyAQYHg49dl/4YUXMqIPIMvypEVfFEVKS0tz+klb8CtWrOCKK67Q/NHZG+grd2cRhWlvU4tikkmRSCROIm4nFFYJBr2EwwLhUJxozEIwGCEcChMKqYTCScIhlVWrzBx2eKoGXbYl3dER46tfeZNQ6MK8otMtwPtjji+pMiL8uYiigNUqEghM3pry+4uf43AWumwURaG8vJyysrLMZrH4Sarv4nQmcbkkXC4Jh1Pbsj/qKAtHHZWqSSAIZiTJVCDiuttl/2Hjxo089thjNDY2EgwGMZlM9PX1sW3bNpqbmwtcNGeeeWZOHH2asrKyMa/jdrspKyujvLw8s5WWliJJo5+jfHfNihUr9prQ5zOrhV/LRwyFCZy02ibyRR2vf0l0kEgKhEKDyFIFtbVfZunSzyBJUmql5c6bMpZvV1eM9jaRREImHA4ATpyuMzAZlxKJRAiHw4RCIcLhcGYLhUKEQiG+/e1vY3c8UZA//J13gtz4o24ikcnPjRsMQkb489uHhiYv0ADBYPHzbLbJC7+iCBgMQkHpxTQXX+zi42c7KC2t4LTTHqG0tBSbzab52olG9QDIsptFi36gu132I7JdNo2NjQwNDdHU1MTOnTszVvxE6O3txWQy4XQ6c8S/vLwcAIfDkTEY0gJfVlaGwVBYA0AURYxGI6FQaK9b9OMxa4W/s+sxtm+/ll/9qpWe7jiptWSfGXEnJFFVUOkA9TJUFZKqippUSartqOpluF0LeeWV9zX7/uY3v8kjj9xHONxHPJEkmYBEoolE8pMk4hCPqyQSKokcL8Qe4G3eejvE3LmVbNv2HVR19BbwxRcD/PlP2REk3cDOCb3XSy65BLfn/oJ2SWJKog8QCmmLsMUy9SI0Ywl7wzwDDoeIzSZhs4vYbSI2u4jDPvrc4ZBwOC04HBI2WxSjURiz+MuyZaaRMMYfUVXZMObYdLHe/1FVlZ6eHnbu3MlLL72EzWbD7/djNpuJRqMkRr5wW7ZsYd26dVO6Rm9vL4cccginnnpqjo+/oaGB733ve5jN5sx18lEUBVmW90uhz2fWCn/j7ltIJkNs3BCiuXnyfl6TaVPRY11dXezZM/lJw9S4bicRt+SIPoBBYyJxooRCIdwUfhgLY8Yn0WdY+wfDZBodpySlfggsFhGrNfVot5uprz8Lh8OB0+kkEv0XycRGrFZR02ee5qabKic0rmXL/gcYvauSZReoqmZUj+5m2b/JttLTE5lms5lQKER7ezuhUAi73Y7f78+UXfT7R7ODfutb38JqtRZEapWWlk7o+oIg4HK5KCsro7S0lLKyMhYsWFAQb+/z+SgpKcm4afaVX346mbXCH45MTZjTJBLFLeVsv91kCQ73EI4U1sKVP6Tway3iMRlH+zQaBYxGAZNJxGQSRjYRkzn1aDYJmMwiZrOI2SyweLF2vV5RFPjHQ3OxWAwoioAgxLOOjS4Syma8qJ5RFCCOLLuIx31k1/MSBIWlS3+WE4uuc+CQHz2zcOFCNmzYwK5du2hubmZgYCCzTdQ109/fj9VqLWgvKSnJeS7LMiUlJZSWllJaWkpdXR3f/OY3WbRoEbt27Soq5MV88Aei0Ocza4XfZKzKKd48WcaKMJmM8EsSSJKALIMsCxiUMkxGa8HYKitkjjjCjKIIKIZR/7XZZGPu3E9jNpsxmUwYjcbMvslkwmw2c+SRRxKJthX4+OfNN7DmiXqMRgFRnPoPS35UT2XFnEnNjej5WmY/6cVMaetblmXC4TAdHR0EAgGWL1+emUj1+Xyk62ts3bqVf/1r4plDs+nv79dc1V9dXc2ZZ55JdXU1Ho8Hq9WacQkqisJ55503rrjPdmat8M+b/y22b7+Wr329lHDaXy2k3q4gpCxjARDEVJsoxhFFAQGQZCP19VcW7fsnP/kJV3zpIzQ3/xpBCCOJApIsIEkKkgSyHEeSBCSJHB90yiK+HqDAx3/MsVaOOTbXeilmQWuTEtbsqB5JEjGbVdJ3A6M5VwZH22R3zuTleBOX+eiW98FDvmsmFovh9XoZHBzU3LLDGGtra3FklR1N4/FMrqSn1WrF5XLhcrk0+wOw2Wwcf/zxnHdeqpTpbHDNTDezVvjTgmRQpj+qp6qqiqqqrzB/fs2YfY0Xs50d1QOp/CiSZBw3xrsYumWtM1W0FjKtX7+ePXv2ZF6zZcsWdu7cyeDgIF6vl6GhiRdJHxgY0BTqfLcMpO6o3W43JSUleDweamtr+cpXvsLChQuprq5m06ZNOROvMHYEjS70heilF3V0DlLWrVvHI488QmtrKz6fD6/Xi9fr5dxzz9V0Zz777LO89dZbU7rW+eefz+GHH17Q7vP5ePvtt/F4PHg8HkpKSnA4HIhiKjAh3zWTptiKW51c9NKLOjqzmHwfO6Ss4EMPPRSz2UxzczMtLS00NzfT3NzMBx98QHd3t2aOmRNOOAG3213Q7nK5JjUmg8GAx+PB7XZjt+fW21UUJZOewOl05kT1AOOGRB6svvnpQhd+HZ0DgHxhj8fjDA0N4Xa7MZvNRCKRnJQCjz/+OOvXr5/Stbxer6bwa7U5nU5cLhdutztn83g8mM3mzBzX/ryY6WBEF34dnf2MQCBAe3s77e3ttLW1sXbtWt566y38fn8mB1I65PH73/++Zh8Wi2XK1/d6vZrtVVVVnHPOObjdblwuF06nE1nWlpADaTHT/kZwfQ/epxtpbGqksqaK6vOXYz28fFqvoQu/js4MoLU4KT/7Y/r42rVr6e3txe/3097enrNIaTz8fr/mBOlEc7eno2ScTidOpxO3253JJJmPzWbjyCML3MUAmM1mzj77bF3cJ0hwfQ++NbtJDscJRIbZ3rubrb272dbzAVt7drO9t5HhWIg/fvLHnBVPpYOYTvHXhV9HZ4o88cQTvPfee0QiEQKBQGYbGhoqeB6JRLj66qtZs2YNLS0tbNiwIROV0trayoYNG6Y0hvSq0nycTieiKOJ0OvF4PBx33HHMnTuXuXPnUldXRzgcLprWoFhUT/YxXeAnRnB9D/5nmkh4I0guI8YlbkIbelFDCa56YjXvtW+mxVt8vdG2nt2cufB4/M806cKvo/NheeKJJ1i7dm3RAhppzGYzy5cvz+RI/9e//kUoFMoUxA4EAsRz05QWJRKJABRcN3/ic6LY7fai116wYAHXXXcdsixzwQUXaAp1fX39mJExurhPjGxxT9MbHGB7byP+cIBzlpwEQMIbYfjtrsxrmgbbxxR9gC09uzLnTie68OvMCrJdJ9lIkoSiKHi9XhKJBMFgkMHBQYLBIMPDwzmP6c1kMvGVr3wFSEWXZIcS79ixg927d09pjIFAAKPRWPBjoxXxUlNTQ01NDbW1tRgMBnp6erDb7TgcDhwOBzabLSfkUhRFZFkmGo1mno/nftEjYz48na/t5t07nmVHzx529DWyvbeRHX176B/2AlBqcWeEP5+lZfNY17GlaN8ukwOrkpqrkVzaKVSmii78OvsVWvHZMLr60mazUVVVxebNmzNieNppp+W4TtLcdddd9PT0EAqFJlVEI22Za2Gz2ab2xoChoSFKSkoyPv80CxcuxOVyUV1dzbe//W1KS0szcexptMI10+jul5khuL4H7yO7UKNJhqMhdvY3sbOviV1DLTQmu9jeuouWlpYx++gbHqQvOEiptTAiamn5AgBEQWSeu5al5QtYWj6fZeULWFY2n0p7GYIgICgijjPrp/W96cKvM2MUE/FsATObzZxxxhm88MILvPnmm/j9/px6A7fddlum7kAoFCoQ5Tlz5hSNL09b8pMlGo0Si8VQlMJSiVpJwSRJwmazYbfbsdlsWK3WzH72o9VqzcSvZ/9Qud1uysvLOe+88zJ53/PRrfOZId8H7zizHuvh5QTX9zD44I5MnsDPPfjfvNu2cUrX2N7byMesqwraz150AodXL2NhST1mRduizx7TdKIL/0GOVtbEtD9by5Jct24djz32GP39/UQikcwWjUYzBWMSiQQWiyWTWjccDhOJRHjooYc4/fTTc6zdUCjE448/zo033jileqZjZXL8MCGNwWBQ8wflkEMOobq6GqfTiclkwmazYTQax6wLoBXVU1dXp6883ctki7zfEGZ3pJ3tG7elrPj+JnoC/Twb+CsA/measpPDsqi0YVLCb5QNLCqpZ3HZPJwm7bvEclsJ5bbCiXnBLOE6f8G0i302uvDvh4xVALqYWOQf83g8mfzlsVgss8XjcSKRCLIsI8syXV1dRKPRzBaLxYhGo6xYsYJDDjmENWvWAGSuf/fdd/PrX/96Su+rrKxMczJVVdXM4p7JMlHhNxgMWCyWzGa1Wgv2rVYrNpsNi8WiWVEJUrHsdXV1nHfeebS0tIw5QayvPN03pAU+NhiiGy8ddWF27NnJppfW8kFvMx/0N9M3nJ8SPEWPtw/pGUPBZOri0nrN10uixDx3LYtL57GotJ4lZfNYXDaPua5qJDE37UU6qieyfbDgDmNvc1AI/3h5PbQiPARBYNWqVZx77rkF/cXjcdatW8cTTzxBNBolmUxmNovFQl1dHY2Njfh8PsxmM4cffjjxeJx3330Xj8eTcSFkX+Pdd9/l1VdfpampiS1bthCNRonH4yQSCe6++27sdju9vb2Z9ng8zs9//nMMBgPXXnstvb29GdeBz+fLlKC7//7CylwTobq6GoBYLMYLL7zAihUreOGFFz5ULYJwOFz0mMlkmrDwp9NRm81mrFZr0dKLZ5xxBmeccQYWi6XoQqPxyI/qyf78rFixQvPzobN3CK7vwfv4B6ihkToUqRLT3PbWPazZ/iKNA62E45OLhvmgv5lyWwmSy5gj/ovL5lPvrmFRaQOLShtYXNrAsnmLOezS4xl+vBmK1e9QBNyfXLRPxH0sZr3wH3PMMWzfvj0j6qqqcsMNN2A0GjM5w6PRKKqq5myKovDNb34ToODLfd555/HPf/5zSuP52te+lklFq6pqJmJk8+bNfO9735tSn2+88QYNDYWlBbV81BMlHR0CZCJlfD5fUUt4Iowl/EuWLCEUCmVEPf1otVozdQgsFgtGo7Fg4jPtN9+yZUvOj0c6G6SiKMRisQnngdHZt2j53Y2HejI1dHfu3Mm2tzZx7bzLEdWsz8KI9vYE+9na88GUrr2zv4njVx6L48z6HB//sXWH8dqV92VeJygirk8uxHp4OUaDUXOeYH9m1gt/U1NTQYjfREjX1Vy7dm2B8Pf09Ex5PFr1OteuXVs0t/hEKPb+pkv406tAnU4nXq8Xu92OoigYjUaMRiMGgwGTyYTBYMBoNGaEOnvfZDJlCmLku0ZEUeSss84q8PGnwxGBCc1DnHvuuXrWxgOIgUd3MfxOV0qwBUhKKp0DPewZaGPPYBt7BltT+7e00ezrKFizcMWXz6baUVHQ7zyP9srjbAySQoO7loUl9SwsncvCknoWlM5lnntOjnCno3qyyRd36+Hl+73Q5zPrhX8qE4ZAzh1CPsWKLU91PKqqfihLupjAG41G3G43iqJkNoPBUPA83ZbeT2dVTPedjsZJF6C+5pprxh2TKIocccQRBQINhVE9WuI+1cVEuu98/ye4vofBh3dCTOWBTU/zzK7XaBpoo9nbQSQRHb+DERoH2jSFf4FnbmbfabKzwFPHgvJ6FpTMZb5rDgs8dcxxVSGLhfJnOabygBb0iTLrhT/fLTBR0oKv5Ts2mUxIkoQoippb9rH8fS1fsyAIHH744VxzzTX4/X4aGxsRBAFZlpEkCaPRyPz58+noSK3yS0/MmkwmzjjjDEpLS3n55ZcL4tjLy8v5+te/Pqn33dDQwMDAQNEapIDmQqlsJrJwaDLtOvs3OStXBQjHInQk++mw+Ni1YQdNnc1c/4lrKPl4Km7d+/AuiKW+Xzt6G3l21+tTuu7ugRY+Vl8YJrmyagn/uOx/me+po8TiQjRIuD65EKAgfcL+MNG6L5j1wn/PPffwzDPP5NwmKorC6aefzvLly3n++efZuHFjaqFEVgrZNKtWFX6wbr/9dh5++OEJj0GSJFRVLXr3sWrVKo477jiOO+44YGpRPXa7vSCqJz/PSvq9JZPJCYVuaqFb1AcXWrlmwtsG6GrvpC3RR6fJxwfrt9Pc306Lr4PmwQ66Ar0F/Xxh1b8hPayCLKDGRr8HDZ7aCY+loqKCxYsXs2jRIuZaqjgqOE/zdXajlaPnrAS03TI6B0kFrumO6kn3mV/+DSgqqFBoKY93DR2dvcGYi5j+sTMTsfL7d+7jwU1P0+LrnHS0zD0X38KJDUcVtL/etJZL//6NzHOXyUGDu5YGTy0N7lrq3bXML6/jsM+fRNXx8wvGrRXVc7BZ72NRrALXQSH8OjoHK1qirqoqjfe/R2t3B+3+Ltp83bT7u2j1ddHm6+LxL/6Bqk8fmkkbnOZnr97BbW/dPaVx/PiMa7j88AsL2gdDfl5ufJv6EZF3m3ODHHQR/3DopRd1dGYx+Rkiu4b62DPYRoe/m/bs7ZbUYyhWPLS2ta8D6zP2HNEHqHNWTWgsAgLVjnLmuqqpc1Uz11XDqurlAIgWGTWWzLh73GYHn1h+RupERYCYqov9XkAXfh2d/Zzsoh3xZJzeuI+B8igtm3Zz9pyPIVpkkuF4ToqBn796Bw9ufnpK12vzdbHQW1/QXuuszOzbDBbmOKuY665mjrOKOmcVc101zHXXUOOowCgXRqkJiojzvJS75kCLe59t6MKvo7OfMDw8TEdHR6bsYnt7O3vW76R53S46/b10DvXSE+wnqY4q/Jarn8JBYS6YGo0wx4nS6u9CchlJRuKj/nPg8KplPHH57dS5qnCZHJnMkeZV5ZnomGw/+1hRM7rQFyeZTLJ79242bNjAxz72MSorK8c/aZLowq+jMwNku14i8SgDIR9V9jLNCcgvf/nL3H///UVr3Y5Fh78HR1mh8Fc7xhZWi2Km1lFBjbOCWmdVat9RSZ2rivkVczNpgLNXr9qMFlZWLUndYQzHdWt9GvD7/WzatIkNGzawceNGNmzYwKZNmzJZZe+77z4uueSSab+uLvw6OhMgf5LUfsZcYg0GGl/cwp5/bqSru5ve4AC9wX56QoP0+PvoCfTTExxgMOTDKBnY9c3nEEiFDCe8kVQ8O6ncT1MRfYDOoV6WlBWGNTZ4ajmsaim1jkqqHeVUO8qpcVRS666kxlaesdjz0RJz3S3z4dj22ku8dv9dDPX3YS8p5fhLLmfp8SfzkY98hPGCVjZs2KALv47OdJAt4qJFTuVnCiVQ7RLBGoGB99uoM2nfXn/jyZ/wZvM6+q4bJJqIab5Gi0giijc8lBO1osaS+J9pyiTEmyges5NqRzmV9jJsBu3U08fMOYw1l/8hp020yBkfe3YYZLpdS9Bn8+rVmWDrqy/y5J//wK6mZgZjSWzllRxmU4hHU5PuQ329PHv7bcDESm5OtRbzeOjCr3PAky3kgllCEASSw3FihiT9QS8DgwMMhHwMDHsZiPjoH/LSH/IyMOylf9hL//Ag/cNeBkN+VFRqHZW89eUHNK81GPLRMTS1XE09gf6CcMWEN0LNvBogtdCvqqoqU3KxpqaGcsGFowkqLaVUO8qpsJVgkjWKdkgCgkHM8clnDmlY6rqYf3jefupxHv7j79nd0sZAJMZANMEHTc0MZ+W5Mikyyy88I+fuKh6N8Nr9d7FixQpeeuklzb49Hg8rV67k2GOPnZGx68Kvs88ptoAoncQrmUzijwaJLDKSPNJBf38/AwMD9Pf3Y/VLnBlemQkPVEOJdJJGjv/Np2n3d096PL3DA0VTPZdaCkvojYcoiJRaXASjhbUDJJeRSy65hPPPP5+ysjLNtNfZUT2QKtRhXll20KYb2Bs8cNO1tG4etbZjngpKVx3Lli1b2LJlCxvWr6Onr3/cfsKxON7hMG6rOad9qL+PFWccjyiKLF68mBUrVrBy5crMY01NzZjFfT4suvDrTCv5IpUmHI+QSCawjrgmlPkOKv5jJcH1PfT/Yzs/e+EP+MJD+MIB/LcH8CWDDPq8+MJD+MMBVLQXGh5eu5wzPvM7zWMes3NKwh+JRwlGQ9iMhW6UUqsns29RzJRZPZRbPZRa3ZTbSkaepyorlVs9lNtKKLG4NBOCpWupWkcKqBdDd7fMDNm+d6PVRjQeQ41EEEQRNS8R458feZxdv//zlK7T6fMXCL+9pJRLLrmESy+9NJMufG+iC/9BRDHLeqxj+Qm4gpFh3mhZRzAyTCAaIpAMEZtrIGxJMNDUQ9+ODgKRIEORYYYiAYYiQfyRANFEjIsOOZtfnpOqORDb7af7jg0k+yMIcfjjew9OymeeZiDgLXrMbXZOuj+XyUGJxcVQNKgp/F9Y9UkuWXEO5a4SSo+tJ7S2Jyf3TAYRRJNc8AOopxXYN6RF3t/Xi2q2Qkkl7772Cp2DXrr9Abr9ASLxOKs/cSaiRjaDSoedXd19E7qWIklUOGxUOe1UOe1UOHJ9+bLByPGXXP6hSoN+WGZM+AVB+DNwLtCjquohI203AP8BpLM4fV9V1admagwHAvkrLrPJn3TLt6bjQpxwOIpBVjBICoJBxPWJhZnXd3R08Oxdaxh4r5VhX4BQPMJwNMxwLMRwLEzob2FiZTLB4SD+tn6C0RDBaIjhWIivvvhZvvaV/8oVNhV6g4Nc8dD3p/Reh6KBnOex3X4glbPIYbQVLYc3Ft6wv+ixcpuHMqsHt8mBx+LCY3bisTjxmF2UWFx4LKnHEosr06ZIY38lKmylOf+X4Fxnzg+jLur7B7FYjD179rB9+3ZeffpJXnv2n3R5/fQMBQjH4kXP8w6H8FgLBbnSWRgyK4kCZXYblQ47lU4blU47lU47HqsFccRNIxuMLD/xVBrX/6sgqmdfMpMW/1+B24C78tp/parqLTN43RxaX96B7/kmEv4ookPBelIqG+DQS63EfWEwSamyieE4ol3Bcnw1pqUehrf0U7oVTQv4/XtfpburGywShiNKURrsBHb04X+vg6g/TExNlUyMJVMrLRMGAXmhHaHCxJVXXpkp4h1c34P34V2osSTP7nqdx7a9QCQeJZqIEk3EiMZjRH4fI2EViEQjBAcDROIRIokokXiUeDJ1O/rHT/6YMxcejxpNpuKuSbkH3nzwRb7wvf+c0t9tMOgbLZKRhd1ondo/AvCHAwVt6RJ3TpN9TOG3GSy4zQ5cJgflh8yhpKQEj8eDI24GWYB4oZX2q3OundjAslIFGJe4CW/sy7XUxxB03Q2zd9n22ku8eOfthIeGADDa7Cw59vgcYX2xvZ+Hnny6oHDLROj2BzSFv9bt5NDaSj7xxStZvnw55kiQXf98HDU+epe6v4q8FjMm/KqqvioIQv1M9T8Rgut7OO2is9jZ1zTa+ONxTvp56sGimNlxzTPAaMx1pNlHaG0PP3/q9zy+7YUpjemTn/xkRvj9zzRlrOndAy1T7jMcyypekUz1az28HHVzcWt4PALR4QLRB7AapuaPlEXtWr2OM+vxPryLLx99GaF4GKfJjsvqoKS+AmufiMvswGG0ZSxxyzGVeC5cmNNHsaie7FDNtHhnHy9qmef1r7N3yY97/8gnPo1cUcOLjz7Msw/9nR7fEP2BIP950jFEAkNseG7UaTDU10vPzp1TEn1JFBgKaWcdrXE7ue7KL3LxD340Os76es34/AOBfeHj/y9BEC4H3gO+qarq5O/vJ4j/mSZN8ZoI2cviIRVznbaAJWFqxV0gt6RhtntH0Zj8myj5VYvS/RrDUx/ncDSUEctsjJKB0xYch0UxYzdYsBmt2AwWHE4HZavmIm4awq5YsRtHN4fRhkk2FkQpKPMdGdG9zPqJolE96dJ8lqMLRR90q3s2EIlE2LNnDy8++hDPPvh3enw++oaC9AaCeH/7V81zBoMhSu2Fd6ClVtOY11IkiXKHlQq7jXKHjQqHnQqHjRKbBalI4aY5h6zk4h/kWo1Ljz/5gBH6fPa28P8OuInUV/km4H+AL2q9UBCEK4ErAerq6qZ0MS2/+UTJF34gI4LFPhwTITt/f9rNAWDQSGo1HgICJsVYMFbJlYrzrqiq5NzFJ2NSjFgUE2bFlHk0KyasJgtlx8/DaraQfHcAi2jEarBgUcy47A4sR1cWTF4KgsBfPvXT3IGI4L5occYVphXVk086qgeKC7fnwoWaQq9z4JCx3vt6U9EyyST20rKMdbx69Wr+9Kc/0dLSMukyqT1DAU3hL7en/PGVlZUsXbqUCqedSFsTZRYT5Q4bDrMJg9GU45YxWm0IAoQDgQPOep8Ke1X4VVXNxNYJgnAH8MQYr70duB1S+fincj3JZcRpsuPJiu4QBCGzbF4UBBh5LgoCoiCm9kVR2wIfsYAb3HM4suYQJFFCEkQkUUIR5cx5sigjixKyKKNI8shxCYPFRElJSaa7tJtDjSX52NxV3HreDzBJBhQpNVlrlFP1b8vOWojJaCLyfAcGQcYkGzHKBhRRLoz1FcnkWTnk0uP4vbFMM+pkwlE9GpOX2XcCglnCdf6Cg6JOqY422157iRf+ejvhIT/D0Ri+WJyB4TBdff30B4bpDw7zHyccRboydPbq1VAoRFNT05Su2zcU1Gyf43Hx6ysu46o/3pszxgPVLTMTzGghlhEf/xNZUT1Vqqp2jux/AzhaVdVxE1FMtRBL9uRpBhEQhExVoYIxj2QbLLB0J9mu1a/rkwsLRPHDRPUgAVnhxvlRPfn969EmOlMhLeyRwBDxRILB4RADwRD9gWEGgilhHxgR+GIRM/991gkFYY320jKUI0/gi1/UvOnPIAAlDhuLFy9B8PVTarVQZrdS7XJgNxWuYpYNRs648r8OamFPs9cLsQiCcB9wElAqCEIbcD1wkiAIh5GyF5uA/zdT14fRZen5wpfdlj0BWMzSnWx7vmU8luBOxkKeijWtW+A645FtDVvcHk667N8BMi6aNI+t38rru/ZMadqsLzBcIPxD/X0cvXDUlTdnzhyqS0sQh7yUWEyU2q2U2qxUetx8/MtXsfT4kycU1XOwW/MTQS+9qKMzi8l3cRz9yUvo6O7h2fvvob2ri6FYgj6fn4FAkMFgCF8ozE2fOhuTIhesXn12y06e3bJrSuM4/7BlnLCoIafNXlrGZ3/xfzQ2NjJ//vzMClbdLTN96KUXdXRmMfliaT9kFZu27+Dt556hfyjA4HAI73CIoSIRMtn0+4eodhWmkNCKb89HlkRKrBZKbBZKrFZKbGZKbFZq8vrLXr16yCGH5Bw7kKNlDhR04dfR2U/JFnObp4SyRctY/9YbdHR2EhYkHPUL+O1f72L76y/z7O235aT+/esv/4e3Pmia0nUHgyFN4XdbzQiAw2zCYzXjGRF4j9WS2XeYCsN202hF9egUsvOdLt56bDeBgQg2j5FjL5jPoqOntwqXLvw6OvuYWCzGq489xHP33U1nVzcRUUK1Otm9YzuDwSD+UBhvKEw8kRc88OrbfO7fPsXmfz6WEf00TtPkw4PT+MPahdjrS9zc/KmzkDUyiGajmEyIskIkeHCERk4HabH394fo93fR3r+b9v7dHLXodML3pkLAp1P8deHX0fmQPP/H37Lh+acha77MZLdzwmeuoH9wgGf/djd9vT0cecgyTRE865STefH1N6Z07afu/jNusXCezmnRXmGdttjdFjNuq1nj0YLJZEwFPOT5+IutXzHZ7Zzy+St1cZ8AO9/p4rUHdhIOxglHh+kNNRM197L2X+tp691N+0AjkVgo8/oSRyVlzhreemy3Lvw6OvsKVVV55NZbeOeZp/CHwgyFIwWbPxTGH44w/Kf7MxEwoiCwsKI0E7+eLZKJwYllfdSio7OTuhWH5ETfANS4HBy3aB4uswmnUcFpSYm7x2FDFIQcURckCaPFkrN4CdAnWKdItrgDCBKoSQpWwa9+4It4g72FHWTR3t8IQGBg6otRtdCFX+egI3s1KUA8kSQYjRIIRwhEoqiiyJLy1EI7o83Oqf8+as2uXLyQTbt2T/qaSVUlGIkiCgKv3X9XjoiaJ1hvwyBLKSE3m3BazLjMJupqazj+kstzfPwAdeVlfOm6VF6ZfAHXatMSdV3oJ4eqqjz829d46am36RhopGOgCVVNcvkp39V8fbWnYVzhb+v/AACbR6Pq2odAF36dAwatMD/QFrYX77ydD1raGApHCCWShOIJfEMBwokkvuAwwRGRD0YihPIWHTnNJn5w3qkARAJDPP27XwMpIUwOF2YYnShD4Qh2k5Gh/lwLv7K8DJtxD06zCUda2DMCP7pvUnJXaucvVCom5rqoTz/vPruNR+9+icamnfQOtzCkdrJr9w68/tzUY4pk4LMn/TeiRpLCmpJ5bG19t6DdbLBRUzKf2pJ51FcsA+DYC+ZP6/jHFX5BEL4G3DOTydR0Dj6yV4NCoZ9466sv8vw9f6a3qwvMVkSrneYd2xiOxghGYgxHt/Knf76I22rm9KULgFQ0y9O/+zWoKmoyyd1vrqM/WFjucDwCkUhO6UU1kchY6Xbj5Cwvq9GAw2TEYTaRlmx7SWnOa759w40clmexa6X4nXf4R4ouVNJDIGeWBx54gDfeeIMtW7aw8f1N9PZPrO5yLBGl199BhWtOwbHakgVUuOqo8cyjumQeNSXzqPHMw20rz/mBr13s2idRPRXAvwRBWAf8GXhGPRBWfensFfJXUqZRVRUUhUgS/D4fosXKxy68iHlz6wpen0yq/O+TL/DzR59BtFgZCgTx+rwkkuN/zGrcjozwAzm+a4vRMCXhTyRVQrE4FoOSaUtb6XazCYMsYTcasZtGN5vJiMNkxG5OPXeYjDgsZiRJyhlTOn49m/Esdp3pRStccsDbz5N3vUGlPfVZMlolTrh4cUZw7777bp54omhqsTHpGNijKfyrFpzMqgUnI0iw/KPVNG3uz/HlCyIs/1g1J162ZErXHYtxhV9V1esEQfgBcAbwBeA2QRAeAP6kqurknZ06+4xiKyKf/+Nv2fjCP0kmEsRUlZJ5CwkN9BH3+zKx10abHUGA/v4B1nb0Ujp/EcHhYXa9v55QNEokHiccixOOxUYe4yTz7INVazfwmeNWkczLlS6KAo29/cQSSeif3I3lcKR4uUZrlnCPhSCAxWDAZjRgMxmxGQ0k8jJFpq30b379a5z5wj/H7VMxmTj9S18FJu5P14V+Znjlb9vZ8noHyYSKN9hLt6+FzoFmugZb6Pa20PWrZgJhH5Io88srnkISJSLBBM/ftRVIhVEuX758QsJvkE1UuedS5WmgemSbW7a46Ouzf2BOnLZ3PD4T8vGrqqoKgtAFdAFxwA38QxCE51RV/fZMDvBAJn8SMRt7aRmuymratm5CzRMZSVGQjSYigSEEUSSRSJBUIRqLIZotxBMJAkNDiEYj0VgCt0HC4/EUpJXd3dTM//3qlwQCQyQFkVAkQjQWJ5pIEI3Hif3tERKiyPDwMNF4nGg8MRJ48DQfP3QxpyxdkBlb2iUTicV4/N318O76Sf89wtFYgeinMSsKscTkIxeGo9Gix+Z4XCRVFavRkNoMhsy+LevRYjAgisVnWAVJyljpZ175X0iiyMYX/pnzfxtrcZIu6HuPne908dxdG+nobaXbm95aMiIfjWuvUQBIJOP0Zbll1ASZMMrly5fnvFYWFSpcc6j01FPtrqfK08Dcmnm4LZUk822R9EdLnVkrfjJMxMd/FXA50Af8EfhvVVVjgiCIwC5gvxX+ba+9xF9/fQve/n4sDieVCxbRtHE9iZGc+KqqomY9ooKKmvHvHrlkIad8/kpg1GqTDAa2tbTT6w+QVFWSqopoMFB/2JF4auuIxWLEYjG6mxppfH8dsXiMZFIloaokkknOP2xZaoKvrzfnB+Ht3S28umsP8USCeDJJPJEkkUwSTybHdXl8/rhVOdbtUF8v//z9b9ja3sU/12+a0t8uUkSgjfLU4wFCseLWudmg4A/nCr8silgMCmaDgsWgYDEYMs+tBgMWo4LVbMrxxwuSlPHxn3nIIs1ribKMYjJnfszykRQl8xnJj+oBOO1LX+G0L31lUu9dZ+pku2YUo0QskkBVVURJoGahC29viMBABKNVIjqc4E/P/pj1ja9O6Vpdg805bpm06+W4447jRz/6EcuWLcMaL2fP6zHUePZEu8jJn0mJ+Uyvup0OJvIt9gCfVFW1ObtRVdWkIAjnzsywPjzbXnuJZ2+/jTuff5VufzoS49kJn2+QJQ6pqeTp3/4KsuKeE5EI/9rTyvqWjtwT/rVhQv2esXyRZirZUCxGj39qESPp2rvZJONx5CJL5ydCJF7YJ0xO+CVRwKQomBUZk6JkCmRo8W9HHoogSpz+uS/gtNt594F7EZNjF3NZefrHqVm8tGhUT3oeQTIaUQyGg6bIxoFKvu+9/pASNrzxAW2dLfT42unxtaU2bxt9/g5+cvmDtO3wZs6PBFOf2XJnoT99PGRJoULjvHQY5fz58/nhD384OtaG4mkV9kehz2ciPv7rxzi2bXqHM328dv9dBcvYJ0PaP53vhgGK5iKZCPm+4zTyh6nqFdfu0zDO0nrNcUgiRlkuOh5ZEjlt6QIMsoTVZkNBxSAKmBQZk6xgVOTUviKj5F1fkEbq3WrcTSxtmJsT1VNeWpoj6ONFtBT0pwv7AcHOd7p48YFNNDU30uvroNfXRo+vPfMYCHuLntvn66DKU1/QrjWRmsZksFLpqqPCVUelu45KVx3VpfW4rRWIQv7ntXgY5aKjKw8IgS/GrI3jz4+VnixjxS2JMyD845VzlCURRRSRJSln3yBJWIzak5gui4mzDlmEQZIwyDKKLGKQZAxy6jyz2UztwkX0N+7CIEkYZXlMX3easw5dnIkhBzSjekA7Zwvok50HG9mWvGwQiMfUTL2Kv7/6G17b+viU+u3xtWkKf6V7Lm5becoHPyLyFa45VLrnYje7EQQh4zJKW+tAzmrb/Kie2casFX57SSlDfb3MLXHhyHatCEJmriXjFx7ZF4RUHVtBAHGMguoLyktQJBFJEBEEAVEUkAQBk9XK0ed/CkVR6G9tYve7byMkEyPHRSRJwF0kh8rKOVXMK/MgSyKyKCKJIkrW/mTvMkRZxmmzctqyhTltislckDwrHdWjJpMIokjtskPxdnXk1ElNR/VouUsmK9C6oM8udr7TxRuP7KSttZ0gfahWP1u37KCju5X+QCd93k5+dNm9mAwW4tEsi0oFu9k95ev2+to12+vKFnHTZ+7TPDbW5OpsFXktZm0hlrSP/8O4eyAVrUFebhMtRFnmrP+8KkfUpiuqJy3I+QJsstlQVYgEA5rFokGPDdeZGtlWeppQJMBQvIfSZRBRvDQ2NrJp/TZ2bd9Nv7+LeEE4yyjf/dQfqC1dUND+r10vcOeLPyl6niTKlDqqKXfWUuasocI1h3JnLeXOWhwWT4FBJEipO/JEfFTXDjlh30fR7CsOukIsWoti5h3+Eba8+gLxyMR+DNKrSbP7kQwGEnnnF8tOuD+4K/b19XX2f9Jx7qHwMP2BLmpKGyBZeIf5yNu38+b2J6d0jV5/h6bwlzlrEEWJElsqC2W5s4ayEZEvd9bgtlUgZaU7kORRURdEcqJ69ucomv2NWSv8oC28Uw3D0wVU50AiP0LmmPPnUbJA4dUn1/LS42vp6GxjMNBN/1A3A4FuBoa6GY6k5ml+evnD2MzOgj5LHFMX1D5/h2Z7XelCfvXFp5CkXClKR/WkV7Pqoj69zGrh19GZzbzyt+1sfq0jk+5XlAQUk0gkmGDd7pfZ3raWgUAPg4EeBn/RM+bipWz6A13awm8fW3StJgeljmpK7JWUOqopc1RT4qiizFGD01qieY4oSkgGgURU1RT3vbma9WBCF34dnf2EtMtFzZryEUSIRCP4Qn0MDvUSxot9ToLdO/fQ+EEzXzr9hkzmx2RCzcSyf9C5kTe3PzWlcQwMdWmmGShzVFPhmkOJvZLK0hrOuvQ4zAkPXRtUXKZyzEbtdRqCBEaTTDgYz4nq2V9WsR6M6MKvo7MPyHbFBNRuAskedu9swRvswxfsyzwOBnszLhgthkJeTWvabSub9JgkUcZjq6BYwMfc8iX84NN/RZQETr18acYy11p4pbtoJo/38cdZf/NP2dLayi5FobGyght/+1sOP/zwab+WLvw6OtPM9rc6eOrOd+nt78Uf7CeYGKR6qYWf/Dq1FnLnO128dO924tGUaX//c7/j/T2vTelag8HeIsJfUdBmkE147BV4bOW4bRUj+xWU2Cvx2MtxWErGDGMGMFlljr94UY6Qay1m0l00ufjWrKHnV78m3tkJJhOEw2wYHmZHJMLORJwPLBa2trURyI7wa9rDKXfcweG//e20j0cXfh2dPLJdLml3RNV8F289tpumpiYiopfypQqSI0JXV1fO1tbaQV9fD0k1N0RXeFbgsxddwbKP1vLWY7szog/gtJbmD2HCDAZ6qC8vdJXUly/l3z76X3hsKaEvdVew6qRF7HinO+faBQggKwLxIj53ncmhqir+J56g8wc/RE0XsQ+laup+u7OD1jHyVwG8+9hjoAu/js7EyHY/mKwyKin/tyCSEfRoNErSNEzDR2wMePt55/mt9PX1Iggip6z4NyD12s2vdmQmUe9+6afs7to86fGoqDx7/3ss+2htQf1UV5GJzzSiIOKwlOC2leGyluGyllLiLMdhKqVhpEJTPqWOKk465BMAOQJevcCd+buk/xa6wE+dpi98gdBbb6OqKn2JBDvjMT5QYYfPywfJJIbKSu6vnTMq+lksNhrHFf5tAzNT/0oXfp1ZQbbQG60SsXCSd7Y/jzfYQyDkJxD2EQz7CIR9BMJeAiEf4Zh2kRa72Z0R/gzq6LGp0tHRCaSENlv8K931LK45Aqe1BJelFKe1FFdmK8NuduWU7ktnguzc7S0a1VNMzA/0HDP7At+aNXT++CeoXi8AfquVjhWH8v4zz7IrNMyuSIRdkQg+jXQs8tAQw4KIQWPl/SKjkecDuYkZbaLIIqORJUYjS4wmVsyZfMK5iaALv85+RTQaxev1Mjg4yMDAQMHjwMAA/f39mcclS5Zw7Vd+luMzT0e2PLX2zqLL+sciEPaRTCY066Q6LJ4J9WEx2nGY3TgsJTgtHhyWEspGCrgfe8H8nPEeOvdYVsw7FpLFc0RpWeeLjq7UI2KmkYwfvqMDJAmyVuv/sb+fN4aDfBCJ0J9IwLq1E+ozDuyJx1msFObTOsJs4QxblMVGY0rsTSaq5dG6yoLJRNUPfzAt7y0fXfh1JkVqYnJbTs4VSRZStQniKtF4mFA0SDQRIsYwft8QqiFC9VILx5x6GKeeempBn4lEgvr6egYGBhgenlypxEgkUuAzT2MzOack/KqaJBgZwm52FRyrcNVRX74Uh8WNx13GiecfRmVlJRUVFVRVVTHcKbH5nwNIQu4XXZDgtMtTbpm0xZ2f1lerTbfOZ4a0yMc6OvCVltKxYD67X3qJ88yW1AvyUrRsDod5Z5KfzTSNoRBL7PYCd89xVivHWa2pJ6KI69MXE3jlVeKdnchVVZR/42qc5503pWuOhy78s4RsV0e+dQijgoJAxjVgsIgcdUEd1cvsBINBAoFAZmtoaGD+/PkF13jw/17loTd+SyQ2TDgWIhwNEo4OE44NE44GCyY1MzwK5679hKbwS5KE1+udtOgD9Pf3F/jM01hNhYuQshEFEavJid3swmZyYTenNpvZhSTmfTVG/m4nHnIhJx5yYcbdoiXMtdVd42Z6LOZy0YV+evCtWUP3j39CYsQ9kwQ6olGa7XbaKivY8t57NIZC7I5E8O3YDm+8jgicsXARRo1MuQuMBp4dp1yGWRBYYDSywGBk4YgVv9BopHLOHCqu+UZBVE/69k4wm6m68UczJvJaHLTCP1bssdEqISAQDsaLWl5jnZ+TejYLrQUr2REkyWSCWCKK0SGy8rRqapc7CYfDRCIRwuEwu9a18/4rTQx5g4imJHMPdeGsNrCochUfvDScsXrT2rt52/vc8rdvEo1HiMYiROJhorEw0XiISCxMLB5B/ZW2b2H16tVce+21OW1vPbabZCLB+sZXpvQ3b93dXfSYy+UiEJh8IZr+/v4Cn3maFfXHUe6sxWpyYDc5sZqc2ExObGYXNpMTs9GGKIiIkpCqvKaRhy8/qmci1rjuR997dP7oR3gfeDBloQsCgtlMo3eQbeEIe6JR9kQjNEajNEWjhNN+tI3afSWBpmiUxSZTwbEFxtEMv4ogMM9gYIHByAKjgYVGIwsNRmoUpSBlu2AyUXHNN3Ced95eFfbxmLXCnxbUt7c/SzDsB1KRFZIkoKoqiYSaKtFHElUF9fnkSBnGZKqsmyhx1hGfITAQ4bm/bOW5v6QKL9s8Rrb2vcxbb71DIp4gkUyQVBMkH0g9JpJxEsmR9mQ863lq/8v+mwE48bIlqSX3r6ZymDyz7l7W/OvPo2/g1xN4k4+lHv7rkz9mSdkxBYeHI0Nsbn5nSn8/LREODEQwGSxT6g9gKOgvesztdtPW1oYoirjd7oLN4/FQUlKCx+PB7XZTUlKSeS54nbz8tx057h5BglNWnU84GC8a1VPsrmisiVGdfUN2HLxYWUni8s/hbmnBe9/9oy9SVdThYX7b18+TQ8U/a2Oxu4jwH2m28JvqGuYbDNQZDMWr28kygs2G6vPNuLvmwzArhT9bUJ97/366BpvHOaMQg2zirCM+U9AeGIjwwksvsvaDF6c0tmg8zJbXOzjxsiVseX00cZUkaRdTmQhD3gBoLNQ0yIUf4ImiJfw2j5FE39jpqWVJwWywYlKsmAxWzCObyWBlbo12NSOAZ599FrPZjN1uR5xCNTJBED60f1wX9v0HVVXp7e1l165dvP/AA2y8/36ahkM0RaM079hO5OWX+NeixVg1BHiewTCpa5kEgQaDgXlGI2VFSouWyjKn2+0ASC4X9rPP2mv++JlgVgp/tqBOFbWYr5qxi7SMRyIZz7hisi8h5/uUJ4Fo1B6rIo//BZAlBaNixlPmxGazZbYFCwpT6B57wXye++tWvnjaDzDIJkwGCyaDFZNixqRYMRrMKJL2NbOLUWtRWfnhRFd3rxyYDAwMsO5Pf2L9X/7Cnp5eWiSRdoeDxp4e/P6xrfbmSIRlGtZ5g1H7M+gUReYbjSmRNxiYZzAy32CgWlGQzGacn7gwJeYaUT1IEq6LL6Lq+qKVaA8oZqXwj6HZE+9jjAI1H1b406en3Q2QEmBBEJElBVmUkSUFg2LEU+HAaDQS7E8gqql2RTaiSAYUyYDFZuG0C45haItYENlS7qzl/519E0bFjCwYMCgmjLIJg2zCoKQeZUXitMuXTUg006+R7xU0o3qyfeQTiSnXmb1kR80MlpQw74zTNS3kqz79ae55/vnck3t6JnSNpmhUU/gXGYycaLVSbzAw32CkfkToPSPWvGAyjYr8AWqxf1hmpfBnC+pRC09nKJS7+m205KJIaldAGCmjKCCkJvzGcDcctfB06suXIorSyGslJFFGFMTUoyghCam2zHNRQpIUyp21LP9YNZCaNEy7pD669Fw+tmz0g5cfNZKf3yX/NVpRPWVVJZz/n18CtKN6plJXVLesdfIJh8Ns/stfWP/739Pc3U2bINAaDNISidAWixFWVd7s6cElpdZFxDs66PzBDwGoaGyc0jWdoshwEbfMPKOR39VqL3ySq6sPOpHXYlaWXsz28c8EskFkyTGVORkIpyOqJ81EI4l0K1pnJsieSE1bwwCvXHsdW3t7aYvFaBegu7ycFp+Pjo6OMe+QAe6vm8sKc269abm6mid37OAbHdprLSwWCwsWLKDBZqPyg93UiQINIxa822ql6qYbGV63riCqRw2FkJxOkrDfT7LONMVKL85K4QdtQQVQjBKinFrdKRkEEmmBFkBScgtCAHpeE51ZjW/NGrp++Su6WlvpMBrpCAY5y2jMDUuUZUgmuamzg/tG4uInyy+qqjnH4chtFAR22+18c8MG5hgU5ioG5hoMzDUozJtTx8defy1zd671Y3QwCvlkOehq7p542ZJpWc6uC7zOgUAxYfStWUPb//yS9tZWuowGOoLDtAeDdMRjdCQSdESjdMZixLIMwCPnz6dczooyi6cWotVopB2YCDZRZFgrj01VFcd/42oey85cyUiqgu9+J6eQ+v4WB3+gM2PCLwjCn4FzgR5VVQ8ZafMAfwfqgSbgYlVVZyb9nI7OQUI6Q2SaeEcHN//nf/L8V75Ca1c3vfFYvtdxTNpjsVzhH6G2iPALQIUsM0dRqFUMzDEozFEMzFEU5igKLknKEXFIiXu21a5b83uXmbT4/wrcBtyV1fZd4AVVVX8qCMJ3R55/ZwbHoKNzQKCZIMzppDcWo2tggD67neBxx9I/stCttbWV9vZ2XrzsshzRT9MZCrF2cGo2VXssxuHmwvb5BiNn2OzUKgq1ikKNQaGhppaV3/5vBm68KTcXjSwj2WwkRnzsthNPKBpFo1vzozzZ+CS/WfcbOoOdmTZRELlo0UVcd8x103adGRN+VVVfFQShPq/5AuCkkf07gZfRhV9nFpPvglHm1hF691+ZyUhMJt7s62NrJExPLE5PPE53PEZ3PE5fPE48u7PNmwr633X//VRrZBGt1LDYx8IhilSNCLpHypOFER//fKORX9fUZJoFRaHq2u/jPO88jIqiW+0fgmQyyTcf+iYPvfIQ4dZwamsJU3NFDbZlNv6+4+8A0yb+e9vHX6GqavqnrAsorA+no3OAoqoqXq+Xzs5OPnj4YXb89U56/D5643ECySQ3qWrKoh89AUIhHvJ5eXqoeF3dsegKR6i2FKbRqFJGv9oCUCrJVCsyVYpClaxQrShUKzLVI/t2qfDHA0Bwuai69vsAOTnpJZeLihHRB91qH4/Vb6/mwZ0PklSTGQu+fGM5a9euZePGjby/8X3Cw4XFWsItYWzLUkXsH9z54AEr/BlUVVUFQSjqehQE4UrgSoC6urq9Ni4dHdB2vcjV1Ww9+STaS0ro6uqiu7u7oPRiNBot2ucPyiswaKwPKS8Sjz4RujQmTQE+Yrbw4Oc/j/OddylPJjULgQAgiggOB6rPh+B0IkLGPZNvtevCPjEy7hpfJ+6Ym8UNi3m7a9Qdl1ST/H3H3+n5WQ89jWMvVgu3jv4YFM18OwX2tvB3C4JQpapqpyAIVUDRd62q6u3A7ZAK59xbA9SZHeQIdx6hZJKBZJLBeIyBeIJBVSV0yHLChx1GT08PQlcX3+7sGvVZjyzdj3d08JOf/Zx3g5PPIgrQm0hQoyH8FWO4ZZyiSIWsUK7IVMkyVW4PK667ljlz5lBbW4vpb38j8o+HCs6rOf5jfPQvf8lxNQlOJ0SjqCPpr9PWvC7ok+PJxie5+Z2b8UV9AKhJlVh/DKlboiZQw7oN6wi2Bol2RpE9MoO/0J5riVZEYZz1a+G2UeH/MBkD8tnbwv848HngpyOPj+3l6+scoOQIuSBkcpknnE5KPn52ZuJQcjpJRCIQCvG/fanFRoOJBIPxBIOJOIOJBCGttSsd7fDsswC4FIX/nqedUK5ELGI5T4C+eFwzJHKFycTn3G7KZZkKWU4JvSxTLsuYs34oBJOJqptuzBXq1avpVJTRRUx5OWV0F8z0oaoqd711Fzc8cgPh9jCR9gjhtjCRjgjJcMoa38a2nHNivTES4QSSqdCVZqw15jyXrBKmOabUVpd6NFaPvuaiRRdN23uZyXDO+0hN5JYKgtAGXE9K8B8QBOEKoBm4eKaur7P/k53PJVRWRnzVEXS+8SaDXV34AV8shl8U8UUi+BKJ1JZM4E3vJxIcYjJxp8+X6TORtcDomaEhGsdwvRTDG4sRV1XN1Lul47hlrFYrJckkpUCZLFMmyalHWS4aB3+ExcIR2X76EdeS5HJNaPVp1fXXz5rkYfuStIumK9hFpbWSq464inPmnQPAFVdcwcMPP4x3CgvYIu0RLPML52Echzq4+oirWbFiBb3OXv638X+JJAvrShxoUT2XFjlUWIJJZ78jp8CFJGE+6iPEmlsKoja8jz9O0y3/g6+jg1BJCcpF/0ZixQr8fj8+ny9nO+KII7j88suBkQLWIwt3kqrKka+/Bq+/NulxehPF/Z6uIhOWE2EwkdBM0XuE2UzYZGLRF79IZWVlZkuXXrTZbDnvLRvJ5cKwdElBVA/hsB4Jsw9IJpO0tLSwdetWHnr9IZ58/0nKPp3Kb94Z7OSGN28A4Jx552RqQU8W2SWTCGqnMr/89Mv57jHfzTwvrSot+sMz3czalbuznWKTj9nx0vmTdWVXX4XhtNMIBoMEg0GafvELup9+mlA8TggBjvoIylln0fGPf7Bo23ZWpnOrJBKZWPH2WJT/98brDL/+GsOiSCASISO9uz+Ad4sXfrnkkksywt/zq19nhFESBGyiSKDIROVYeBPaXyoAdxHhlwG3JOORJdySRIkk45YkPIrCIT9ejaWpCdvjayAWKzj3rLJyvpDvbslDX5S0b8m33L+y/Ct0NHfwh+f+QHdTN0KPgHXQSueezoJyn57zPUjm1OcmnAjzm3W/4Zx557B8+fIxrylaREw1Jky1Jow1xtRjrRHZJmOSTBxWdhjvdr+bE9WTb8GfM++cGRP6fA4q4S+WfCp78istlPlJnrQWoEBhiJv97LMYevqfOS6HtE9aGjnPdf75KYv6/r9nfNUDgkCfLBPy+4kJAtFEgqggEEnEiZktRJNJwsNBYjY7zK3Du3kLkViMiJrkIqeLJSYT8Y6OnIpEb7a384OuTkKqSnjHdkIvjVM8prUFHkpNFH6tpHRU+LOQEKbkPgFyLKZ4Z2fOMccUhT+QTKCqasHKUIBPu1ycYrPhkiQ8koxLSgm9XRQ1X++69BKq/uM/APAdc4zmD+tEBVz3re8bnmx8kqt/ezXeLV4iXRF2dO7gud7nYIIfrUhnBMu8UbdMV7ALICP8olHEWG3EWGvEVDMq8rJLRhAEZEHmU4s+xattr+4Vy32qzHrh/8EPfkBHRwfRlhaG164jmbYQO9pRP3d5StyTI2UX29tIAkkVlPZ2flGdSp+cL6i3btzIm5dcQiKpkkAlrqokVEigElu3NvUciKupYzFVJQ7Ed2znma4uFj7ySMFqy3/09fHrvt7x31B3d8qyzuIoi4UlGnnJE6h0xOMF7RNhuEjomG0K1bHS+LJ88XJVVU7ETaWikAQcooRTEnFI0si+hEMScYoSLmn0uWvkubWIiAN8zGorPpisCWKtIhu6cO8f5Fvvx5Ydy5p319Df3o/jcAdOg5PvHf29jLD+Zt1v6Hu3D+9r3ildL9KeK/yV1lSurpNPPpk9e/ZwV8ddPLjrQc1z88eyPzPrhf/hhx9m69atkz7PXCzuGdgTjbIu7xZxosQiYc0l9srUg0WIJLWjXU0fIvxLK6kWgEVD+E2CgFUUsYkiNlHCbjZTdfJJOJ3OzOZwOGhoaMicU/6Nq3P84PfUzZ3SOAWXC2dWGbzMnZrXOyVLXWfvki3sDoMDQRDwDnsx+o0Mtg4S6g4R6YoQ7Y6yvWs7z/U/l0l3vuS2JfhsPq57PeUyOWfeOXQFuzBWGce4Yi5ut5tly5ZhrbGyVd6Kef7oXa5JMnHVEVcBZCrT/bD+h4iiWLAYazonXvcGs174p8pYlWWlDyHSsSJpsA0fQqQjRfo0a4i0QRSxuVwY/ENYRAGzIGIWBcyiiFUUsUgSFllhlUE7AkUUBB6rb8BqNlN9/nkknv4nUmQ0EkEz5FADLT94xp2W5V4RzObUj4OqzrrydwcTq99enUk7kEYRFPyNfoZ3DxPtjtLU00SkO0K0Nzr2F3CEaFcUeYFMXI1nfPGV1kp8Vb6C1yoeJeWiqTJiqDJgrDJSt6COl694OXPHOFZUTzbXHXPdASf0+ejCX4TkWKUXmbryx4t065EkFhuNGAQBZWQzCgKGkc0oiBjFVFt634CASRQ5TMMXD7DQYOCZhnmYRTG1mc3Urr4J53nnpeYYstxXaVyXXoLliCPo+PZ3Rl0heSxtaBhN+/vRj055ElN3p8xO0gLaPthOtDdKtDeKfaW9wCUXU2MMvjbIwIsDU7pOpDOCZUHKLZP2xV91xFV8v+P7hM4PYaw0Yqw2YqmyIJtlYsnRyXqTZOLbx307Z0x7c3J1XzPrhf/GG2/E6/Uy/P77+B59DOKxjGyLkoSAgJBIIAgpQRcAUYCx7O8veTx8qqQEKZlAVEEWBOSR82VBQBFSk6Cp9tRzmZSYS2YzpsMPK3D3nO1wcHZ+oYoi5NQMHSOqx+jxUI/2Evy01Vxs4Q9A949/kpmkLrbKUxfvg49MSoJAJ564hyUs4c1Nb9LT2gP9MNw9TLgnTHxwdH5p8a8Xo7gK7yINFdqF0YsipKx3Q6UByTYatZX2xZ8z7xw4F35TnWu5A3stVPJAYNZW4NJiX0f1ZPua86N6UBQkqzV1Xjotb9rd4XKNmUNFR2e6+I9n/iMnr8wxlcdwx5l3APDkk09y+z9u55UNrxDuDRPrjZGMTCxcpuF7DVgXWwva/ev9tPympaBddsgYKg0YKgwYK4wYKkceKwyIhlyzTBZkVn9s9UEt5MU46Eov6ujo5JKd611AQEUlEUoQ64sR64sR7Y8S7YtS+W+VCPKoCyQt/tdccw2/+tWvpnTtmitqcB/vLmiP9kbpebRnVOArUmKfjqXP55jKY9g+uB1vxAscWJE0+4KDrvSijs7BSkbgh1KumAtKL6C3vZd73ryH4d5hYv2jQp8cLrTYS04twVA26oJJ3wFkR2VNiLRbptyAZNUWckOZgdr/qC1odxldROIRQolQ5vl3j/quLvDThC78OjoHIKqq8sCGB7ht+2051u9ZDWfx2AePseeuPQy8NIAaV3mVVyfVd7QvmiP8aerr6wvaRJOIocyAUpoSeEOZIfVYnmoT5eKzZWbJTCgRQhREkmqSKmvVQe9731vowq+js5/wZOOT/PTdnzIYHiQxlMAYMHJB2QVUJ6ppa2vL2ZpamggPh1l2+7KMz9sX9WVCJgVFQC0WQjYOsb7CVBUAhx9+OJd/63JeH34dSlLWumQvrKcrCzI2gy3zg5RGt9onyMYH4IUbGehqweypxXz2DbBievNZ6sKvozNDpIU83yLPX87f8kwLf3vib6zftZ7oYJS4N54R7Q1sGPMascEYxorCBUuKZ2KlFwVJQClVUEpSm6HMgGlu7irwYyqPAaC2tpY7f3FnQbz7CbUn7PcpCvZnEokEu3fvZsOGDWx47j42vPokGzpjtPpVnri0iXPiX0+9cBrFX5/c1dGZAtniV2Gu4AvzvsBg7yB/fuvPdHd1k/AliPlixL1xYt4YyXCSBT9aUNCPSTJhf8jOS4++NKVx1H+nHtvSwtQU/nV+Wm5tQbSIGEoMmEvNyB4ZsURM+d1LDSglCrJTRhijxkB2VI/O9HLVVVfx9ttvs3nz5oJkcWlWn2zk2hOM4JwD39g86Wvok7s6OiNkR7dM1r9822238firj/PuzneJ+CLEfXE2+TfxfOL5ca+bjCQRjbk+73AiTJ/aN6X3IShC0ZS/tkNsLP3dUiSzhEkyccNxNwAURPVk+hp5rvvZPyQjbppIfyvbh2z0DSc4tSYMzlo49Yc5Vvubb77JeAbthu6R/6+vbVqHqQu/zkFBMpnE6/Xy4LoH+dUrvyLkCxEfihP3x0kMJWgdauUS/yWUJkqpLqnmjTfe0Ozn8ccf57nnnpvSGGJebbdMxKZRfMMsorgVZLeMs8zJFz76hUy5xZqaGrYltvHzLT8nruYm4RsvO6Qu6B+SJ66B9/5MOmFQQraw57DvsTlex+bn72PTK4+xuTvGjr4kCdVPtV2g/Ro7+FphTa7LZuXKlWMKvyxCJP277iyMfPow6MKvs9+hlTMFRldeOmQHsUCMwYFBBEHAUGXQtFQ/9alPsW3bNvr6+ujv7yc5gbTPAQIMOIqnEKioqJjy+4p745rC3/CRBi49/FIe73scwSkgu+VMqb5ii5MO4zAcbkfBHIIe0z7NbHwAnv4OyeF+WnwqW3oSbOlNpraeBFt7/YTiVxU9vWNIZSCk4jELEAvBCzdmhH/FihWZ15WUlLBy5UpWVJtYOfw6h5UlWFoqYpQFUMypu4VpRBd+nRlhIu6U1W+v5sGdD5JIJAhuD5IIJlLb8MgWSNA83MylwUuJB+PEg3ESgQTJ0KiAWxZamHftvIKKSQC7du1i27ZtBWMbD7/fTzgcxqSR6rqY8IsmEdklIztTm+JUUs9do/uG8sIQSZNk4vvnfZ9z5p3DKY2nTErID6bcMjPKiHsGXysIEqiJlE994Rmw/m5IRDntrmFeappA5jgNNnUnOLF+RGqzXDYXXHABixYtYsWKFVRVVY1GR2XG06bpIpoOdOE/yBgrA+GTjU9y8zs344uOZjfMD8FTVZVwOMzQ0BBDQ0P4/X6e2f4Mf9/wd/oG+0iGkynRDqUEOjE88hhK0LO8hxvCNwCwvmd9TrbGpl80wRTiDBKB0S9jdsUkSFlRU6W3t5c5c+YUtH/yk58k5ArxTN8zqHY1JfQOGaPZiKqqBa6XbIpF9WS7YXQhn2FGRDU+2MruWDnbxKVsffcltvVE6BxK8vzlI2klfK05Lp35bnHSwl/nFDi0XELJXruW5bKZO3cuc+dqpCNfcfG0C30+uvAfAKx+ezUP7HggMxlnlsxcf9z1RUUiY237O7EmrCQiCfwBP+akmUAwQDwcJxlJMhAd4D+f+E+W25ezrXMbw8FhkpEkiXAC50ecOI5w4I14+cEbPwBSwrRr1y4WL148pfchO+WMOHcPd2faBVFAskhFJyrHIh7IFdp0lkaA0tLSnGMOhwOLy4JP9iHbZSSHhGyXc/bdpW4e/+zjVI8U4cnnuOOO47jjjhvTHTWVSWOdmSHw9l3sfPBHbNvTyTavge3dIbb1xtnVnySW9AO5RY16g0nKrOkJ+FFLZHl58YVoJWaBQ6vNLD/yeA4NvcmhpQmWl0k4TXnRUjPgspkqB4Xw5wtnmvSX02lwIggCvogPp9E55lJxrcIRg6FBBFUgGU/ikB0kY0n8YT82yUYkGiEcDaOmSnRhqDZQ46rJiEG6vz3b90ArxCIxItEIakzFqBpxS27afG2oMZVkLIkaU1FjKpf+/FLqLfVYsPCzn/2ME088MTO+G968gXAijH+jn82/GT8ErI3CiAFjhRHHEalsobFkLGNJ2+32Kf8fEsMpYe8KdhX+LyzixIVfAMkiIdlSYp1dejGdpRFg9erV/PCHP6SkpITS0lIMhpSrRSs3PIAkSKz+2GpNSz+fYta5LvD7mI0PcNsNV/HYhj529Ku0+rI/U6FxT9/Wly38oywvk3AaYXm5xPIykUPKRQ4Z2S+3ywif+EPKSs9205hHchOFBmfMZTNVZr3wLz95OY27GzPPc9YtqKObqqo5+6IisvAnC3MsXoAb3ryBD/7wAb53fJAENalOykWx8OcL6VRS/uj1Pet57IPHCCfCDG0Yovsf3QWvb6Ewc2GaTWwCoKenJ9P2m3W/IZxIVbUSlakXd0mGcydC05b0hxH+tG++0lpJ93A3yazyjrZlNuL+OJJVGt0so/sGmwGsZNq1Ys+zKyYBRe9MrjvmOg4vPzzHraWvKt3/8b7+F3Y9tJodzZ18ELRx/c//F2Hlp0dfsPEBWPN1trYO8Hzj1EqObu1NcoKG9+XUeRKD3ymsKYBkhAtuGxX0veCmmQ5mvfDv3rmbSEdhuNx4CIbRf3Da4oWUH1mNp6zuKTHyeQwnwpnybUBONsTJEgqNWjLZrg7BOPU+E+Fc6zttSVutVkwmE1arFYfDQW+yl6QxiWgSkcwSojnv0TL6XHbKGXHO9/HXfKGm6Fg+vfjTHF5+eOZOy2l0oqoqvqhvyi4V3Z++H6AxiRmcfw4ffPABu56/k10v3suujkF2+hR2DUKPN3uRU4grD/svqgVhVGhfuBFiIZaUTszgqbQJLC0VWVYmsaxMZGmpyGGVWQ55xQwrL4MtjyCG0pFeAqCmJn/3Iwt+ssx64Z8yeZF/OYI6xkrH8VAToz8Y2RbvdAl/pbWSzmAnAKJRRLSIqUfDyGYUEYxCqi17M4iIppF9k4ixejTsUBGVjCUtCELO9bJdS8XQEue06Gb/+OVjkS388Ngf6jHos4F8F0g8ArEgD22N8c8P4uwa2M6u6y+lY0jrs6CdO2hn9zDVWeGR6YiZJaWj4i0JMM8tsqQ0JexLRralZRIukzAq7rueLYzqSQv7ub+c7r/GPkcX/mLkGfRpi7cz2KlZnkuQUmW7BElI7Uuj+9kbWQZFWhABjDVGXMe7EGURQRZSm5J6FBUxta+M7kuKxJeO+BKnLDiF+fPnZ/q86oirMkJsrjOz7LfLxnybAgKymFuWLpvxXCDp9qlMas6G2qU6WTxxDaz9K2oyTn9IZHfF2eyuOo/GNx/jexUvI6WNg9DoOonXWxL8cb32Z288dvQlOSl7RauzFnytfKRa4uGLzSwuFVngETFkF8mWDGCw7Zd+973JrM/V8/X7v85TO58abRAY9dMJIxsjbSOCLogCCGRS0yqiwk0fvQlI+fiHQ8OpHwZp9LUFvr9xMEkmLlhwQcbHXwxFVFhVvop3ut6ZdFRPtlvEH/UXTagFelk6nQmQFe8eTYg0e2M0egX2DMZp9Evs7ovQOJikcTCJP8+7uucqG/WuQovpt/+K8tWnin/+s1FEWOARWVSS2j61VObo5Q2jOWxGfPzEsiZxD3KhP2hz9dx6ya2Uv10+bVE9QEFUjzfizfTlMroyQuswOIgmopm+tPKh5Puup6P4xFT817rQH8SMrE7NtsQzvmwAQQQ1ye/+FeX+LTH2DCZp8+d/m8Zm90BSU/gXeHLbRAHqPQqL3EkWeiQWjgj9whKROqdITnr//PDIbF//DC5+mg3MeotfR0eHlLg/9lVIRAGIJ1XagwrNA2GavEmavWrq0ZfkicssmDTmnL77fJifvRGd0uV/f46J/3dk4crlnmCS+zbFWOARWVhhof6zt2JQ5ELLPccXr4v6RDloLX4dnVlLsVQDp/6QwLyP09zcTMsr99Dy/B209A7R7FNp8aXEvd2vkihi87X4kiwqKSyV2KBhsRfDLMN8j8g8t8SCo87gUPObQOE6jXKryFXHGMHsgbN/livkuuU+Y+jCr6Ozv5LvghlxuYTjIm3+OO1+lRPrRwRaTafvTWWB/Oo7/8ddayZXcjFNk1dlkUa2iwZ3rvBX2wXmu0Ua3CINrtT+vJGt0iak5r2OvCIVFTPZhU0HSDz8gYou/Do6+5oRgVeH+/FHoD1qp919DO3rnqHNF6fdn6RtSKXNn/Kt9w2Pmur+79qx56/XiIWYE9o65eE0ebXDaz9SLfHUZWbmuUXmusRCd5AoQTIJqKk7kFX/PhoKqQv5pLjvjZ3cfM8zeI3lzKks47/PXMyFhxdf6zJZdOHX0ZkuxsiqWCzbJxsf4Dtf+TyPbIvSMZQkGAMYAh6e0CXb/EmWlhW6ZepMwXHPLbcKzHUKzHWJzHWmtga3wKqqwv4A3GaBsxcayAi7mtCOe9eZMI+sa2P131+l7YNtGP1t1Ko9NO3cSmdrM6BSeuH3aDd9lO89nFqlP13irwu/js5EyRP25PzTGXj7Prq8AboCKl2BJF0Blc4hlc7ADrr+9zN08g06+gPEYjGCwWBh2O8LN9IXTLBrYPxaAVq0+lWWlhW2N9SU0+DpYK4jyVynyBxHSuDrnCJ1ToE6p4hFGSsEuTCqRxf3yfPo+nZ+8cwOOrwhql3mHMv9yONPZf2/3iYZGV2R3Jp3fqxnDyz+KKFYgl88s0MXfh2daWfjA8Sf/RH+3lY8lXWjoYLpCVQErv5niNda4nQFttIT3EJ8XL3uyOz5/X6cTmfuYV8b1fbJrQERhZR/vdaRF96YRjFz+ld+TuNXKIyOyUYypqJ89MnTD8Wj69v50ZotDA6nFqKpiTixgXZifc0koyHsK88EoN0byrHcd7b15Ii+FtGePZn9Du/4SeYmii78OrOLvEnESCRMvy9Ab1ClL2qkNyzSOxigdxh6gwl6Y2Z6lRp6B/30dHUwMKxS7xJovKoVHv0KCEImBBJUdvYnWdc5Neu8o6OjUPidtdQ4dmeemmSosQvUOERqRsQ9/XyOI/W8wiYgZ9KGjFjmY7lc9OiYaSNb5FU1iRzsI9jdRKSniWhfM7HeZmL9bZBMJeUSzQ5sK87I3OnlWO7uudBULHuugOypRnaWZ1qqXeZpex+68OvsH2gtIsoK8VNVFb/fz8CD1zDwrwfpH04wEBKwLTuNc298dLSPLAt32S0tbOvLFmktv3cM8Oe0dAdHXBwaaSwqbFPLqSTLMv39/YUHTv0hn+r6Tz5WJ1FjF3GZRlaBSwY4/HOw5ZGCqJ5J+dX1SdUpk+2mKRECLJD7ef7NtYR7Woj1NxPra0WNjb3qOBnykwgOIts8mba05V42dyFD60EwWDCU12Mob0Apa6CkbiGCu46IoGTOMSsS/33m1OpgaKELv87MkC/kZg+qpQyhf0fu68weEksu4Ne/u4PB4TiDIZXB8MgWCjLwi0sZTH6JQf8wiURhHPjRbz/BuUddk4oeGcnOmMY4xU/3cAyCURWroVDkK6y5bQ4jVNpEKqwCVXaBSmsqlLHKLlBlE6kqdVF17fuUlJQgihp+mRUXUwaU5f2tMjHtszBB2P5EWtzbvSFEUrkZa1xmTl5SxkNr2wnFUp+5zX/7MWtbNk3pGrHephzhT1vuN1x1BT+qPYyYpSRzR2BWJG7+5KEARecGpgNd+A9WNj4Aa66G2IgVLIiw6gspoXniGlj7l5R1mWZEjEILz+P999/H//4aht65G/9gP37ByVDNCfgtdfh8PnzNm/E3vocvnMQXUfGFVXwRPxcva+dPF+TdroYGENf9me8+NzyGv3yo6NvoD6mw9q+pcWcn7AJKLVOzzj1mgcGwtvD/xxEGLlwiUzEi8OaxJkglA1zwKyjTmH3NRrfK9woZkR8I4EkMMt/g5ZV33me4p5lYfyuJwAA1X7mTdm+Ie99uyUlJYSitIzIJ4ZdsHpTSuRjK6pFso4sisi33z510CHanu6jAT6fQ57NPhF8QhCZS3+YEENdaUjyrKRb2p9UOuZazYgXZmHqevuU3eyARgWjalZHy+/YlnWzojBIM+BmOiQzHEgQlF0H7fIJNawlGkwSjKsEYBGMqgbtuJfC12wkMh/jaUQauXJW1xD40AI99lfbDuzjuvKvIJQQ8MO7b9ka0l4oKgoDbJNA7PPn0If3DydHFSyPZGdOUWgREIVUar8wqUGpJbWXpzSpQZhEptwqUeVyUm6KUGiKj/nNRyfPxw3yPxHyPOFqMe8P9oz+eAAYrRId1f/o+Its9U2GGixaIVDLAoy+9yz/fWEukt5XYYAfNyTjrNc5PBPqR7aUFeYiUUo3qLIBosqGUzkUpm4uhtA6lrB6ltA7J7Ch4rcuscMP5y3ME/cLDa2ZU4IuxLy3+k1VV7Zvxq2SJqWpyoapAeBDV5EZVIRkaRHXUkDzx+6iHfJJkMpnZXC3Paq427BIq8B3+ZRILziAejxPf9hTx124lHvIRS0AsCfEkxEqXE/N1ERvqI2b0EFt8Hv92+jHYn/vmqP/Yl5pEfO7uX/H4K+uIJFQiCYjEdxC5/bOE4yqRuEo4DuG4SjgeIBxXCY08D8XggYtinL9YyXrTqY/tW7v6OP/+/EiArpGtGCkRa/drmN+JKPZ1v53CPyGFN1xc2F0TEH6rkrLG3WaBErNAiUWg1CygIqaSrJ76wxwf/5/PN3PvJ0EcL3OqYobzfpXa1/rhHWtyVHfF7HXyo2jSgacus0IwGqfnxb8S3PwiTYF+3plk37G+VmR7aUG7oXwexuolKKV1I1tK7CWrG0kQMBskglHt0qFui8L15y3fJwJfjNnt6tn4AMtPv4ytPel/iC/roD9v/3MjWwqr2UjgWteozzhr0vEb/2jk/hu+MYEB/Ctrvx34Pcd7H8LuyJs0TMZYt349t/1ragmwQkXSmY8dpz02Q0WG4oh0TrlP3xjC/+UjFXwRFbdJyIi72yTgsRlwX/gz3B/9PMbnvgfv/anw5CO/kHrMy85oduTdCWndLeVPkGpZ6LrVvs9IW/AtnT0kBzuIDLQRG+ggPthB6XnfQhCljHXuHfkiqPEoiYDGRPoEiA+2Q8PhQM5KBow1S2j44q/41KoantzYmfnR0bLiDwT2lfCrwLOCIKjAH1RVvX1GrvLCjTDF7KPJeLRo/LM0ydz72cQiw+RUYxlhqhORAKG49nu0KJrNEyIQ1e7TVFLLsfV7sAhRHEYBh1HAbgCnScDhdOM45wacvm04Nv0FpyGB0yikjhkFHEbNLkFU+MbXrsiNYIHCxF1p63rtX0dXjWanBQDdX36AkT25KkRDhAfacUT7WOUK09myh7ff30y0v4NkuHCeJ3HSvyM7KwralZLaca8rWd3IJXMwlMxBKZ2DXDIHpWQOkjV1Z29WJD61qoaXtvcW+N9XX3joh3/j+5h9JfwfU1W1XRCEcuA5QRC2q6qak1FKEIQrgSsB6urqpnaVvMm+yZBMFv/BkKZew5wid4O5VYImSbhIXelSi8BJ9RJWRcBqSN0BWJX0Y6ot+9FuFLCVzcU63EKlVtiiZEA47XrePA3ttLnn3Toquhs/WhDVg7Uc+rbn9jnZCJZzf6m7Vw4gcoRdGLXDXGaFc1dW8cff/w7v5leIDXaQHPYCKUfkzgn0HRto1xZ+z4j1LYjI7irsFXM56aiVvDVgBmc1ckktksmWI+7t3hCSIJBQVWpmIIpmf2OfCL+qqu0jjz2CIDwCHAW8mvea24HbIZWPf0oXctYC2wqa05ImCqm5O2FkXxQFBMWMJEkYk8VX1FXZBBaViMiygiSCrMaQRZBEAUUERQJZBEUUUCQybQZJwGXWzoNyfJ3Eb84yYpQEDBIYZQGTDEZFwigmMctgGmkzKyPHpJSIF7tbWFgi8dLnrYUH0rnNsycmJxjVM+GFQbrlfVDx6Pp2bnh8C4PDERKBQczhXpZYQ7y1fiuhgQ5KP341SKO3oN5QjHvebiHk7SHSPrWEcrGBdswNRxS0G6oWUX3F75DdlVhMJm7+5KFceHjNmOkTDjb2eiEWQRCsgKiq6tDI/nPAjaqq/rPYOVMuxLLxAdTHv4YQn0BptwKLVaOMm9brIbXCs0jN2oJzVl4G6+/OiRRBlAAxrw8Bjvwi1B0z5agezCOxw2P5tHV0xiF/MjUZDRH3dSMHejl9jkB3Rwsv/WszscFO4r5u1HjhBFH1f/xh1BLPYuj9fzLwzG3jD0JSUNxVKJ5aZE81irsG45xDUNxVOS9TRAGbScY7HDvoxR32r0IsFcAjIwsWZOBvY4n+h2LFxSnrXisP+Hg5wfPLuI33eq3SdQ0nwEBjoVVcd8zkokd0kdbZy1z36KaCWHbva/cy9P5TJIdHgyT+PMH+4oOdmsKveKpHn4gSsqsSxV2N7K7GWTEHwVlF0lGF5ChFELR9rOlJ2IPBRTNd6KUXdXRmKVquDYCfrtlAa0sLzoSXE6sF3KqP5uZmmpqaaGpq4jO3PMwDGwojrb2v3o3vrb9PaSzu0/4fjlXnFbSrkWHCHduR3dXIjjIEMeUKzV/BerD54KeL/cni19HR+ZDki/rJS8pyIlBW2AM8+sI7RHw9xP29dPt7+PRveon7ekiGUqHMHWjNgMF9L6xDKi0MqJBdhROpWghGK4qrEtlVheyqRHZXYZpzSMHrFFHg0ycu4aXtJWMKuy7w048u/Do6+zHZAm+UBUJDXmL+fuJDvSSG+rEddjbt3hD3vN2SOafdG2LD324juOm5KV0z4uvGoiX8zsrUjighO8qQnRXIrirsZdUkrWUIzpTISyYbAIok8OmPzMlEzeRH9RyI8e+zBV34dXT2AfkW+zdOmYe3v5db17xDV2cHtrifSmWYLTv3EPH3kRjqJz7UB4ncIALL0hMyQpuN7BgnP9AYJH09mu2G6sXU/OefkOylGZeMJAr8z0UrAbjh8S2ZRVT742pVnVF04dfRmUaue3QT973TSmLEtFWTCcrlMJ89zMNVF59WECEDsOHum7joe69A1lRqL7CH8Un4e4sIf2HagQyCiGQvRXaWIzvKcFfUcMNlJzF37lwaGhr44zof960tXKEtKkbErLh5q0Hix584VHfJHIDowq+jMw7Zi5AkQSCeTCLGwkQDA3iEYc6ab6bOHOX+VzayYWczieAAicAgyeAgiWEfLWqS90SZHmUtD6/ryKT6TSMoJihICzYx4kN9GMobCtqVkjrM845EGhH3UaEvR7J5CiZRs0X75vkgKblRPfkir3Ngowu/zkHPo+vb+fnTW2nr6qVECvOZIyv51mc+njn2vYc3ZcS686GbCO9ZjxqPAKkJ0mI1lHJIxrn35S2gkbVRspdonKCNYDAj2UpGxLwEyeLSfJ2tbinm2hvIXoCe7XMfbxHT6gsPnRWpCXS00YVf54Al322SnjB8r3mAv73TQtTfTzLkQ44GuOgQJ/+/vTuPcaM84zj+fWZ87nq9RxIIZ6ApSRsuBXEEkMp9KEhcpQgEoiCK1FDa0qJURagtKqWUovYPJCoOFaUHUApFNKXQiLO0QKJQQiihAYUjJ5Cw2YRd767Xx9M/xvbau96197Jlz/ORVhrbM973tXd/fv3OO+/b27ObZ15/j7093YRSfcwND/F5z252fPIpmYFe0Cxbgbfjc/jionVcuPgA7lr1bmkLXbOF0J+oob7dhMoFf26RDqelg0DbLNxYlxfqsVkE2mYPb8fn4IRbRh0vwEnzu/ioe2DU0E27UtWUY8Fv6qrSZfR/WbuZO1e+wY5Pd9EVSHHBojgLO4SX3vqAJ17biEQ7aDvmPMCbBuDGR98sHPvJQz8gs/dTAMrN7jPW/I3pxB5++Y+NXLj4gFELXI/Vwh6PE43jtnbiZMtPqhQ7/DQ6jzoDCQRJZYab6CMnCosEHZLpbEkrvtKYdgt6U44Fv5mS4uBujwZJZbKFecmjQYdwwKFnz+fMiWT51ukLuOasxSXH3vzEf+lPDrF71T3sHOzjinsTzI1myA72sfOzbvr7hmdl3A6MXAMpNPewQvCP5EbjheCfkEyK7Tu9j4X9O6JsLwp/Jzd7I27Qm4u9tRM31km8cxYLDj2IDT1O7r4u3FgnbksnEggWQrx4Ob+8zrZWbj3/cMBa6KY2LPh97ooHXuOV94enmjh5fhd//MYSVBXHcQqTbxXmOk8mSLz7CtmhAQLpQVKD/aSTCbLJAT4d6iebTJBN9pNN9qPJBNmhAdAsW4Abnz6TzhUrCmGW70YRx6Vvw4uFoYofTKD8+YuRynGibRN6LZxwK05rB260nX2i3lR+y89ZWNLH337CxbSfcDESahm1TuqFiw8YNaoHSlvlx87rGjfcLehNLVjwz7CRwZkf3wzlL0U/7UtzeGr9x4X98xe9dLYEUYWe/iHIpNF0Ek2nyKaTuC3tBMMtXH7CQQA8vGYLWYXUnk8YeH8tmkoSJsWSg2PsH3NIJBIkEgle3bid3Xt70dQg2VQSHRrgkdQgj3xzkDt+fjsLz76S5Y+tJ1XUt5Ae6KX7mbsn9VqkBvq4a9W7hXAr7kZxIq1kE3sm/JyZgbHX4w127kem92CvqyUax2mJ40TbcVviuC3tONF2OrpmkQnHSQVbkdzskdGgyy256QKKP6S27xkgGImRUR3zKtNKJ0XrtdSeMcWaOvifXLedm1c8x+cJL2DiEZdlp84H4MF/f8iu3kFCLiRTWTQ3BbFolnMO34dlpx7G8ccfX/Jc+ZZaPLGVpYcGOXZeB+l0mtWbdvLUm9vo6RukPeJw+oIuFs2N8eZHn/G3dVvJZtNoNgOZNJklX+Omx9bjQCFQM6ok3vknb7z1LP/JDKGZFJpOoZm0N9NhJsXWdP7+0TMfzrnoFpwFJ5ZcvQmQ6t5Kz3P3FW7/dQKvXV+fF9KpEesSOKHoGEdUlk0mSsK+uBvFCcfGCH7BCbfgRGI40ThOJEZrvJ3jFs5jzY4kRNpQ1ULru1jXWctKbgddGdWHXjwfzHitcAtr00yaNvifXLed5Y+tZ/NDPybV7QXiDuC791Q+dgXwUCTK0EB/4bmKv+5vev4RfvG/l8se2834XRWxo88hE21j5Hos6d5dDG5+s3Lhyij3YQDgBMZa8qqy3t5edpSZktoJjR5VUokEwoXw3r9j+IOjuBul85Sr0EyaaGuc75y3mIuWLOTVrQPc/uxmBoterOJulUqjevKfWdGgwx0XHwWMHfAW7MZPmjb4y7VWJyKdHk6bkUP6xpoethqaLb8El7iTXydxrOCX4OSDv7+/n/3nlp7YBJBAkNYjz8QJRpBwC06oBScUHd4OR3HCrUioxQv7cCvien9m0aBbGGYIpd0oOxacNCqM58+HtvbOccO6XGCPtzyeBbwxTRz8I4fhTZQWrT416rmcKay9mCk/pG9Cwe8EkEAQCYSQQBgJlD/WjXURW7zUC+lAGAmG6Yy38aOLFtPa2spv/rWFjd0pJBhBghGcUAQJRjl54X7cf/0phW9NIz9AZy+9cbgoAvFIkL0DqbKjeiJBd9xFMSp1o1g3izHTr2mDP99/HOjYtyTEvb5gyd/wfgDE8R4T8bbdwKjnygvtO5/sYIJoOIQ4DgNpENf1jnMCiOsSi4RJ45DMind5vOMiuSGA4E1JWxyo0fnHsc+lt3mBng92NwSBIOIGCgEvbrBwuX0lgfgcZp19feF20BXuuuToQpBeemn5UT0PXXciMNw6Lj45nV/0AmyGRWMaVdMuxDJWa9V1pOTE6liuXHJwobtgZB8/lJ4YHO+x5Y+vLzmhmH/u/LC+iY7qyd8PpSHsiowa1VPMZks0xn98txBLudbqyKGU+ashB1JF3wiAK4pCv/i5xhv5MZnHxgrhqc6RYnOsGGPG07QtfmOM8buxWvxTOEtpjDGmEVnwG2OMz1jwG2OMz1jwG2OMz1jwG2OMzzTEqB4R2QVsnuThs4HPprE4jcDq7A9WZ3+YSp3nqeqckXc2RPBPhYi8Xm44UzOzOvuD1dkfZqLO1tVjjDE+Y8FvjDE+44fgv7/eBagDq7M/WJ39Ydrr3PR9/MYYY0r5ocVvjDGmSNMEv4icKyLvisgmEflhmcfDIvJo7vE1InJIHYo5raqo8/dF5B0ReUtEnheRefUo53SqVOei/b4qIioiDT0CpJr6isilufd5g4g8XOsyTrcq/q4PFpEXRWRd7m97aT3KOZ1E5EER2Skib4/xuIjI3bnX5C0ROWZKv1BVG/4HcIH3gS8AIWA9sGjEPtcD9+a2LwMerXe5a1Dn04CW3PYyP9Q5t18b8DKwGji23uWe4ff4MGAd0Jm7vU+9y12DOt8PLMttLwI+qne5p6HeXwGOAd4e4/GlwDN4M8cvAdZM5fc1S4v/eGCTqn6gqkPAn4ALRuxzAfC73PbjwBki+eW3GlLFOqvqi6ran7u5GjiwxmWcbtW8zwC3AXcCg7Us3Ayopr7XAfeoag+Aqu6scRmnWzV1ViCe224HdtSwfDNCVV8Gdo+zywXA79WzGugQkf0m+/uaJfgPALYW3d6Wu6/sPqqaBvYCs2pSuplRTZ2LXYvXYmhkFeuc+wp8kKr+vZYFmyHVvMcLgAUi8oqIrBaRc2tWuplRTZ1vBa4UkW3A08C3a1O0upro//u4mnYFLjNMRK4EjgVOqXdZZpKIOMCvgavrXJRaCuB195yK943uZRE5UlX31LNQM+xyYIWq/kpETgT+ICJHaPHi2mZczdLi3w4cVHT7wNx9ZfcRkQDeV8TumpRuZlRTZ0TkTOAW4HxVTdaobDOlUp3bgCOAl0TkI7y+0JUNfIK3mvd4G7BSVVOq+iHwHt4HQaOqps7XAn8GUNXXgAjefDbNrKr/92o1S/CvBQ4TkUNFJIR38nbliH1WAl/PbV8CvKC5syYNqmKdRWQxcB9e6Dd63y9UqLOq7lXV2ap6iKoegnde43xVbdR1O6v5u34Sr7WPiMzG6/r5oIZlnG7V1HkLcAaAiHwZL/h31bSUtbcSuCo3umcJsFdVP57skzVFV4+qpkXkBmAV3qiAB1V1g4j8FHhdVVcCv8X7SrgJ7yTKZfUr8dRVWee7gBjwWO489hZVPb9uhZ6iKuvcNKqs7yrgbBF5B8gAy1W1Yb/JVlnnm4AHROR7eCd6r27wRhwi8gjeB/js3LmLnwBBAFW9F+9cxlJgE9APXDOl39fgr5cxxpgJapauHmOMMVWy4DfGGJ+x4DfGGJ+x4DfGGJ+x4DfGGJ+x4DfGGJ+x4DfGGJ+x4DdmEkTkuNy86BERac3NhX9EvctlTDXsAi5jJklEfoY3XUAU2Kaqd9S5SMZUxYLfmEnKzSWzFm/e/5NUNVPnIhlTFevqMWbyZuHNhdSG1/I3piFYi9+YSRKRlXgrRB0K7KeqN9S5SMZUpSlm5zSm1kTkKiClqg+LiAu8KiKnq+oL9S6bMZVYi98YY3zG+viNMcZnLPiNMcZnLPiNMcZnLPiNMcZnLPiNMcZnLPiNMcZnLPiNMcZnLPiNMcZn/g/bUvd3ih8s9gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Plot the learned functions\n", + "fig, ax = plt.subplots()\n", + "\n", + "for i in range(num_models):\n", + " ax.scatter(data_batches[i][0], data_batches[i][1])\n", + "\n", + " a = a.data.squeeze().detach()\n", + " b = epoch_b[i]\n", + " x = torch.linspace(0., 1., steps=100)\n", + " y = a*x*x + b\n", + " ax.plot(x, y, color='k', lw=4, linestyle='--',\n", + " label='Learned quadratics' if i == 0 else None)\n", + "ax.legend()\n", + "\n", + "ax.set_xlabel('x');\n", + "ax.set_ylabel('y');" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -239,7 +296,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -297,7 +354,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -395,7 +452,44 @@ "print(f\" ---------------- Final Solutions -------------- \")\n", "print(\" a value:\", best_model[0])\n", "print(\" b values: \", best_model[1])\n", - "print(f\" ----------------------------------------------- \")" + "print(f\" ----------------------------------------------- \")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEJCAYAAACT/UyFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACT2klEQVR4nOydd5hjZdn/P6elt0mm9+2VXXpHmihKVV5BsSKKvfHqz4aAiGJBQV9RXnhVUBGkCSwrgq70ssjCNrbM7s5On0zLJJNk0nN+f2SSSSYn09hh2/lc17ly8pxznnMyk3zPfe7nfu5bUFUVHR0dHZ3DB3F/X4COjo6OztuLLvw6Ojo6hxm68Ovo6OgcZujCr6Ojo3OYoQu/jo6OzmGGLvw6Ojo6hxlzJvyCIDQIgvC0IAjbBEF4UxCEr4y1Xy8IQrcgCBvHlvfO1TXo6Ojo6BQjzFUcvyAINUCNqqqvC4JgBzYAFwOXAiFVVW+ekxPr6Ojo6EyKPFcdq6raC/SOrQcFQdgO1M2mr/LycrW5uXkfXp2Ojo7Ooc+GDRsGVVWtmNg+Z8KfjyAIzcBRwHrgFOCLgiB8DHgN+G9VVYc1jrkKuAqgsbGR11577e24VB0dHZ1DBkEQ2rXa53xwVxAEG/AQ8FVVVUeA3wILgCPJPBH8XOs4VVXvUFX1WFVVj62oKLph6ejo6OjMkjkVfkEQFDKif4+qqg8DqKrap6pqSlXVNHAncPxcXoOOjo6OTiFzGdUjAL8Dtquq+ou89pq83d4HbJ2ra9DR0dHRKWYuffynAB8FtgiCsHGs7TvAhwRBOBJQgTbgM7PpPJFI0NXVRTQafetXqnPQYzKZqK+vR1GU/X0pOjoHPHMZ1fMCIGhs+vu+6L+rqwu73U5zczOZhwudwxVVVRkaGqKrq4t58+bt78vR0TngOWhn7kajUTwejy76OgiCgMfj0Z/+dHSmydsSzjlX6KKvk0X/LugczDzk9XFTay8dw37U1l3E9rRg3LuL7179Nb56+sn7/HwHtfDr6OjoHIyoqkp7ezu/feYFfv/CKwR37SC5u4VUT2dunyBw4+LlNCxZyiXV7n16fl343wI2m41QKLS/L6OAu+66i9dee41f//rXb9s5Z/N3+NGPfsR3vvOd3PuTTz6Zl156aV9fmo7OfiVryXfFEkhAiszApwoMXHI26WHfpMeP7trJTa29uvAfyiSTSWT50PiXTPVZJgq/Lvo6BzMPeX18d3s7g22tJNv2ILftpqyrjZ6Uiv26nwEZ0YeM6API8xcR37B+0n6Te3bSHUvs8+s9NFSG2ft4jz76aDZs2LDPrmPPnj184QtfYGBgAIvFwp133snSpUtZs2YNN954I/F4HI/Hwz333ENVVRXXX389e/bsobW1lcbGRpYsWUJHRwetra10dHTw1a9+lS9/+csA/PnPf+ZXv/oV8XicE044gd/85jdIksQf/vAHbrrpJlwuF6tXr8ZoNBZd19DQEB/60Ifo7u7mpJNO4p///CcbNmwgFApx/vnns3VrZjrFzTffTCgU4vrrr+fOO+/kjjvuIB6Ps3DhQv70pz9hsVjYu3cvl19+OaFQiIsuuih3jmeeeYbvfe97lJWVsWPHDlpaWrj44ovp7OwkGo3yla98hauuuopvfetbRCIRjjzySFasWME999xT8NTwk5/8hD//+c+Iosh73vMefvzjH/OrX/2K22+/HVmWWb58Offdd98++5/p6MyEB3uH+P7Lr9O1cwfWjlac3W3s2raNRMdeSIyL9BAgmC3Y0mkEsTiORp6/uFj4RRGpvgl5wSKUBUuQl66gzjgHIcqqqh7wyzHHHKNOZNu2bQXvydxIZ7wcffTRRX1PF6vVWtR21llnqS0tLaqqquorr7yinnnmmaqqqqrP51PT6bSqqqp65513qldffbWqqqp63XXXqUcffbQ6Ojqae3/SSSep0WhUHRgYUN1utxqPx9Vt27ap559/vhqPx1VVVdXPfe5z6t1336329PSoDQ0Nan9/vxqLxdSTTz5Z/cIXvlB0XV/60pfU73//+6qqqurjjz+uAurAwIC6d+9edcWKFbn9fvazn6nXXXedqqqqOjg4mGv/7ne/q/7qV79SVVVVL7jgAvXuu+9WVVVVf/3rX+f+Dk8//bRqsVjU1tbW3HFDQ0Oqqqrq6OioumLFilyfE/922fd///vf1ZNOOkkNh8MFx9fU1KjRaFRVVVUdHh4u+nyqWvyd0NHZV3zuF79SPee/T1WWHaEKFuuMNKb8nsfVqn+/UbQ4r/upqhxxlGq+6DLVfvX3VPdtf1Ir//5SwT7Nz2xUH+wdmvV1A6+pGpp6yFj8BwKhUIiXXnqJD3zgA7m2WCwGZOYdXHbZZfT29hKPxwvizS+88ELMZnPu/XnnnYfRaMRoNFJZWUlfXx/r1q1jw4YNHHfccQBEIhEqKytZv349Z5xxBtl8RpdddhktLS1F1/bcc8/x8MMP5/ovKyub8vNs3bqVa665Br/fTygU4t3vfjcAL774Ig899BAAH/3oR/nmN7+ZO+b4448v+Gy/+tWv+Nvf/gZAZ2cnu3btwuPxlDznv/71L6644gosFgsAbnfGt7lq1So+/OEPc/HFF3PxxRdPee06OtPlwd4hbli/ke6uLuYdfSzfnl9T4FN/yOvjD/feR/Q/s3NHJlpbkGqKExObTj8H0+nnFLWLQBqoNypF17Kv0IV/H5JOp3G5XGzcuLFo25e+9CWuvvpqLrzwQp555hmuv/763Dar1Vqwb76rRpIkkskkqqry8Y9/nJtuuqlg30ceeeQtXbMsy6TT6dz7/Fj4T3ziEzzyyCOsXr2au+66i2eeeSa3rZRrLf+zPPPMM/zrX//i5ZdfxmKxcMYZZ8w61n7t2rU899xzrFmzhh/+8Ids2bLlkBkP0Zk7soOr3bEEtbLIJ5UETYO9/HX9azzx+iZG9u4h2d6KOhoGowl57Yt8fWcmsiYruDe19iI2L4BpCL/oLkeetxB5/kLkeYtQ5i9Eal4wrWudS6GfyCHzy1HnqKDMTHA4HMybN48HHniAD3zgA6iqyubNm1m9ejWBQIC6usxd/+67755x32effTYXXXQRX/va16isrMTn8xEMBjnhhBP4yle+wtDQEA6HgwceeIDVq1cXHf+Od7yDv/zlL1xzzTU88cQTDA9nMmFXVVXR39/P0NAQNpuNxx9/nHPPPReAYDBITU0NiUSCe+65J3f9p5xyCvfddx8f+chHuOeee0pecyAQoKysDIvFwo4dO3jllVdy2xRFIZFIFKVYOOecc7jhhhv48Ic/jMViwefz4XK56Ozs5Mwzz+TUU0/lvvvuIxQK4XK5Zvx31Dn0+cvebm587hV6du8i2dFGsnMvqfa9eDvbeT0RL31gLErK20Oktr4gkqY7lkCeIN6C1ZYR+OYF40LfvADROf4krQCX17pZNxTUjOoBKJMlblxU97aIfT6HjPDvD0ZHR6mvr8+9v/rqq7nnnnv43Oc+x4033kgikeCDH/wgq1ev5vrrr+cDH/gAZWVlnHXWWezdu3dG51q+fDk33ngj73rXu0in0yiKwm233caJJ57I9ddfz0knnYTL5eLII4/UPP66667jQx/6ECtWrODkk0+msbERyAjwtddey/HHH09dXR1Lly7NHfODH/yAE044gYqKCk444QSCwSAAv/zlL7n88sv5yU9+UjC4O5Fzzz2X22+/nWXLlrFkyRJOPPHE3LarrrqKVatWcfTRRxfcPM4991w2btzIsccei8Fg4L3vfS/f//73+chHPkIgEEBVVb785S/ron8Y85DXx4/29NAdT+bcIpAR2iQw/L2vEXvxmVn1nWpvRa6tL4ikqTMqtK06Gttnv5YTe7G8MvfUaxYFLq0u47H+AMPJTOxOmSRy4+L6t13Qp8uclV7clxx77LHqxEIs27dvZ9myZfvpig5+mpubee211ygvL9/fl7LP0L8Thx4jIyPs2rWLlpYW/rZhI09u3MJoRxupvh4qHvwnglwc8RK845eM3nfXjM4jWKxIjfOwfewqjCeeRr1R4bWTVwCZG83Xd3YSSY9rZdZqfzvdM7NBEIQNqqoeO7Fdt/h1dHT2Gw95ffxw+146Wlsx9XYS7+ok1NmG1N2J3NuFv7+v5LGp3h7khqaidrmxdKI+wVWG3NCM3DwfuXE+UuM85Ob5RRb8t+ePZ4/P9/V3xxLUHeBiPx104T9MaWtr29+XoHOY8s2dHfy5x0cKGLn1R0Qee2BW/aQ627SFv2keUk09UkNTZr1hHnLTPOTGeYhOF1DoZ89/X8qCv6TafVAL/UQOauFXVVVPzqUDHBiD+4crWZ9718AA7gEvjoFetu/eTaKni1RPF+meTsr/vIZ6h515ZgPP+8O5Y0WHc9bnTXZ3UjxVEZRlR1B+z5qSx2V98uuGgoeMBT9TDlrhN5lMDA0N6amZdXL5+E0m0/6+lEOSh7w+rtnVjW80Qqqvl3RvF8nebiz9vTgHvbTt3Uuitxs1HKK/RB/Jnm66jAvompB+QKprmPzkksyShQvwlteQqK1HamhGbmhCqm9CdE89PmUR4AM17sNa5LU4aIW/vr6erq4uBgYG9vel6BwAZCtw6cyeZDJJd3c3TU3j7pOHvD6+uqOThKoycssPiT75WG5bECjtgZ/Qd08n8rzieHaprjGTpqCqBqmuEamuEbm+EamuAamhiabGRja840jNAVYodNkoZMIl04AEfKTWzU+WNE7/D3AYcdAKv6IoerUlHZ1JyJ+85JIl1HicIW8vbt8A70yFGOjq4t/bWwj2dEFfL8l+L+lUiuHh4Vy47E2tvSTG3GhSTe2sryU/3XA+yrKVVP79ZQSDoWibWRT4zuLME8GhOMC6PzlohV9HR2fcDZONH4dMDPnybRv417PPEuvrJd3npb+vl7RvEFSVQaA4qcc4bW1tufkg+fHsUnVx2oECTCbkmnqk2uzSML5eVaN5iCDJGfN87LoRBPzJlKawH2oDrPsTXfh1dA5Q8i12e3SU5EAffm8vDt8AxyfC+LxednzqapITjhtOpXni72uJrHloVufNF/46o5Lzy0u19YjllUg1dRkxr868yjV1iDV1iO7yKcfbzKLAsQ4LL/nDpNBdMvsLXfh1dPYzv9/aws9e3Yi3pwdHYIhj42FaOjpp6ewkNdBPerAf7+h4JMww0D62XvFfn0B0FVvBUqW2hT0VYpmb0dHR3Ptvz6/J+fgNK4+k4v4nC/bXipCZZzbkhF0ETAJEVHT3zBQMDQ2xadMmNm3axMaNG9m4cSO33XYbp5566j4/ly78Ojr7gIe8Pq5p6WI4lUkgoKbTOEIBPmuTGO7r4y+724icdk6R+D3k9fHFz36GyFiKAT/QMYPzpvr7NIVfrKjS3F/0lCNV1SBW1WYGVKtqkKprM0tVDQ1OB5ePzViFcd96vjvpYJm1eiCjqioPPPAA/1r3KzZveoPW1hgDA6mi/V5//XVd+HV03m4KBkglkXQsylB/P+rwECnfEGnfIOnhIdK+IVJDA6Szbb4h+lNJvp7tSJKpfPJsumKJguyPN7X2gqdi1teXGvCiLC5OU6EsXYHt459FHBN3sbIaqaIqN4iqAAhCbuAWimesZtF967MnHA4XZd+FTHbbq6/+DN3d/kmP18r0uy/QhV/nsCRrofsSSdTgCLbQCFdYRZalorzsG+HZlSfQFUsUhAsOp9L4vvopEtu2zPyEqSRqwI9Q5iaSVnPZH7tjCcTyyqmPVwxIFVWIlVVI5ZlXe2U1woIlaE1dMzfO48pvfzvngnHJEqgq/lQ699QBepTMvmD7jmtpbf0z7e1x9u6N09aWpr+vnp07vVRVVbFp0ybN4xqbEnR3T973G2+8MQdXrAu/ziHMDx5Zy683biPiHybtHyYdyCxSwE982DfW5od0igHg2rHjpPIKyu9/CqBIVMWy2Se1Sw0NIJaNp/qFjN97d10DUvMCpPLKzOBpxdhreeWY0FciOFwFA6dmUeDmJZlQR62onulmhtSFfmZ0dD7Ec8/+iJ0t3XS0C+zZE6StLUZPT5LCyeNDAPh8Ps304wAL5iu8nJfiX5ahqcnA/PkG3vOeGzjyyCM1U6zvC3Th19lv5LtR6owKZ3vsudzlYipJMjiCMRQkMhIgNRIgHRxBDQawhYMcKSRxRcJEy6vo+OCniqzWh7w+vv+Fz5Lq6ZrxdaWGh1FL1EkV3dMXSsFqQ/RUILrLkTzlBbHq2Tqq355fw9fPPhfTme/ObVMEAVSViSW2LYJARFWLrHNdvPc923dcS0/PeLrw2387xGuvjdLVlSA5MYxqEhKJBC0tLaxYsaJo2zHH2IjFVOYvMLBgvoGGRgOKIgASZ5/1tX3wKUqjC7/OPmFiPLmaSqFGRlFDQWzRUU5SVDah4Ktrzon8/d5hImkVNZVi8xc+zabgSEbcQ8FMRaQSBIHesXXD4mWUve/jAAX+85taexEcLpiF8JNKooaCCBp5ZMSKasSKKsQyN6K7AsntQXR7EMs8iJ5yRHdmkdweBJMZkUzIYr6I5/vSS01M0mrTBX7fk0gkePnl/+X552+jr2+Qyy5bisncjN9fWG3L603Q1jbxVjw1RqORjo4OTeF/97lXcMSq4kJGtbUfnPF5Zoou/IcwEy3qrHjkZ0fMUiZLqIkEw+EwxmiEuMkMNnuRcBlH/IT/dh+RUAhzLEJ5MkaXb5h4KEg6HEYdDaOGQwXCPQi0AaZ3nY/zWz+gK5bgjz2+nBtFkCQS27dCbOZlGZMBf8H7rP+8O5bIZWKcCsFqQ3SWIbrKkMrcCM4yUNOa+9o+8ilsH/mU5jaDAPG8x/2sywUmF/FSg6e60O879rTez3PP3sSu3T30dBvp6bGya1c7nZ0RUmM/BEmC957XTTTWU3R8U7OBF14YLWrPIghQXS0zb56BefMNzJtnYOmSei67bH3JEqHLlt4AQE/PfTA2q6G29oO59rlEF/45JCu8+WXXtELgtIRYACySSDiVRkylSMXj1AhpPl/tJBGL8fMdbQQiUdRYFPu8BVjcntyMx7M9dh7rDzCwu4XIU4+jRiL4Y1E+FovwxUScoVAINRJBjY4tkQh90QjEY7nz2z71RayXX0ma8QpHAKPhMEN3/29mnawnc3qooeD4+oRtos1OehbCr44EitqyAhs64kgEgwHR4UJ0lSE4XIhOV8ZaHxN60VWGYMjkeFQEgctrynJPIlmyA7zZmaXDyVTBoK8AfGyKSUi6iL99PPnUL1j3r9+yp3WA7i6Rri6Vnh4/UyVwTaWguztBc3Nx+ojmpvE2j0eieZ6B5iYDzfMU5s0z0NRkwGzOdw2KLF9+7ZR1oZctveFtEfqJHPLCf9PaJ/nDni4GE0nKZYkPVpdxmtuBqqqoqko6nS54fWEowIO9Q/hSaarfcbbmFPLr7n+YP6x/HX88jlOAM5wWlpkNJJNJEokEiUSCbYEQzwz4SCaSkEyipjKv6c9/nS/EElzT0sWNi+t5NRDi7h4fo48/zOiDf0aNxyARR00kIB5Hjcchnbkl9AOf0fiM6Rt+QezUM4GMu+PuHh8AKW9PUSWi0jZLIWokotkuWIpD06ZLOk/4i/q12WEoL+GeICDY7Ih2J4I98yo6nAh2J6LdjuBwITuc4HAWpefO/q++/OErSZX4sStkhH50TA3ya58e77TpbpYDmFgsRltbG0uWLCna1ut9lJ/8+Ps8/fTIrPpub49rCv/Rx5i55dZampsV7HZp0j4EQWHZsp9QU126LOn+5pAW/oe8Pq774udJtLUCmRmPP5jmsYLJjPGUM3Pvs/7jVwMhbrvjTsLr/gFk/M1/nsE1WT/+GcQyN8OpNF/f2UlszLJUQ0FSHTOrw5tFLWEpCybzrPoDSEe0bxEzEX7BYkWw2jKuFKsNef6ikvs6v3kDCCDYHBmBt1gRpNI/sOyM0YnWedZ/nhXq/9fSRThV6LaZauKRHre+/0mn03R1ddHS0pJbdu7cSUtLC21tbaiqSjgcxmwu/I637rmZ+obiQfnJ8HgkmpoMNDYpVFcXR98AOJ0SRxyR+T4KghlVjSJLTlTipFKZ34osuVi85NoDWvCzHNLCf1NrL+kpHu9KoaaLfbyRtJpxyQiT3/EnJTEeElDgTtAI95o2eS6afATjDPPTCwKCyYxgtpQ8VlAUrJ/4bGY/iw3Ras3sb7MjWKyIFmtm3WyZUriPdVh4wR9GJTPhCMbdKlnXmEWAqFrobsoX7smsc13AD1x6vY/SsvMGBgaH6OiI092VoLs7s3R1J+jpThKPT/7j3bVrF6tWrSpoi8Z6aWwottgFAWpqZBoaMgLf1GSgsVGhsVHBZiv8noqiGYfjqKIBXoDa2g/vF9fMvuaQFv7u2MxH4XOUGNxLAUgzsygKuk2ViAWbTPgFAQxGBINhbDGBwYBgMCIYjZrRJwBiVQ22T30xI9ImMwazmcVuF9tSQq5NNFty65hM0ypqY/uYlsOpNGWyxIWVTs1iGKUGoKeLLu4HNm9u+x5btvyZigrt38yddwzx1FOhWfW9c+fOIuE3GWtYsDDGmWdaaWgcE/cGhfoGAwbDZN/tjMlhMtYyf8HXDwqr/a1wSAt/nVHBv+wIpPxKPQIYRZETXDZEUUQQBARBQBRFXgyEiaRVBFHKzKbQQAIMRx2XsYglKbOvJOEwGvhUUzWKoqAoCtsjcR73hUhKMshyJv2soiBVVhf0ZxFgVAXT6edgWHU0KGPirigZsVcMmePHBFkRBFKqivZtacK1uj1YL78SKJzUUyqqJzuz0ywIRMfOMTGqxyIIGCWxYCD5rVQ30oX74Gdv2wO89OKPaWvvYaDfQii0HK9XZfv2V+js9JFIqDzyaDM2W7H419bN7km3oaGBWKz4SXf+gq8TT3yX714zbvWLopnq6vfjG3qaaKwXk7EGt+fMgveHg9jnc0gL/7fn1/D1b32/yAd885IGTbEpVeUn/9hLq8u4/9wLibzrgin7zI/qEaFIrM2iwM+WNPBqIMSfgVRe+GF+VM/EiCCgICHYTMX4J0sa9TS4OtOm1/sorXtuZvuONnbvTtDbG2egX8HnK6ejo4/e3omxXa3FffQkWLS4uEJu3STCb7eL1NUrNNQrnH76t1i0aBFLlixh0aJFWCwWzWOy4t265+bDVtSng3AwFKk+9thj1ddee21Wx87UlTAxKZdWVM9s3RNv1a2hozMXqKrKiy99nU2b/orXm+D0062IogFJtJJM+cm6QW69ZYDHHy8dmTUZ13yvkjPOsBW179kT4+c3D1BXp2SWeiW37nRmfO8mYy2nnPL87D/gYYwgCBtUVT12YvshbfHDzF0J09l/tu4J3a2h83aRtdKjsV4UuRqr7Qpi0WW0t7ezZesTbHvzn/T0BBgYgN7eOLHYuONv9eomysoSY6IP2RkLpSJepsJuF4lEtJ2TCxYY+c1vJ6uVLDJ/wdcn2a4zGw554dfRORwYF/oeQOThh4Z54YUw/f1JBgb2kEq9OO2+vN4EZWXFEVnVNdpyIQhQXiFRW6NQW6tQUyvT1FjJ8hWnoSj/LIqamS6CYGHZsht1N80cMGfCLwhCA/BHoIqMyXCHqqq/FATBDfwVaCYzk/9SVVWH5+o6dHQORjJJwv5COJxicCCJb1hGFM+nt3eInTv+Ta93hGGfwDPP/glJktix47uk09lJd2l6ehNs3jzzmdAAXm+SZcUp/mluNnDqaRZqahRqahSqq2UaGz1UVKSRpPGBVlE0s3TpD6mpvmjsc2RTEhSiC3tpNm/ezBNPPEEoFMLtdnP22WcXRTC9FebS4k8C/62q6uuCINiBDYIg/BP4BLBOVdUfC4LwLeBbwDfn8Dp0dA4Y8l0w2YHH9a+8yfPP/x6vd4jhYQMDA0n6+4MMDiYZHc0fg/t1UX8vvfRtqipteaKfobJyZj9ts1mgqkqmulrBYdcOvWxuNnD99eNRaVmBh9KDqfsrJcHBhtfrZePGjfzjH//gmWeeobu7m6GhIS6//HIkSWLNmjUA+0z850z4VVXtZSyJoqqqQUEQtgN1wEXAGWO73Q08gy78OocIyWSSLVv/xH/+81MG+ocZ8qXw+QQiEZGrrrJCXpafaKyHbdu+yS23dPPcc7OLZe/rC+HxFM8NmSj8DodIdbWZqiojFRVJqqoVqqpkqiplqqpl7HZxijkchVPrJsa761b7zFBVlSuvvJIXX3yR7u5uwmHtbLRer5eFCxeSSCRYt27dgS/8+QiC0AwcBawHqsZuCgBeMq4grWOuAq4CaGzUQw919g/ZGabZgc7t26P09iYZHk7hH5bxDScZGhrFPyzi98sMDY2gFSknCPDJT87TmB6SoLx89hMCBwa0JwSuXmXiRzdVU1UlU1kpY7Vac9Z5oVsof6bqy2RvSoKgjEX1BPSQyFmgqir//Oc/efLJJ7Hb7TidzgJ3zZYtW3j88ccZGBiYtB+v15tbDwSKExLOljkXfkEQbMBDwFdVVR3JtypUVVUFQdCMJ1VV9Q7gDsiEc871deocXkQiEQYGBhgYGKC/v5+WXf+gZedjDAwOYzSY+NSn60kmi4ee7vhfH1u2zCKLqArDwykqKop/cp7y0j9DRREoL5coL5epqJSpKJcor5CprMi8r69XkOUy0ulogZiXuWWOPz7Tr1YOGT3O/a2T9cMPDw/T39/P0NAQ/f399PT00N/fTzQaxe1286UvfYlAIFDgrlm3bh1VVVVTCn8kL1mi06k9Q382zKnwC4KgkBH9e1RVfXisuU8QhBpVVXsFQaghk3RSR2fa5PvJZdkFqpqzTPNnZD6+RiUSWUkk4mJgYIDBwcGc2Jd6tAZwuYJ84grtZHRl7tnnaRoaSmoK/5IlRs49154T+PIKObfudOa7YAQEQUZVx1ORiKKZxYu/B5AX1aPtjslSU32RLvSzIBwO89hjj7FmzRra2tpyRsPISOlMoPmlF/PdNYFAgMrK8VrLsixTWVlJVVUV1dXVVFdXU1VVhdE4ljJcUTj77LP32WeZy6geAfgdsF1V1V/kbXoM+Djw47HXR+fqGnQOTApDD7OIJBIKweAokVEr/kCA4EiSYChNcCRNMJgilV5EZNRMV9frjIwkGBlJMW9eLzf8IDPgGI31FJTLe/DBTrq6imeRTkUgkCaVUpGkYp+3exrC73CIuD0SHreM2y3hKZfxuDNCXozCUUcpHHnk5JlUs6l+obS1rov5vmXz5s2sW7eOQCDAAw88wPbt2zXdeFMxMDBAbW0tMO6ucTqdLFu2jLKyMqqrq3G73YgapT4BzGYz73nPew6aqJ5TgI8CWwRB2DjW9h0ygn+/IAhXAu3ApXN4DTpzSL7lbTRUU1P7Jcym0wgEAgXLjh1/pLvnFRrqZU46udiSTqVULrpwD9HoVD+q/xS1FBa/KMTpFOmaReVFVYWRQIoyt7Z1ftppVsrKJNxuiTK3hLts7NUtU1HhQRRHC6zyYgoTgkGhmE+VR0YX+H1DOBxmzZo1rFmzhvb2dpLJJHfccQerVq1i8+bNrFmzhkQi838URXHGom8wGKisrCSZV6Q36645++yzGR0dpbx8PI+YoiisXr2aXbt2EQgEisYF9iVzGdXzAplvuBb77plFp4BCazqb5SfzKksuEASSyWFUVSQaTZJMOgiFIkQiEaKRNJFImkhUpaEhk7oWMlPms2LU2dXJLb8IEI/bCAQGCIdTjI6mGR3dQzo9+SShs862aQq/JAmUMHamZGSkOD48i8NZ2jqXZZmKigoqKiowGDqwOxKUuSRcZRIup4TRpH1B55xj55xz7JrbMuGN1wHQ0vKD3BiBIJiRJBPJpL+kT10X87lh8+bNPProo7S2thIOhzEajQwODrJt2zY6OjqK9n/ooYcAWLduXU70gQK3zEREUcTj8VBZWZlz11RWVuJyuQoipfLdNVkxzz5RzKXIa3HYzdzViqOG2Q12TdWXLDnHhLb4B9/rfbRAHJJJlXjcRDqtEIkEEIVyKqs+jsN+CtFotGiJRCK55X3vex8LFy5kw+sfLcgh/uabYX73Ox/RqEosmiYW6yAaTRONqlNa11d8siwn/PkulHRa5dVX/YB/Jn92AMKh0jlFrTaR0dHSIl6KkZF0UQWuLO98p42VK0x4PG5OOunnlJeXU15eTmVlJU6nM3dMr/fRokiXyclY7OM30uL/ry7kby/5bpmsyO/du5edO3cyOjrdunPQ29ub6yefiooKAMrKyqisrKSioiIn9OXl5UgatSdEUcRoNBKJRDSFfdWqVW+b0E/kkBb+Xu+j3PKLrzM05EOW7ZjM8wgGt2Uew1VQVR+qeiWqCmk1haqCmh5C5VNUVd7Drbfer9nv7bffzrp1f2V4+A2SqSSplEo61Usq/WGSSZVUMk0yCclUF6mkSjIJqVQHyeSlPPrYbdTVVbB9+zcL3AH3/9XP73+fH0XSDmyY1udcsGABieQfiwpHhMNpNm+a3ezNSET7xmC1Tp2vvxShcGlht9skhgZT2GwidruE3S5is4vY7SJ2m4TdIeJwSNjtEk6nCbsticMhYneUtupPP92WN4v0wpL7TczoONkNW2f/4vP52LlzJ88++yxGo5FAIIDZbCYej5Maq5q+ZcsWNm7cOKv+s/54p9NZIP4LFy7kO9/5DsokdTMURUGW5ZJCfyBxyAp/1oq7//522tsTgI+MmE4Pk+khbr1Ve9tzzz3Hgw8+M6vr2tVyO7GoucgHLCuzF9RIJDI2Lb4Qk+kt9DmqbZ1P5lM3GgWsVpny8nk4HA6cTiex+CtYrQJWq0iDRmWkLL/6n1qMRmHKQjC1tR/G5TpmWlE9MxFtPdLlwCAbItnW1pYT0JGRkVzpxaGh8RTQ3/zmNzGZTAUhjwAej2da5xIEgbKyspzLr7y8nObm5pxo5/v4ZVl+W33wc80hK/yte26ewaN7MelJajZqPdZNl/BoH9FYcV5y5S0Kv1YuFKNxcse5wSBgNguYTCImk4DZImI2i5hNAvPmaYu0JAn86KZqzCYBi1XCYhGwWESsVhGDwZLL0ZIlk6vlHs2+8jHl+dRluYxkMsDECgb5Ze90kT742bx5M//3f//Hjh078Pl8DA0N4fP5Jg2PzGdoaIi6urqi9vwBU8j8XrNuvvLychobG/nGN75BNBrlqaeeKvDlZ/3w+9sHP9ccssIfjfVOvdMkTDaA/1aEXxLLMRltE0IZwTgmwooythgEDIqA0WjA7V6J2WzGZDJhMpmK1leuXEl4NDuQO05Dg8LPbq7BZMqIu9EoYDYJGMfWtcIVp8Pxx1s0qxppWddZoe7puZeskAuCmWXLJs/xonNws3nzZv7+97/T1tZGLBbj/e9/P7t3786J6KJFi9i0aRMvvfQSGzZMz6U5kcHBQU3hr6ur413vehe1tbW43W6sVmsuVFJRFC644AKOOOIIAIxGY0lx358++LnmkBV+k7GGaKyH957nwD88LoiCQC7WSBTIlE4ERCGNkKm7giQp1NS8t2Tfn/rUpzjqaCf9fQ8hCAkkCSRZQJJkJElAllNIEsiSMNYOsixgNJo49dTvYjQqRT7+957n4L3nOQrOk5/lcCq27/hgkWVtsYgcdZQZraieXJtcRioVRVVLPx3lR/XMRqQnS9SlC/3BR9YdMzo6SigUYnh4mGAwyNDQUM5qHx4eLpgkV15ejtWaiegKBAJkCyu53TOrT2E0GikrK8PlcmGzFRd2AbDb7bzjHe/gggsyVfIms9oPZXGfjENW+Ocv+Do7dnyXSy4ZbytlpcLMLM9TTz2VU089lV7vWbOO6oHCkD/IpKmVJOOsBhXHLetsClyJ2toP6pkRdWbN3Xffzd69e3Pvd+7cyd69exkeHs4t+THqk+Hz+XLCn08p4Xe5XHg8HtxuN/X19Xz2s59l0aJFNDY28uabbxb432HyCJrDUdin4pAuvagVbqlbmDo6GbLumI6ODiKRCMPDwwwMDPD+978/F++ezxNPPMGrr746q3NdfPHFrF69uqh9eHiYF198EbfbnRP6srIy5LFsdlnXzETxzg/fPNT87/uSw7L0oh6poXM4o6oqQ0NDdHR00N7ennttb29n+/bttLe3a8a4H3/88ZoJwcrKymZ0flEUcTqduN1uzGbtlBRlZWWcf/75mtsmE/TD1UWzrzikhV9H51Aj39JNJpPIspwbLH3zzTdzoY3/+Mc/eP311wvcIdPF7/drCr/L5Spqy/rcJy5utxun01ky/8zE0EhBEFBVVbfe3yZ04dfROQAJh8N0d3fT1dVFV1cXr732GuvXr8fv9xMIBBgZGSESifDd7363YLA0iyiKsxJ9yAh/U1NTUXtNTQ1nn312TtxdLhdms3nKuRfZG9OhEP/+dhB6vY8d97/Klt1vcuzSI5l/ydFYjyqdMmI26MKvozOHlPJF57fv2LEjl4YjK/bTLboRDAY1XTDTzd2edcc4nU5cLhcul4uqKs3aSDidTk499VTNbQaDAVVVczebucgoeagRfqOf/r9tp6VzD9v6d/Nm/2629+9mW/8e/NHMXIbfXHg9biGTG2pfir8u/Do6s+Txxx9nw4YNqKpKKpUiFAoRCoUIBoMFr6FQiFgsxic+8QnWrFlDR0cHmzZtyonktm3b2LJly6yuYWRkZFLhVxQFl8vF0UcfTVNTE01NTTQ2NpJMJtm2bRsmk0nTHaMoCk6ns2iAV3fJvDXCb/Qz8mQbyeEoF/3pc2zp20kyXTqVybaBPVyQOIuRJ9t04dfRmQvyhTyL2WxmxYoVOTfFzp07URSFjo4OOjo6csI+MW2AFlmhn3iOUvHoUyEIQskEZAsWLOAb3/gGZrMZl8vF1772taJ98p86soOvB0OemQOV8Bv9+B/bTTgQYufgXnYOtBIjyRUn/Rfp0SSiRSYdTUJ67AaKOqnoA2zr2wVAyh/bp9eqC7/OIU2+uGXjvIeGhojFYgSDQcLhcG4ZHR0lHA6jKAqXX345kBHCfP/5+vXrC2LbZ0IoFKKsrKwor7vD4SjaV1EUamtrqa+vJxwOYzKZcDqdOByO3GKz2SYdPFUUBUmSSlZu0iNj3hqJRIKWlhZe+cM/2fzyG+wYaGXHQCud/l7UsdrFlVY3H199MQDp0cI5D8srF7Kxd7tm3xbFzPLKBaysWgyA5CpO8/JW0IVf54Bnop980aJF7Ny5k/7+fiwWC+973/sAitLpPvbYY/h8vpyoRyKRaRXTMJlMJbfN1jqHceHPukuyzJ8/n/POO4/q6mo+//nPU1dXR0VFRU7UN2/ezCOPPEI6rZ04TyuqB3Q/+77A98guRtd76RjuYfvAHnYO7GXXSAe7wp20tO+ecgC9P+zDN+rHbXEVbVtWMR+AOkcVyyoXsLxiIcsrF7K8cgFNZXWIQub/Lygijnc379PPpQu/zpyhNbAJmYlAWYEym828+93vprW1laeffprBwUFisRiRSIR0Oo3BYKCzszMn3JFIhNHRUaLRKKqq0tjYmKuONFEYu7q6pixmrUU0GiWVSmnmZNKafZq/zWazYbfbsdlsufXs+6qqqlwYY76Pv7Kykrq6Os2JSjA+83Ti322iqJeKh9eZHhPrOvTduYnEnswg61cev5HXurfOqt8dA62c3HR0Ufv7V76bi1e8C5dJu7APZCx9x7ub9agenf1LVsz9fj+pVIpYLFawRKNR0uk0brebPXv25EQ6Fovxz3/+kxNOOKHA2o1EIjzyyCPccMMNs6pnGolEcnnYJ2KxWGb9OcPhsKYLZvHixVitVhwOBxaLJSfwFoulpNslS75YNzY2zmjmqe6WeetkB1ajQ2E6UwPsVfrZ9toWWryt7Bpsxx8bYefTm7EeVUn4jf6c6AMsLp83beEXEGguq2NpxXyWVsynxqEt2g6j9tOjYJZwXbhwn4t9PrrwHyJMtK7dbnfOF62qKslkkkQiQTKZJBaL5eqBtrS0EAwGSSQSqKqKy+Wip6eHuro6jjzyyAJB2rx5M3fddRe33347sVispOthMo4//njNdqPRSDQ686Ixk1VX0hJ+o9GI1WrFYrFovmZFvJRlP2/ePBYvXswFF1xAR0dH0UBtPpNFwOhCPndkBX6kf5i2hJfu6jA79u5i64tvsHugjbbhbhJp7RxDu+9ez0JOYOTJtoL2JeXzNPevtHlYWj6fJRXzWFKeEfrF5c2YlRLuQklAMIiokVS2kNucWfWToQs/haKZRRAEjjnmmJKPzxOLMWeZOFnFbrdz+umnk0wmWbduHbFYLGcZ5p+jo6ODXbt2EYvF2LlzJ2+88QYjIyMoisL8+fPxeDy0tbWxc+dOwuEwoihSUVGByWTi4osvprW1NXct2SLnu3bt4oEHHpjVRJ4zzjiDefPmsWbNGiAjVOvWrQOYVgSLFpMJu8lkmrHwGwwGjEZjydKLp556KscddxwWiyW3zDSl9sSonnwRX7Vqle5e2Y9ko2jUyNgT35iQ3vTM7Tyy7V/0BPtn3GdLfxuVT1YVRdEcUb2EExuOZEnFPBaXz2NJ+TyWLVhC9dHNjL7inbxTRYCEul8EvhSHvPB/+ctfZuvWrQwMDJBIJHJFtu12O6qqEggE8Hq9OetVVVVUVUWSpJwlN/HHfcUVV/D444+TTqdzS9bHnEqlcm2pVKrIGvzyl7+ci7tWVTUXMbJlyxa+853vzOozms1mmpubi9rfyuzNeDwOZCIX1q1bx6pVq3KRMbMlFisdklZdXY3VasVsNhfVGyi1ZEU8+7+a+ARSW1tb8D4/ZFFRFJLJZMH/Z6qbvc7+IxgM0tLSkqvEtWvDdn688gsIat4Nf+xfGU5EZiX6AHt9nZzkPxLJZSwQ/+Pqj+CBy3+Vey8oIq73LcqJ+Oh6b+b8AiAfeEI/kUNe+NeuXUtra+uMj8vW1tywYUOREGzevLloYst00fJHb9iwAbu99ADPVJSa5TlZfdCpyAp/fv9OpxO/359rz6bCNRqNmEym3Hr+km3PhiNOjGjJ9vOhD31I03WkVe5Oa/o/FEf1ZPu++OKLdbfKAU74jX76H9/J3vY22sI97B3qpLW/g70j3ewNduMd7Cs65muNH6TaXl7UvtDdOOX5Km0eFnuaWehpYlF5M4s8zSzyNFFuLcsJtv/hXaiJ4u/kREF3X7wI98WLZvGp9x+HvPDnF4OYCflPABOZbg5yLbSEX1VVDIbS9WinopTA57dna4ZmF4PBkHuduG4wGAqs5ews0Gwd0m984xsYDIZc6lwtRFHk6KOP1hRoregUGBfu2c4O1cX94CDrg0/5Y/zpjUd5Yuez7B3uonukLxf/Ph1afR2awr/Ak8kzJAoiTa5aFngaWVjZzCJ3EwtcDSz0NOEsFUkjCQWinr3OA9l6nw2HvPDPZgASxgVfy3c8U3eHKIqIoljgPspHEAQaGxs588wz6e3tRVVVZFlGlmUkSUKSJBRFyb3PrmczM1522WVs3LixyK1TVVXFt771LRRFmTLipBTZGqQwLqxalnU+U8WPz7Rd5+AgK+iBvmE6UwN0m/3s3ryTdm8HN33gW5S9ZwFAgSXd6uvk+faZ19oA2OPr1AyTPLp2Of/65N00l9VhlA0Zt8z7MxZ5vpAbl5YR2TSQGyMQLTLOCxbkxN16VOUhI/QTOeSF/5JLLsHn8+XeZ4XcarVy8cUX89BDDxGPxxEEoWgBOOaYY4r6/OEPf8gjjzyCIAg5Uc9fJEkqeC/LsqYPOkvWr3zhhRdqDhprxX5n27Ox3w0NDZpRPRNvUqIokk6nNSf9TDaQmUWPRjm8Cb/Rj/+JVnq6uulKDdJfG2Nvdzs7X9lCx1AP7f5uhkb9Rcd9/sQPIzycBlkocJ80lxXXzNVCFiXmLZjPkiVLWLJkCU2mao4crNXc12qwsKQiE4Uz0VIvEvKDzEWzrzjkhf9zn/ucppBmBbOpqYlHH31U0wVz7LHHag70nXPOOVRVVU0rqmcyH7TWYOJEqzpffCeL/Z6tIOsDmTqTkZ25igr/8/KfeHDrP+gKeImnZhY00DbcTYOzBiYcli/8AgK1jkrmldXTXFbPfHcD88rqWeBuoKmpmcbvnlxwbKmonkPNLTMXHNKlF7NMVaZNL+OmczgRer2PvfdtoLO/h+6Al65wH50BL52+HrpD/Tz/t3V4TmzMiH5eqOJNz9zOb9b/ZVbnvOnd/81HjiyuhjccGWF95ybmldXT6KrFrBS7UbOuGl3IZ85hWXoxy1TWsO6+0DnYyR8wBegPDbF3uIuekT66g/10B7z0jA7QHRmg09vNaKL0XIxtf3yRo42mjKWfR4OrZlrXIosS9c5qml31NJXV0uSq47i6zO9LtMioiXTO3VNmdnDu4tMKjhfMEoIgkB5N6tb7HHFYCL+OzsFM+I1+Amv2kB5NklbT+NJBfNUJOje3cnbN8QXpfrPc9OztPLj1yVmdr2Ooh4VPtjExwKbBOS78LpODBlcNTa5amly1NDhraHLV0VRWS429AlkslhZBEXFekBngzb9JZTaC5YTqgy4s8mBFF34dnQOEZDKJ1+ulq6uL7u5uuru72buhhbYNLfSO9NM70o83NFjgX9/+1X9gozg1Ra1du4rWdOgM9GZEecxnnuWY2pU88Yn/o8FZMx4OKQmgqgU3HchY9qZV5cR2DGuGQ+oWvDaqqtLb28vGjRvZuHEjH/rQh5g3TztdxFtBF34dnTkg3/WiqiqBWCiThVFjAPLLX/4yDz74IH19fTMOP+4N9rPI2FzUXlsiMVgWi2Km3lFFnbOKemdNZt1RTaOrhgWexly4Y76P32a0ZPLDT0hBAIduvPtcEo/H2b59O5s3b2bTpk1s3LiRTZs2FUwOra+v14VfR+dAIpFIsHfdm7Q+vgmv10t/eIj+kI+BqI++kUH6g0P0h4cYCPuQRImdX3sSgUyYcMofw/9wprpSKBSit7d3VtfQE+xnUXlzUft8dwNHVC/JCXqdo5I6ZzV1jirqHVWUmZ0li6Rn879rpSMo5Y7Rhb40259/mufv+yPBoUHsnnJO++DHWHrqGTQ2NtLXVzwjOZ+NGzfysY99bJ9fky78Ojp5+NZ30vXQZtxiXkrmrMtDgG//42Ze7dnCYDyAz+8r1U0xqQTBeLggFa+aSDPyZBt1ddOLZc9iN1ipcVRSa68smQXypMaj+PvH7yxqFxQR8zGVBROXBIMIkoAaSR0S6Qj2J689+XceuvM37OnoZCiawFVVzTuqy0jGM+MZwcEBnrrj1wAsXbp0WsI/F+jCr3PQk+9WyY8IES0yo/EoPt8QQxE/vtEAvuQIQ8FhhkJ+fKN+hqJ+hkb9DIZ8DI36CcbCNDprePGzfx0/gTr+2j3SR0v/7Eov9oeGinKwp/wx6prHhb+8vJy6ujrq6+upq6ujUirD1SFQbS2n1l5Jjb0Sm1GjzkB+ut+JaMW362L+lkgkEjxx759Y8+e72dvdw2AkRn8oQu9AYQ4v845dnHTxuwqerpLxGM/f90dWrVrFs88+W9S3xWLhiCOO4Mgjj+Tkk08u2r4v0IVf54Alf/KQikrqCBvqyWUMDQ3h8/kYGhpC6U9x0uC8XHigGknldPq0X15Gq69zxucdGB0uua3c4p7NR8FmsBCIBovaJZeRSy+9lHe/+93U1tZqpgPJj+qBTLijeXVFyYFTnbfORPcM85bSF4nz5ptv8uabb7Jjx45p5eyKJJIEIlFcFnNBe3BokNXnnEpDQwOrV69m1apVrF69miOPPJIFCxbMOH34TNGFX2efMlGkcgigpsfz5isLHFR9ejUAI6/18ovrfsLw8DAj6iijZWl8fYMM9Q4SiAXxR0YIREOk1GJr9piGlTxy+W80r8Usl66dOxmRRJTReASLwVy0rdI2LvwCAh6Liwqrm3JrGVU2D5VWDxVWN5U2D5U2D1XWzKvVUGyl53zpbjdud+kbyqGcM+ZAYcvT/2LtH/4XJR7FaLURD4dyebWCgwPc/uDj7O6fXUbe3kCwSPjtnnI++clPcuWVV77la58NuvDrTErBxCABookYOwf3EoqFCcVHCalRUostxJwqQ7t66d/USTAaIhgLMxILE4xl1oOxMOctOYOfvuf/AZDYM0LfnZuwHVvDyCN7+OE/fk0yrV1CcTJ8IX/JbW6zc8b9SYKE2+IkEA1qCv9HjryI85eeSbnFTWV5OVJa1EzdiwiiSda8AeppBd5+shb8cH8fo5IB57LVtLa3s/75Z+keGKI/GEYWRW5837uIhYqfzKodtmkJvwB4bFZqnHaqnXZqXHYa3a6CfWSDkdM++LGSg+tvB7rwH2DkC+1EcSiypiUgTysFQ2FxCJ/Px4ZHXmTwhb2E/EFiYoJwbKxYuZQgVW8gbstElQS6hgh0DBIaDTOaivLZT32Gj1/84cKc5Cr0jvRz/t1XzeqzTXR1JPaMMDIUg6SK02TXTO41Ff7oSMltZRYnsijhNjtxW1yZV7MLj9WFx+zCbXHhsbjwWMrwWFyUW1y4zA5EoXQm03pnNfXO6kwagYsLMz7qon7g4Pf72bFjBzt27ODFfz7JK889i9c/wlA4TMaQf7TomFQ6remWAah2FqdxdppNVDlsGZF3Oah22Khy2DHI424a2WBkxeln0/rGfwqiepaddua+/LgzZs6EXxCE3wPnA/2qqq4ca7se+DQwMLbbd1RV/ftcXQNoCymM/1hFSyZzphpJIToN2N/VhHl1OcHXvUT/3VMkwOE3+mn/2yaCgwGwyZhOqcaw2Elwaz+B5zuJBUZJppMk0ymS6RSJVJKUCZRVbqR6C+effz42m63o+p7f9DJPt64nnooTTyWIJROZ17viqBUGorEooR4/sWSMWDJONBkjmowTTcT4nwuv5ewFJ6HG0ww/sBPIuAfW/XEtl35tdqFgu57egl/cXWTN2ozatWinw0gsVNSWnb3pMNqmFH6LYsZltlMxrwaPx4PH48GJNVPxKFmcc+rn7/0Wv77g2plZViIIsogaz/vceVE9WsKuC/z+ZaI//rGWTtb+a92s+uobCWkKf5PHxSkLm/jo17/NihUrUEaGeeXeu3LROnDgirwWc2nx3wX8GvjjhPZbVFW9eQ7PmyP8Rj8nvfc0dg22A5kBQq4ht66qKmlVRUUlrY790MeqH1oUMzuvzkx5z8Zcx9oDRDb08+2HfsJj28e+WD+b2TXt3r07J/zhN/pzFvXG3u3c/uq92gftnLzP0Xhe3pV05qZmPaoSdWtpa3gqwtGwZoSITcNXPV0CGsKfLXH34SMvJBQbxWmy4TI7cFodOBUbLpMDp8mG02THJBuxnFgcR14qqsfisOZu6lnRFswSajINibF6C5OEMursHyYK+RHvuQg8VezcuZOX1v2TV194jkH/CF9556kYzCZSySTqWHbd4OAA4e72WZ3XZjQQKVGqtMbl4H1Hr+Qzn/lMrs1htxXF5x+IIq/FnAm/qqrPCYLQPFf9T4eRJ9uIJTLW8UzJ3QjGUBPpXISJNIkrYCrySxqOPNmWs6gVafZlEid+vqwVbYzN/jrDce0kXibZyKrqpZgVI3aDFZvRgs1gxel0Ur6yDnlXBLuSaXcYbdiNVuxGGw6jFfuEpwVlgQPbsTX4H97FZ47/YK49m40x1h6Y9uQhXawPbkZGRti9ezfPPPYI6x55iD5/gIFgmIFQmMhv7tI8Zng0gkcsfpor17DY83FZTFQ57FTabVQ5Mkulw4bVOHkVvNXnvLfg/bLTzjxohH4i+8PH/0VBED4GvAb8t6qqmrFzgiBcBVwF0Ng4dQ1NLQqSQM0QzXTVY03SLKtZAQX5+/Ovz/CWhD9e8F5yZUIC3ZXlHFO7AotixmwwYZZNWBQTZsWIWTFjUUzYnXbMBjOmhIzNYMFqMGNRzFTaPEWZFCFTQ2Dtx+8ovAARyj6wJOcK8/9tV6GrRIP8qB7QnvJvPapSnzx0iKA1e3XZaWdyzTXXcOedd9LfP/Pi6APBEB5b8RNopcOGJAosXrKUZcuWUW41M7pnJ+UWExV2K0ZFRpDGngw1QjLt5RW4qmvp2rYFNZ1GEEVWnX0u7/zU52f12Q9E3m7h/y3wAzIS+gPg58AntXZUVfUO4A7I5OOfzcmyAjjj4wRJu1ThmLvAZXKOZSCUEAUJWcwskighizLK2LoiyciiPLZdxmAyFhRVz7o5AI6pW8G3T/8MBknBIBswSApG2YBRUnCfMQ+T0UTipX6MogGTbBzbZsCkGLEqeRaOSG4c4+iPnM6jlv/VjjqBgpJ0EwtLa2ZSnODrhozrxHXhwqJydZMNUk9Et9gPfrY//zTP3Xs3vT09BFMqAyNBvEM+/NE4AyNBPvuOE5ClzG8qf/ZqMpmclegDDATDLNXIFN3kcfE/V32Uz/327oLrm3jjAQ5aV81bZU4LsYy5eh7PDu5Od9tEZluIJfxGP71/3YqayPNViwKCKEBKRRREBAQEgdy6aJAyU9o39BcJ4Uzaiz6vRjGJfB9/KfJ92jON6skeozWQrRUxpCfa0tFi+/NPs+6uO4iFgiRSKYbDEYbCo/hCowyFRxkejTIYDDEUHiWe1A7J/eZ7TqfCXjhr2V5egXjUKXz605+e9PyyJFLldFLpclBmkKlw2KiwWal22jApxU/KssHIu6764mEj4pNxQBRiEQShRlXVbDaq9wFb5/J81qMqqWHltKN6CqJ3mpyaQjid9qmiQPKvL/9a8plY+Dm7/0zFeLrH6Fb34Uu+NWwpc3PG5Z8AxqzhwYHcfg+/vpWXds9u4HQwNFok/MGhQY5dlDFqZFlm/vz51HjcMDyI22Kkwm6j3Gah3OXi3M98CYB/3P7LYveMIGC02oiFQ4ed5T5b5jKc817gDKBcEIQu4DrgDEEQjiQji23AZ0odv68oJWhTidxkx82kfbbXp6OzL5jo4jjhkg/RNzDAk/f+ie5eLyOJFIOBAL5gGN9ohMBolB8ODWGQpVykTBaLYfbjUEOhcFGb3VPO8ccfz+7du2lqakKWZc1rnijk/777DqLBzJwQo83O2Z+4Shf6GXJY1NzV0TnUmSiWjlXHsW1nCy899QS+YIjhcITh0QgjkejEwlpF/Pe730GNxoSlV/d2cv9/Nk96rFGW8NiseKwWPLbsYqXWacdmGh9z090xbw8HhKtHR0dn+kwU85rlq3jjxefp7ukhKsq4Fizh1jv+jx0vPMNTd/y6IPXvH372U17ZMzu3zHB4VFP43VYLAuC0mHFbzbitFsptFtzWzOKxWbAZDVNOmDPZ7Zz1cd1K35/owq+js59RVZVX1j7KE3/6Az1eLzFRRrC72LV9G8OhMCORKP5IlEj8rsIDn36RD158IVv+/kjBDFIAh2l2EW0AIxHtMOh55WXcdMl7ctE5kyEbjSTjcYxWG4IA0ZDuf5+MlvVenn94B7v3tNA1tIfuseX9p36GK66+mMUnVO/T8+nCr6Ozj5hooZ962UcJhcP840+/Z6C/nyOWLNYUvne+4zT+/cKLszrnE3/8PU6hOCqszFI6M6ndZMRtNVNmMeOyZCz3srH3bqsFk8mYCXiY4OMvNX9FMZkQZUUfXJ0mLeu9vPTIbl7b8hKDkQ6G4528uX0rvcPtpCckKtzTvY1/3b0EYJ+Kvy78Ojoz5Mn//R9efmINI6MRRqIxgtklEht7H828/u+fiI+JpySK/NjtysWv5wtjwjegeZ7p0N3bS/0RKwqibwBqXQ5OWDQPl8mI02SgzDIm7A4bkigWiLogSRgtlgKrHA7fGPd9STqd5vn7WnjzhR4mJAPgnmduxh+e/H/fPbQHNa3y8qN7dOHX0Xkr5CzzPLFMpFKEonFCsRhpQaSpLFN6cWLUyLErlvP6tu1TDpBOJJVOMxpPYBUEnr/vjwUiap7mRHBJFHCYTbjMJlwWM06zifraWk774McKfPwATVWVfPp7NwDFAq7VpiXqutBPn3Q6TXt7O/948DmeevR5Orx76PHtxaiY+cb7btM8ps4zf1rCDxDyzT4LgRa68Osc1JSakfnvu++gx9tHKBonoqpEkin8gRFiKgRCYYKRKOFYnHAsI/axvIlHLouJa84/G4BYKMgTv70VyAhhxO+bsehnGYlEsRoNBIcK87pXlZdjkPfgNJuKF8v4us1kRMwbOJ0YGVNKzHVR33eoqkpfXx//eOA5/vnYi+zt2kXfSDtefzujo8Uhq7KkkEqnkMTiilp1ngW82bG+oK3MVkmdez715Qup8yyg3rMQAJt79mM2WujCr3NAkl84Q7TZcc9bzJuvvozfHyAcjxNHxFReSWzAyynzG4BMNMsTv70VVBU1nea3T7/C8Kh2srnJCEbjqOp4tTA1lcpZ6XbT5Im8JiJLIg6TEYfJlLth2D3lBft88/obOPrO20glxnMuaaX4nX/UcSVT/h7MCcMOBm644QbWrVvH1q1b8fl80z4umUowEOimuqw439ii2tWMjPqo88ynzrOAOvd8rCZH0X6CKHDSRQve0vVPZErhFwThS8CfSyVT09GBwmn9WRSTCSSZEb8f2Wbn5PddRkW5p8jNkk6rPLRpO9aqWpKihLeri35vL+FYnERq8qpcDW5nTviBAt+11WiYlfCn0mmiiSTmvAlLWSvdbsoMmloMCg6zCbvJmFmMBuxmE46x9w5zRuzNJiOkx5272epL+aw4/WxEUdR96vsBVVUZGBjgyQdf4PnH32B1Y+ZvbrRKvOPSJTm/+muvvcZzzz03q3P0B7o0hX9Z/bEsq8+E2K98Ry1tW4eKXDqKUeKMy5fsl6ieKuA/giC8DvweeFI9GGZ96Uybf/3fb9i87h+5TIR1y1Yy7O0hPDSIIIqo6TRGmx1BgGHfMLv8IepWHomlspq927ay47VXGY3GiCYTRBPJvCVBLJHMWbrHvbCeD510dNGUe1EU2LCnneSuvTO+9nAsXnLbVGl2C65BELAZDdhMRqxGA4lUCjPjwp+10r/y+c9zzjNPTStD6+pz3kvdkmXT9qfrQj83PPuXHWx5vovhkQG8gXai8iB72lvo8u6lL9BJKBIAQBJlfvHJ05AkmVg4xb/+uA3IRNOsXLmSNWvWTHoes8FKrXsete75mVfPfGrLmjEbbZMet/IdtZx++VJO3zcfd1pMKfyqql4jCML3gHcBVwC/FgThfuB3qqrumesLPJSY6I/OT/2aj6QoyEYTsVAwJ7z5AqyqaYKBEUSTiXgyhZxK4HC6iuKlu3u9/OG2XzESCCAYjJjdFfR3dxIKhVAlGWtFFX6fD99AP/FkklgyNfb6OOeuXMJZyxbkri1ryY/G4vzx6Rfh6ZmHH0bicc00uABmg0IwOvMBrNG4duEMgEq7jVAshtVgwGocWwwGbCYDNqMBq9GYE3uzIpeceCRIUs5KP/8LX8VkNORulKX2f8/nvjqpj11nbmhZ7+Wvv1lHe28Lff5OvMMd9Pk76PN3Ek9GJz02lU4yMNKTs87VFLlomhUrVuT2M8hGqlxN1LqbqSlrHhP5eVRWVJGIpVEne0gVQFIEUnEVm9vISRct2OfW/HSYlo9fVVVVEAQv4AWSQBnwoCAI/1RV9f/N5QW+FbY//zSP3vlbAr5BbK4y6pcfwa5XXyYZjwMqqpqtxDWWZVhVURnPxb+gsZ6zPp6pL5sVbMlgoLNvAP9oBFXNFGyRjCaWnnomVQsXk0gkSCQSJJNJunZuY9eGVxkNBkmlVVLpNGcsmY/FaCA4OFDg7tjY2cN/9naRTKVIptOZJTXxNUUilSY94YHrE6ccw0ppfPAoODjAP27/JW92efnLc4WDRwXsaSu5KV5CoI1y8SDVdIlMItJmRdYUflEQMBsULLnFgNmgYB1btxiVAn+8IEk5H/9FRy3XPJcoyygms2ZRbcjceFNjdRO0csG881OfP6Rysx9MZGPgvT191NRV07zSk3ORGK0S8dEUf3vhTt5ofXZW/XuH2wvcMlnXy1lnncWjjz7KihUriPeZeO6+XSTj+S48kdMvWwrAc/fvJBYeV/+JbqMDgen4+L8CfAwYBP4P+IaqqglBEERgF3BACv/255/mqTt+za2PPUXfSLbk38PTPt4gS/zo/efyxG9uAUHI+Y5TsRj/3r6HjZ09hQc8/dK0+j1+XgMWDRfEcDjCTu/s4rkTqWLLM51Mosy+XgyxEsJvUmYeD2CQJUyKrPm5s7x31VJSaRVPRTmnXngJmx5/GKOgYpQnt8RXnfXuogFPKEzkJRmNKAaDPnv0IOP1f+9mzZ+fo62jlYGRLvqGu+gPZJZYfJRffOrvhJ4bNxayYlvlaijVpSaKbKTa1Ui1qxG7paxgWzaapqamhgsvvDDTuAAkSeLlR/cQ8sWKLPcDSeBLMZ1fsRt4v6qqBYk/VFVNC4Jw/txc1lvn+fv+WDSNfSZkrX6tx3mNam/TJlnCPfCWqnqVGABVpNlb56XyqsuSxHHN9RkxNygYJRmjImFWFIyKjEmWMSkyJkXBrMgYFTn32SarerSyrhpRljn3s19h2WlnsnzxogK32PyjjmPnK89POyujLuwHB5uebWXNn16gvWMvvkgP/f5uvEOdDIx0EQhPHj0zGOihxt1c1F7l0q7YZzbYqC5rpMrVSHVZEzVlTVS5GnHbqxA1yqkKEiWjaRafUH1QCHwppuPjv26Sbdv37eXsOybGSs+U9CTD11MloZq8X+2O5RkIv0BGgBVJRJGkksc6TCZOnN+IQZYwSBLK2KtBljDIMgZZwmw2I6fTY20SRlnGKEvIk9w0Ljt+dS7ccMvTT5X022tN5YfiPO9QnLhLa7BTd68cnGx8ppVNT/US8sWQDQLJhJqrV/HHf/+YV1v+Oat++/ydmsJf55nP0vpjqXY1UFXWRJWrIWPNm8s0f7uyQWTpidXs3tBPNJz5Lh+I7pl9ySEbx2/3lBMcHMBlMZPMd4UIGeGEcQEXxtYFQcitT2aB17ochGNxRFFAFDKLJIoYTCaWn3I6iqKw86XnSMeiiKKINLZdEjORI1osrangytOOQxZFZFFEkkQUUUSWRCQxI/CKJI6VeBSmvPmIsozbYeO/jj2i5D7ZCUDdO7cXRPXULz8Cv7eH4OBAUVTPRHdJ3ZJlM86PrlvjhxY7X+nlyXtfo729jVB6gLgyTEvLLrwDXQwGexgZHebmK9ZgMlhIxvMMHxUqHLWzOqdBNjEa1x6jqXXP44vn/URzmyBC3SIX/oFIkZvm9MuXzupaDkYO2Xz8WR//W3H3AAiiWODjL0W+m2I655eNRmoWLZ1VVE9WgE02G6oKsXBIMwsiUOQuKTUBSEdHi5b13txgpS/Yx+BoJ84FSULpQVpbW9m+tYX2jr3EEpNHzHzrkv+lvnxhUft/dq3j7n//SPMYUZTw2KupcjZQ6aqnwllPlbOeSlc9Tku5pvEjSJmAgFRyXNey4ZKHI4ddPn6taezzjzqON59bRzI2vZtB1v2Q349kMJCacLxWfvGC8+e5NQRRZNXZ575tbgtd2HWm4tm/7GDTs+34Rgbwhbwsbz6alEYA1j9e/zMv7fj7rM4xMNKjKfxVrgY89hoqnLVUOOqodNZT4ayj0lWPx1aNJE0hUQKYLDLRcHK/hkcebByyFr+Ojs44o6OjdHR08OKTb/DCP96gx9uFL9yPL9iHL+glEB5CHZtq9+OPPYzN7Czq48k3/sKaV38343OLgsgHTvkSp624cGbHSQKKSSQWTiGIoKbBZJVRUYmFU7rQT4PDzuLX0TnUefYvO9j6fA/ZqdH5Qvlq6z/Y3PoyQ4E+/OEBghH/tPsdCnk1hd9jLy2wRsVMub2GckctHkcNFY5ayscWt61yUstdMmQmNBmtEgKCbr2/DejCr6NzgNGy3puLEVeFNMGwn0BkEN9IPxHVj6kqTltrO+1tnXzpvJ8hjmV+TKfUXCx7W08LG/e8MKvzD414aapYUtReXdbEotrVlNtrqKlq4JLPnIEScdH+ShyTaJ9kvgUYTRl3TH5UjyDCilMPX//7VKTTaVRVRXoLYdml0IVfR2c/kC/uvkQH9nkxNv9nJ+1tnfhDg/hHBwmEB/GHB0mltcNlAYIRP06rp6i9zFY542tyWDyU26tRZO3Is3rPAr5ywS8QJYGzP7YsZ423rPQWTGbKn02rW+7TIxwO8/JvfsPL//c7tvX3sTOdpiUe52+PPcY555yzz8+nC7+Ozj5my3NtrP3jegYG+wmMDjGaHKZqsZlbbv8xkBH9p+/ZkZvy/9DTv2fT75+f1bmGwwPTEn5REHFZK3DbqyizVeKxV+O2V+G2VeGxV+OyVaBIUye1M1llTrt0cYGQa01mejsTjh1s9H7/+wzfex93Dg2xLRqlJRGnPRbTrPPwyl/+ogu/js7+Imuh796zi6gwTMUSCcEWw+v14vV66e3txev10t3Vw0gwUHS88LTApz/6RZafUs/Lj+4pyPPispYX7T9dhkP9NFcWu0oWVK/k42d9JyfuDosbi91AKqEWnLv4QkFWBJJxNTegqlvts2NkZASv18vixYsJrFlD/y23kuzJpHoRgEdHAuyNl84uC/CfJ56Yk2vThV/nsCHfvYKgEotHSRtHaTrGis8/xKv/3sbg4CCSLHL2qstyfui6RS68e0dIxtPc+9zP2ePdOuNzq6g8dd8Glp9SX5Rz3aVhsedjNthwWcsps1XgsmYWj6sSh6mchvJFmseU2So5btHZufeyQeQdl2b89tm/gS7sb522K64g8NLLtMfjtMRitCTi7E6maAmH6E4kWFxfz6u/+Q2937sWNVo412Gx0Til8HeOjMzJdevCr3NIkC/qWT/zPffeg7evh2gqSCA8TGg0QDASIBT1E4r4SaS0f3R2cxlnH3EZkBHGrp3+gm2zpbenF8gIbb7417kXsKr5FFzWcpzWclzW8jGBz6wbFXNBP7JB5MwPL6V3j79kVM9kYY+6wM+cwJo19P7iFto6OthrsdBeWcGWDRtoiURoi8cpNQqzu6uLth/ciCFaPMFtidHIk2Mz3gWgUVFYYjSx1GRkqdHEUqORukbtvENvFV34dQ4o4vE4fr+f4eFhfD5fbsl/PzQ0lFuWLVvGNV/4aYHPPOSLsfW5Hh55/g8MBLpnfA2haIB0OpWLlsnHYXFPebwoiNjNZTgsHpwWN06rB4fFQ2V1BZBJ/JV/vcsbj2d54/GT9qllnR9uaQbmmgJ3jCRB3mz9/+7p5ulQiOgM5z2lgd39/Swfq9yWz5lWG2WSxFKjiYVGI9axlOJZBJOJqqu/NuvPMxm68OvMmGf/soOtz42npZZkgbSqoqYgkYwTiYeIpyIkGGUkECRtiFG73MKJZ63mrLPOKuovlUrR3NyMz+djdHR0RteSTCaLfOZZbCbnrIRfVdOEY0HsZlfRtlr3PBbVrsZuLqPcXclZlxxNdXU1VVVV1NTUEO4WeWNNH6iFuZ4ECd75sUx9gKzFPTGt7/aXegqeLuqXuLjoa0fP+Pp1pibfgm+zWuiorKR382b+n3vM7aaRomWmoi8CzQYDobR2upclJhNLsjcEUcR12aWEnn2OZG8vck0NlV/7Ks4LLpjROaeLLvyHAYW+bXKuAaNV4qT3z6duhZ1wOEwoFMotTU1NNDc3F/X1h+uf5LZ7fko0HiaWiBCNjxJNhDOv8VGS6RLFVv4GF7z2fk3hlyQJv98/Y9EHGBwcLPKZZ7Gaiich5SNLCjaTC7vZlXu1m8uwmZ1IovZP49TlF3Dq8gty7pYit8lqKPdU8Pz9LZNmetSKhNFdMHND30MP8Z+f/JSW7m7aDAY6bFZ27N7N3liMeL6FDXzJVYZZI0HjQoMR0E4KB1AlyywyGFlkNLLYmHldYDBgFEUkl4t0NFrk48+d12ym5obvz5nIa6EL/yzR8ilrxS5P3G/iINqzf9nBmy/0oI4ZrOl0CqNT5Kh31dFwhItoNEosFiMajbLztS5e/3crweEwkjlN85FluOqMvPOd7yTaaygatOuPtvL0m39lqN9PLB4lnowRT0aJJaLEk1HiiSjJX2gL9Q9/+EO+853vFH3mrl0+Nuz+96z+Zh17vCW3uVwuQqFQye2lGBoaKvKZZ1ndfArVrkasJgc2kwub2YnN5MwJvVExIwgCoiRkKrFNkoevfol2RkctDvZc7QcrWVfNP1ta2JCIsyccpjUepzuRYJI4phwqsDce13TLLDJmCrK4JImFBgOLjEYWGYwsHBN5Z4lJVoLJRNV3M7+j/ltufVus+elwyAp/VlBfa3ma0fiYoKgqoiwgiJCIpcaa0mPlF9XxVzWNoiicseKSnIjm+1hb/C/yysv/IZVMkU6nSKVTpB/OridJpZP84t5MeyqdJJlKkh5rv6r7+/wXp7P4hOoCl8k/N97Hmld/Rzp7B7h5Gh9yrKDYr3/8O+Tu+Tl3R7aLwf5Bnn/tX7P6+wWDxdbNy4/uwWSwzKo/gFCodIRCWVkZXV1diKJIWVlZbnG73blXj8eTe+/xeHLvGXbwzF92Frl7Tlr6ntIXM/bkkxXx7OcL+WKZFAL67NIDkng8zp49e9i7dy/vfe976f3+9/Hf/0CBa+bJ4AiPzTIaZk88pin8J1utPLdgIZ6xYkIlkWUEmw01ECgS+P0p9BM5JIU/X1CfeP1PeIfbpziiGINs4owVl+RENPsa8sV4ct2Ts7Z6o7Eoz92/k8UnVPPmC+N+ckEQx0V/hmx5qZ0japqL2hXZOKv+AE3rO+SLYVQmF35JlDEbrJgMFkwGK+axxWSw0lSrXc0I4KmnnsJsNmO32xFnUY1MEISST2DTTeylW+kHBul0mq6uLnbt2kVLSwstLS1se+EFdrz5Jl2RSM563/mtb5H62yNFx88zTD0RLYtbklhgMLDAaGS+wcgqk1lzP4soYsn7XppPOpFEe8cBY8HPlENS+PMFdbaok4iwVpm26ZJOp3L5VPJPIZfwKU+HYCAMNcXthmkIvyCIGBUTLrcDu92OzWbDarUyb968on2zLpWPn/UdjIoJk5IRd5PBkhF3xYosKSWrHJ354dJWc3X1WxNdffbowcnGjRt5/ne/Y8tjj7HXN0yHmqYjkSA6RXw7wKZ772OlhnU+31D8va+RZRYYjMwzGphvMLDAkPHBl8mZ351gMuF838WZwVWNqJ4scm3tQSfyWhySwj9Lw7mwj0lG8N+K8OcPfmbdR5AZaAQQEJAlBVlSUBQjLo8No9FINJBGREEWFRTZiCIZUCQDFquFhromzXNVOOu58pxrMcgmjLIZRTFilE0YsotiwmAwcM7HV0zL2s2GIeZPDAIQRQFVKPSR58eU6xOEDj+yUTNdnZ302u2cfdGFhJ97vshCvuWb3+SPTz01q3Psjcc0hX+FycTnPB7mGQzMNxhpNhgKrPUCkT9ILfa3yiEp/PmCevT8MwiMDo1vEwSEseKLGctUyLVlyy+KgogolM6Id8yCM6nzLEAURARBRBJlJFHKW8+8F0Wp4L0sKlQ66zFZM3/2FafW5lxSJy19LycteQ+imPEhTowamZjfBQqt6InbACxGG8ctPZOlJ1bn3B4To3pmUle0VBiiLuiHL6Ojo+zdu5fN997L1r/eT9vgIJ2qSmdklO5EgsSYAfViMJizrpM9PfR+71oAqnbvmfE5q2WZJoMBu8Y8C4BaReFL5RWa2ySXi6rvfuewEnktDknhzxfU9x77sX3e/6qFJ3LpiRcXRPHk+5QnQ5QETrt0MUBuwPDNF3qQGP8SawnqdER3sqn4+8rtoUesHPrkJjLlWcMAD/2/b/LaQD+d8QTdapoeRaFveHhafXYkEjnhB1CjUfpvuZX6mHaIo0MUWXbccSxatIjyF1+kIRqjyWCgyWDAOma9CxYLaokQ4KJtZjO1b3PI5IHMIVuBa2KYZBbFKCHK5PzspVCMEolYSjOqZyort+DceUmvdAtZ50Bj+NFH2frTn9HR1UWPotA9GubTdgdi/jiNLEM6zY29PfzF75/VeX5SU8MFjgnzKgSBLqeTW7e9mRF1xZAT9/KGBhb9ex0w5jaakOtGMJmo+cENjL7++nhUjyThuvQD1Fx33ayu8VCkVAWuQ1b4dXR0YODhh9n8s5vp7O7Gqyh0j47SM+aG6U0m6UkkSE7QgKfnL6BKUYr6usvn46cD/TM6v0uSaFQUrnR7OMduL9iWHSgtJer51rnWU4huvU+NXnpRR+cQQ1VVBEHIxLLf99dcnhfBYuHOBfP5y7//TZ/Pp5nnfTK6EwlN4a/XaJOAGpOJOlGkUVFoUAzUGxQaFQMNioJ9kolN+eI9lag7L7hAF/p9yJwJvyAIvwfOB/pVVV051uYG/go0A23ApaqqTs9JqKNzGJC1bOM9PQSsFnrjcbzDfgasFkaOOIIBs5nOzk66urro7e1l29VXM/rAgwV9qKOjDP37abw+36yuoSuRQCtD0FKjkU+53dQrBuoVhXpFoaGxkbr/vro47bAsI9lspMYmMtlOf0fJKBpd1MdZ27qWX77+S7qHu4l1xzBUGlBsCh9Y/AGuOfGafXaeubT47wJ+Dfwxr+1bwDpVVX8sCMK3xt5/cw6vQUdnvzLRRaE0NRJ59T8Zn7QggMnEE/39bEqn6I9G6YvG8CYTDCSTxal+W1qK+t9131+p07Cqa2ZQp9UpitQqCrVjYl40AWrMx19vMHB1xXhlL0FRqPnvq6dtteto09fXx6ZNm/j5Yz9n/Yb1RDujxHpjkIbGLzXiOMbBX3f+FWCfif+cCb+qqs8JgtA8ofki4Iyx9buBZ9CFX+cQQFVVgsFgrhrXnscfp+X+BxgIBhlIJQmn0/xaVXMVmMYOgkiEdcER/q6RImM6eGMx6izFs6lrlOy8EKiQZWpkmVpFoUbOCHzdmNDXyDK2SW4SgstFzViumd4f/gh1bHB3YlikbrVPTtaS94a9VFur+fJRX+aOr93B+vXr6e8vPW4S6YjgOMYBwAMtDxz4wl+CKlVVe8fWvUBVqR0FQbgKuAqgcY6KEejolEIrN7tcW8vLxx9Hm8VCX19fruxidpkqu2g8ncagkY6iUi72nU+X/rT2bMWTLBb+ufpIKtNplMlmwYoigsOBGgggOJ2IkHPPTLTadWGfHo/veZyfPPUTOls6cQgOLr30Uh7e9TCJscmbveFern3pWkZaRyYVfYBox7j7bLYpXbTYb4O7qqqqgiCUHHdSVfUO4A7IRPW8bRemc0gxceAzoar4Uyl8qRS+ZJLhVIqhdJrRxYsYXbqU/v5+lOFhfhAYGfdZj03dT/b08JvbbmP9LLKIAgykUtRpCH+VrP0ztIsiVbJMtaxQqchUyzK15RUcc+stNDQ00NDQQPiWW/Dfe1/RsTaDgcU/uAEYd8EITifE47n49qw1rwv67FjbupYf/PsH9Lf2E+2KovaoGAYMdO/uJjWa+c4oboW/rv5r0bGJdIJg+eRPeUqFglI2bhS8lYwBE3m7hb9PEIQaVVV7BUGoAWYWG6Zz2FJggQsCqCopVSXmcFB7/nm5gUPJ6SQNqH4/P+nvoyOeYDiVwpdK4k+lGClhIdPnheefB8Aly9ywYKHmbp7JMjNOwUAySZ1GZMxxFgtfK6+gSpaplGWqFJlKWclNVMqSC3M899xcm2MsZn1iVE/N968/ILNCHqwEg0G2bdvGm2++yS1rb6GtpY1oV5Skv1TRxQwJX4JUOIVkLXanibWZ/6/JZMJQZ0CqkzA1mjA1ZBbJUnjMBxZ/YJ99nrdb+B8DPg78eOz10bf5/DoHEFkxT/T0MOTxkFy9it5X1jPc38eICoFEghFRJBCLEUilMks6hX9sfSSd5jizmbvz/OOpvAlGz4/lY58p/mSShKqiaIh8eQnrHMBoNFJTU4PL56M8naZClscXSWZ+iayRy00mzVTAgtkMRqNmit98aq67Tp+0tA+Y6If/ytFf4bz55wHwzne+k1dffXVW/Ua7oliXWIvaXSe6ePrap1m0aBH/aP8H1790PdFU8UxmURAPnqgeQRDuJTOQWy4IQhdwHRnBv18QhCuBduDSuTq/zr6l1ASagYcfpvUXtxDo7SXidiO//32kVqwgEAgULccddxyf+tSncv1lQwBVVeX0l15EfenFGV/XsEYGxSxlM4hsKe43qel7P8lixWi3s+yrX6Wmpobq6upc6UWXy4UgCJozTSEzIGpYtrQoqododEr/us6+xe/3s337drZv3862bdt45rVn2NG5g3nXZrLS9oZ7uf6l6wE4b/55rFixYkbCL5pEjPVGTPXFlnsWT4WHpUuX5s4BlLzx7GvmMqrnQyU2nV2iXWcfkC/QE8XE/eUvIZ95JuFwmHA4TNvPf07/k08xmkwQQYBjj0E+5xxCoRALnn2W5Xtai/rvise58oXnCT33LKNALF94W/fAa/8peW0jIyM54e+/5dacMIqCgE0UCZZyw0yCf4bCL5CZTVomSbglCbck45Yz7z2Kwur/+R/Mu3bhuvc+0HhaOKO8nA9NmFU6ET28cf+Stdx7Q72Uxcs413IunXs6WfvyWnwdPhLeBPFh7SfBZCiJbMvIYjQV5Zev/5Lz5p/HypUrNfcXJAFDjQFTvQljXUboTfUmlPLx9OSyIJNW06Tz6oDJgsy3T/h2QV/nzT9vzoR+IofVzN1Syae0fqAT99WagALFIW7295xL8Il/FLgcsj5psaaGqq99FdeFFxYNOg4KMCDLREdGiAsi8VSSuCAQT6aIm80k1DSR8CgJmw35hOOJxuP41q8nEgzyIU85SxUFweWCcBg1kYkeeLG7m+94e4mk00R2bCf59BTFY7o64ZFHAPiSp5zl5eVFu8iCQGeiRF3dKfDn/U2Svb0F2xySNCvhVxmfwTqRj5W5ucDhpGxM6MskCackIZXw07s+9EFq/uu/AAisXKkZ1TNdAdfDG/cPa1vX8plvfwbfaz5ivTHSkTTP8/y0j4/1xpAXjcuiN5wpF7pq1SoWL16M1+7NCbyxzoixyoggj3+fZEHmksWX8FzXcwWWO7x91vx0OOSF/5prrqG7u5t4Zyejr7+OOmYhqj3dqB/9aEY40ippVNTuLtKXfxgVFYMg8rPaWiATzZEfOXHr5k28eNllpFWVpKqSUiFF5jX5+gaSY+1JIKmqJLL77dzBU14vi/72NyIvv1JwnQ8PDnHr4MDUH6i/L2NZ53GK1cpSRcndgLKoQH9y8sGnUoyWCB2zzaI6VpZ84Zdragpi2hsVBYMg4BBFnJKEQ5RwSJl1p5gRbNeYcDslEZco4ZhExAGO1YhvzzF2MwY0k3vpwn1gMNF6X5RcxLOvP0ugN0DVB6pwGV18+4RvF7hKRvtHibRGZnW+WHcM66Jxf3y1NZNQ8Z3vfCc7d+7k009+mle8r2gea5bMXHfydSUFfX8K/UQOeeH/29/+xrZt22Z8nHkSQWmPJ9gUmd0XKxGLFok+gDL7YBGiae1oV+NbiEAJl7C+LROEXwKsoohdkrCJIlZRxGGxUPOud+F0OguW5ubm3HETk3P9rmF2czUElwvne87VjOoZv0g9a+PBwNrWtdz83M107u1EGpQY6R4h4o0Q88aI98VJRwut9/JzywkIAa55ITPoed788/CGvRhrplF5ThIwVBk4/6TzWb58OVFPlLWhtTA+MRmTZMpZ61nufPedReJvEA3ccMoNB5SwT8UhL/yzZbKkzdJbEOlEiWyohrcQoxsr0ad5gkiLgFmSsJWXY/D5MAuZOqJmUcA8JtoWScKCwFFm7dqjoiDwxLz5WM1mai++iPjjayE2XoNAK7OiFlp+8Jw7Lc+9IpjNmZuDquoCfhCztnUt33/p+0RSGYNJQMAkmeh9sZfQ5hCxvoy4p0KTp0vPJ9YbQ3bIJNVkzhdfba1mpGa80LpoEjHWGDNLrTG3bqg0UOus5cH/Gs9zdHrr6dNyx9z57jvfwl/iwEAX/hKkJyu9yOyVP1mi23JZYpnRiEEQxhYRgyjk3pvG2oyCgFEUMOatH11CpBcZjaybvwCzKGIRBAxmM7U3/gDnBRdkxhg0Jv64PvRBYm1tmk8lWRY0N4+PhZx44qwHMXV3yqHJ43se52dP/4yuti5i/THi/XEqL6pEEMd/NyoqkVSE0d2j+F/yz+o8MW8sFyaZ9cV/5eivcM3QNQjfEDDWGJHLZBQxM9CayCt7qmXNv52Dq/ubQ174b7zxRvx+P6MbNxL4298gkciVXhQlMTMomEohIpC1jyVhcnG/yuPh0nIPYiqNRMbdIQkCEpnBT1kQUAQBeey9lG0DRLMZ01FHFgnru+0O3m13TO9DyTKCIOQGcSduy2ZFNLpc1KMdIpi1mksVsWi74orCa1QUan/0Qz1drg5rW9dyy/pb6OzoxBq0Uh+vZ/OOzQz3DJMcSBLtj5KOFroKy95RhsFTPI/BWDW1WyaLaBIxVBswVhsxVhsxN48bPFlf/Hnzz4Nz4JeeXx7Qg6v7m8OqEMukUT15M0JzjL2Xa2v3SVRPflTIxKgeFAXJas0cN+bmyLk7XK6iGO+C655F1ImOjhYT/dcnVp+Yc23cdttt3P6n22nZ3ULcF2cmif6bv9mMbZmtqD24OUj7L9pz7wVZwFBpwFCVEXhDlSHjmqkyIDtlzegtWZC58dQbD2shL4VegWsa6FV+dA4H1rau5aZXbmKwf5DEUIL4YJzE4Phr41cbEeXx8aGs+H/jG9/g5ptvntU5a6+oxX26u6g9GUgS2BDAWJURd8WtFLiEJnJi9YnsGN6BP+YHwGlwFkT16BSiV+CaBrrbQudQIOeK6ezEHrZzmvU0XBEXL775Iq9ue5XIYITEUAK1xIBTwpfAWDnugsk+AcybN2/a1yCaRAwVhoz1XpmZ4KSF7JTxnOUpancZXcSSsdxgsMvo4lvHf0sX+H2ELvw6OgcZqVQKr9fL/f+5n4ejDxdYv+fOO5dHdz/Krt/sIvByAIANbJhR/4nBQuHPMlH4ZZecEfYKQ4HIGyoNSHZJ0y2TjyIoJNTxcaq5yEmjo40u/Do6BwhrW9fyo5d+xGDfIMnhJEpQ4TT7aTijTrq6unIlF3t6ekiOTcxb/r/LEY0Zt0wgHshValI8s8/xHx/QTmdw/PHHc93/XceDQw+ilqmIBu0QZFmQsRlsuRtSFgEBFZUaa81hP7g6GSMv3cXme7/Ppj1eLjy2kYb/+gGs2rdpzXTh19GZI9a2ruXHr/4Yf8yPqqq4jC7OnXdu0XT+9Xet5y8P/4X2rnaSI8mCQdOd7Jz0HInhBMbqYutccU8t/JJVQvEoKOUKhnIDikfBUGHAPK8wPPjE6hMB8Hg8XH/l9RzXelxBhMw76t9R9Jl0UZ8aVVVpa2tj8+bNbNq0iY0bN7LpPy/R2tWX28dl6uTDxi9n3uxD8deFX0dnFuRSCQR6KUuWcUn1JfgGfDyw4QGG+oZIBpIk/AmS/iRJf5J0PM2yXy/LWeQwngHSsdXBnjf3THK20iR82sJvKDcgu+SMqHsMGDwGZI+cEXePAaVcQTJPnb00P6ony+EU7z5XqKpKc3MzHR0dk+630Zviw4kIrLtBF34dnbkklUohlUjpfM011/D404/T0tFCPBAnFczMNJ1OIrBUJFUkttFUlEEGZ3yNil1BKpNKhlTaV9lZemsm5a9JMnHRwot4dPejmvneQXfD7CuSr9/L7vuvZcueHrb4FFTgB6cBzno4+9qceAuCQGNj49TC3zc2kznQtU+vUxd+nUOeRCLB4OAgg4ODDAwM8OTWJ3ng9QcIDYdIBVMkR5Ikg0ksUQupYAqPx8OuXbs0+/rPf/7Dppc2zeo6koGkppUdtxb61GWHnJlxWqaguBXcVW6uefc1uXKLdXV1PO19mu+9+L2C2ahQOjvkefPP46jKo/RJTPuCzfej/uv7dHd1siVUxlbbaWwdktjy6nNs291GLC8voscscMOpNoRAJ6wpdNmsWrWKF154oah7UYAlHpEjq0VOaxyTaGf9Pv0IuvDrHBRkXSs9wz1YEhYSwQT+YT+SImFeaNa0VE899VS2bt1KIBCY1jlGydSiTUySdrq6unrWnyEZSGq6ZRacuoCvXfg17uq6C9WhFsTQl5qclH2fHUOAqWPadRfNLNl8Py/+37fYsKuHrf1p3hxIs7U/xUgMIAjcU/LQoYiKN6RSYxdggstm9erVOBwOVq9ePb5Y+lmx85dYhLwnM8WceVrYh+jCrzMn5Hzg4V5EQSStpovE+cZXbuSBlgdIpVIEXg2QCqcyy2gqty5EBMxxMz6fj2Q4iRov9G1YFlqYf838oopJkKmTOl3RzycUCjE6OopFI61zkfALINkkZKeM7JRRXErhukvO+NpdSi76Jh+TZOKb53yT8+afx7LWZbqQ7w/GLHh/XydlFhnUFDgbMmLb8Qq89nu++1iIZ9unn0Auny39aWrsY//7PJfNFVdcwac//enisNfNCzM3iEBXkYtoX6ELv06Ota1ruWn9TQTi42I5ceJMMpnE6/USDAYJBoOMjIzw9K6neWTrI/j8PtSoSnI0SXo0TSqSIh1JZ4R8NIX3SC/XR68H4I3+N8YHOgXouqMLStRhGWFEewOZiklZ8ismAZRrFJKZDoIgMDg4SGNjcaroj33sY1iWWPhrz19J29LIdhlBFlBEBVVVSaql6x9k4+xLRcDoQj73qJv+StdD17KttYvtIQfboxVs27GDbf1JUmmV4W/aM0Ic6IRHPg9jrrSVleK0hb/KKrCyUmRVlcQRlSIrK/Nu+HkuG0UpEXm16tJ9LvQT0YX/IGCyItCT7d/j68EUMZGKpgiGgjhFJx7Bw46+HaRiKYjDcttyysQyXtj7ApFwhHQsTTqaxnWyC9eJLvwxP9978XtARphaW1tZsmTJrD5HfDCeE+e+0fGQNUEQkCzSjFLyZpl4TDZLI4wLvyAIeDweysvL8eIlbU0j2SVku4zskDPrDhnZLmNwGdj8uc0lB3dXrFjBihUrOLb12KL/CTDlU47O20MikWD37t1sf+L/2LHuz2zvGmb7kMCOgTjh3JDKKOAtOK43pFJrH7PA88ZPVlRIQKEL0GaAlZVj4t7oYeV7P80Re2+nwhBDkzlw2cyWw0L4b3zlRu7feT/qhBCI7I/TaXBmimTHAjiNzkmniq9tXcutG27FO+LFLttBBf+oH0EVSCVTOGQH6USaYCyIVbQSj8eJxCOQAjWlYp5vpq6sLicGWZFu3dJKem+aeDROPB5HTaoYVAP1pnp2D+4mFU+hJlT2JvbyUuIl3JIbj+whEolw2223cfbZZ+eu7/qXrieaihLcFuTNX7456d+mhx7N9vxY7kQ6kbOk7Xb7rP8PqUhGpL1hb9H/QrJOU/ilzL6yTc64WOxyQenFbJZGgP/5n//hN7/5DS6XKyfka1vXcs0L15S0zC9bcllJ0c+nlHWuC/x+ZvP9fOqqz3DXq35Ss0hD9mZ/mlp7sUvuxHqJj61WWFEhsqJC5IgqiQaHMO6mef8vM1b65pXjbhpzWWZbZHjOXDaz5ZAX/kUnLqK9dTz7X05vxl5VVR0r3JpZsu9FRWTJL5YUWLwA1790Pbt+vYvA+pn7jgEW/XQRvYaMP/qN/jdyIXahbSH6Huwr2r+UMIcJ00knAD6fL9f+y9d/mQvZKzWzcjqkY4V+l6wl7XBMM3W0Vp+jmT6rrdX0jfaRzivv6DjGQSqcQrJK2otFQrJJiCaxZCqAiTnWKysri/bJCvNEl5aAwKVLLtXTBRyARKNR9uzZw84nf0/Lv//Mzu5h9gYV/v3g7xCP/OD4jpvvhzVfxs7orETfokB/WPvAo2ok7r5Yu+4F804fF/S3wU2zLzjkhb+zs5PEwMyLg6cN46KUtXgh40dm9noKY4ZmNBXlgZYHcuInvIXai5G8MpD5ro63JPwT8qlnLWmLxUJdXR1WqxWHw0FrtJWEkkCyZERZMkuIlrFXs5gR7Oy6TcqJc4GPH6i+tHS0jCIqvH/R+3O+cafRiaqqBOKBWblUdF/6gUcymaStrY1du3axa9cuWl76O7s2vkBL3yjtAZXiJMIJOv/8JZpEcVxo190AiQhLyyf/3juMsLxCYnm5yLIKMbNeIdLoFBDzjQpRyaRUT2mnsAABjv0knP+L2X7s/cYhL/yzZsJAY76gTpY2dirUPFMk3+IV3kI9x3zhr7ZW0xvuBUA0iyjlmWgS0SgiGjKvglEYf28Sx7cbx98bKseLZiiikrOkBUGgq2s8MiHftVQKLXHOCm/+zU8LPSvjIcLm+zVcID5++HycuzfG2etPkyz9NdBkZ98oTfkzWsciZrLCX2cXWFYhstQjsrRcYlmFyLJykWpbnotGMcPqy2HXU5kBXUEqjOqBOY+w2R/owl+KCRZG1uLtDfdmLH5x7AYgZkRbkArX8xeksXZZKLDss4IIYGoy4TnHg6CM7ScLiIqYey8axtaV8fVKeyW/v+D31NXV5fr8ytFfyQmxqd7EkpunHoiVBImUqu1fn0p4s+2zGdS85sRrdNfKocTjVzP68h9oHU6wZxj2WI9hj3ElrZte4rF39aCkx4yDyLhrMhBNs8s3Q8UfY+dgmnflz2h11kOgk5MaJEa+Zcdu1DCmJAMYbDPzux8CQj+RQ174v3jbF3ls12O59wICuaqKArl1QRQK1/OeFvMt3utfup76K+upv/KtzaSbOI3eusiKdZG1aL9SoqyICt875Xssn7+8oD1fiPPdIiPxEaqt1TTZm3i171XSajqXBvetzujUXSeHCWPx7t7uDlr9Aq2+BK1+aB1OsccPrUNJekP5FtNzYwu0H21jobvYBaPVNhEBaHQKLPKILPGILPaILPZIHF0jFs5oPftaWPNlDEQwZMfnZyP0hwGHvPDffPHNuF5x7bOoHhgXVYfBgSAI+GP+XF8uoysntA6Dg3gqnutLKx9KvuiWOjcUDkZOxwqfqRDrwn0Ys/l+eOKbBZZ4Rm7Hfi+CCGqabzwV5bb/xImUnqpQkt2+tKbIL8prq7JmxH1RtZ3F9giLPSKL3CIL3SJmJWul5f2GJ4ZH5vv6DzHXzL5GL72oo3O4cPeFqK3P4IuotPlV2oMS7b5YZj2Qps2fWbqvtmM1FLtJrvl3lB8+X2qgc3L+5z0mvnh8cbH1UFxl11CaBW4Rh1EY962v+XImxUGWAl+8LurTRS+9qKNzqJEbMC0elNwiLGPTpk10vLqWjteepH1ghI6ASrs/TXiKILf2QJrlFcVzGea5pnbLiELGLbOgTMwsbpmF7/kcx3v/CBTfNGwGgaNqxs6VteB1y33O0YVfR+dAJk/c06pIXyhJ54hA10iSnqDKF45TMhEq2XGgsSyQt/xnGX949JlZnbLNX0L4yzLC7zDCgjKReWPiPr9MZJ5LZIFbpMkpoORHqB17JZz/c9h8gmZUT1EUzUEWD3+wogu/js7+ZvP9xNf8P3oHhugOpumKWumufQ/du9+ka9dmukbSdI2k6Q6qRSGPH1ml4JpYxzwRoTEy+YztyWjza7t/T2mQGPp/dspMaE+iEyVIpwE1I+jHfGI8xl0X8mkxODjIpk2b+PPaZ1n7zCsoR11E86JlfOPdS7j4qLqpO5gmuvDr6MwhqVSK/v5+BgcHOeKII4p32Hw/H/rwR7lva74bZBT447T67wykcZmKrfNGU6jkMRYFmpwiza6Mhd7sEmkaW59XJlJp1Z5TYpQFjPLYAGvWUi9lsetMiqqq7Nixg989+gz3Pfk8vo5dpAb3Eh8ZKtjPXbmE7opmvv3wFoB9Jv668OvoTJe8SUhhUy195Sfi/c9jeP2j9AZVvKE0vSE1swRVemNG+gNR0uk0RqORSCRSbCmvuwGbMvsAi66RNEdUFQv/ynnVvP+IQZqsMZqcAg1OkSanSJNLwGMWSqa9GKc4qkcX95nzyBvd/OzJnfT4I9S6zDnLXRAETj7tdPxDA5MeH+/fC0AkkeJnT+7UhV9HZ1+iqiojL91N/9ofMurzsnpJ04SZm52AwPv/GuafrUlC8QCwfYpeR3NrsViM4eFh3G534S6BLuoc05+1XWaCeodIg1OkwSFQbdMYcFXMHP/JH/PQJymOjslHlCGd0gdP9wGPvNHNtQ+9zkBXK4mBdhIDbcQH2hBkhcpLMt+jbn+k0HJ3N8EUwp/ob82t9/hL/B9ngS78OocWeVa5T3UwMBJlMBBmYFRlMGZgICIwEBilPwwDoykGogr9CQsDwyPEE5kA9UanQPtXx/KxF+RqUUmkITS7iEZ6e3uLhd9ZT519DwJQZROoswvUOUTqs68OgXqHSJ0981ocZjnB9aJllZeI/NGFfuY88kY31z+ymYGeduKDHUjDnRiCXfS27SY53JN5MspDUEyoahpByNyg8y33dFkjMCFMXZJRPI0YKudjqJqHoXpRblOtq0SSuFmgC7/OgUGJ0ET1rO8RWXQBw8PD+Hw+fI//gKGNf2doNMVQRKBi+alc+aunxvvIs3CP+mUXHYF8N4qWxZQCCvMM9YXUTKrndHHcY1UJ//dkeDweampqiMU08rSffS0fG/4cnzhSKYyGEaTMYKlWgrCZCLg+qDpr8t004s5/Yfa1sGvHduJDnZCa3iw2NREl6e9DKavJtWUt95rFq4n378VQOQ+lcl7m1V2P224mmkgTSYzP2DcrEt949+zqYGihC7/O3JA3GzStqgTFMlRzOa7R3YX7md2kll7E1T+5g+FwkuGoij+qMhxR8UW24ft/HywoXj2R43es48p3XZ2JHhnLzpil3CJMEP7pEUtBMJ4JW5xItS0jzoqYWc8sIlVWgRp7Zr3GllmvsYlU22WMPxgsfbJVl2KEwpmzZje85yeZdT2WfU555I1ufvrENtrb21CDgxgaV1HnMnPm0goe2tCdE9+ezc8Tbd0wq3MkBtoKhD9ruf/46iv5dvPxRQJ/3QUrADTHBvYVuvAfrkycpp8Vm1WXwuNXw4Y/FD62jm0PznsPTz31FCNv/ovgG48wEhhmBBsjnqMYUSoIBAIEevYw0rubQDRNIKoyEgOVIFcc2cvvL5rwuBrxIb7+e25/NUJ8FiVNB0dV2HBXRvjzE3aREf6ZYFEyFn2FVSAcVzMzSSfw9ZONXH2SsXRI40SOvWLqfSazynWh32c8sL6VH977ND1tuzGFe7FH+9izq4XYYCekEgiygYavPUC3P8I9r3QUJHgxlDdNS/hlZxVKRRNKRTOGimaUimaUstrc9nzLPSvkpQR+Xwp90XXOWc86Myc/dW3WwoNCgVasIBtRR4dIpCUiiRRmuxuDEId4eKyjjN+3O+7gmdYo4XCI0YTAaCJNWLQTtjQQ7t5GOJYinMhMmw/Hw4R+/iFC6U8QGo3yndMMXH1Snskb8cGjX6D/6O/xX//1FQqJAf+a8uP5o9rWtyAIlJkE+koUwZiMoVF1fPLSWHbGLM1OkQVlacotIhVWgXKLQLlZoHJM3CssAhXWTPhihceNVYwVDoRq5GN3mURAzbhZFr0LNt0HifD4Mfk+9/w4dp23hUfe6OamRzbQ0boLW7SPI6whUsPd/GfjFno724t88PmoyTjJQD9KWc3E5Lwo5YX1lyVrGUp5Y2bJirynAdFoKdm/y6xw/YUrCgT94qPq5lTgS7FfhF8QhDYgSMbBmtTKJbGv8D3/e1LP/BRGelBNrkxBh6gf1eREVSEdCaDaa0if/BXUpeeRTqdJpzNfjgXhDZpl1HbFK+hb/FFS804nmUySbFlH8tXfkYwESaQhkYJkGhLuxSRG+omHhkkYnCTmnc1nrr8N1ws3ZKzUbBz0MZ/g0Vf28JdHniCWVImlVGLJHcRu+TDRpEosqRJNqkSSEE0GM+uJ8XRVj34wyYVL8gs3Z7a80TbER/460a8dAyZxPYz5wYcjGiKcimPf8JuZ/QPyKCX8AK5JhF+RBNzllXjSA7jNmZuEx5IJSyy3CKiImcSqE3K8/O8F0xwMU8xwwc8y61o33sncLbqwv+088kY31z+6BX80c8PPBp66zArheJLuB24isusVAHaX7kaTxGBHgVsmi7FhJe5zPpcTe8ninHafZRaF6y5YsV8EvhT70+I/U1XVyRTorbP5fk77r6vY1p/1IQTzNk5c/8LYksFqNhL6rmvcAszLXHjtmjbu23rdNC5gU956FPgLl9R6cY3mjeSrKXjtd+xcH+P+N2deKQwgUuIwy1uo6lUqcsUR751Vf1aF8VS5Glx7upFoUqXMJGTEfUzg3WYRy2V3IKy+LOOCeu13xQdn3SkTc7yYyyAVG38SGntamjJVwER0d8t+QVVV7v73Zn7+wDP0drSS9HUT93WT9HWTHBmg4Sv3IUhyzgDyj/0QFE89kV0zO5docaJ4GhCkcUnMzwWquKpxnHAhlxxTx9rNvQyPZs7lMiucv7qGp3cMzJk/fi44tF09625Ao2bbtEgn4yXjn6Xp+HZLEG9fDxp5UCYTxamIJLU/o0XRbJ4Wobh2n0Z3PZes6sJCBIcRHEYBh1HAaRRwlHlwXPZbnIMbcLx6K05DCqdJwGEEebKqZaLC5ReeDnufo7ACzlhpu9WXZd5mresJT0sFVrcexXJQkXHNvEbH3j2k/L3Efd0ooX5ciUF6OvYyGhopeWzS70XxFNfFUNwNJY+R7BUonnoUTwNKeSMGTz2yp6HIgjcrEpccU6cp6DderDED+yBjfwm/CjwlCIIK/K+qqndM3EEQhKuAqwAaGxsnbp4eEwb7ZkIqXfqGIb2FmruJEgOYxlmUXpSEjLiXurdV20Q+uFLGqghYFQGLAlbD2KsiYDVksiNm1+0GAZvZiFWKaw5sIhkQ3nkdD74T7bS5F/wCVl0AXADHLC8ePLZWwuCOwj7zB5W1xjgmivj5v9DdKwchj7zRzffXvFlkKf/6+98gsPHJov2n4wpI+Lq1hb+8EcXTiDIm6lUN87jqwtO4Y1OUuDg+bpUv7t3+CJIgkFJV6g4Sq/2tsL+E/1RVVbsFQagE/ikIwg5VVZ/L32HsZnAHZPLxz+osznrKTDsKojsEMuN1kEkhm30vCiBKMoKjFkmSUEKlbxqL3SKnNEhIihFJFFDUKLIoIAmgSJlQP1kUcuuKmPFTGyTwlIg0eed8iXsvMWOUwChnbgQmGYyKhFFMY1bG3kvk1ie1ooFml8i9l2gMNilmqD8e9j5b2C4Z4KLboOOVklE9xRODSoj0bCxv3Vo/aHl4QyfX3PMsPm8niWEvcriPRaZRvF3ttO1tpfbzdyEq49nk/JEEf36lAyxlsz5nMtCn2W6sWUTtpzJjUWZF4qb3H8HFR9WxcLl2+oTDkf1eiEUQhOuBkKqqN5faZ9aFWCZM6JkUxQwX/GpceKY6Nrs/ZGZ4akz20TxGS3CBTK3H/IiDMTdH44maUT0Ffmqzu9CXnfVOmsdmiZbyaU/HwtY57Mla60P+EZJ+b24h2M88Y4i+7k56OttRU6V/AzWf/DWGiuai9tDWdQytvaXkcYJiRC6rQ3HXIZfVorjH1t11SCZb0f6KKGAzyfhHE4e9uMMBVIhFEAQrIKqqGhxbfxdww5ycTGuwDzL1N/PXS1mspY7V2l+rdN28d4CvtVhYH7+62E/deGJpEZ4rMdYtbJ08IpEIHR0dLFmyhGse2VIUy+771/8S3lIYtjs8zb6Tw72awq+U1WbSFLhqMsJeVovsrkUpq8NT10TKVEZ0Yi7qCWQHYQ8HF82+4m23+AVBmA/8beytDPxFVdUfTnaMXnpRR2fmTMwM+cXT6hno7eL2x9fT19OJKeZjvilCItBHe3s7Xq8XgKv/9AIPbfUX9ed/8V4CL9wzq2spO/NKHMe/r3hDOoUKCGJhdEPWRQOZCU6Hmw9+X3HAWPyqqrYCq9/u8+roHEpMFPUzl1YURKDU+Dfzr3/9m/jIAKmRAToC/bwUDRb106PR91/XvY5cNb+oXXZVT3pNosmOXFaN7KxGLqtBcVUju2qQy2qQbO6i/RVR4LIT5005uKoL/L7n0A7n1NE5yMnkktlOV68XcXSIiH+AxMggqeAgqZAPz3lX0+2PZAZKx+j2R9j85FOENj4xq3PGA15N4VfGRFx2ViO7qsZeq3FX15OwVJA2WAv2l0QBEUhoRMhpzWLVefvQhV9HZz+Qb7F7hBCXLDbi6/fy4POb8fX3osT8WBIBvD09JIJDkNbOVFd25pVIVldRu+yomPE1iaJIfX090bR2zLGxbil1V91Z0CaJAj/5QOYB/vrH3sxNosrOVoW5TTamMzt04dfR2Ydc88gW7l3fSTIZJxX2kwr5cKoh3rXQzq+u+1pRPDvAtoduZcNYioF8hopaikkGBzWFX9ISflFGdpQjOSqQHVXIzgpkRyXVdQ2s+c77qa+vR1EUrnlkS8ETRCmsBokfvu+IKV0yutAfeOjCr6MzBVnrvNsfgViIeNAHYT+J8DC2dIijysGuhnl+0y66enpJhXykI+MzTr3ATkHEtvJM/rbRW5CGF0CyeWZ9bamRAaheWNRurFmM64xPIDsqkR2VSI5yJJs7VxAky/9v7+6D5KrKPI5/n3v7baanp+ctJJIESDBAMCjEsCHGWt5cQWqXIJsyUFKIi/yh5VatL7F0LUtWEWo3pVVqWaVYWrvriotQGINipcoVpRQSQWKCwAZBkjAhhJAxk8z0pF8f/7i3Z7p7eqZ73rrtvs+nampud9++c870zK9Pn3vuOR1hl7tuvIgVKybCuXhlaumonsqQN63Ngt8EWiaT4XuP7uPrP32a144epZsU71mzhK9+zpuBdPuew3zmoWfGw/q1H95J+tWJq4/fAA7U84O0wPd/9SzS2TPpoVCidvBLNE4oMYCbGCCU6Pda7YkBIkvOrbp/56JlRPs3U9q9HnaFLZcur2tembtuuKgtpiYw1Vnwm5ZVbRqAO69/C08dHOK+3YcYffn35EeO46ZP8c7lUU6eGOLp/QcZHf4zcvokTvrUpLlgjgIvP9LHlX+/mRsuWcq2nfvLWuhO1+yvNM2eOk6kWvD3LSWyZBVuoh+3q98Ldn87nBjASfTjRKaeaVSAd5zbx4HjY2WBDta/bqqz4DdNVTksces157Pp4jNJpVIMDQ3x4OP/z3d+vo/X3xii2znNxmUxlsRyPP3CIZ547iBOcjF9V30I8KYB+Jf7fz9+7KGd3yB3wptN9KEZlCmXGuY/fvY8N1yydNIC126V4K5OcOJJ3Hgfoa4+3K4+3CnCO37+RnpWvxMEsvmJJnrlRGGxsEM6Vyhrxdca025Bb6qx4DdzUhrcyY4w2XyBkXQOzWWIFsYI5U8zfGKY3lCO2//ubXz85mvKnvuZh54hlc7w2v98isH0CJu/OIJkUuRyky//Pwa8VHFfZHH1rg4Ap6MbTsxiGulCnsGjxwBvmbzDJeEf6lnsjUvv7MXt6sWNe1/9ixbx9tUreWww59/XU3ZRUjHES5fzKyp+UgFroZvGsOAPuPd/+wl+89IQqopm06xbGmPbDReQTCYZGBjwFr0oGaZXGD3B8G8fopBJ4WRPk0unyKdTFNIpBjPe90J6FCqGBB4B/u2pq1l5wZqyJefGsnnEccm+cQDNVlmMvIb82MkpH3M7u2sfQBycjm7czm6czh7ceA9uZ5Il3d6EYluvOb+sjz+5fjPJ9ZvLDlE6EVhxVE++5Ir40lb5urP7pg13C3rTCBb8C6wyOCvHN1desXjlBYv4yd4j4/ujeQrZLMmIks+kGR5NobkMmstALkMhlyFyxkoiXb3cvN6bh/y+3YcoKGSOHWBk704KmdOENcuq/gjdoTyjo6OMjo7y8pHjpMZSaOa0H7rKK8CPPgl33303q6+9la0P7C27AKeQS3PytzPpOJmQHTvFtp37x8OttBvFicbJzyL4C2OTr0Ytii6/CIl24nZ0++Ge9L7He3A7kjid3fT39ZHOM2nB63/1pwsofZMqfa2musq01knRZi21Z0yptg7+7XsO88mv/YCTp7xw6Iq63HSpF44/enqQ4yNpIi6kcwVvUntV0AIb39zHzetXsGXLlrJjFVtqHUf3sb53jNVLusjlcjzzyhC/fuEop1Jp4mFh7bIEZ/fF+OOREzz+x6NoPocW8mghR/7dH+ETD+TKrmjMq3JqzyPs3vUgu/NZtPiVy45PjfwKU1v03s/inrdh0tjr/MljnPrdw+O3n5zB725kZIRtO/dPuupSpjnJWEshnSoL+9JuFCfWRX5kYpK7WCxGPhyHaBwn1oUTS+B0JHBjCXp6e3nPulX8+PlhCpEuVLXqwufJ9TeW3Q67MqkP/c5NE/PBTNcKt7A27aRtg3/7nsNsfWAvhx7+OtnjXiAeA+65r/Zzfww8Eo2NB3/lkL6Du3fy/PPVplaGYarPf1JUuPw28vFeKq+NLGTGyJ98vXbhqtBc9XUSJRyten89RkZGeDU/eUrq6UaXlHFDONE4TrRz/Hv4jJWc2TPx/NJulIF/2Ari0JlI8qUt69my4c2Tfu9Q3q1ybY1RPcX3rI6wwz03vhWYOuAt2E2QtG3wV2utzkQuPzEVbOWQPnFmvwSX5qtfel+61ueMj5mr3kUioZkFv4SiSCSGhGMkk0nO7Cw/semVM0zPFbfhhGNIpNML9kgnEp3YdqJxJDR53ceOsDs+zBDKu1FeZcWUYTxdWFcL7OmWx7OAN6aNg79yGN5MacnqU5OOJbMP/sqTnuOHdKdYIFccxA0joQgSCvvbUW87FEFCUZx49bHloeRieq+6AwlHkXAUJxxjUW839/7TRuLxOJ/7yQvseS3thXg4Oj4KZeO5fXzhjg2s9T81Vb6Blp7cdAS6Y2GGx7Ljo3pGM14dO8IOsbA77aIYtbpRrJvFmPnXtsFf7D+OnrWGUM/i8geL/cHFABdBEO+2eN+dkqF4lUP6OlasxelIkOiIIOIyklVwXO9yeNdFnBA98RhZFVI5Qfz7cEO4yTMAb0ra0kCNX3g5sRVr/WAPT4S9M/tV2N14D92Xbhq/HXaFL21+Gxv9IH344ovHR/UUbTy3j+/fsQGYaB2XnpwuLnoBNsOiMa2q6Usv1mM2C7Fsn6K1Ot1UsaVuueys8e6C6fqagWkf2/rg3rITisVjF4f11RrVI+Kdc+7tDKPKxGgfykPYFZk0qqdUcTSRhbQxwfFXsxBLo1RrrVabKjYWdhjLTnTrCPD+ktAvPdZ0Iz9m89hUITzXOVJsjhVjzHTatsVvjDFBN1WLfw5nKY0xxrQiC35jjAkYC35jjAkYC35jjAkYC35jjAmYlhjVIyLHgIOzfPoA3gp5QWJ1DgarczDMpc5nq+qiyjtbIvjnQkSeqjacqZ1ZnYPB6hwMC1Fn6+oxxpiAseA3xpiACULw39vsAjSB1TkYrM7BMO91bvs+fmOMMeWC0OI3xhhTwoLfGGMCpm2CX0SuFZH9IvKiiHy6yuNREbnff3y3iJzThGLOqzrq/HEReU5E9onI/4nI2c0o53yqVeeS/f5RRFREWnroXz31FZH3+a/zsyJSx6rSf93q+Ls+S0QeFZE9/t/2dc0o53wSke+KyOsi8ocpHhcR+Zr/O9knImvn9ANVteW/ABd4CVgJRIC9wIUV+3wE+Ka/fRNwf7PL3YA6Xwl0+tsfDkKd/f0SwGPALmBds8u9wK/xKmAP0OvfPqPZ5W5Ane8FPuxvXwgcaHa556HefwusBf4wxePXAT/DWzLkMmD3XH5eu7T4/wZ4UVX/pKoZ4H+BTRX7bAL+y99+ELhapLgGY0uqWWdVfVRVU/7NXcCyBpdxvtXzOgN8Efh34HQjC7cA6qnvHcA3VPXPAKr6eoPLON/qqbMC3f52Eni1geVbEKr6GDA0zS6bgP9Wzy6gR0TeNNuf1y7BvxR4peT2oH9f1X1UNQcMA/0NKd3CqKfOpW7HazG0spp19j8CL1fVnzayYAukntf4POA8EfmNiOwSkWsbVrqFUU+d7wRuEZFB4BHgnxtTtKaa6f/7tNp26UUzQURuAdYBlze7LAtJRBzgK8BtTS5KI4XwunuuwPtE95iIXKSqJ5pZqAV2M/CfqvplEdkAfE9E1qhqodYTjaddWvyHgeUlt5f591XdR0RCeB8RjzekdAujnjojIu8CPgtcr6rpBpVtodSqcwJYA/xSRA7g9YXuaOETvPW8xoPADlXNqurLwAt4bwStqp463w78EEBVnwBieBOZtbO6/t/r1S7B/ySwSkRWiEgE7+Ttjop9dgAf8Lc3A79Q/6xJi6pZZxG5BPgWXui3et8v1Kizqg6r6oCqnqOq5+Cd17heVVt1weZ6/q6347X2EZEBvK6fPzWwjPOtnjofAq4GEJHVeMF/rKGlbLwdwK3+6J7LgGFVPTLbg7VFV4+q5kTko8BOvFEB31XVZ0XkC8BTqroD+A7eR8IX8U6i3NS8Es9dnXXeBnQBD/jnsQ+p6vVNK/Qc1VnntlFnfXcC7xaR54A8sFVVW/aTbJ11/gTwbRH5GN6J3ttavBGHiPwA7w18wD938XkgDKCq38Q7l3Ed8CKQAj44p5/X4r8vY4wxM9QuXT3GGGPqZMFvjDEBY8FvjDEBY8FvjDEBY8FvjDEBY8FvjDEBY8FvjDEBY8FvzCyIyKX+vOgxEYn7c+GvaXa5jKmHXcBlzCyJyF140wV0AIOqek+Ti2RMXSz4jZklfy6ZJ/Hm/X+HquabXCRj6mJdPcbMXj/eXEgJvJa/MS3BWvzGzJKI7MBbIWoF8CZV/WiTi2RMXdpidk5jGk1EbgWyqnqfiLjA4yJylar+otllM6YWa/EbY0zAWB+/McYEjAW/McYEjAW/McYEjAW/McYEjAW/McYEjAW/McYEjAW/McYEzF8AEFtKrpfnXDkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Plot the learned functions\n", + "fig, ax = plt.subplots()\n", + "\n", + "for i in range(num_models):\n", + " ax.scatter(data_batches[i][0], data_batches[i][1])\n", + "\n", + " a = best_model[0]\n", + " b = best_model[1][i]\n", + " x = torch.linspace(0., 1., steps=100)\n", + " y = a*x*x + b\n", + " ax.plot(x, y, color='k', lw=4, linestyle='--',\n", + " label='Learned quadratics' if i == 0 else None)\n", + "ax.legend()\n", + "\n", + "ax.set_xlabel('x');\n", + "ax.set_ylabel('y');" ] }, { @@ -416,7 +510,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -517,6 +611,43 @@ "print(\" b values: \", best_model[1])\n", "print(f\" ----------------------------------------------- \")" ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEJCAYAAACT/UyFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACUjklEQVR4nOydd3hb5dn/P88ZmraG946zJyQEGvbuokChA0qh821L9+JtCy3QUgqlLZQWfu1bCm0ZLZRRKHuHsEkg20kcZ9hOvJdsyZK1dX5/yJIlS/Ii0zmf6zrXOTrjOY9s6av73M/93LfQNA0dHR0dnSMH6WB3QEdHR0fnwKILv46Ojs4Rhi78Ojo6OkcYuvDr6OjoHGHowq+jo6NzhKELv46Ojs4Rxn4TfiFEtRBilRBimxBiqxDi+8P7rxNCtAkhNg4vH9tffdDR0dHRyUTsrzh+IUQ5UK5p2nohRD6wDrgQuBjwapp2y365sY6Ojo7OmCj7q2FN0zqAjuHtQSFEPVA5lbaKioq02trafdg7HR0dnenPunXrejVNKx69f78JfypCiFrgGGANcDLwHSHEF4C1wP9qmtY/1vW1tbWsXbt2v/dTR0dHZzohhNiTbf9+H9wVQuQBjwI/0DTNA/wFmA0sI/5E8Psc110uhFgrhFjb09Ozv7upo6Ojc8SwX4VfCKESF/37NU17DEDTtC5N06KapsWAu4AV2a7VNO1OTdOO0zTtuOLijCcVHR0dHZ0psj+jegTwd6Be07RbU/aXp5z2CWDL/uqDjo6Ojk4m+9PHfzLweaBOCLFxeN/PgM8KIZYBGtAMfH0qjYfDYVpbWwkEAu+/pzqHPSaTiaqqKlRVPdhd0dE55NmfUT1vAiLLoWf3Rfutra3k5+dTW1tL/OFC50hF0zT6+vpobW1l5syZB7s7OjqHPIftzN1AIEBhYaEu+joIISgsLNSf/nR0JsgBCefcX+iir5NA/yzoTAeGhobYvHkzGzZsYMOGDfzgBz9g0aJF+/w+h7Xw6+jo6ByudHZ28qdX3uCeN9+hd/s2ort3EGndA7FY8hx5/mL+sh+E/7B19RwK5OXlHewuZHDPPffwne9854Decyp/h1//+tdpr0866aR91R0dnUOWRztdLHx9M6Uvr6W8ZgY3XnYxbX/5A8FVLxDZ25Qm+gD3v/k2j3a69nk/dIv/ECISiaAo0+NfMt57+fWvf83Pfvaz5Ou33377QHRLR2e/oWkaXV1d1NXVsXnzZjZt2oTLaKHzy9+lNRhGAhKyLmQFpXY2kZ31Y7YZ2NnATY0dfKqsYJ/2dXqoDFP38S5fvpx169bts37s3r2bb3/72/T09GCxWLjrrrtYsGABTz31FDfccAOhUIjCwkLuv/9+SktLue6669i9ezeNjY3U1NQwf/589u7dS2NjI3v37uUHP/gB3/ve9wD417/+xe23304oFOL444/n//7v/5BlmbvvvpubbroJh8PB0qVLMRqNGf3q6+vjs5/9LG1tbZx44om89NJLrFu3Dq/Xy3nnnceWLfHpFLfccgter5frrruOu+66izvvvJNQKMScOXP45z//icVioampiUsvvRSv18sFF1yQvMerr77Ktddei9PpZPv27ezYsYMLL7yQlpYWAoEA3//+97n88su56qqr8Pv9LFu2jMWLF3P//feTl5eH1+sF4Le//S3/+te/kCSJc845h9/85jfcfvvt3HHHHSiKwqJFi3jwwQf32f9MR2ey+Hw+tm3bRl1dHXV1dby8dh31W7YQHUjPPiOXllN06TeAEdFPoMyel1X45cpqlDkLUOfOR1mwhLZgeN+/AU3TDvnl2GOP1Uazbdu2tNfE5wVMelm+fHlG2xPFarVm7DvrrLO0HTt2aJqmaatXr9bOPPNMTdM0zeVyabFYTNM0Tbvrrru0K664QtM0TfvFL36hLV++XBsaGkq+PvHEE7VAIKD19PRoBQUFWigU0rZt26add955WigU0jRN0775zW9q9957r9be3q5VV1dr3d3dWjAY1E466STt29/+dka/vvvd72q//OUvNU3TtKeffloDtJ6eHq2pqUlbvHhx8rybb75Z+8UvfqFpmqb19vYm91999dXa7bffrmmapp1//vnavffeq2mapv3pT39K/h1WrVqlWSwWrbGxMXldX1+fpmmaNjQ0pC1evDjZ5ui/XeL1s88+q5144omaz+dLu768vFwLBAKapmlaf39/xvvTtMzPhI7OvuInd/9TK//SNzTjyWdqamW1hhAT1pjiJ17TSl/ZkLHk//BqTZm/WDOf+0kt/3tXac7b79aKn34z47xj39oy5X4Da7UsmjptLP5DAa/Xy9tvv81FF12U3BcMBoH4vIPPfOYzdHR0EAqF0uLNP/7xj2M2m5Ovzz33XIxGI0ajkZKSErq6uli5ciXr1q3jAx/4AAB+v5+SkhLWrFnDGWecQSKtxWc+8xl27NiR0bfXX3+dxx57LNm+0+kc9/1s2bKFa665hoGBAbxeLx/5yEcAeOutt3j00UcB+PznP8+VV16ZvGbFihVp7+3222/nv//9LwAtLS3s3LmTwsLCnPd8+eWX+fKXv4zFYgGgoCD+iHv00Udz2WWXceGFF3LhhReO23cdnckQjUbp6uqioqIi49ijnS7++NvfENq+dUptRxp3Ylh6bMZ+y/mfxnL+p8e81iwJfjqrfMxzpoIu/PuQWCyGw+Fg48aNGce++93vcsUVV/Dxj3+cV199leuuuy55zGq1pp2b6qqRZZlIJIKmaXzxi1/kpptuSjv38ccff199VhSFWMqAUmos/Je+9CUef/xxli5dyj333MOrr76aPJbLtZb6Xl599VVefvll3nnnHSwWC2ecccaUY+2feeYZXn/9dZ566iluvPFG6urqps14iM6BIxKJsHv3bv7x9rv8a/VaXLt3ou1pJLS3CZFv55gnV/HTWeVpPvWbGjuQaufARITfYESZORtl5lzU2fNQZs1FmbdwQn2TgWjKusqoZvRlXzFtvjnafiooMxlsNhszZ87kkUce4aKLLkLTNDZv3szSpUtxu91UVsbLEdx7772Tbvvss8/mggsu4Ic//CElJSW4XC4GBwc5/vjj+f73v09fXx82m41HHnmEpUuXZlx/2mmn8cADD3DNNdfw3HPP0d8f90WWlpbS3d1NX18feXl5PP3003z0ox8FYHBwkPLycsLhMPfff3+y/yeffDIPPvggn/vc57j//vtz9tntduN0OrFYLGzfvp3Vq1cnj6mqSjgczkix8KEPfYjrr7+eyy67DIvFgsvlwuFw0NLSwplnnskpp5zCgw8+iNfrxeFwTPrvqHNkEAgE2LlzJ3e//S73rV6Lt7mR6J5Goq170MLZfeZaXw97+1z8KBwBSApuWzCMMnN2+slCIFdUocycizJrDsrMOSgz5yJXViNkeeQ04v6eXDgVmRvmVu4XcR+LaSP8B4OhoSGqqqqSr6+44gruv/9+vvnNb3LDDTcQDoe55JJLWLp0Kddddx0XXXQRTqeTs846i6ampknda9GiRdxwww18+MMfJhaLoaoqf/7znznhhBO47rrrOPHEE3E4HCxbtizr9b/4xS/47Gc/y+LFiznppJOoqakB4gL885//nBUrVlBZWcmCBQuS1/zqV7/i+OOPp7i4mOOPP57BwUEAbrvtNi699FJ++9vfpg3ujuajH/0od9xxBwsXLmT+/PmccMIJyWOXX345Rx99NMuXL0/78fjoRz/Kxo0bOe644zAYDHzsYx/jl7/8JZ/73Odwu91omsb3vvc9XfR1eLTTxTU72+iPRAFQiVvKrl9dSfC1lzNCIydCpHk3/iXL0iJpKo0qTUuPxXLR51Bqh0V+xixEins2GypwaUUBK/sGaQ2GD4glP1H2W+nFfclxxx2njS7EUl9fz8KFE3uE0skkUdymqKjoYHdln6F/JqYn4XCYpqYm7l69ln++ux5XUyOxvh4cN/2/rOd7brke/7P/nfR9JGcB+Vdci+nkMxBAx5nLgPgPzI8aWvDHsmulWRJcXObkyW538kfIKUvcMK/qoIo7gBBinaZpx43er1v8Ojo6Bx1N0/h73XZufvNdOht3Y25vodrVyWBzE7t37yYSiWRcE3P3I9kzgxTkGWMn6pOchcgzZqHUzkJJrGtnp7VVaRxxQSbE+6bGDtqCYRyyBEIwEIlSmWK9/3b+VN/9gUcX/iOU5ubmg90FnSOUKxv28q92F1Fg6IG/E3xtJeG2vWhDvuQ5HqBrnHYie5sxHJUp/EpNXPil0nKUGTNRamYi1wwLfM1MJJt9TN97tkiaT5UVHHTrfV9yWAu/pml6ci4d4NAY3NeJ/x/+saWBm99eS2dzE0pHG+GONsxXXk+VycBMs4E3BkYEPtLTTWic2au5iLY0w1HHZOw3HLOCkmfezumDT/W9j2XBT2cOW+E3mUz09fXpqZl1kvn4TSbTwe7KEUEkEqGlpSU54/zZzVt4bet2vC17iLW3EvMPZVxj+Op3aS0qoXXULFS5smZC91QKixBVM1Cqa5Gr42t1/uKs5wqDIWc7h4rv/WBz2Ap/VVUVra2t6IXYdWCkApfOvicRPdPytz8TeOkZol0dEItOqo1oWwtyUUnGfqVqRPiF2YJcWYNcXRMX+KoZVMyaxepPn8PL/uiYA6wwEtWTGstzKETQHIoctsKvqqpebUlHZ4q43W7+tm4zf3lvI90tLZh7Opnh7iXS3cm7776bnBz3aKeLH2xvIaxpaENeoh2tU7pftL0FssxeVZcsw/mHvyFXViMVFqc9vZslwQ3zq7Hb7XzKHt93U2PHIRcaeThy2Aq/jo5OblwuF3e9u4E719XR09aK0t1BuKuDQGc7WlcH0UFP2vmDQPfwdmtrK7W1tUBcaMPD4ydy+cSeqITJjFxZHV8q4mv16EzRB5Dy8tPSGSQGXbMJ+nQbYD2Y6MKvo3OY4ff7aW1tpaOjg555S9ImMUHcj81vr2H7s09Nqf2mpqak8KdmhpTLK5PbkrMQubwyLuwVVcgVie1qJGdBznE3syQ4zmbh7QEfUeIFQUwC/BpHzMDqoYAu/Do6hxCBQIC2tjbu37SNOzZsZbCznWhPN6Knk2hPF6HuTjT3QPL8yhfWEFHTBzP7ozEGbbkT4Y1HaqhvpVFNDsiqRx1Dwd8eRimvSouYGS8tQQLdLZMbTdNoaWlh48aNbNiwIbm+++67OfPMM/f5/XTh19HZzzza6eLXu9tpD0WyWrWf/N4Pef655wh0d6F5BibVdqC7EyVLZIxcUjb2haoBubQ8vpRXIpeVI5VWUF4zg09+8tzkaT+dVZ708UvWPKRZc9OaScxaTYRGVhpVzi7MT3uti30mkUiE+++/n1de+QubN29m9+4gg4OZKSY2bNigC7+OzqHAo50ufrKjFV80hhaLobkHWBr2sn1vG56ebmKuXqK9Pcj9vdjcLro6O9FCQYofXUlrMMyPGlqAuM/60U4XL9bvwL+rYUp9iXV3QTbhr6xGnjFrRNxLy5HLKpCGt6WCIiRJSrPUzZLgxuHB1AQJwU51J43lh9dJx+/3p6VcTyDLMt/73jfweMbOVpst0+++QBd+HZ1RPNrpGpmer8igaQxEYzhkic67/8LQ9q3E+nqJuXqJ9bsgFuXlHG15U7a1gB9hMuOPackkYDc1dqBlCXMcE0lCKipBLi4FKXvZbOMHTsJ090ljzk4dbannEnF9UHV8AoEA9fX1bN68OVl6cfPmzSxYsCAtnXkCIQS1MwWbN43d7ubNm/dLf3Xh15m2pGZv1AJ+tIF+ou5+Crwe5kX8vLenFV+/i9iAC3mgn9KhQdx9PXhMVgr+9jBA2qBpfzTG0Ob1hNa/O6X+RPt6USqrgZFB07ZgOD2+XZKQCouRi0uGxb0MqTgu8lJxKXJJGVJhEUJWcMoS3piWjLpJJWN2asoPmO5+mTqxWIympia2bNnC228/zHvvPcfu3V5aW8NZk4GGQqGcGQZmz1LZvMmffG02C2bPNjJ7toHzz781WZp0f6ALv85hQaoVXi40vukwcIIcY6VrkH+p9gyr9dFOF5dd8HHCexqJufshpQCMC9iV5R6Nw2thzcvZD6mgeMrvIebqhWHhTyQBqzSq7DntbNSFRyEVlyA5C9PyuefCLAlumBcPr8wW1aPPTt03dHQ+QePuW7jttjq2bInSvCeIf2jiNXD7+/tpa2vLOrnwhBPzsVglZs82MHu2kfJyBUkSgMzZZ31lH76LTHTh1zkgpAp3QqABrtnRiisUJrx5PapvEGnQg9ftBq+H6KAbyeMh7HETG3QT87jRPG46A34uH27XePRyHH/8O0Ca//ymxg4i3Z3Eujom3VfN50ULBRGGzKL1UkFmtIzIy0cqLEIuKEYqLIr7zwuLkAuLk2tRWIxkjpeTTE0C9tNZ5fwoHMGfYvVnS/NrEWCU5az5ZHSBnzqaplG35T5ee/UWenp7+MiH5zJr9o8YGFhHe/tInYidO4PU10++epzRaKSxsTGr8J9//v9w7LGZhYwqKi6Z9H0miy78OhmM9nEHo1GGhr0JFiEwSIJ+r4+yaIgVqsabbZ109g+Az0fM5yXm88bF0zdIzOtFGvISHRxEXb4C62VfoTUY5gfbW4hqWnx6vRD0/+jrMIVEa5GU0EYg6T9vC4aRHE4ml1hghFi/C7k0s9ap6UMfQ12yDKmgELmgCKmgMOsPRILRLpdcoj36R/FwS/N7qKNpGp2dnWzbto1t27axdu2zbN78No2NXjyeuI/GYhWcdpqFbdt+RHriB6idaWDjxrGFv6REYfZsAzNnxpdZs4184fONOUuELlxwPQDt7Q+SKLpYUXFJcv/+RBf+w5Bs1nOq1Zc43hoMI8ViRINByrQwXy/O5zSLym+37ea5li6iAT8x/xBawI85GCDmH2LI50PzD2E88TSMK05OcyEAePY20/flT0IsRjcwqaGnlKpZqX5pIUkIax6ad3DSf4ts4Y+Jv0u/beR+yAqSw4FkdyI5C5DsToTDiewsRDicSI4C5IJCHIWFROwFBI3ZE76ps+ejzk5XZAGc4rCyZdBPf3REMCbqctEHT/ct7713F6+++kd27e6irVWhs8vBrp2tuN2+Ma8b8mn09kYpLs70x8+cOTJXIj9fYuZMA7W1BmbOMiS38/LSB9pNxopx60IvXHD9ARH60Ux74R9PJMc6P1e61om2+XBbD7/Z0UKrbwg5EiESjaDaHcRkJS0U7sqGvdyzdjOhvU1ooWC8JmgohCEaJhAIIsIhYqEQedEwVZJGQ7+bSCCAFgrhCga5/PNf5SdLljIUjeFQZLyRKGEg8NaruK/9IRCfjv/tMf5OoyVXchZgXHFyxnnCbJ5SSTsAzevNeUzKtxGdqPBLMsJmQ7Y5EAWFGYNnif/JN77+A/K+9t24yFvzxs3iqgrB7xbEffC5onqOtPS9hyrBYBCjMfNJq6PzCb797St4773Uz9p4mf1HaGoKUVycKYvHr7Dwm9+WUVtroLBQnkBGYIlZs3804fseaKa18D/a6eLL3/gGwa5OAFyaxufRuNFqptSgoGkasVgsue4Ohtjp9ROLxRAGA9rNdyTbSviP33V7uePaq/G99RpaNEJ3NMrF0Sh5AqRYlHA4nFyy5Ygv/NdTKBVVyfYe7OjjjQEfQ6++gPdvfxrz/fjI/hGOfuQ8fNGjgPQolLFcEOOhDWWm1gUQFuvU2xxD2A3HrCA204XItyPl5yPybUg2B1K+Lb6db0fY7PEiGhYrFkXm4jInD3f2p2VsTPjPP1VWwLvHHsW97a6MezkVmY+X2HmyayBpoY8ueq0L+sEnFovR0tJCQ0NDxuJyufB4PEijwlkbd99CdY3Ee+9N/D5Go6CmRmXGDAM2W/bw2KJihaIsPwjZEMLCwoU3UF6Wux71wWZaC/9NjR0MbVxHdE9j2v4NE7k4S253f0zjX+0uQq6+eLbBFDwZZ+cgMhIR4I9pI0Up1Nw5xMdDCwaz7h+vGPSYbfqzPxYLkxmEANWAZLUiLFaEJQ9hzYu/tia28xDW/Ph23vC6cKS+ryrEiI8fsP3o5xPum0UIbp5fzafKClhhz8v59PXb+TXjHtc5uGiaxtZt/+KtN2+hsbGD1tYwra1hWlrCtLWFCYVyj/u0tLQwY8aMtH2BYAc11dm/SyaTYMYMQ1Lka2tVamYYKC1VkOVUC15itI8/FUV2EIm6MRnLmTX7R4e0wOdiWgt/W3DiYVcZRLP/46MAEwi3y4UWzt4n8X6EP5RD+BN+aqMJYTQhTCaE2YwwDS9my/A6/lqyWJPbyux52duUJEpeWINQ1KzHcyELsElSWhw5xKN6Ela3VZYwEI+XT6TdtQgIaPGvoQx8rqIgTbDH84/r/vNDh/rtP6e9/QFSM/vceGMXq14Z2/eei4aGhgzhNxnLmT3Hz1FHmaipiQt7TY1KTY2BkpKxXDTx+cgmY0XWqB4AIcwsXHjjYSn0o5nWwl9pVJlymRYtu/DLANIEhV8IUBSErMTXam6xlMsqMKw4Of4DYFARqiHuqjEY4ttGY7yykGoc3h5+bTSh5hBpZfY8Sl5ehxh+HE5kRkwtfTdZLEJgNJmSfu5EXpbWYDinnTTajZKKLsrTA03T6OnpYdeuXezevZvdu3eza9cu6upeZe/eTh58qAZFyRTdoqKpSZAkSbS2ZtYGmDX7R4TCV/OHP6Y+sasIAZo2YnQJoSJL1pyWe3nZBQdl0PVAMa2F/6ezyvn2D35KMMVfbZAEX60u4WRnPpIkIYRACIEkSbw54OWO1l5CiKxWfSK++oGvfQf/Zf+DkGSQJEwGlevnz+DCiiJUVUVVVZ7o9XDlrvYxKwalCrHxhFMxnnDquO8pcc2bA76c0/FVIciTBP2QtWBFarHrBM7UQUx9lqdOFva2PMrqd26iqbmd3h4LXt9RdHdJbG9YT1NjC35/7uDZrq4IlZWZhk9V1dhPjvn5ElVVKitWXMK8efNYsGAB8+fPZ86cOVkHdxPi3bj7FgLBjqSoZ9s3HSz3qSIOhyLVxx13nLZ27dopXXswo3pSwyoTAjxRIRaARZbwpbg9qnL0QY820Xm/dHQ+we5dN9PZ1Up5WTUFhWfi6ltFINiBItvRCHH99U1Tdsv8+qYyVqywZOzfuNHPz37aSUWlQnWVgcoqlaoqlerq+NpmkzCbKjn55Dfe71s8IhFCrNM07biM/dNd+HV0dOIk3DHr1t/H2vf+TktrN709Rnp7rezZu5euzjDBoMYzz9ZiNGZGt/zj7y4eeGBgSvf+zncLufBCe8b+aFRDCIZTFWRDYtGiW45o6/z9kEv4p7WrR0fnSCORW+btd3azvT5EV1eI3l6Fvj4rbW19+P3+cdvo7IwwY0ZmsEF5+dhyYTIJKipUKioUKioMVFQaqKiQqaxUKS7OPi6WHk2TzuEQFnm4st+EXwhRDdwHlBIfxr9T07TbhBAFwENALdAMXKxpWv/+6oeOznRA0zT6+vpYv+GfbFh/F21tPbjdZn7z2/9HedkFdHQ+wY6G64lEBwB4+aVBXnwxdRLTxL9iOYW/QqWgQKa8QqGiXKWsXKGiwkhFhUx5uYLTORI1YzJWUFB4ZkZkTG7So2qOdLGPxWLs3r2b8vJy8vJyJw2cKvvT4o8A/6tp2nohRD6wTgjxEvAlYKWmab8RQlwFXAVcuR/7oaNzSNPW/l/Wr/sNrW3teNz5+Hy17G58j+7uAD3dEXp7I/T0RLPGtH/6oquYM2cdnZ2PEYuNWPOlpVP7alusAp8ve0TbsmVmHn5kJHxSksyUlX0y496SZE4T74ORi+ZwIhAIsHXrVjZu3MjLL7/MmjVraGtrIxQKcckll7BixQrOPvtsjj766H12z/0m/JqmdQAdw9uDQoh6oBK4ADhj+LR7gVfRhV9nmpFwubj62xjoNzM4GGX+ggiKbAchiEQGMBnLKSg8ky9/6Q+sWZNqnddP+D5dXV4sloSwjlBSkv2rbTbLlJZKlJWplJYplJYqlJUplJWplJUp5OdLE0hHEJ/ENG/+zykvuwCH49icETMHKxfNoU4kEuHCCy9k3bp1dHV1ZZ3lD9DR0YHb7eapp54C2Gfif0B8/EKIWuAYYA1QOvyjANBJ3BWko3NY0NH5BLt23kxPbxvuATMuV4SeXjcet4VI5CgGB63s3v0O7e3tuFwR/P74F9poFDz9TG3SFQMQCLbT3v4ABQXjC20uerojzJyZGUY5b76RT33KTmlpXNxLShVm1FSxdNlVNDRck2ahx3OI5p7sqMiOtB+rbDHvR7prZjShUIiGhga8Xi8nnnhixvFt27bx5ptv4na7x2ynqyuepCUcDrNy5crDR/iFEHnAo8APNE3zpFoTmqZpQoisP3VCiMshnna9pkafWq+zf2lr/y8bN/yWrq52IhEr8xdYiUQGUBQH0WgATYsL5U+v6mD9ej/RrCHrzTnbDwY1fL4YeXmjBzk1ioomNiHQbBYUFysUlyiUlCiUFCuUVyiMBAmPMHu2kW9+ayTOXZLMLFjwU8rLLkAIkTXOPXWMQFGczJt3rS7o46BpGu3t7dTV1fHiiy/y+uuv09raSm9vL9FolKqqKr7yla9gt9vT3DUrV66ktLR0TOE3mUyoKZM+x/uRmAz7VfiFECpx0b9f07THhnd3CSHKNU3rEEKUE08cmYGmaXcCd0I8nHN/9lNn+pBwsQSCHYSCReTlfwHB0fT29tLT00NPTw/d3d3JdXd3N52dLfT29ieTjpaVKfzr/rixEYmkD4oKiRyiPz59vdEswh9PAJaXJ1FULFNUpFBcpIxsFycWGatVQgiJ1JQHufzsw70l24BpLgtdF/mxcbvdbN26lbq6Ourq6li9ejXbtm0bM1Kqs7OTWCyW4a5xu92UlpayY8cOAOx2O+Xl5ZSWllJWVkZZWRl2uz3N7Wa3Z4bDTpX9GdUjgL8D9Zqm3Zpy6Engi8BvhtdP7K8+6ByedHQ+QX391UkrOxrVGBzUMJnOwen4HDt3PUPD9kfoc7koKMjnox8pIBJ1o8h2ojFfcmr+F7+4lp6eNZO+f39/NGed1ALn5L4yqiooLJIpLJRzpX/iYx+zce65tnHbEkKmvPyS5MSqVLfLWH52namxefNmVq5cidvt5r777qOpqWnSbUQiEfr6+iguLk5z19jtdpYuXcrs2bMpLS3FlCUpZCqqqnL22WdP9a1ksD8t/pOBzwN1QoiNw/t+RlzwHxZCfAXYA1y8H/ugcwhQv/3ntLQ8QCQSHZ4YpKIoeUlrOhrV+Mc/XHgHYdAbwTsYY3AwyuBgDM9glCFfwsL9y/AywsKFXj74wfhko1T/OYDdLtPTM3nzPBjU8Ps1LJYswl8Qt9gtFoHTqVBYKFNQkFgUCgpVCgsEhUUKBQXyuIOlCYs9VcwLCs+kq+u/RKMjqUZk2cL8+blj2nU/++Tx+/08+eSTPPnkk+zduxchBH/60584+uij2bx5M0899RTh4aSK6hh5tnKRn59PaWkpsZT6FQl3zdlnn83Q0FCy/cQ9li5dys6dO3G73Qgh0DQtw020L9ifUT1vEn/WzMa+++nS2WfELe1r0LT0XPyJmGxX3yr6B9rYtdNKfv65eH1+mpueZsA9QDBgRpYXEw47cbvdyaW3twWPx0sgoPHRj+bzox8XA+E0F4okwX8ecU/JheLx5L7Ibp9cFlWrVcLhkHE4JQKBGBZL5uzVSz7r4LOXOjCbM4+N5XaRZQvRqD8jqieXZa5Hwuw7vF4v27dvT5ZdTCyNjY1p0TSyLPP4448DcR98qiiXlJQk3TKjUVWVkpISSkpKKC0tpbS0lJKSEiyWzBQVCXdNqq/f7XbvF3EfC33m7jRidNrbgYEYO3cGCAQEgUCEUNBEIKgx5PMRCEAgECUYVBkaChMIhPH7Nfz+GH5/jE992sHHPx53P8SjT+ITcVyuCD/84RZgS5YetI3ZP68vu0gLIcjPlxgYmHxlr0S91GyUlimUlys4HCZmzTqd4uJiiouLKSkpSW6XlpaisYG+vltRlOzprVNJ/TEQwowsmzJEXHe7HFz+85//8NZbb1FfX8+mTZvo7Oyc0HXRaJTu7u6kGKdSUlKCEIKioqKkyCcWp9M5oRDY0e6ao48++oAJ/WimtfCnDvTlytI3c9b/omkau3b+nkCwA4Naxoza71NWel7WX2yAnp4ePB4PHZ0v0Nz0d/z+bmS5iLLySwmHo+zdcz9+fx+aZiEShVDQixAOnAUf4X++fAP5+fnxmZY7fpW0fNetG2L16jCRsCAYDBKNGlHV2QhRQCAQIBAI4Pf707YTy3/+8x/mzlubMUuyfpufa6+deNm5VFx9kaz7s1nBE8XnzS3SeXlyTuEXAvLyJGw2ifx8GZtNwmaLr+0OOac//oorioejWcbLoX4sHZ3Fyc9FqlU+OqoHxo940d0u+49wOExTUxOrVq1iaGgoaS3PnTs36SJ57LHHqKurm1L73d3dFBUVYbfb08R/4cKFLFy4cNwauglG9+lAW/TjMW2Fv6PzCbZvv5qvfmUne/eGgN1o2psknuw0DTRtN/DmqCsbgbexWEz4fNlH67/3ve/x4IMPjtrbCmwco0ddQAMf+MBCZs4sp77+yrT84Dt3hPjvY6llAgeB3nHfJ8R9lfHZkekYTVMX6SF/dhHO5veeCELkrG0DxF0owWAMW75MXr5Efn5c3PPzJaxWKZnEy+E4CY9nQ5YIlgSJ8YOxXSmj0cX60CGRTG7Hjh0ZJRd3795NJBJBkiR+9rOfIcsybreb1CSODodjQvcRQmC329OeAKuqqpIinerjVxQlmcY9msMnaTabOeeccw4ZcR+LaSv8jbtvIRbzE41qRLIbr2MSjYZyHpPfRwWupsa70GKWNNEHUA1Tn8QTDyfL/DCaTO+nzewRtAaDYPlyMyaTwGKVsFokLJa4OFusEg57AStW3Irdbsdut9Pd8zd8vicxm8UYGRjhox/NH7dPDsdJHLv8n2lPcoriAE077EvhHYls3ryZBx54gF27dtHX10dfXx/9/f309vYSCATGvDYWi+FyuSguLs44VlRUlPZaCIHT6aSkpISioiKKioq49tprCYfDvPzyyxkDrKPj7VMt9mz7DgehH820Ff5AsGP8k8YgNkYBlYk+7mXDN9RNIJhZQEJV36/wZ07isdtljj02LtJGk4TJJIaX+LbZJGEyx1+bTQKzRcJiju/LNTAqhOB3N5cjhDr89DTypRlxq5ybcsVt1G+3097+b0bqc6VH9aT8FYBIMrIlW9gi6Nb54YTH46G5uRlIF8y5c+eyadMmnnnmGbZsyTZeND69vb1Zhb+qqoozzjiDoqIiiouLKSgoSPvO2u12li9fDsSt9FxCnssHfzgK/WimrfCbjOUEgu0TPl+K1zJJ5gZX1dxukpKSEsrLjUhSDFmOV2JUZIEkCxQZFEUgK6nb8eOKKnA6yjAZTRl9W7LYyDe/VYjBIFDV+GIwCKyWQo455jbMZjMmkwmTyYTZbE6+tlgsGAwGtjd0ZPj4KytVfvu78sn94bKQGtUzlapGer6W6YumafT29vLCCy/w9NNP09nZSX9/PwMDA7hcLrzeeA6ia665JvmknOqaKSiYfMEgm81GQUFBzhDLgoICTj/9dMxmM5FIJKtFn+BgDrAeTKat8M+a/SO2b7+av95ZlfTrxycSgxDxD4IkgSQZclquufjd737HD684me3br07zNWezglOJt3sNQIaPf9ZsI7NmG7OcfyPlZR8c9/0mhDW9mLUY3o4/DYzkXBkpyqgozrTBy8lO1dct7+lPYiJTfX097e3t9Pf309/fj8vlor+/n1Aot1s0QW9vL6WlmWm5CgsLs56vqiqFhYXJ5fLLL2fevHnMnz+f5ubmNP97ruvPOeccYHq4ZvY101b4J1N7M9u+8QRtIu2PF7OdGtUD8cITsmyc9MBkAt2y1pkKsViMV155hSeffJK2tjZOOeUUzj77bDZs2JA2W/W9995j48aNU7qHy+XKKvylpaXMmzePgoKCNKHPz89PRmrZ7XYuu+yy5DXZ/O9jRdDoQp+JXnpRR2eaE41G6ejoYM+ePezZs4fm5maam5vZsmULu3btwuVypUWq/OQnP8FsNme08/rrr7Nq1apJ3VuSJJxOJ2eeeSaLFy+edN9VVeX888/XxXuK6KUXdXSmMZs3b+a5555LJgx755132LVrF8FgkO7u7jHdIqMZGBjIKvxOpzPr+aqq4nQ6KSgowOl04nQ6KSwsxOl0YrfbkaTM8bJc6QkS9/X7/bprZj+iC7+OziFMOBymvb2dVatW8cILL9Db24vb7cbj8eD1evnKV76CxWIhGAym5YTp6+ujsbFxSvccGBigvDwzKKC0tJSjjz46Ke4JsbdarePOXJUkCaPRqAv6OCTSPG/cuJENGzZw6aWXMmvWrH1+H134dXQOAqmZHz0eD0VFRUiSRFtbG62trcllrOpMAENDQ1lFd7IpfE0mEw6HA6fTmdXah3g02yc+8YkJtaeqKoqi6EI/BpFIhIaGBjZt2sR7L7zN+rffY2v7DvqGBpLn5G8K89WffRvrMSX79N668Ovo7EM2b97MCy+8QFtbG16vl8HBQQYHBwkGg5x33nnJUMLUqJRnn32WhoaGKd3P7XZjtVoz9o+evVpQUEBtbS0zZsxgxowZNDc3YzKZsNvtOByOcdMCjybhmklwOM1aPZj4NnTjeaGZoMvHUbedhzc0NOb5dc31DDy2E2Cfir8u/Do645BqnYfDYWbNmoXVak2GOCYEPrHOVphDCMEpp5zCU089haIoaT73/PzxZy3nwu12U1FRkbG/traWSy+9FLvdTnV1NT/96U8z3lOukMiEhT46qmfmzJl88YtfnHJfjwQikQi7du1i8+bNbN68GdWtcXnlBUQHgkgWhVggAjFQJIVKWykNvWPn+N/atRMtHMPzQrMu/Do6UyFVwFVVJRQKMTQ0hM/nS1uEEKxYsQKIuyxisVgy6uW+++6jtbV10vfWNC3Z9mixtdnGLsKSn59Pfn4+NpsNm82G3W5PrrPNXE29RpZlzj333IzjE0kLrFvvudE0ja6uLurq6ljzwCtsXreJ7T2N7OhtIhgZmdcww1HJV77+UQBiQ+m5YxaXzs0q/CbFyMLi2SwunctxlUsAiA6Mnzl2MujCrzMtSBX1BNu3b8fj8RAKhXC73QwNDaUJvd/vz+o/z8/PTwr/aJHOy8ubch8HBwezXl9eXs6iRYsoKiri/PPPp6qqiqqqKiorK6msrGT79u08/vjjaYO3o5EkCUVR0iZTjed+OVJnrU6Fd999l02bNiXLLm7ZsoXe3vGTKO4ZaMMXGsJqyMz0u7B4NiXWAhaWzGFRyWwWl8xjcekcZjqrkKX0lCmyIzPNy/tBF36dQ4JU4dY0jUAggCzLLF68GI/Hw1tvvUVfXx+apqGqKu3t7bjdbsrLy7nyyivZtGlThki/+OKL9PePzgc0Pj6fL2eq54kIvxACq9VKfn4+eXl5Ses7keZ7dCqBOXPmsHDhwpzx6ol9qeGaqeiDp/uGcDiclgbCt6Gbgf/uRAvF+J+7v8LW7p1Tarehp4nllZlzGL72gYv5xvGfHfd6oUrYPlI7pXvnQhd+nffN6Bhyk8nEGWecgdfr5aWXXqK3txdZljn77LNZuHBh2rlms5kFCxbwrW99i6GhoWS9gYkyNDRErsl9FotlSsIfi8Xw+/1Z6zEUFxdTXV1NXl5emrgnBD6xP1vsOkw9lYBune87fD4f27dvZ8Ozq9nwwmp2dDayo68ZBGxbuQHrMSX4NnTT/0hDMq/g/OKZExb+IouTBcWzWFgym4XFs6lxZI7BABlWfSrCIKGFYsgOI7aP1OpRPTr7jlTB1jQNg8HAzJkzqa+vJxQKUVZWliFIq1at4le/+lXShRIMBgkGgwQCgbTtbC6Ud999l0984hNpx/x+Pxs2bKC7u5vIFPJnDw3ljorIVUgnFZPJhNVqzVhyCfeKFSs4+eSTqaqqmnDx7Vy1U3Uh37/09/dTX1/P9u3bqa+vp271RrZt3Uprfyca2UNkWx/YSBXL8LzQPJJMFphfNDPjXJNiZG5RLQuKZrGgeFZS7IutYySek0Vc1P3RkVRaKQizjOPjc/a50I9GF/4DRKorY7wiyqnn2u12zjjjDObPn8/atWtZuXIl/f39GI1Gli1bRlVVFYsXL6a9vT3tmoKCAtasWcPGjRsJhUJEIhFCoRDhcJhQKEQ0Gk0KdWJfqg/57LPPTkahAMkC1M8888ykp+0nyPWDAHHLf3BwcNJtZnN9JJgzZw42mw2LxYLFYsFqtSbXie2J1lYwm80ZMelPP/0069aty3hPBoOB8847Txf2A0giTDI6EOTaVbfx7LZX6fb2TbqdHV1N2F5wZAymLq9czHnzz2R+8UzmF81kQfEsahwV5J9UydDqiZV23F/W+1SY9sL/3nvvUVdXx7p16/D5fFgsFpYvX86sWbPQNI1YLMY777zDjh070DQtuUiSxGc/+1nOO++8jDZfeeUVXnnllaRfORaLJRdVVbHb7fT29uL3+1EUBavVSk9PD5FIhA9/+MPJuGu3250s7rxmzRr+8Ic/4PF48Hg8RCIRotEokUhkzEE9gD/84Q/4fL6kzzi12Pk777wzpb9bMBj/4IfDYVauXMnRRx/NypUrc1rCE2EsF47JZEoTfoPBgMViSaagHr0kjlkslpz++MQAbTZUVSUSiYw5OQrGHiA977zzsn4+dPY9fr8/rSJXW1sbv//69Qw8uStuPafgGxqakugLBC3uDo4ZWITsMKaJ/wnVyzihelna+bLDSMGFcwEYWtOZYb0DoAqcn5x3SIh9KtNe+C+55JIpTV1XVZW5c+P/1NFf7ltuuYXnnntuSv057bTT0ibcxGIxnnvuOSRJor6+fkptrlu3jtmzZ2fsz5WvfCKkRockImXcbjdG48SiC2RZTtYPMJlMGI3GrNkZE1x00UVIkpSsM5D4gZFlOfkDnYvReV9SEUJgMpn0GaSHAdFolL1797L52Xepe+E9drc10ehppcnbTktnZgjtdy0fx27InAMxp7BmzPtIQqLGUc68opnMLZzBvKKZzCuqZXZBDWbVlLTMU338o0kdcC24cG7yB+BwYdoLv8/nm9J1CUtw3bp1GcLf3d095f5kq9fp9/unVJAigcfjybp/ssIvSRIGgyG5JEhM/08UoD777LMxGAwYjcaMJSHyiqIgy3La+5UkKflElYosy5xzzjkZCbtylbs7lItY60wc1+M7+dtf7+KV3atp6m+hub+NUHTiyeQae1s4pmJRxv45hTMAUCWFmc4q5hTOYM6wwM8tmsFMZzVmNYcBI4s0d0wiqiftlEPIZTNVpr3wj+cmyUVCnLK5AnIVW54Iua5NFdpsKIqSXBJ5UBRFwWQyZdQYTeBwOPjgBz+IqqqoqorBYMhYJ5ZEm6NJrViUKEB9yimnjNnXhHsEstcsHR3VM5Gp/rqwHz7EYjHa29upe+49tj6/lj0dLfz0/G9j/+jMkYiZx3ZAWGNzx3Ze2PnGlO6zq29PVuE/qWY5r33tfqrt5ahy/DMtzDJENLRwih7IAiQgHP+OSxYF+/mzk4JuPabksBb3sZj2wj9jxoyM6A4hBLIsM2PGDJqamhBCZCwJV0M23/HChQuRJCnnIstyxrYsy8iynDV5ltls5qKLLuLUU0+lqamJ1157DRgR+8RA7uhY9USuciDr9Hur1crJJ5+c828zetKP2Wxm8eLF4xa0GD1RKnFtNgGfrjVLj3SCwSDNzc00Njay7dWNNLy1maauvezpb2OvuyNt9irAV479NNpjEYJ73PjXdSfFttZZNaH7CQS1M2tZsGAB8+fPp6zZyAdKsn+O8owW8owj33mhSjg+PgcgOQA8Haz298O0F/6///3vGaKYWtzh6aefzhkHDnDsscdm7Lvqqqt47LHHJtyHhA9669atGVEoCTdHovLQ4sWLqampyRrjnWt/gtFRPdnCDSVJIhaLTdlFoseTH1m4Ht+ZHLi8e92jPL/3LfZ0t9I+0JUzJDIbzf2tFFmdGYOgMwvShb/AbGdWQTWzCmqYVVDFLOfwdu1MZl57avK80XH2aagCocRDJkcL/JEq9KM5IipwjQ6PHC142cLyhBAce+yxOaM2ciW5Gs8HPV5fdHQOBL4N3bQ8Xkfz3mbaAj209Lezt7eddn8Pj9z3EPnHlsVFPyVU8ecv38bd6x6d0v3+cO7P+PSSj2bs7/G5eKN5LTOdVcwsqMZhyhysFaqE45NzM0Tbt6E7LapntKtGJ3cFriNC+HV0jjS867toemwDe1r20u7posXdSXugly6Dm+Y9zextb2UwlD3w4d3vPcaiL51M/8MNadb53957mF++8qcJ3d9hsjHDWcEMRyUznVWcM+80FpfOzTppaSyOdJfM+0UvvaijM43oW72XnY+to0oqQnYYMS5wEtzen4w9//aTv+TJ+pVTantvbxtVLzRnCPTo1ANlecVJca9xlFPrqEq+dpozM44KVcJ8bAn+dd3pg6wJVAFhTRf7A4Au/Do6hxjBYJC2tjba2tpoaWmhcc12GlfX09bfSYenm/bBbvqGBhAIdv3oZQwDZMweLc0rnPL9W9wd8R+QUdb5sZVLuOfTv2WGo4IqexkmZZw5HRJIJoXYUCRNzH0z7Pogaxai0Si7du1iw4YNydKLN954I8cdl2Gwv2904dfROUCkphVIFbxbb72VVatW0draSltbGz09PRNqT0Ojy9tLtT2zPm6lLfdkuQRGxUCVrYxqezlV9jJqHOVU28s5tmJx8iki9Qel0OLg7NknprWRsOKTTxvDPxZjCfp0DpOcKLFYjHfffZeNGzeyadMmNm7cyObNmzNyT11wwQW68OvoHGr4NnTjfr6Jvs5eun199Hhd9Gpuek0+2ne30NHXRZe3j0AkyLNfvCt5XXQgmCyp99577/H0009P6f7tnu4cwl9GnsFCpa2UKntZ+tpWRrWjnCKLM2u4cmJWakKck5E4AtRZNmJ9Qd1a3wd88IMfHHeC6YYNG/bLvXXh19FJwbehG/dTu9OrJSVcHgLuW/84De5mXBY/XT1ddLS00+N1EYyGcjWZJBgJYVRGJuolSupVVU0slj0VSUiU5hXiD2evzPThuSez7QfPZQq7LEDTMsMgc/jXD8d0BAcLr9fLli1bqKurS5ZeLCsr47rvfIM3HryPwb5e8guLOPWSL7Dw1DM56qijWL169Zhtbty4cb/0VRd+nWlLqmsFEfehDmg+ejx9uDz99A714wp56B3qp8/joicwQN+gizyDlX9efPNIQ9rI+pntq3h779SssG5fX4Z1Hh0IUllZmbZPkiTKysqorKykeMhKuamIsvxiKmwlVOSXUGEroSSvEEXK/fWVRGYyvYSogz6R6f2QqKv73MP/ZuVTT7Cno5POwSF6PZnZZQvsNk4yRIiE4j/Qg709vHhnPDJq6dKlGcJfVFTEsmXLOOaYY1i2bBnLly/fL+9BF36dwxJN0/B4PASDQaxtI0ImzDJCCGJDEX707G9o7G/FNTSAy+9mwO+Z0KQjhyl3Ddxi69QHTbsGM/3xssPIueeeS3V1dbLUYnl5eTJ9hm9DN/3/2QHRzH5LlpGB09FRPQAIsBxfltVi14V+cvz5z39mzZo11NXVUV9fn8xeOx4ut4d+j4d808hAeCQU5I0H7+PMMz+Ky+Vi2bJlLF26lGOOOYby8vKs7rd9jS78OgeEXAObAIPrOtny4Nv0dfcyKAcIzTMxZI/S+uZOena2MeAfZCDgwaP48Qg/fX19uFwuIpEIpx53Ev/+6O+S4YGaP5qU9vXtW9nZt2fSfR0IeAhHI8k8L6nkKrJhUc2U5BVQYi2kJK+QUmshpflFlFgLKc0rojSvMCMcMuFLL59bkswEO5rE3yjV/XSginUcKWiaRkdHB+3t7cmB1Id/dTUtWzYlz7lr9SYa9mZmCJ0IHe7BNOEHGOzr5fLPfIbPfOYzU+/4+0AXfp1JkeoD1zSNoBJBOqOEcI2Kx+Oha10zHa/uxO3xMBj04Ql4GQx6cQe9HFu5mM8tu4DoQJD+hxqSbfY/toOTbvnUlPrT09KVPSYccJoz8yJNlN6hfsrzizP2f2TeKVTbyyi2FlBaWEyxuYBigzMtN8xEmMwsUz0KZt+gaRqtra3U19ezbds23n7lZda/9x7tff34w2HyTEauu+BDCElCG5VM0amMX4dCAEX5Vsrs+ZTb86lw2Ci323BazRnn5hdmT6x4oNCF/zBmIlPWUy1tzSTwBf34Br0ETTGkDxQQrTLg8/no3dxG77t7GBzwMCSHOOsz53D2l85N95MDewbaueTfP2Aw5MMXGiISi8KvJ9bfUDTM55ZdkHzd/9gOZKsBKSrIN1hzziQdC5c3d03dQosjY5/dlE+RxUmBxUGhxU6RpYAiizO+bS2g0OKkyOKgyOLM2maiIEcijQCQNo6QCGXM6npBTytwIIhGozQ1NVFfX59c1r+7hh07dxEI50777A0EGfQHMqxzgDJ7eioJm9lEqS2PMltc5Msc+ZTa8jBmyXA7GsVg5NRLvjD5N7YP2W/CL4T4B3Ae0K1p2pLhfdcBXwMSgco/0zTt2f3VBxjbxbAv2xs9kJiIAhkvpjlxXU97F12+PoKREKFomFAkTEiJoCwrhAojgUCAgR3dDGxoI+APEIgEh5cQn192AQtLZhMbisT9wcStxKf+8ghfv/I7DIX9BMLBCUWeJAj5gxzjmJcxy9IgKbR6JlZqbjSegDd9R1hLCqPdlD9p4bdarVhNuStwfefEz/Ol5Z/EabFTaHbgNNuzum/SkIgn+ErNwT7O/1MX8YNL/Rur0qJm7n23jrfXrptSW12eTLcMwLzSIi48ZhHf+/2fWLJkCb3bt/DinX9KDtoCSIoSrzeR8rSgGIwsPv1sGje8lxHVczDZnxb/PcCfgPtG7f+Dpmm37Mf7JvFt6Oa6H15Nl6cXGM6t/wgoRWYiAwFiwSiaDDFNIxaOgiqQyy1IDgPSYIzfnfTDNIEHGHhsJ7e9dg9v7llHNBYl+ucYMZMg7A0SiUaIRCOEY1GisSjhWIRILEI4GiH88whhLUJDQwOzZs1K9m/gsZ1o4RgPbHqa375+Z+abuH/893nKjOUsLBmuwBXV8LzQjPWYErzvddAxOLWiMV6/L2s5uTyjNfsFE8AT9GbsS5S4m188E7spH4c5H7sxH7spH6fZhsNsw2Gy4TDl4zDbcZjzWfyrD1NQUIDJZEr7G47m6LL5Iy+GRVuYZbRILJkWWBgkkEXWTI46B59YLEZLS0uy5OLqVStZt2Y1A14fP/rIaagmE9FIJCm2g709CI9r0vcxKDKltjxiOcb+S2x5lNjyOPPMuGAXF8fXo8M0s+072CKfjf0m/JqmvS6EqN1f7U8EzwvNPLnlZXb0NU/8ouFIPbNq4qZF3wJGJtsIVUILx9jZ18w7UwzpS83m6XmhOSlY41qiYxAYlfs8YUUbglOvj+sL+7Mm07Ia0v2VRtlAntGCzZxHntFKnmIh32jFZrSSb8zDllysVIyeTSrA9pFaBh7byT2f/u3IblVCqckjvDuzspjlhDIKKkYGSRMinS2qRxfywweXy8WOHTvYsWMHb7/8Iu+9/SYdvS56fUOEI9mLFw0GgtiyPOkVZ/GpJzCpCiX5eZTa8ii1x90zpbY8HBYz0jjRNNVLlqa9XnjqmVlF/VAU+tEcDB//d4QQXwDWAv+raVpuJ+37ZLR/dTLEtHQLUgvHkiItC3nK7abWsk3tn1Geen3cwKhJPLIj/qiaV5AZlmhRzVhUU3wxmLGaLFiMFszCQJ7Bkjx+XNVRWTMpSkLiza8/SJ7BQp7BEp+QJIHzorh1nSv0MBuW48syhDtVrFNzwY8XmqiL+6HNaHdMwhK+4ooruPfee3G5Jm+ldw/6sJlNGftLbPnkGQ0ce8KJLFy4kP4t67FLUGrLx2Y2TilcsnrJUi6+9sZJX3eocqCF/y/Ar4h/lX8F/B74n2wnCiEuBy4HqKkZu3hyLhICOBXGKtkoS/tG+BNuDoBCi5N5RTMxyioGWcWgGDDKBoyKAaPZiEk1YogqGBUDJsU4vBgwqUaOrVySdo+EW+oDnzuT1fwHszBgVs2YFEPahz51gHK0u2SsTIozUsISs4UWZsx8hfiPCGQV8VzCrc8aPbzQNA2Xy8XL/3mIlx59iNaOTvoDIXo9g3zjtOORpPiHIHUSUywWm5LoA3R7vMwpyZxXMbekkN9/5VIu//PdQPxHZ7Q/frTv3WjNQwgIeL2HtItmX3FAhV/TtK7EthDiLiBnghJN0+4E7oR4Pv6p3M/2kVq+t+aLDPhGXAZCCMSwCknD20IIJCHFXwuBLElIZIp7om7n11dcwicXfwhZklFUBcuiYmI7PEgxgSIpqJKMLMmokoIiKyiSgsFooOTTC3Esr0zrX0Jwz194FucvPCvzTcgC56fnAROzpi0njFjRBcdXs8RgTFrTkmV48CmHPzvroHVKJkU9AZdONBpl1WMP8+Tdd9HZ00ufd4h+f5CeQS99g1784UjW6wb8fgqsIyGviUlMcxeNn4DMbFApybdSXlSI06BQkm+lOD+PorzsIbSq0ZQWNZMQ8MPB936gOKDCL4Qo1zStY/jlJ4At+/N+1mNK+NLPv5UmaMYFztz5wMlt6abW7Vz4gsq8fRDVM9rNMZpsoX9p1vQYJeZS7/F+YsV1IT8ySXXNmPLyCIdCPPLOOtY07iWaawR0DPq8Q2nCD/FJTEcNT1wzGo3MnTsXxefBaVQpzrfGlzwrVqMBW3EJp17yBZ6/4zZikdFPkwKjNY+gL7e1nssff6SyP8M5/w2cARQJIVqBXwBnCCGWEZfFZuDr++v+CbIJV6oVm8sKHitn+L4UyMlcp4uwzr7g3eee4ul7/kZreztDSIRNVhp376a7f4ABf4D//PFmdrz1WtI1EhiM56AxyPKURB+g1+tjbmn6pKX8wiJOOeUUmpubqa6uRpKknG6ZVDF/5d47k30y5uVz9pcu10V9kuilF3V0piHbt29n69atvLtqJWvfeJWuPheeYJj+IT/eIf+Y1151zhkU5WeG7b69aw+PrR/7IV2RJQqtForyrBTmWSjMs1CcZ6XCYSMvJT5eMRj58OXfySrYuQaCdSaPXnpRR+cwp/6NVaz85z9oaW0lpBgoO3o5V95wU/JYqlg+tbOVp196eUr3cfmGsgp/4bBP3Wo0UGi1UGC1JMU9Ifb5ZuO4YZGm/HzO+mJuK113y8Rxu90YjUZMpszIpfeLLvw6OocIXq+XtrY2WltbaW1tZf2br7Px7Tfp6R/AEwzR7/UxFEpJOfDUi3zo9NMwm0xp7pHB3h4C7Xun3A+XL/sTweziAm74xIcxqRMPPTbm5R9R0TJTQdM02tvb2bhxI/+99yXWrV1Pa98uej0dfOfjv+G7P/si844v26f31IVfR2c/Uv/GKl594B66OjqoqKzMKnxf/epXefihBxn0Tj5X0dN330WZ057mEwewmww5rgBZknBazBRYzcNrC05rfF1gNWdNWQCgyDKKnBntpppMxDSN6HCq4vEsep14Tv+rrroqWXqxt7c363l7Onbw8r31APtU/HXh19GZJC//7f/YvPJ5wuEIg4Egg4EgnkAAjz+YfO0NRwhKCl3d3QwGAhhkhRs/+ZFk/HqqKPa1tU5J9AHa2tuxxjITj5XZ8llQXozTYsZpiQu702LGOSzsY7ljRse4J6J6oik56PVB1fHp7u7G5XIhuR2888RuvK4gJqtCJBwlEtK465934xkaew5Da98utJjGO0/s1oVfR2dfkuofV8wWhoaGMAxPWR4tcOedfgprN25iMBBMd7uMQzASIRCOYCIeT54qmMHujtwXjkISArvZhMNixmExUVhcTH5hEYO96QXaZxYX8O2ZZxMNhcacuJRfWMSsYz5wyCURO5wIBALU19dTV1fHay+8w+q31tHasxvPkIvakoX86BN/GjnXNxKKWlkwe0zhF0IiFIn/77yuqWchyIYu/DrTkoSYu3t6iCgqQ6Egfa4BYgYjxqJSmnY00NffjzcQwhsM4g2G8A6LeVGehas+Fhe+oHeQ5/7yRyBupe/csYMuT2ayuYkwGAhgUvMY7Et/rDeL4VQgksBmNuEwm7CbzdjNRhwWM3aLKSn2+UZjcgZsIjIGyBoCefaXLgf0iUv7ilgsRlNTE3V1dbz63Du888Za9nbsotvdRkzLnk+o3dVETItlLYVZWTiL+tb3ADAoJioLZ1FVOCe+LppLRcFMDEoi/crUsxBkY1zhF0J8F/jX/sypo6MzHvVvrOLlu++g39XPUChESFKZc8oZmEwmIju3pAlbW0M9m156llteeJ0u9+AEii2mMxhIT3qnRaNJK92Ww/89HlajAX8obu2NLsJx2jFHc1RlGVajYUwXjKQoqCZzzolKuQReF/r3z4UXXshLL73E0NDQpK4LRQL0etopsVdlHDtuzlnUFM+jsnA2xbYKpBypYIQkOPGC2VPqdy4mYvGXAu8JIdYD/wBe0A6H4H+dg062eGwYFqgU10QsprGpq5fKo4/F4Cykv7+f5oZ6mhq2M+jz4Q9H8QWDBELhdBF/5uW4S+PME4F4NMtzf/ljMkVvlhxzEyIYiRCKRDEoI1/EhJWen5IUTAB5JiP5w4vNZMRmNpJvMmEfXtvM8f2JQdFsRTg+/IWvjptLZjxrXQ+BnDyaptHZ2cnWrVtZ9ew7bF3TzIeOugwAo1XmtIvnJ/3qoVBo0qKvyCrlzlr8OepMVBXNoapozphtqEaZMy6df+CjejRNu0YIcS3wYeDLwJ+EEA8Df9c0bfc+7Y3OIUFSsHt74mXoYrFkWJ7P4yFmsrLogx+lZN4itrz1Ou88+wSDnkEC4cjwEsY/ah0IRViy8nUuOPaoLFPu4YE330V7491J99UbSPd9phbBsBpzR7bkQgAWowF/KJwm/Akr/X++8AWWvfIi+SYjVqMBWcqd+lpSFI4688PjireeS2b/kii5uG3bNrZt28bq19axfu1m2nqa8IdG3HaqYuTsxZcgSTJBX5SX79sGxKNplixZwnPPPZfzHgV5pVQUzKSicBaVBbOoKJxJib16QgkdhQyLT66geUsfXleQvAIjJ14we5+LfSoT8vFrmqYJITqBTiACOIH/CCFe0jTtJ/utd0c4Y1rMw9EWmgZBnzdrdsFAMMhz9/6N/t5eFGsehbVzaK7fgru/H8lkpuroY8gvq6Tujddo3dVAMBwhGI0SDEc4traSZdUVaMNZSoPe+BR5l9fHbx95Fv75yKTfT7/Pnyn6xAcszao6qcHSBGNdkzcs/CZVIc9owGo0kGc0pmwbyDMZ44vRQL7JiMWgZoi5kOXk3/5zV11LWVEhm1c+n/zbZGOyIY26xb5v2LGmkzt++292t22jc2APnf176Xa3EAiNb62HI0H6BjsptscTKWpRktE0S5bEM+AWFBRQbK2h1DYjLvQFsygvqMVssGK0yoQCUXK4+7OS+mRx+pTe8dSYiI//+8AXgF7gb8CPNU0LCyEkYCdwyAr/aOGcdcwH2Pr6SiLBiY2QJ768MCK2ssGQDGvTNA1NAzXPyqmf/RJzjj+ZcDicXOrffp01Tz6Kp6+PqKYRjcWocNhQZZn8omIcZRW0bqtDi8Vo63fT3NdPJBojhiCixQiFwkSiMSKxKOFojL889QLhaIxILEY4Gh1eYlx4zCLmlIw4NQZ7e3j+jtuoa2nn7jfey/0GV72V81CV0w7VmfsnUlM0F2PVOzUbJib8JlXBajBgMapYDHHxzlV68dPHHc0lK5ahyFMvSJMtbPGDX/0WH/zqt6bcps77w+1209zczNKlS9mxpjMZKmm0yoSGory8/j/U7Xl7Sm139DcnhR9GomkuvPBC2tvbKSsrY+e7Xay6fzuRlPKcikHitIvjNSlef7iBoG9E/WWDQFVlAr7IAbHmJ8JEvsUFwCc1TduTulPTtJgQ4rz90633TyLZ012vvEWfL/5rr/3rP/E1gKahxVdAXMC1lLUqy1x5zhk8939/ACGSLoRoMMi/12xkw952YqlDHfdMzAK+6mNnUJRnZbC3J83P3dDZw7N1DVN6r75gpmDGIhHUMdwQ4xHMYpkDGNWpC79/DOFfXlOJPxzG4XDEBzlDQSxGAxaDillV4+vR1rgQSLKc9hQh5OEKXJEIppS+KkYjkVAoPXxxVAgk6PHphwrhcJjm5mYaGhp488W1rH5jPW1de+h2t+AZ6keWFG79yjPIspIcyEmIbZmzZsLCb1BMlDlnUO6cQbmzljLnjLTjiWgam82GzRYvbJQQ7cQPzmgxP9iiPhEm4uP/xRjH6vdtd/Ydbzx4H5FQkF6vb0rhd+qwlZjtcV7TtHTRnwTRHO4B5X2IdDia/dnS8D4s3VCOcncGWcZhMWGQZUyqilFVMCkKJjWxqGnbZlXBZIivrWYzkqJkdfd8ZMk8JEXho9/4PpAZnihkGUVVCQcCwIhAw+Fb91QH3np2M0/d/xp7WppwDbXR1d9Kp6uFXk870Vhun0k0FqHX00GpI/OxtNSRWbjJZLBS5qih3DmD0hShd+QVZw21hLjvPVc0zbzjyw4Lgc/FtI3jHx0rPVnG0vWplG5LkCutrfw+RDqX8BtVFYfFjEGRMchy+lpR0rcVGZOiYFRlDLKSTMg1GiEE15x3djLqpG7Vi1mFfDT5RcU5o3ogu098ouJ9uNY9PRLQNI2uri7KyuIi+doD29n6ZjtaDBDwj5d+xfrdr06p7a6BlqzCP6NkPqcu+jhlzhmUOWooddZgtxTm/N4qBokFJ5Sxa113coLV6Kie6ca0Ff5ssxkngzZGIGBqrLUAJClewUuWJCz5+aiqSsg7iECLV/MaruolS1JOy77Mns+Js2tQJBlFjp+XXEsSqhzfr8oSiiyjyjKqHN/vsGQWl5YUhYoCB9ecl6Wq1zCKwUj5vAW0bNmUcUw2GokGgxlRPaOTbVXOX5iWHz2VXAOcExFlfbDz8KH+7Tae+dc77NnbxGC0m4DsYtfOXXT0ttA72EEoHODOH60kNPojokGxrTJrm2MhSwpFtgo0LfvTc7mzls+c+v0x21CNMuFgNM1Nc/qlCybdl8OVaZuPP+Hj7+jrIxJN+YAIkSz/mhBwIUiWYEzsFwIcFjNCktJ8/DDiromXbBy+ZthNkRCrbAUl9jWm/Pwxo3qAjMHtbKGFidwzWiyGkCSOPvuj+uClTpLEAGpTUyOucCuWiiCD0R52797N9q07aG1vIRob+6nv6ov/TrmzNmP/6oYX+Nerv8t6jc1SQIm9ihJ7NaWOKkoc1ZQ6qinML88ZJink+Pc3GhnRNWeZmYFuP1oMhASLT6k4YkT+iMvHny02el9F9TDq+myWbdr9szx5jI7qSUVWVRSjKTlD8/3kUpnIeXqUypHNjjWdvPHYdlr2tjAY6WVRzbEEfBGEBKlG9XPr/8m7O16a0j163G1Zhb+8oJYZxfMpsldSaq+m2F5JiaOKEnsVZkNmTYBsKAZBJKQdMhEzhwPT1uLX0dEZIRgM0tLSwlvPb+C159bT0dmKy9tFn6eDvsEu3L7epHvz5i8/mVV0n117H8+uu3fS9zYZrFx08nc4ft6H3/f7kJURa/5Is96nwhFn8evoTHd2rOlMixlXjTKSEg9rXNv0Alv3vEdPfycDQz24fX1M1MjrG+ykqjAzmqXIVp7zmjyTgyJbOcX2SopsFRTbKpLbeSb7mAERskEQDWkYrTICkYx3r11SeEBnsx5J6MKvo3OIs/m1Jp779xra2trwa/1YK8N0drezbWMjl3/4+qSohoNRGPZC7ti7lfcaVk3pfq4cwl/unMGCquMotlVQUVbFxd8+G2XITtObQRQmXx5wIhb7gZzNeqgQi8VobGxkw4YNnHrqqcmIqH2JLvw6OgeB1BmnfqmPooUa69/eRtPuFgZ8PQx4e+j39TDg68EX8ORsxxfwkGe2Z+wvyC+ZdJ/slkIKbeUoUvbSitXF8/jOub8F4ENfXpS0vnfM7UybzDTaUtct99wEAgG2bt3Kxo0bWfPf/7L+zTfZPjiIb3jc78EHH+Qzn/nMPr+vLvw6OvuYHWs6eeWBOrp6unEP9TEU7af6qDyu/vX/Jo+nTvm/95lb2fKX1VO6V7+vO7vw55WmvRYI7NZCCvJKceaXUphfRmF+GQV5pRTaynBaS1CViSW1W3JaRZpwZ5vMNNpSPxIt91x0/PKX9P77QS5qbmJXMMhYqX1WP/KILvw6OgeLhIXe09FH2OClcqkR1Rmio6ODzs5OOjo66OjoYE9jC+3tHQwF04PW5WcVPnX+Z1lwYgXvPLE7Lc+LI694yv3q9/ZQXTQ3Y/+ssiVcdvqPKcgvpSCvFEdeEXk2M9GwlnbvsUhE9STWurU+MUKhENu3b2fTpk1IksRll12G+6mn6P7DH4m0twNx4Q3EYmOKPsC6VVNz142HLvw6RxypbhaLU2XhGQW4+nt5/anNdHd1IxRYPvNM0OKiVznXQWeTh0goxp+evZI93dsnfc9oLMJLD61nwYkVGWX0HNaiHFfFkYSEzVKIM68Yp7UER14xBfklOK0l1JZk948X2crTBmNTk4gl3ntC0EcPquriPjE0TWPb3Xfz5u9+R0Ofix3BIDvCIZqCQSLDA+kLqqs5z2aj49qfow2nG0kw32hiT478VTZJYqHJxLL3kcplLHTh15kWpIp5wq/80vOr6OzsJBAbZHBogAFPP97AAF7/AIMBN15/P96AB+036Raww1rM8tr4/ActBq0NA8ljNnPBlPvY0RavrZtXYEwT/zLHDGaXHYUjrxiHpQhHXhEOazEOaxHOvGJs5oK06kyJFAPb3uogFk2P1ElEyJisChoaQV/0sEwidqjhcrnYsmULW7Zsoa6ujk2vv87WhgY8OdKlJNjZ0kLzr27AMEr0ARaYjLzoHaRSVZlvNLLQaGKB0cgCk5EKRUUIgVJRsV/ejy78Oockmqbh8/lwuVz09fVlrBNLbW0tl33sm2k+c68ryJbX27nj8evpG+yc9L29/oGcqZ5tFueE2ohb6QXYLIXYLYXYrYU4i+K++BMvmJ3W32WzTmXZrFMn1K7JqnDqxfOYd3wZ5bMdOTNE6kyd0W4ZgPOaGmkMhca4KjtRYFd3N4tMmVFPlzicXOpwYhuuzoYQaUnChMlEyQ9/MOl7TgRd+HX2Ca89sJ0tb7QnU+RKskA2aAz0e5AsYeac4GDxibXMnZvpj45EIlxwwQW4XC76+/uTS3iMNM4JPvCBDzAr/OGsfmuryT4l4Y/EwvhDXizG/IxjhfnlFNkqsFkKKLAXccKHllBWVkZ5eTnl5eWEelW2v+LGotrSrHQhwwe/sAjInda3/u32tKcLGNu/frhniDyYDA4OUl9fz9atW9m6dSvbtm3D19bGXWYL0YGBjPPnGo2TEv4yRWG+0cg8owlbDneNQ05JOyFJOD5zMd7XXifS0YFSXk7JD3+A/fzzJ/vWJoQu/EcYo10io8VE0zQCgQBCCExZrJR3X6zn5l/9P4b8QwTCPgKhIfyh+DoQ9g1vx9fBsH/kwr/AJz52MY8981BGm4qisHLlSoITTKWRSm9vb4bPPEGeKTPaJRtmg5U8swOb2Ume2Um+2UEsRwKwDx/zWT58zGdRDBJnXrYgq/AunNfJGw/vGDPTYzbR1kV83+NyuXjvrrtYe/c97OzuplFAkyTR2puZvVcChubOw5hFqOcajLxAZiJCqyQx12BkrtHIPKOR+cb4tj1F1GWHg1ggkOHjTyDMZsqv/+V+E/ls6MJ/kEkV4vGiJ3as6eTN/zbQ3z2IIR+OOquM8gX5VFRU0LHNl9HOkOilV92K3z/Errp2vINeQpEAoUiAYDi+Dv3Nj2yJEYoE8Hq9eL1eotEov/nNb7jyyisz7v/cvev4z5t/mdJ7bd7ZkfOY0+mks3Py1nlvb2+GzzzBrLIlKLJCnslBnslOnnlknZ94bXZgNBjjRXjGcNdWzXcw0OOfkFtFt8QPDgkXzV+21PGW389uv5++cXzwqcSAxlCIhVkMnoUmI/OGBX6O0cC8YaFP+OJzIUwmSq/+GUDcfXQArPmJMG2FP5H3u2egg0g04TLQkFUJSYHQUHS44lZsuBJXDDSNGBqapqGoElXOeVlD2vLne+nsamfb6jZ8ngAGi0RBhYWuFjdDgwEQEULhCLFYhGgsSiQaJhqLEtMifO+bP+TjXz8RiAvpyvvqiUU11u56hbfqnyYcCRGJhYn+NYxqEUS1MMFgkKEhPwG/P90SvT2++vPv7kZuqU26OxKnNDbv4o7nr5/S328wS5rld57YjUmZWOKsrG16c09Eyib8ZrOZgoICnE4nBQUFFBYWJtepy8KyWbz6QEOGu+ejyy8bt08JnzmMuF5kgyAa1pJRPXo+mEODoaEhdu7cSUNDA62trVxxxRV0/PKXDDz8CKQI/I5AkHe9ky++BLArFMwq/Gfm5XNmXqbrLyuqCpFIhsAfTKEfzbQU/tce2M6W1+MDM3c8fzWd/XvGuSITg2Li1q88kxTRxNrrCvKnG3/H2p2vTKlvJ796HvZ8J6dfuoA3Ht6RjMro93azs31UXnzXxNqse2sPS8oyqw4ZFOOU+gjZhd/rCmI0ZOb+HwuTwYp5eCkvrsp53l//+leApNA7nU7M5onfSwiRc/ZoaoTLeD5znYNLNBqlpaWFHTt2sGPHDhoaGmhoaKB+40Zae9Kz3F7Q10fo0ccy2phlGH8imgzUGAzMMhiYYzAyx2hkjsHAzAlcG29ARuTno6WOB8gyjosvovwXOYsWHjJMS+Hf+mb7+CeNQ64iDwCCqcfWRmMRtr7ZzumXLkj6gAEUOfs0+YkwOOCDLJplUCafPwVAVVViWUpExl0qcOZRn8KomjGpFkwGS1Lc469HhN5osCTL2iV84rk49dSJRbXkYiKzR3UOPZ555hlevvtutr72Ok0eD3sjYUI5ypOOZuMD/2aRMdO4mWUcEW9VCGpVA7OMBmYbDMw2GJltNFCrGjCM9uWPiqrJhexwUHr1zw4pC36yTEvhH0OzJ97GGB+AXDU6J0I0GsnaP0WemKUhhIQqG1AVA6pswGgwYXPkZT3XkVfEWUd/GoNiii+qCWPqtmrGqJg48+IlLD6plvz8fKxWK4YcVs+JF8zmpXu28amTxs/dLwQYLHLWOHKd6Y+maXR2drJr1y6am5v5uMOR1cf9wB/+wAMrV07pHk3BYFbhP85s4U+VlcwyGKlSVZRRPnihqvHvd0rJUGEyYf/EhQcsquZgMy2FP7WARGF+2SjrfaQClxBSsiKXEBJCCASJMoq5/zTVRXPxh7wIISfPlaX4tiQpydeyJKe8VlAkBZulgMTvhtEqJ1PqLqk5gZLzbkGRVRRZxWQ0csonFrDwhGqMRiOtWzysfrSZWGSkUliqFZ0aF57AYS3mU6d8E4HImOiTYMlpFZx+ycT81wnhXnV/PZHQSHuyIlCMki7yRxiRSIS9e/fS2NjIlv/+ly1PPc2e/n5atBh7QyH8KeG47yxYiH3YmIq0t9Nx7c8BKG1smvD9BFClqtQOu2RmGLI/JRcqCmfl8McnrHU4tAZbDzTTshBLqo9/fyBkxhTT8VhyWnywcMeaTl6+b1tGNEnqJJ1UxgrFHCs6CDKn6esCrTMZ3E89xT1X/C9v9/TQGg7REo3SHg4ny5COx0M1Mzhq1JiNUlHBMw0N/LC9LW2/XZKYaTSy9OKLmTdvHrYH/k2Nz0eNqqaFWgqLBW1oKOv9Mo6ZzVQc4JDJQ4EjqhBLIgJj65vtGW6V1GIVY5EoxpwrURWQczBRMQgiw1EhqYyOEMk1kWcqYYLjhRDqAq+TjfZHHmHTLb9nT3s7bbJMZyjID/NtCEWBaBSlooK8009j4JH/8E5PDw+7B6Z0n73hcIbwRzo6OLqmhm8EA9SoCSvegEOWUSoqmHvPPQC4jzoqI9eNMJko/+V1DK1fPxLVcxgNrh5spqXFr6OjE8fj8bB3716am5vZ/vTTbH/ySVq9XtrDYdojEfoimUXSX589hyIl0yb8u6uP3/dk1o/ORZ4kUa2qzDAYuNju4ARreiiwUlFByQ9/kF3Uf3V9mnWeTKNwhLpmpsoRZfHr6BwJxGIxJEmKx7I/+FAyIkVYLNxeXcW/X3+dgSzpB8ajLRzOKvxVaqZPvVCWmWHNoxKNGtVAtapSYzAwQ1VxyHLOyU2JPDQJ8R5P1O3nn68L/T5kvwm/EOIfwHlAt6ZpS4b3FQAPAbVAM3Cxpmn9+6sPOjqHGwnLNtTejsdqpT0UpKN/gG6LBc9RS+g2GmlpaaGlpYXu7m52/PjHDD70cFob2tAQnjffnJLoQ1z4l2aZQ7HEZOYnxSVUqyrVBpVK1YC9qiqr1T4aoapgtaK53VknNumiHsflcrFx40ZufuJmVq9dTdE5RVhqLFw07yKuOeGafXaf/Wnx3wP8CbgvZd9VwEpN034jhLhq+PWVWa7V0ZmWpM00FQJMJp7v7maLFqPTH6ArGKArEqErEiE82g27c0dGezv//SBlWXLLVKQmABsDGShXVSpVlQpFpUpVmWPMHs5bqap8qWAkLbVQ1ZxWe97ppx0xoZFTQdM0mpub2bhxY3J5Z+079LSnu9Is8yyYqk081BDPcbWvxH+/Cb+maa8LIWpH7b4AOGN4+17gVXTh15kmhMNhurq66OjoYOfjj7PrP4/S2ddLdzRKIBrjljlz0iNNNA38fp73eHjRmzlTeiJ0BoOUZbHOy4fdMsrwdkWKuFeocYGvUFVKFCUjzn00iRh393PPJ2eqjp7EpFvtkyMajbJo0SICYzwlAQT2jBx/ZMcjh77w56BU07REpq5OoDTXiUKIy4HLAWpqMtMR6OjsT9JysstyMsJl02mn0uZ0ppVcTKx7e3tzTvwTwK99PtQsIluqTv1r2JMjnPJUax6vzp1HkRBIYwm7JCFsNjS3G2G3I0E8LXHKe05Y63q0zNjEYjH27NnDP178B/9e9W96dvdgc9q444472NC9gUd2PEJMiyEJiYvmXcSSJUsYL2jFv3ckw22ujLFT4aAN7mqapgkhcoYUaZp2J3AnxKN6DljHdKYdowtrhDSNgWiUvkiE/miUPi2Gf8kS/MuW0d3djdzVxf+2tY/4rIcTgEXa2/nNLbewzuebdB80oC8SoSzLAGlploFUiEfFlCkKZaoaXysqlcVFHHv77dTU1FBVVYXnllsY+PeDGddaVZXKiy/C/d/Hc6cDdjgoP8xTDxwsXC4Xd75wJ3e9eBf9zf0EWgOE2kJE/elh4kMFQ/z0jZ+ipcR2x7QYDzU8hLE8Sy4tGYzlRswzzJhqTJhnjjzNvZ+MAaM50MLfJYQo1zStQwhRDnQf4PvrTENSQ/1ku50YoA0McEdfL+3hMK5olP5IFFc0LvSebFZyWxu88AIAharKFbNmZ71X0fuogdqdQ/hXWCx8r6iIMiXueilTFEpVBauU7qdPhjl+6EPJfdZhK3x0VE/5L6/Dfv75WJYv18Mg9wEPPvgga9euZcuWLbyx9g2G+rJPHBtNxBUh7A2j5GVKbVdJF6eddhrLli3j5fDLBMuCGCuMSGr2z9hF8y56X+8hlf0axz/s4386JarnZqAvZXC3QNO0n4zXjh7HPz1JE+yyMjjheNpfew1XewduNNzhMB5JZiAYwB2JMhCL4o5GGUhZFlos3DWjFi1Lta6PNTbSHJ58uTwJ2DRvPnIWF8mNXV3cP5A9EE0IQXFxMQVDQxRpGiWKQrGsxNeKwnEWS3rVpXEQZjMYjVkjYXT2LYFAgPtX389DvQ/R6eukzFrG95d/n3NnnQvACSecwJo1a6bU9syrZmJdkD2ded0X6wB4pvEZrn3rWsKxzM+xQHDx/Iun5N8/4HH8Qoh/Ex/ILRJCtAK/AH4DPCyE+AqwB7h4f91fZ9+SawJNavhhqKQE45e/hLZiBQMDA7jdbtxud3J74cKFXHDBBcn2EiGAEU3j6FdXEXl11aT71RMKZRV9AKcs0zx+9cYMYoArGqU4iwtmhcWCZrWw4OtfT5ZcTKxLSkpQVTXtvWUgyxCL135IRPUQCIz413WR36/4/X4aGhrYtm0b27ZtS5Ze3L17N7JNZv4f5wPQ4evgurevA+DcWeeyZMmSCQm/ZJEwVZniS83IOuu5Ka6bxA/Mb979DQPBAQDsBjs/Pf6nyWP7kv0Z1fPZHIfO3l/31EkX6LHERNM0mq+9lo5H/sNQJMIQIJ91JqZLLmFwcJD8e++lon57Rvud4TDXrlmD75JL8FuteAYGGIxG8cViaA3b4Y3Xc/btsssuSwp/9x/+mBRGRQgMQiIyhcEr9xgVlpxKdutaEK936pRlimSFAkWmQJYpUg0svuFXWPfsIf+ppyFLjdUPFxfzxVGzSkeTFt44anBYF/QDg8fjYfv27Wzbto36+npeXfcqdVvq8Hf7M1KpJIgNxIh4I0m3TCAa4Lb1tyWFPxUhCwzlhhGRrzJhrDaiFmRW5BKINB9/gtGum3NnnbtfRD4b+szdCZLN4oXMGYcAXTf+Or1g83Ce79Qv/ujZlpqiELNY8Pf3E5IkQpEIIUkiGIkQzssjHIsxNDhIxOHA9LFz8IdCdD/7LP7+fs6w2amWZYTDAT5f0gLe0NHB7b09BGIa/qZG/G+9SdBqZSgSwef1Ehvt5mvcDX/7GwDfKyriG4VFGX+HGPDW0PDgZo4EWblInVAU6Ugvw2iTJYYikxf+/mgUTdOyzhD9lN3OKRYrTkWmQFZwDou9Q5azunEcn72E8ssvB8B9wgnvS7j18MaDx0kfOYl3XnxnStcG24Io80dksdMXrwp3xhlncM0113Bv370Yq4wYS40IJfMzpAiFT837FK+3vp7mMsoW1bMvJ2RNlmkv/P/617/o6+sDYKiujsHXXiPm8SDybVhPOxVN0xh8/Q0igx4wmtCAaMCPajLztcrKZJhbqqA+XL+Nui99iWhMIxKLEUUj2tZK5NLLiAARLUZUgwgaYS2+RDSNSFMTd3Z2UvvYY/jfWZ3Wzzu7OrktSwHoDFr2Qt3mtF1likr16GpAwGAsyurR4pzFis3GUI4wwbz3MbiZKvxKeXkyygbALssMRKPYZRmbJGOTJRyyjF2WsUvxdfx1fL9DkpPHc6UFGLNUXmrRjSzJvXThPjR4pvEZbn3nVvY27sXcb6bYW0zdtjqGXEPU/qQWh9GR5g55pvEZdoZ3TuleaqFKzJ/+uS+zxpMbLlu2jGXLltH5QierO1dnuxyzbOYXJ/0iq9V+7qxzD6rQj2baC/9NN93Etm3bMg90d8PuXTmvMwvBV4eTSo0W1Hd8QzwzmLt+7Fj4A4EM0QeyxndPlEAOF4n5fYR/5RJ+yxjCbxaCPEkm32ig+KijsNvt2O12HA4HdrudefPmJc8dPc3/4Rm1U/8bCIFstxN1u9OiejLQszceskSjUfbs2ZMsufji2hd5Y8Mb+Dv8hPuyD9REB6O4hZtr3owL6rmzzuW29behlI0hawLUIhVThQljpZGbL7qZxYsXs8e0h99u+i2B6Mi4jEk28f3l30+7/K6P3MXXXvhamvgbJAPXn3z9AXPT7AumvfBPlbGcDvLUNTpzGv4whvch/MFY9jZN0thtqkJgFgKLJGGRJKyShEWSMQuYY8her1cRgr9WVWE1mij70AfhtdewhCPkSRKKEFkzK2Zj9DR/83D6X+9rr6e5V4TZHP9xSP27pVjreiz64ckzjc9w2/rb2HT/Jtzvugl1h9Aik4swDHYEUWwKES2S9MV3+jrj8fEyGEuMGCuMGMuH15VGjGVGJGPceCm3lvOlT38JgA/wAcxWM7etvy1rVE8qd33krvf9/g82uvDnYCzhl5i6SOcWfgmFuBgbhgc7jVJiW2BKeW1KOW4SImdx6VrVwF1V1ZiFwCRJWMwmaq+8kvILL8Rz6634Hn4k4xrHZy8h2Nyc9akkwZlz52VE9UwlTlx3p0w/otEo9751L39e+Wc693QS6goR6g1R/a1qRBZDJDIYIdgenNK9gh1BrPPjT+UJX3yZtYzYohiL/roIScn9dJrNmj+Qg6sHm2kv/J/73Ofo7Oxk4LHHiHl9CMFI6UXiI+4CkMTIa1mAPIa4n2+zcbTVihSLIRO3ghURL8GuDm/LAhRE8rUi4lb9jHwb5mOXZwjrRXY7FzscE3tTioIQInsYo6Ig5+URdbvJLyzkNLJH9Tiuv54OWc5ZxKL5y19O76OqUvHrG/V0uTo8uvVRfv/i72nf047RbcTpdbJr9y4GOwYJ94TRslSmi7gjqM7MyWvGsuxPlmkMu2eMZcPWe5kxHlFTPRImmfDFf3/597nu7esyXDYXzLkgY8D1SBH5bBwxhViyxlaPJaCjSRHUhIgOrV+fFpmTbNNgSE/GNYGoHlQV2WpNy5OSdHc4HBlhmaCHC+rsexIumGwC+bOf/Yy//v2vuLpdk2639spa8hbmZewf3DzInlv3ACDbZIylRgxlhrjIl8W3DcUGJENu610RCjecckPaAO9EXDZHArkmcB0xwg/jh2Smxr0nBwnHmVCjVwbSOdx4evfT3PzKzbS2tBLpjRDsCRLuCxPqCRHuCzPnhjmI4YEsCYlfn/przp11Lv/7v//LrbfeOqV7Vny5goLTCzL2R4eiBDuDGEuNyNbxZzWfUHYC2/u3H5BJTtMBXfh1dI4gOjs72blzJ3v27EmWXly7fS3bd20n0BtAC+f+3s+7eR6G4pFxI7Ns5t3Pvcuf//xnvvOd74x7bzlfxlBiSC7GUiOWeRYMRdnHoiaCw+jgqhVX6QI/SfTSizo60wBN0xgYGKClpYXH1z/OS6aXMqxfgK984St0vdU1pXuEekJpwu+PxlMDz5o1K75DxGPeDcUj4m4oNmAojW/L5onnIxqNRbHgj/iPeBcNkEzxnWueyvtBF34dnUOEp3c/zY2v3khvZy9hVxhlUGGFaQVmnzlZbrGlpQVfSlroRXcuSvq/3SE3P33jpyiSQtSeO5XFeIR7s495nXrqqdy58k7u2HsHIZF7IqAiFPIMeckfpGy8n8Rj05FoNMrOnTvZuHEjG174NxvfWcmGliH+/YUazv7m7+DofZvWTBd+HZ39SGKgscPTQbmtnNOqTsuILnnlz6/w4GMP0tneSSyUHki8m91jth92hdMiYzQ0wrEwamFmBE0qklnCUGRALVLT18UqxtL0SBsxHOGWl5fH1876GhWNFWmDp9ne05FsqU+ESCTCXXfdxcaNG9m0aRN1dXUMZUmBsnF3J2c/9b34i30o/rrw6+hMgYSgt/e344w4ubDkQlzdLh5b/xh9XX1E3BHCA2Ei/fG1FtXg/0jWToWRDJD5jfm0N7ePcbfcjBb+BMYyI6ZaE4bCuKirhcPCPryeyEBqgovnpwvOkRTv/n7QNA23240jS5i2LMtcc801uFxjR0ht6IxB2A8rr9eFX0dnfxKLxZBypKa46qqreO6159ixdwdhd5ioL+5SeZM3x283GEvOGk0QiAboZQI5mlIwm80Ih0A4BULN7v/NW5zHnMVzkq8dRgeBSCAtvj1r27KZQDSAhnZIJBM7XPB4PNTV1bH5ubupW/UYm1s81HXHWFpu4PUvmsBeBWf/PCneQgiWLl3KqlVjpyKv7x122blb92l/deHXmfbEYjH6+/vp6emhp6eH5+qe46F1D+Ht9xLxRIgMRoh6olgCFmKDMYqLi6mvr8/a1rp169i8enPWY+MRHghnuFEAgnkjM1eFQaA6VdQCFcWhoBaqFJUV8buP/47q6mqqq6spKCjg2aZnsxbuEAgUSUnbb5JNXLXiKoCki8ZmsCGEwB106+6ZSRAKhWhoaGDLli3U1dUllz179mQ9f3NHEE0zINwtMMplM1r4i4uLOaZgiKWFYY4pk1lWJjGvcNhQsFft0/ehC7/OYUHSV+7tIC+aR2gwxED/AJIsYZphotxaniFeZ555Jtu2baOvr4/oGHn7E/iID5pGIpGc55SVlU3tDQiIeqJQmnlo7ulzufrSq/nrnr8SM8XSojhGT05KMFbhDiDnBCZd3KfA5of5zre+yWs7B9jeG2My2cPdQWjxaNTYRYbL5sILL6SkpIRly5axdOlSysvLEXWPxH8gwiNF1lHN8aeFfYgu/DoHjRtW38AjOx4hGo3irfMS9UXjy1CUqDe+LfyCvHAePX09hL3DrpWUL55lnoVZP5uVUTEJoLe3l+7uyZd1drvdBAIBTKbMyknl5eXpOwQodgXFrqA61Pi2I76oDnVkbVOy5m83ySZ+cupPOHfWudQ21k6qAtNYvnZd4CdGLBZjz/P/x7b/3kxfbzdfWGYGLQr26rjY7l0Na//B9nYvW7onXy/CboQWd4wa+7DlnuKyOf300zn99NPTL0j48VdeHz93lItoX6ELv86kCQaDeDweBgcH8Xg8PF//PA9ufJC+gT5i/hiRoQhqSCU6FMU/6E/uK19ezu2/uZ1zZ53LDatvSBvo3PPHPTkrI/WTvcYtQNQ7YsmnVkwCKCrKLCQzEYQQ9PT0UF1dnXHsi1/8InmL8nio7SFi+THkfBkhCVRJRdM0IlrupwWIzzzdM7gnpzWuC/b+IRqN0tzcnCy5mFjqt9bh88ddbfkG+PzRwxW03C3w+Ldg2GW2pERmZVPup0ZZgnnFRo4uinJ0qcxRJRJLy2SqbSI9Dn8iLpujL97nQj8aXfinIalukXyRTzQQxe11UyAVUCKXUNdRRzQQRQtpLHcsp1QpZeWulbg9bmLBGNFAFNuxNmzLbBkzJhsaGliwYMGU+tVb2Ju0yh/ZMZIZVEgC2SInB0onQ8SbLrSJLI0Q95kmsNlsFBcX0yv1ErPGUGwKcr6MYlPiS/6w1W5T2fytzShZ6u0CLF68mMWLF3Ns47EZ7hSIu1g6fB1IQkpWW4ppsayuKJ39Q0NDA5s3b6a+vp76d16gfvN6GroDBMb+TWYwlOKWgaToAywpGRmUr8wXHFUqcVRJXOCPKpVZWCRjvPiuTDdNKvvBZTNVjgjhv2H1DTzc8HBG3cvEl9JusCcHuuxGO5qm4Ql5sg56pSaASgyQDQQHkm05jA5i0Rhuv5t8OZ9gKIg/6I+H80VBcSpU2CuS7Sba27NrD1KXRDAQJBgMokU0TJg4tfRUWvpb2NKxhVg4RiwcQwpLLLAtwCE58Pv9/OpXv+Kkk05K9i+RndCzwcOW27eM+bfZy96s+w2FBmzLbAwEB7j2rWuBuEWanz9GVatxiA3FklZ5bFTxGMkiTVj4JZOEbJWR8+LCnVp6MZGlEeAPf/gDf/zjHyksLMRojA+qPtP4DNe8eU1Oy/wz8z+TU/RTyWWd68J+YHC73djt9swDmx/mB5/5Cs9v906p3a3d0RG3TArnzVN448sWFhfLOM1ZIqns1ZluGrMz/trfv99cNlNl2gv/secfS8PuhpEdw9qfzFGkxRdN05LbaCBUgfYzjaveuIoN3Ru45oRrkqLaeE8jnnUetFhczLWYFhf2GPH1GOmP5v1uHh1K3B+9oXsDT+x6gkA0gHudm67/ZE6xb6Ipaztv8VZy+5vf/GZy+7b1tyVD9sbKaDgescCIMIdj4aQLxWazTbnN6FBc2Dt9nckfygT5R+cTHYwi58nIFjkp7LI1c1tSs7+v0TnWKysrM85JCPNNa27CHXIn9+szSQ89QqEQu3fvpqGhIb688zwNm9bQ0BXAFwbfew8gLbtk5ILND8NT32OhI8Tzk7iP0wSLS2QWFUmU5mX/bJXlSZTlOIYkj1jyB8BNsy+Y9sK/df3WKRV6EIaRX/WHGh7imJJjkqIaHYoSGRjnuTEHiSpDgWggWXwZyDrwN1H8/pFHy1RXhzBOvc1oIN36TrRrtVoxGAxYrVZsNht9Wh8xYwzJLCGb5fjaIidfyxYZyRLfVuzxj1titmeqj7/i8xU5+6JKKp+c+8nk7NDEU5k75J6SK0X3pR86xGIxWltb2blzZ7Ls4o4dO2ioW0dTaxc5issBsPdf36VWktIt7bCfhUXZBbrYIlhULLGwSGJRsczikvh2WZ7Ing9HUuMp1aNj1Kk2WOG8Px4WYp/KtBf+KTNqAD/h3gGyVhKaKKlFKlIt3n0l/GXWMjp8HUDc4heKQDJKCKNAMkhIxiyLadTaKGGqSo9oSbhQhBAEAoHkFyXVtTQRElZ5QnhTf/yyoWdlPPzRNC0eppjhAnHxmUf8/GfbBOphZGF75xC1qTNahyNmjimX+cjsuN994bDQLyyWKLLksNjNBXEBd7eAkNOjemC/R9gcDHThz8UoSyMxiNfh64AJeFBEvIwXQhYIRSTXqaS6OwxlBmzH2hDq8PmKQFKl+Gt1ZFtSJYQhLuIFeQXc/MGbWbRoUbLN1ApE5hlmFv9t8bh9lYVMVMvtX1clNc2FkmodJQR59KBmYtwkdfxjtFV+zQnX6K6VaUI0GqXlnsvZ9drD7HZF2N2vsUurZpfXTHPjLnp/nI9BGzYO/CNpCmY5pmbwGGXo9sXSZ7Taq8DdwnEVMs9/zjqxhlQznPPbscV8Ggj9aKa98H/hui/w0q6X0ncOf9ZEah1GKUXQpEyrPjHQe93b11H2mTJKP1kaP2f4XKHE2xKKmNATQaIcXMLHn78kn/wlmQOnEhKxLBWAJSRuPPVGPjTrQ2n7U4U41S2SGKyekT+Dd7veTUacXDTvoqQbq8PXgUCkDYJPxOLWXSdHBl6vl6amJnavvI/GVf9kd7uLxgGN3a4Yze4Y4QzbYVdyq7lXYl5hZn6guYVjW1GV+YL5RRLzC+OzWBcUycwvlKixC2RJpIdHnv3zzKga2QCGvJEB1rkfhp0vTjsLfrJMe+G/82t3Tiqqx6yYGYqkZ8kb7Z4YL6onIbQ2g41QNJTMZ54Q1VTLNyG6CZEORoLJ8xOiu6F7Q1r/zbKZX5z0iylN7MmFLtxHMJsfhueuJOzto21Qo9YhEbeIhr8vQgItxtefiPLARt9YLeVklyuWXfgLJJym+A/A/EKZuQUS86qLmW/pZ06BRJ4h1YhK6RNkhkceoMlP0wG9AlcW9JqdOtORyD/Oo3Xza+wZiNE8EKPZI9HcH6apP/66xaMR08D3s3wsWZK/XfNKgBvfGGOgcwz+dI6Jb6/IrMCVGooLjPjWs6UtWHqpbq1PEr0C1yTQXRc6hxWbH86wcp9tzePtt99mz8bX2Vu/juY+P20ejegE7LzmgRiLijOt81nOsd0yxRbB7AKJ2U6JOQWCOQUSswtU5n7+VgrfuBoimQEAaaKfsOB1y32/owu/js5hQHjdA3Q8cR0trW20eAQt7ggdASO//4gFkeqaHM4C+Z/3FnL3E69O6V5N/dmFf26BxCynYLYzLu4zh9ezCyRmOSVs2cKHj/sKnP5VcNqyRvVkRNEkxP0wiYffX4RCIbZu3cqsWbOyT1R7n+jCr6NzkAkGg7SvvIvW535PW0cXrSEbrbbltHa5aGnYQOtAmE6vliWmPcjPT9ZwmEYJbthPjX/rlPpSlicYyhFdeeoMhd3fG2PmtiRDLEZ8BqQMx34Jzrs1fuwIF/KxGBgYYNOmTWzcuDFeenHDBrZu3UYkEqb4E1czd8VZ/Pgj87nwmMwJiVNFF34dnf1ELBajp6eH9vZ2+vv7Oeuss7Ke94mTF/DcuuaUPX7guQndo8Udw2HKtM5nmLKnLCixCmbYBTOdErV2iRkOiZkOQa0jvp3Ntz82wwOuoy12nTGJRCJ8+tOf5u1319HTkbvISqirkbaBE/npY3UA+0z8deHX0Zkow770YF8LXVIpnY7j6Fj/PJ0Dfjq8MToGNTp9Gh2DMdoHNbqGBJFoPBTXZDIxNDSUOUN088NUxtqm3KUWT4yjSjOFf8WCCq4ecjPD5GWGQ2KGXVBjlzBPWNgzo3owF8RfH4K5Zw41BgcH2bJlCy/XtfC8q4j2AT8VDnPSclcUZVzRBwh1x2su+8NRbn6hQRd+HZ19SSAQoPu1f9D9wu8JDnRx8lG1o2ZutgCCs+71sqo5CniAneO0OuKbCQQCDAwM4HQ6009ZeT1VtonlVCqxCqptgmq7RI1NotoumJ8lRBLVzOJP/pobLmPsbJGSArGoLuLvg2g0yq5du9i8eTOPvPQWK996D097I5GB+Cx/Q+lsyr90GwBtA/40yz3iqIExhF/OL0a2jnxe2gdy/B+ngC78OtOLlAiXtlA+3Z4APe4heoc0egIqPX5Bt3uInqH4zM9uv0x3QMbjHflSzbALmmuG87Gn5WrRpuAKGaG9vT1T+N2t1NgFFfmCKpugMl+iyiYlt6vtgiqbRGW+wDiRtB7mgsyZqIkfrlwDqTrjomka7e3t3Pn4q/ztyVdxtzcR7mkm3NeCFskd4hrq3YMWjSDkuNSmWu4xZw3wNggJtbAKQ+lsDCUzUUtmYSidhWxOT4hY4TDvs/ejC7/OoUFSsNMFSjvrWgZnnoPL5Yovz95I36YX6PVF6fND6aKT+fqfXx5pI8XCPfHPbbR4UkdEs1lMmakqunxaPL48ljnKWZY3OeF3mKBy9mIqKnIkobNX8eVjWvjyMZkx7sm/Q+YBQJuY60UfVJ0yj29o4+YXGmgf8NPzryvwte2YfCPRCGFXG4biGcldCct99inn0z73BAxFNQhl5P/vtKgEwjH8KVOhzarMjz8yf+pvZhS68OvsH4Zng+J3EdM0vJKTmLkIx9Cu9PPMBUQWXMAVv7mT/qEI/X6N/oCGy6/h8m/D9aNLxqxxevzOV/n6OVfEo0eGszMmKLaKUcI/MQKReFEOW2ZddMryBJKIx6yX5QnK8wXlefEMj+V50vBrQUV+fJ/ZoMAvxqiJkG2yEgKO+x+oOSH5NwSyW/M6U8blcrF161a2bt3K06+9y3u7OrCc/R0qHGbOXFDMo+vakuIbsxRMrnEhoTgrMBTXZhxKWO7XXnI6P32sLkPgf3F+PL9W4kcndWxgX6EL/5FMlok/HH0xPH0FrLs7PqCXYFh0vLM+xiuvvIJny0sMrn8Uz0A/bvJwFy3Ho5bgdrtxt+/C3bYDdyDGQEDDE4SYNsj/LOvg7xeMelz1u5DX/4M73vUTnnxJU/r8Gqy7Jy787nR/aZFl4ta5LOI+9MTiD2tZ49KvPtXIL88wxvPETIRjvzT28fEmK+ki/77QNI2uri62b9/Ov194mydffZeB9iairhbC3lElPSWFmjO+QduAn/tX701L8KIWzcC/c3XWe0gWO4biGahFtXFXTXEtalE1kppZsznVck8IeS6B35dCP5qDIvxCiGZgkPhzdiTblOIjkmxCDOlWn2oFxZic/BKJRhDmAmQtBKFEHpW4K6AzYuOdPUF8vkF8YQlfKIpPsuErPwlfzx58rVvxhTW8IfCGtuO9+VK82v8w6B3iqlMMfO/4FJPX74Invk3X8mu54ILvk04AeHHct9cfyG59CyFwmgXdvslb571DsRF3yHB2xgTzCiTaBzWKLILixGIVlFil5HbpsNA7nYVIsUC65Z0lH7tZlUiGL879MGx6EMKp+WuG3TCj49jHQnfH7DMe39DGj2/6f3Q2bEC429D6W/F63ONfCBCLEO5vx1BUk1FLyVA8A6GaUItqUItmYCiuRS2egaF4RtoA7Fg4zCrXfXxxmqBfeEzlfhX4XBxMi/9MTdN69/dNIuv/jfbKDeBuRTM54/9Qfz+ayYEGxIYG0GwVxE67Em3xJ4jFYsRiMTRNo6j9laxl1Fq1UvqP/hrR2R8kEokQ2f48kbf+TMTvIRyFcEwjHBWEixYSdncRGuwjbHQSnnsOl/3kVmyvXxe3UrVoUiCeW9vEY08+QyAKwYhGMNpA4M+fIxjVCIQ1AhENfwQCkUECEfCH468jMXjikggfn6+mvOv4x/a93X188sHRfu0e4Ikx/mJxEesdyiLC0RD56/5v8v+EYQZyCD+A05Rb+M2qoKCkgsJIJwVmKDSL+GIRFFkEGlI8yeoot8n/+9gEB8NUM5z7u/h2th/esVIHTETYdfYZg4OD3Pnkm/zp6TVoMz4AjASeOswqvlCE9s1vMtTw1pjt5CLcuxdDUU3Gfsu8k7AsOAUhJl/VzmlR+cX5iw+KwOdiert6Nj/M0nM+z7buhA/Nk3Jw9PaXh5c4VrMR79WOEQswJYf4jx9r5MHrfzyBDqxL2fYDf+dDtiZsQykJ57QorP07m98M8rcNUytI4c9xmdUw9QiUwRxFy2yhjim1Z1HBkCXyMMEvTjcSjGoUmAVOU/wJoNAscJolTBffNeKCWvv3zIuPG/6/Zat5Gg2OPAmNelrKmSpgNLo1fkCJRqM0NzezY8cO/rPyXZ55cx0DHXuIuNqIevviJwmJmiseRShq0jofGP4iqIXVE7uRrKAWVA1b8TUYCmswVo3UtkjNBSpkBbMq86ljK3lmcwf9w9ObHWaV85aWZ+wbbdkfahws4deAF4UQGvBXTdPu3C93WXk9TDH7aCwSyhn/rLyPClyhPWsgSx4U4/v4T/gj2d+jRc26e0IMhrK3aSyo4uOLW7AKPzajSC52o8DmLMR+8Z+w967HvvZ27IYodhPYjQJVHuNvJql89uOnQ9PrpFfAGR7kTAhvwroe9bSUZnXrbpPDit8/8Dx/+c9L9LQ1E+lvJ+xqIzLQiRYdxwjSYnG3TEq0TAK1sCrttVCNWIprwFmFWlgdX4pqUBxlCCm7NZIQ+VXbezL87zdceFTG+dn2HcocLOE/RdO0NiFECfCSEGK7pmmvp54ghLgcuBygpibz0WtCuMeeFTcWsTGKfY6lYeORWawijnGKjUoid5slVokL5itYDWBRBFaDwKqSXOcZ4vvyDGBVBflGQZ7JgFUO4zRn6Y9sQHzwFzzxQbKnzT3/Vjj6QuBCWLEkMyLFWgK929PbTI1UyTXYnMp5t+rulcMETdPo7OykqamJbvMMfvnU1gxL+f/d9Ds8W1ZNqf2wqzWr8BsrF+E866tJka+pruYn5yzMiKBRZQFa3DWbyqHomtnXHBTh1zStbXjdLYT4L7ACeH3UOXcCd0I8H/+UbmSvQpHqUVLccoL4eB3ERTPxWhIgSRLCmI8syxgjnmwtAlBlEywullBUA7IEihZClQSyBKoEqgyqJIbX8Q+YKsVdHRkJtYY5vVbmr+eZMCnxHwGjAiZFYFQljFIMsyIwDe8zqyRfG2SyF4omnkb38UssmQdkA0QjZBQWlmS48A7YuzpnVE/mxKAcIj0Vy1u31g87IpEILS0t3PfCGv72zDt4ulsJD3SguTvR3J0EA3HjoPqHjyAZRsZcBvxh/rV6L8JePrkbCgnFUYZaUIlkzF5eUbGXYPvAhUDccv/JOQtzRtBk2zedBT/BAS/EIoSwApKmaYPD2y8B12ua9nyua6ZciGXUhJ4xUc1w/u0jwjPetYnzIT7DM8tkn6zXVK2ApteyHJRIF+IcsdzZ/NTmgnRfdsYEnyw+bdBjxHUmxOMb2vjlU1vpaNhAsH0HkYEOIgOdRN2dxAZ7iEYi47ZR/qXbMZTOytjv2/YqvU/dkrFfsjhQCypQnJWohZVxX7yzEsVZhpBz+zBVSZBnUhgYCh9RQp6LQ6kQSynw32ErVQEeGEv03xfZBvsgPtMxdTuXxZrr2mznp4ooAAJmngauxhxx8vek+6lrTjjwsdy6yOsQzyO0Z88empqa2Lt3L1/72te49oktGbHsvi2v4N08fthuNsL97VmFXy2ZhWXhaajOCpSCyuRaNuVlncGajcQgbKUu9BNGL72oozNNSaQcaO0ZoEDz8PHZKt3trTz19iYGutqRfD0oQ33093alXXfFfW/w6NbM2Hf3Ow8z8Pp9k+qDMJhRnRXYT7oEy7wTM49DRsw8xF00N30yPmB68wsNtA34kYUgqmm6wE+CQ8ni19HReZ+k5pFJpBhIjUAxbH2Cd15+jrCnm9iQm73Axgm2/dAr61BK52TsV+ylWc+XLA4UR2ncWneUoTjK49vOciSzLecYlCoJPrOimlXbe8YUdl3g9z268OvoHKJomsYDb2zn5sfepqOtFWnIRWCgm7Cnl+hgD1FvP+Vf+RNtA37+tXpv8rq2AT99W3cR7BwvbXR2gv2dWYXfUDqLvGM+hjos7oqjFMVeRqHTjjcQyYiOkSWBRGbUDBwese7TGV34dXQOAqkWe97ALk4u9NPX1cFrGxsY7O1CDLmIDvYSCgyN2U7M50bOy0wZoNhKJt4ZIVFdVcnMmTOZOXMmL0ULs56mFlZT+OFvpe2TJZFMKnbdk1uTk6gSIZFwZEbNHOrowq+jsw+5+r+buf/1ekKePqK+fqLePqyRQVZUWXjkb7clI2T6Uwrb7n7lQbbkSAA2HpHBnhzCXzzyQkjI+UUo9hIUWzGKrQTFUYpsL0WxlVBTXc0713wkefo1j9elPUHkwmqQufETR43rktGF/tBDF34dnXFIWOdtA36iPXsIurvQfP2EvS5M4UFqLSGEf4D63Xtxu3pg1KzTPmCvkPjZOV/mvxs7M6JUlPyiKfct6umF8nkZ+00zllJ66W9Q7CXIeYVjzlC98twlafsSs1BTo3pGi7zO4Y0u/DpHJJqm8f/bu/fYuOorgePfc+/ceXg8djy2SVIIJIWkpAsN5tHyUJd2eTSlFbAUlSIQC6qolrZb9RWpiNV2tRsFddGutH1I3aJWbFeE0qDd1F2o8kcLolCSLdsQCEWhgUJwQnGw8/Bj7Hmd/eOO7ZnxjD3xY2Zn7vlIke+87pyfxzn3N7/7u+c3NjbG4OAgO369n4d++SJHB98hruNcee5Kfvyv2wA/6Rdf8Xl013eZPPzK9H5OAO9UeoNZb5jn4af2IxUqObqJykMrABIK4ya6/R57oge3o7fkZ6ir8gVQ0Y4uvPYVFA+ve65wyyVrKpYhKLf1xvObrgyBqZ0lftO0yodNpk4YPv/mMNv3HOLk/ifJjbyLTJxkU6/LyWNDHHjjCBMjw2jqJPnM7Ep0Q8Ajv0ly051f4Ma+03lg14GSHnqtJXgrSY8MEanw+vCq9cTPv9pP6NNJvhu3vdtffq/KrJgpAlx+dpI3hlJ2VaqpiSV+01Dl0xK/fu0Grl7fybFjxxgeHqZ/z6s8/PTLDA0NEydF32khkqE0+18b4KXXBwgl19D98S8BfhmALz/6wvS+Tzyznexxv5roU6cQU3bsOP/0i1e4se/0WQtcOzUkfvEiuO1JP3HHu3AT3YTak4QrjMUDxNZeQMd7+0Agk5vpopcXCot6DpPZfEkvfr457ZboTSWW+M2iFCfuzphHJpdndDxFfnKMcC6Fm01x8sRJOkMZ7rrmIr5x5/Ulr733P19ifDLNkR9+nkMTo9x03yjkK1+pOQSUn3IMZ6ovdO3EOuD4AspIa56BPw0C/jJ5h4uSf/i0dUTX9uG2d/lJPZ7Eja9g5arVfHjTOTx+cAInMrs+0lQSL17Ob8rUNxWwHrqpD0v8AXfbg8/xzMEhyGXJZ1JctDrC1k9uoKenh1WrVrFz7+GSaXr5sWMce/YnaHocyaTITY6TmxgjPznOofQ4+cmxQgG4Uu8A9790FeduuqikYFYqk0Mcl9zJd9FslUUA5pBLVS+m57Z1zP1i18NtW4Eb78SJdeLGV+C2+T9XJ9sB2PKx95WM8Scu2Ezigs0lu4l5Lltv8k98/u3Ol3hkz1vkiq6IL+6VX3xWcs7kbone1IMl/mVWnjjL5zeXX7H40XN7+e99b3M8lUFVkXyWfDZNh6fk05OcGBtHsxk0O4lm0+SzaSIrzyGcSHLrh/wFKLbvOUReIT34OiN7n0Azk4TyadZ1hoi7WcbGxhgbG2Pg6DEmUik0nZquxDkA/Oxe2LZtGxs338GWHftKLsDJZ9OM7n18Qb+LTGqEB3YdmE5uxcMoTjRObvTUE38+NVL1sdj6S/GSZ+C0dfiJva0Tt60Dp81P8BKOkYyHZ9WDiXku997gn9gsPkgVf1bVrjKd76Roo5baM6ZYSyf+nXsP8/VvP8LJ0VEA2sMOt15yJoryX78bYGh0krArpLN5VPP+oi2a54pzktz6oXXccsstJfua6qnF/vQiH+waZ+OqdrLZLPvfGuaZVwcZSU0Q94S+MxKc1RXlD28f57k/DJLPZyCXQ/NZctd+ga/tyJZc0ZhTZeR3j7Nn92PszqX9xJ7LzJoWWE3vX96Hu+GyWXOvcyNDjL4wU//uhVP43Y2M+Em6/KpLCVco81yj/MRYSbIvHkZxou3kRv0id44XYVVvN8fzEXJeHCfajhNN4MYSOLEE3cluPnX5uTz8wjD5SLt/gKxwAjSx6WMltz1XZo2h13KRkSVr02paNvHv3HuYLTv2cejn3yEz5CfEo8C27fO/9mfAE5HodOIvn9L35v/s4pVXKpVW9qf3HZlj3/mP3EUu30X5KHY+M0Fu5Oj8wVWg2crj3OJFKt5fi5GREY7kZ5ekLq6pXpUTwom04UTi/s9oHInECfes5T0rZl5fPIxy2s3fBNcjnujkW5/2h4PKf+8wU7zrxr7TuWyeWT1Tx6yY53D/TR8Aqid4S+wmSFo28VfqrZ6KbG6mNn75lD5xTn3B5SlaYfwbmLPG+Lz7rDI2Ll609p04Lk44hoRjOF6U3t5e3hMuPbHpxxkiec1fI14UJ9KGhNtmkny4DYm0IaFwxR54zHOnpxlC6TDKEVZWTcZzJetKCbva8njF+zQmyFo28ZdPwztVWrT61Kx9yRyrhs8nXyXxh6okfieEhDw/mbrhme1QxN/2IrjxZMWXhjpXkrzmHsSLIl4Ex4vQ29XJQ5/7MPF4nHv7D/C/b0/ieJGSA88VZyf5u7sv4wOFb03lB9DEhZ+cCU+gI+pxIpWZntUzlvYPkjHPIeq5cy6KMd8wig2zGLP0WjbxT40fR9b8GaHOooJVUz1REUCmb4s4II5/Wxycokvcy6f0xdb14cTaScQiiOMwmlZwXP+yeMdFnBAr2qNk1CGVBdwQ4riIG8ItlLb1HClJqPGNVxJbd5GfzF0PXM/floV/u3DbOklc+Inp254rbL15ExcXEunOjRu57cHnePa1mQVkrjg7ycN3+3XTpxJu8cnp4vrpVmHRmObUsgux7KzSW52rVGyx2y89c3q4YK6xZmDOx7Y8tq/khOLUvqem9c01qwf845CqPxtIlen7oTQJuyKzZvUUC8IC0saYUoFbiKVSb7VSqdio55DKzAzrCHBbUdIv3tdcMz8W8li1JLzYGilWY8UYM5eW7fEbY0zQVevxL3wA2RhjTFOyxG+MMQFjid8YYwLGEr8xxgSMJX5jjAmYppjVIyJHgTcX+PIe4N0lDKcZWJuDwdocDItp81mq2lt+Z1Mk/sUQkecrTWdqZdbmYLA2B8NytNmGeowxJmAs8RtjTMAEIfH/oNEBNIC1ORiszcGw5G1u+TF+Y4wxpYLQ4zfGGFOkZRK/iGwWkQMiclBEvlHh8YiIPFp4fI+IrG1AmEuqhjZ/VUR+LyIvisgvReSsRsS5lOZrc9HzPiUiKiJNPQOklvaKyKcLn/PLIlLD4qL/v9Xwd32miDwpInsLf9vXNSLOpSQiPxKRQRHZX+VxEZFvF34nL4rIhYt6Q1Vt+n+AC7wGvBcIA/uA95c95/PA9wvbnwEebXTcdWjzR4G2wvY9QWhz4XkJ4GlgN3Bxo+Ne5s94PbAX6CrcPq3RcdehzT8A7ilsvx94o9FxL0G7/xy4ENhf5fHrgF/gV46/FNizmPdrlR7/B4GDqvq6qqaBnwA3lD3nBuDfC9uPAVdJpYVhm8e8bVbVJ1V1vHBzN3BGnWNcarV8zgD/CHwLmKhncMuglvbeDXxPVY8BqOpgnWNcarW0WYGOwnYncKSO8S0LVX0aGJ7jKTcAP1bfbmCFiKxe6Pu1SuI/HXir6PZA4b6Kz1HVLHAC6K5LdMujljYX+yx+j6GZzdvmwlfgNar6eD0DWya1fMYbgA0i8qyI7BaRzXWLbnnU0ua/B24XkQHgCeBv6hNaQ53q//c5tewKXGaGiNwOXAxc2ehYlpP4CxT/C3Bng0OppxD+cM9H8L/RPS0i56vq8UYGtcxuBR5S1X8WkcuA/xCR81Q1P98Lja9VevyHgTVFt88o3FfxOSISwv+KOFSX6JZHLW1GRK4G7gOuV9XJOsW2XOZrcwI4D3hKRN7AHwvtb+ITvLV8xgNAv6pmVPWPwKv4B4JmVUubPwv8FEBVnwOi+PVsWllN/99r1SqJ/7fAehFZJyJh/JO3/WXP6Qf+qrB9M/ArLZw1aVLztllE+oB/w0/6zT72C/O0WVVPqGqPqq5V1bX45zWuV9VmXbezlr/rnfi9fUSkB3/o5/U6xrjUamnzIeAqABHZiJ/4j9Y1yvrrB+4ozO65FDihqm8vdGctMdSjqlkR+SKwC39WwI9U9WUR+QfgeVXtB36I/5XwIP5JlM80LuLFq7HNDwDtwI7CeexDqnp9w4JepBrb3DJqbO8u4FoR+T2QA7aoatN+k62xzV8DHhSRr+Cf6L2zyTtxiMgj+AfwnsK5i28CHoCqfh//XMZ1wEFgHLhrUe/X5L8vY4wxp6hVhnqMMcbUyBK/McYEjCV+Y4wJGEv8xhgTMJb4jTEmYCzxG2NMwFjiN8aYgLHEb8wCiMglhbroURGJF2rhn9fouIyphV3AZcwCichW/HIBMWBAVe9vcEjG1MQSvzELVKgl81v8uv+Xq2quwSEZUxMb6jFm4brxayEl8Hv+xjQF6/Ebs0Ai0o+/QtQ6YLWqfrHBIRlTk5aozmlMvYnIHUBGVbeLiAv8RkT+QlV/1ejYjJmP9fiNMSZgbIzfGGMCxhK/McYEjCV+Y4wJGEv8xhgTMJb4jTEmYCzxG2NMwFjiN8aYgLHEb4wxAfN/n6IepOFNKeUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Plot the learned functions\n", + "fig, ax = plt.subplots()\n", + "\n", + "for i in range(num_models):\n", + " ax.scatter(data_batches[i][0], data_batches[i][1])\n", + "\n", + " a = best_model[0]\n", + " b = best_model[1][i]\n", + " x = torch.linspace(0., 1., steps=100)\n", + " y = a*x*x + b\n", + " ax.plot(x, y, color='k', lw=4, linestyle='--',\n", + " label='Learned quadratics' if i == 0 else None)\n", + "ax.legend()\n", + "\n", + "ax.set_xlabel('x');\n", + "ax.set_ylabel('y');" + ] } ], "metadata": { @@ -538,9 +669,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.8" + "version": "3.8.12" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } From 4699b4d51b3b0728c8e6fa1149795d8827d734d1 Mon Sep 17 00:00:00 2001 From: vshobha <54299345+vshobha@users.noreply.github.com> Date: Fri, 17 Dec 2021 14:00:20 -0500 Subject: [PATCH 04/15] update text in Tutorial 2 per issue #27 (#31) * update text in Tutorial 2 per issue #27 Co-authored-by: Shobha Venkataraman Co-authored-by: Mustafa Mukadam --- ...=> 02_differentiating_theseus_layer.ipynb} | 19 ++++++++++++------- tutorials/README.md | 12 ++++++------ 2 files changed, 18 insertions(+), 13 deletions(-) rename tutorials/{02_differentiable_nlls.ipynb => 02_differentiating_theseus_layer.ipynb} (99%) diff --git a/tutorials/02_differentiable_nlls.ipynb b/tutorials/02_differentiating_theseus_layer.ipynb similarity index 99% rename from tutorials/02_differentiable_nlls.ipynb rename to tutorials/02_differentiating_theseus_layer.ipynb index 2940bdf48..72d989011 100644 --- a/tutorials/02_differentiable_nlls.ipynb +++ b/tutorials/02_differentiating_theseus_layer.ipynb @@ -4,9 +4,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "

Differentiating Through Nonlinear Optimization

\n", + "

Differentiating Through Theseus Layers

\n", "\n", - "This tutorial shows how we can differentiate through a least-squares optimization problem using Theseus. \n", + "This tutorial shows how we can differentiate through Theseus layers to solve a collection of related least-squares optimization problems. \n", "\n", "The optimization problems of Tutorial 1 are done with one application (each) of the Theseus non-linear least squares optimizers, as they are straightforward curve-fitting problems. Theseus can also be used to solve more complex optimization problems, e.g., with dependencies between the quantities being optimized. In this tutorial, we will solve a set of curve-fitting problems that share one common parameter. As in Tutorial 1, we choose quadratic functions for simplicity: we wish to fit y = ax2 + b, where a is fixed for all problems, and b is different for each problem. \n", "\n", @@ -78,7 +78,7 @@ "source": [ "

Step 1: Set up Theseus Optimization

\n", "\n", - "Next, we set up the Theseus optimization problem similar to Tutorial 1, but with one key change: a is no longer an optimization variable for the Theseus NLLS optimizer; instead, its an auxiliary variable whose value will be optimized by PyTorch through backpropagation. b remains the only optimization variable for the Theseus NLLS optimizer. The code below illustrates this." + "Next, we set up the Theseus optimization problem similar to Tutorial 1, but with one key change: a is no longer an optimization variable for the Theseus NLLS optimizer; instead, it is an auxiliary variable whose value will be optimized by PyTorch through backpropagation. b remains the only optimization variable for the Theseus NLLS optimizer. The code below illustrates this." ] }, { @@ -283,13 +283,11 @@ "\n", "

Step 3 (Optional): Solving all Optimization Problems Simultaneously

\n", "\n", - "The above is only one of many ways to model our problem with Theseus. Theseus also supports solving multiple optimization problems simultaneously, so we could also solve all of the 10 quadratic-fit problems simultaneously. We can do this in two natural ways:\n", + "The above is only one of many ways to model our problem with Theseus. Theseus also supports solving multiple optimization problems simultaneously, so we could also solve all of the 10 least-squares optimization problems simultaneously. We can do this in two natural ways:\n", "- Version A: by creating 10 `AutoDiffCostFunction`s, one for each optimization problem. Here, we need each `AutoDiffCostFunction` to have a separate `b, x, y` variables (e.g., `[b1, x1, y1]`, `[b2, x2, y2]` etc). All cost functions are added to the objective, and they can be optimized jointly with one `forward`, and differentiated through jointly with the following `backward`. \n", "- Version B: by changing the `b, x, y` variables to be batched, and having the error function above `quad_err_fn2` to support batches, we can use a single `AutoDiffCostFunction` to capture the cost of their fit. However, because the error may now be batched, the loss has to be computed as an aggregate of the evaluated objective. \n", "\n", - "Version A is more commonly used in situations where each variable and cost-function has a different sematic interpretation (e.g., different time-steps in the motion-planning problem of Tutorial 4 & 5), while Version B is commonly used for multiple instances of the same problem (e.g., different maps in Tutorials 4 & 5). \n", - "\n", - "We show next the complete code for each version, and see that both versions find very similar `a` and `b` values. \n", + "Version A is more commonly used in situations where each variable and cost-function has a different sematic interpretation (e.g., different time-steps in the motion-planning problem of Tutorial 4 & 5), while Version B is commonly used for multiple instances of the same problem (e.g., different maps in Tutorials 4 & 5). We show below the complete code for each version. Both versions find very similar `a` and `b` values. \n", "\n", "Because both versions need a common learning routine, we first create a subroutine `optimize_and_learn_models_jointly` for readability. " ] @@ -648,6 +646,13 @@ "ax.set_xlabel('x');\n", "ax.set_ylabel('y');" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Technical note: You may note that in this example, the differentiation occurs only through the TheseusLayer objective, not through the Theseus non-linear least squares optimizers. This is due to the simplicity of the example problem. A more complex series of inner loop computations will require Theseus to also differentiate through the non-linear least squares optimizers; such problems are in Tutorials 4 & 5, as well as in the [Theseus `examples` folder](https://github.com/facebookresearch/theseus/tree/main/examples)." + ] } ], "metadata": { diff --git a/tutorials/README.md b/tutorials/README.md index 79c6bbbcd..8708b30d9 100644 --- a/tutorials/README.md +++ b/tutorials/README.md @@ -1,7 +1,7 @@ Theseus includes a number of tutorials to help a user get started: -- [Tutorial 0](https://github.com/facebookresearch/theseus/blob/main/tutorials/00_introduction.ipynb) introduces Theseus and its fundamental concepts, and shows how to use its different basic building blocks. -- [Tutorial 1](https://github.com/facebookresearch/theseus/blob/main/tutorials/01_least_squares_optimization.ipynb) describes how to model and solve a simple least-squares optimization problem. -- [Tutorial 2](https://github.com/facebookresearch/theseus/blob/main/tutorials/02_differentiable_nlls.ipynb) describes how to model and solve a collection of least-squares optimization problems with shared parameters. -- [Tutorial 3](https://github.com/facebookresearch/theseus/blob/main/tutorials/03_custom_cost_functions.ipynb) describes how to write custom cost functions for use in Theseus optimization problems. -- [Tutorial 4](https://github.com/facebookresearch/theseus/blob/main/tutorials/04_motion_planning.ipynb) shows how to implement GPMP2 motion-planning algorithm [(Mukadam et al 2018)](https://arxiv.org/abs/1707.07383). -- [Tutorial 5](https://github.com/facebookresearch/theseus/blob/main/tutorials/05_differentiable_motion_planning.ipynb) shows how to implement a differentiable motion planner, similar to dGPMP2 [(Bhardwaj et al 2020)](https://arxiv.org/pdf/1907.09591.pdf). +- [Tutorial 0](00_introduction.ipynb) introduces Theseus and its fundamental concepts, and shows how to use its different basic building blocks. +- [Tutorial 1](01_least_squares_optimization.ipynb) describes how to model and solve a simple least-squares optimization problem. +- [Tutorial 2](02_differentiating_theseus_layer.ipynb) describes how to model and solve a collection of least-squares optimization problems with shared parameters. +- [Tutorial 3](03_custom_cost_functions.ipynb) describes how to write custom cost functions for use in Theseus optimization problems. +- [Tutorial 4](04_motion_planning.ipynb) shows how to implement GPMP2 motion-planning algorithm [(Mukadam et al 2018)](https://arxiv.org/abs/1707.07383). +- [Tutorial 5](05_differentiable_motion_planning.ipynb) shows how to implement a differentiable motion planner, similar to dGPMP2 [(Bhardwaj et al 2020)](https://arxiv.org/pdf/1907.09591.pdf). From e1d0cd0e7ad66cb3fd159c67bcc043bb37a8d1df Mon Sep 17 00:00:00 2001 From: Maurizio Monge Date: Mon, 20 Dec 2021 17:20:55 +0100 Subject: [PATCH 05/15] update continuous integration (#21) * update continuous integration * update cuda installs in ci * fix install of torch tools in ci Co-authored-by: Maurizio Monge --- .circleci/config.yml | 145 ++++++++++++++++++++++++++++++++----------- 1 file changed, 110 insertions(+), 35 deletions(-) diff --git a/.circleci/config.yml b/.circleci/config.yml index d6a37fa6a..abbaa0a8a 100644 --- a/.circleci/config.yml +++ b/.circleci/config.yml @@ -5,43 +5,119 @@ version: 2.1 # Executors # ------------------------------------------------------------------------------------- executors: - gpu: + gpu_cuda10: environment: CUDA_VERSION: "10.2" + CUDA_HOME: "/usr/local/cuda" PYTHONUNBUFFERED: 1 machine: - image: ubuntu-1604:201903-01 - resource_class: gpu.medium # tesla m60 + image: ubuntu-2004:202107-02 + resource_class: gpu.nvidia.small.multi # NVIDIA Tesla T4 2 GPU 4 vCPUs 15 GB RAM + + gpu_cuda11: + environment: + CUDA_VERSION: "11.4" + CUDA_HOME: "/usr/local/cuda" + PYTHONUNBUFFERED: 1 + machine: + image: ubuntu-2004:202107-02 + resource_class: gpu.nvidia.small.multi # NVIDIA Tesla T4 2 GPU 4 vCPUs 15 GB RAM # ------------------------------------------------------------------------------------- # Re-usable commands # ------------------------------------------------------------------------------------- +update_and_install_python: &update_and_install_python + - run: + name: "Preparing environment: python" + command: | + sudo add-apt-repository -y ppa:deadsnakes/ppa + sudo apt-get update + sudo apt-get install -y python3.7 python3.7-dev python3.8 python3.8-dev + install_nox: &install_nox - run: - name: "Preparing environment" + name: "Preparing environment: nox" command: | sudo apt-get install -y expect sudo pip install nox==2020.8.22 install_suitesparse: &install_suitesparse - run: - name: "Preparing environment" + name: "Preparing environment: suitesparse" command: | sudo apt-get install -y libsuitesparse-dev -setupcuda: &setupcuda +setup_cuda10_libs: &setup_cuda10_libs + - run: + name: Setup CUDA drivers and libraries + working_directory: ~/ + command: | + # ubuntu's default gcc9.3 is too recent for cuda10.2 + sudo apt-get install -y gcc-8 g++-8 + sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-9 10 + sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-8 20 + sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-9 10 + sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-8 20 + # download and install nvidia drivers, cuda, etc + wget --quiet --no-clobber -P ~/nvidia-downloads https://developer.download.nvidia.com/compute/cuda/10.2/Prod/local_installers/cuda_10.2.89_440.33.01_linux.run + time sudo /bin/bash nvidia-downloads/cuda_10.2.89_440.33.01_linux.run --no-drm --silent --driver --toolkit + sudo ldconfig /usr/local/cuda/lib64 + echo "Done installing NVIDIA drivers and CUDA libraries." + nvidia-smi + +setup_cuda11_libs: &setup_cuda11_libs - run: - name: Setup CUDA + name: Setup CUDA drivers and libraries working_directory: ~/ command: | # download and install nvidia drivers, cuda, etc - wget --quiet --no-clobber -P ~/nvidia-downloads 'https://s3.amazonaws.com/ossci-linux/nvidia_driver/NVIDIA-Linux-x86_64-440.82.run' - time sudo /bin/bash ~/nvidia-downloads/NVIDIA-Linux-x86_64-440.82.run --no-drm -q --ui=none - echo "Done installing NVIDIA drivers." - pyenv versions + wget --quiet --no-clobber -P ~/nvidia-downloads https://developer.download.nvidia.com/compute/cuda/11.3.0/local_installers/cuda_11.3.0_465.19.01_linux.run + time sudo /bin/bash nvidia-downloads/cuda_11.3.0_465.19.01_linux.run --no-drm --silent --driver --toolkit + sudo ldconfig /usr/local/cuda/lib64 + echo "Done installing NVIDIA drivers and CUDA libraries." nvidia-smi - pyenv global 3.7.0 - + +setup_environment: &setup_environment + - run: + name: Setup virtualenv and tools + working_directory: ~/project + command: | + virtualenv ~/theseus_venv -p /usr/bin/python3.7 + echo ". ~/theseus_venv/bin/activate" >> $BASH_ENV + . ~/theseus_venv/bin/activate + pip install --progress-bar off --upgrade pip + pip install --progress-bar off --upgrade setuptools + +install_torch_cuda10: &install_torch_cuda10 + - run: + name: Install Torch for cuda10 + working_directory: ~/project + command: | + pip install --progress-bar off torch==1.10.0+cu102 torchvision==0.11.1+cu102 torchaudio==0.10.0+cu102 -f https://download.pytorch.org/whl/cu102/torch_stable.html + python -c 'import torch; print("Torch version:", torch.__version__); assert torch.cuda.is_available()' + +install_torch_cuda11: &install_torch_cuda11 + - run: + name: Install Torch for cuda11 + working_directory: ~/project + command: | + pip install --progress-bar off torch==1.10.0+cu113 torchvision==0.11.1+cu113 torchaudio==0.10.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html + python -c 'import torch; print("Torch version:", torch.__version__); assert torch.cuda.is_available()' + +setup_project: &setup_project + - run: + name: Setting up project + working_directory: ~/project + command: | + pip install --progress-bar off -e . + +run_tests: &run_tests + - run: + name: Running tests + working_directory: ~/project + command: | + pytest -s theseus/tests/test_theseus_layer.py + # ------------------------------------------------------------------------------------- # Jobs # ------------------------------------------------------------------------------------- @@ -74,31 +150,29 @@ jobs: pip install nox==2020.8.22 nox - unittests_gpu17: - executor: gpu + unittests_gpu17_cuda10: + executor: gpu_cuda10 steps: - checkout + - <<: *update_and_install_python - <<: *install_suitesparse - - <<: *setupcuda - - run: - name: Installs basic dependencies - command: | - pyenv versions - pyenv global 3.7.0 - python -m venv ~/theseus_venv - echo ". ~/theseus_venv/bin/activate" >> $BASH_ENV - . ~/theseus_venv/bin/activate - pip install --progress-bar off --upgrade pip - pip install --progress-bar off --upgrade setuptools - pip install --progress-bar off torch==1.9.0+cu102 torchvision torchaudio -f https://download.pytorch.org/whl/torch_stable.html - python -c 'import torch; print("Torch version:", torch.__version__); assert torch.cuda.is_available()' - pip install --progress-bar off -e . - install_cuda: true - - run: - name: Run GPU tests - command: | - pytest theseus/tests/test_theseus_layer.py -s + - <<: *setup_cuda10_libs + - <<: *setup_environment + - <<: *install_torch_cuda10 + - <<: *setup_project + - <<: *run_tests + unittests_gpu17_cuda11: + executor: gpu_cuda11 + steps: + - checkout + - <<: *update_and_install_python + - <<: *install_suitesparse + - <<: *setup_cuda11_libs + - <<: *setup_environment + - <<: *install_torch_cuda11 + - <<: *setup_project + - <<: *run_tests workflows: version: 2 @@ -106,4 +180,5 @@ workflows: jobs: - py37_linux - py38_linux - - unittests_gpu17 + - unittests_gpu17_cuda10 + - unittests_gpu17_cuda11 From ec9546c0ad03d2dfb374202dd1ec09e7f6ae0263 Mon Sep 17 00:00:00 2001 From: Maurizio Monge Date: Tue, 21 Dec 2021 17:44:19 +0100 Subject: [PATCH 06/15] cusolver based batched LU solver (#22) * cublas-based sparse LU solver class * update cuda installs in ci * add test to ci * add C++ extensions to gitignore Co-authored-by: Maurizio Monge --- .circleci/config.yml | 1 + .gitignore | 3 +- requirements/main.txt | 1 + setup.py | 18 + theseus/extlib/cusolver_lu_solver.cpp | 341 ++++++++++++++++++ theseus/extlib/cusolver_sp_defs.cpp | 69 ++++ theseus/extlib/cusolver_sp_defs.h | 25 ++ .../extlib/tests/test_cusolver_lu_solver.py | 121 +++++++ theseus/utils/__init__.py | 1 + theseus/utils/sparse_matrix_utils.py | 26 ++ 10 files changed, 605 insertions(+), 1 deletion(-) create mode 100644 theseus/extlib/cusolver_lu_solver.cpp create mode 100644 theseus/extlib/cusolver_sp_defs.cpp create mode 100644 theseus/extlib/cusolver_sp_defs.h create mode 100644 theseus/extlib/tests/test_cusolver_lu_solver.py create mode 100644 theseus/utils/sparse_matrix_utils.py diff --git a/.circleci/config.yml b/.circleci/config.yml index abbaa0a8a..cdf390651 100644 --- a/.circleci/config.yml +++ b/.circleci/config.yml @@ -117,6 +117,7 @@ run_tests: &run_tests working_directory: ~/project command: | pytest -s theseus/tests/test_theseus_layer.py + pytest -s theseus/extlib/tests/test_cusolver_lu_solver.py # ------------------------------------------------------------------------------------- # Jobs diff --git a/.gitignore b/.gitignore index e091373b1..28eecc9e0 100644 --- a/.gitignore +++ b/.gitignore @@ -11,4 +11,5 @@ expts/ *.ipynb_checkpoints examples/*.ipynb_checkpoints outputs/ -examples/outputs/ \ No newline at end of file +examples/outputs/ +theseus/extlib/*.so diff --git a/requirements/main.txt b/requirements/main.txt index 09557abbb..ee54035e2 100644 --- a/requirements/main.txt +++ b/requirements/main.txt @@ -3,3 +3,4 @@ scipy>=1.5.3 scikit-sparse>=0.4.5 # torch>=1.7.1 will do separate install instructions for now (CUDA dependent) pytest>=6.2.1 +pybind11>=2.7.1 diff --git a/setup.py b/setup.py index 7b8e9a8d7..0a8376d91 100644 --- a/setup.py +++ b/setup.py @@ -6,6 +6,8 @@ from pathlib import Path import setuptools +import os +from torch.utils import cpp_extension as torch_cpp_ext def parse_requirements_file(path): @@ -25,6 +27,20 @@ def parse_requirements_file(path): with open("README.md", "r") as fh: long_description = fh.read() +if "CUDA_HOME" in os.environ: + ext_modules = [ + torch_cpp_ext.CUDAExtension( + name="theseus.extlib.cusolver_lu_solver", + sources=[ + "theseus/extlib/cusolver_lu_solver.cpp", + "theseus/extlib/cusolver_sp_defs.cpp", + ], + libraries=["cusolver"], + ), + ] +else: + ext_modules = [] + setuptools.setup( name="theseus", version=version, @@ -44,4 +60,6 @@ def parse_requirements_file(path): python_requires=">=3.7", install_requires=reqs_main, extras_require={"dev": reqs_main + reqs_dev}, + cmdclass={"build_ext": torch_cpp_ext.BuildExtension}, + ext_modules=ext_modules, ) diff --git a/theseus/extlib/cusolver_lu_solver.cpp b/theseus/extlib/cusolver_lu_solver.cpp new file mode 100644 index 000000000..5a7c7c519 --- /dev/null +++ b/theseus/extlib/cusolver_lu_solver.cpp @@ -0,0 +1,341 @@ +// Copyright (c) Meta Platforms, Inc. and affiliates. +// +// This source code is licensed under the MIT license found in the +// LICENSE file in the root directory of this source tree. + +#include "cusolver_sp_defs.h" +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +enum Ordering { + AMD = 0, + RCM, + MDQ +}; + +struct CusolverLUSolver { + + CusolverLUSolver(int batchSize, + int64_t numCols, + const torch::Tensor& A_rowPtr, + const torch::Tensor& A_colInd, + Ordering ordering = AMD); + + // returns position of singularity, for each batch element (-1 = no singularity) + std::vector factor(const torch::Tensor& A_val); + + void solve(const torch::Tensor& b); + + int batchSize; + int factoredBatchSize; + int64_t numCols; + int64_t numRows; + int64_t nnz; + + torch::Tensor A_rowPtr; + torch::Tensor A_colInd; + torch::Tensor P; + torch::Tensor Q; + cusolverRfHandle_t cusolverRfH = nullptr; + + // stores the id of the factor stored (to enable workaround related to reusing contexts...) + int64_t factorId = 0; +}; + +CusolverLUSolver::CusolverLUSolver(int batchSize, + int64_t numCols, + const torch::Tensor& A_rowPtr, + const torch::Tensor& A_colInd, + Ordering ordering) + : batchSize(batchSize), factoredBatchSize(-1), numCols(numCols), A_rowPtr(A_rowPtr), A_colInd(A_colInd) { + + numRows = A_rowPtr.size(0) - 1; + nnz = A_colInd.size(0); + TORCH_CHECK(numRows == numCols); // assume square + TORCH_CHECK(A_rowPtr.device().is_cuda()); + TORCH_CHECK(A_colInd.device().is_cuda()); + TORCH_CHECK(A_rowPtr.dtype() == torch::kInt); + TORCH_CHECK(A_colInd.dtype() == torch::kInt); + TORCH_CHECK(A_rowPtr.dim() == 1); + TORCH_CHECK(A_colInd.dim() == 1); + + cusolverSpHandle_t cusolverSpH = theseus::cusolver_sp::getCurrentCUDASolverSpHandle(); + + cusparseMatDescr_t A_descr = nullptr; + TORCH_CUDASPARSE_CHECK(cusparseCreateMatDescr(&A_descr)); + TORCH_CUDASPARSE_CHECK(cusparseSetMatIndexBase(A_descr, CUSPARSE_INDEX_BASE_ZERO)); + TORCH_CUDASPARSE_CHECK(cusparseSetMatType(A_descr, CUSPARSE_MATRIX_TYPE_GENERAL)); + + at::Tensor A_rowPtr_cpu = A_rowPtr.cpu(); + at::Tensor A_colInd_cpu = A_colInd.cpu(); + const int *pA_rowPtr_cpu = A_rowPtr_cpu.data_ptr(); + const int *pA_colInd_cpu = A_colInd_cpu.data_ptr(); + + // we compute the permutation Q which allows + torch::Tensor Qperm = torch::empty(numRows, torch::TensorOptions(torch::kInt)); + int *pQperm = Qperm.data_ptr(); + + if (ordering == AMD) { + CUSOLVER_CHECK(cusolverSpXcsrsymamdHost(cusolverSpH, numRows, nnz, + A_descr, pA_rowPtr_cpu, pA_colInd_cpu, + pQperm)); + } else if (ordering == RCM) { + CUSOLVER_CHECK(cusolverSpXcsrsymrcmHost(cusolverSpH, numRows, nnz, + A_descr, pA_rowPtr_cpu, pA_colInd_cpu, + pQperm)); + } else if (ordering == MDQ) { + CUSOLVER_CHECK(cusolverSpXcsrsymmdqHost(cusolverSpH, numRows, nnz, + A_descr, pA_rowPtr_cpu, pA_colInd_cpu, + pQperm)); + } else { + throw std::runtime_error("CusolverLUSolver: invalid value for ordering: " + std::to_string(ordering)); + } + + // compute the permuted matrix B = Q * A * Qt + at::Tensor B_rowPtr_cpu = A_rowPtr_cpu.clone(); + at::Tensor B_colInd_cpu = A_colInd_cpu.clone(); + int *pB_rowPtr_cpu = B_rowPtr_cpu.data_ptr(); + int *pB_colInd_cpu = B_colInd_cpu.data_ptr(); + + { + size_t size_perm = 0; + CUSOLVER_CHECK(cusolverSpXcsrperm_bufferSizeHost(cusolverSpH, numRows, numCols, nnz, + A_descr, pB_rowPtr_cpu, pB_colInd_cpu, + pQperm, pQperm, &size_perm)); + + torch::Tensor permBuffer = torch::empty(size_perm, + torch::TensorOptions(torch::kByte)); + torch::Tensor permIndices = torch::empty(nnz, // unused + torch::TensorOptions(torch::kInt)); + + CUSOLVER_CHECK(cusolverSpXcsrpermHost(cusolverSpH, numRows, numCols, nnz, + A_descr, pB_rowPtr_cpu, pB_colInd_cpu, + pQperm, pQperm, + permIndices.data_ptr(), permBuffer.data_ptr())); + } + + // compute B's factorization with pivoting: B = P*L*Pt * Q*U*Q + int L_nnz, U_nnz; + torch::Tensor L_val, L_rowPtr, L_colInd, U_val, U_rowPtr, U_colInd, P_cpu, Q_cpu; + + { + csrluInfoHost_t info = nullptr; + CUSOLVER_CHECK(cusolverSpCreateCsrluInfoHost(&info)); + + CUSOLVER_CHECK(cusolverSpXcsrluAnalysisHost(cusolverSpH, numRows, nnz, + A_descr, pB_rowPtr_cpu, pB_colInd_cpu, + info)); + + torch::Tensor B_val_cpu = torch::zeros(nnz, torch::TensorOptions(torch::kDouble)); + double *pB_val_cpu = B_val_cpu.data_ptr(); + // make our model B invertible + for(int r = 0; r < numRows; r++) { + // load endpoint `end` at the beginning to avoid recomputation + for(int i = pB_rowPtr_cpu[r], end = pB_rowPtr_cpu[r+1]; i < end; i++) { + if(pB_colInd_cpu[i] == r) { + pB_val_cpu[i] = 1.0; + } + } + } + + size_t size_internal = 0; + size_t size_lu = 0; + CUSOLVER_CHECK(cusolverSpDcsrluBufferInfoHost(cusolverSpH, numRows, nnz, + A_descr, pB_val_cpu, pB_rowPtr_cpu, pB_colInd_cpu, + info, + &size_internal, + &size_lu)); + + torch::Tensor luBuffer = torch::empty(size_lu, torch::TensorOptions(torch::kByte)); + double pivot_threshold = 1.0; + double tol = 1e-14; + CUSOLVER_CHECK(cusolverSpDcsrluFactorHost(cusolverSpH, numRows, nnz, + A_descr, pB_val_cpu, pB_rowPtr_cpu, pB_colInd_cpu, + info, pivot_threshold, + luBuffer.data_ptr())); + + int singularity = 0; + CUSOLVER_CHECK(cusolverSpDcsrluZeroPivotHost(cusolverSpH, info, tol, &singularity)); + if (0 <= singularity){ + fprintf(stderr, "Error: A is not invertible, singularity=%d\n", singularity); + } + + CUSOLVER_CHECK(cusolverSpXcsrluNnzHost(cusolverSpH, &L_nnz, &U_nnz, info)); + + torch::Tensor P_lu = torch::empty(numRows, torch::TensorOptions(torch::kInt)); + torch::Tensor Q_lu = torch::empty(numCols, torch::TensorOptions(torch::kInt)); + L_val = torch::empty(L_nnz, torch::TensorOptions(torch::kDouble)); + L_rowPtr = torch::empty(numRows+1, torch::TensorOptions(torch::kInt)); + L_colInd = torch::empty(L_nnz, torch::TensorOptions(torch::kInt)); + U_val = torch::empty(U_nnz, torch::TensorOptions(torch::kDouble)); + U_rowPtr = torch::empty(numRows+1, torch::TensorOptions(torch::kInt)); + U_colInd = torch::empty(U_nnz, torch::TensorOptions(torch::kInt)); + + CUSOLVER_CHECK(cusolverSpDcsrluExtractHost(cusolverSpH, + P_lu.data_ptr(), Q_lu.data_ptr(), + A_descr, L_val.data_ptr(), L_rowPtr.data_ptr(), L_colInd.data_ptr(), + A_descr, U_val.data_ptr(), U_rowPtr.data_ptr(), U_colInd.data_ptr(), + info, + luBuffer.data_ptr())); + + // P, Q (for A's factorization) are obtained as composition of permutations + P_cpu = torch::empty(numRows, torch::TensorOptions(torch::kInt)); + Q_cpu = torch::empty(numCols, torch::TensorOptions(torch::kInt)); + int* pP = P_cpu.data_ptr(), *pP_lu = P_lu.data_ptr(); + int* pQ = Q_cpu.data_ptr(), *pQ_lu = Q_lu.data_ptr(); + for(int j = 0; j < numRows; j++){ + pP[j] = pQperm[pP_lu[j]]; + } + for(int j = 0; j < numCols; j++){ + pQ[j] = pQperm[pQ_lu[j]]; + } + + CUSOLVER_CHECK(cusolverSpDestroyCsrluInfoHost(info)); + TORCH_CUDASPARSE_CHECK(cusparseDestroyMatDescr(A_descr)); + } + + // cusolverRf part + const cusolverRfFactorization_t fact_alg = CUSOLVERRF_FACTORIZATION_ALG0; // default + const cusolverRfTriangularSolve_t solve_alg = CUSOLVERRF_TRIANGULAR_SOLVE_ALG1; // default + double nzero = 0.0; + double nboost = 0.0; + CUSOLVER_CHECK(cusolverRfCreate(&cusolverRfH)); + CUSOLVER_CHECK(cusolverRfSetNumericProperties(cusolverRfH, nzero, nboost)); + CUSOLVER_CHECK(cusolverRfSetAlgs(cusolverRfH, fact_alg, solve_alg)); + CUSOLVER_CHECK(cusolverRfSetMatrixFormat(cusolverRfH, CUSOLVERRF_MATRIX_FORMAT_CSR, CUSOLVERRF_UNIT_DIAGONAL_ASSUMED_L)); + CUSOLVER_CHECK(cusolverRfSetResetValuesFastMode(cusolverRfH, CUSOLVERRF_RESET_VALUES_FAST_MODE_ON)); + + at::Tensor A_val_cpu = torch::empty(batchSize * nnz, torch::TensorOptions(torch::kDouble)); + at::Tensor A_val_array_cpu = torch::empty(batchSize * sizeof(double*), torch::TensorOptions(torch::kByte)); + double* pA_val_cpu = A_val_cpu.data_ptr(); + double** pA_val_array_cpu = (double**)A_val_array_cpu.data_ptr(); + for(int i = 0; i < batchSize; i++) { + pA_val_array_cpu[i] = pA_val_cpu + nnz * i; + } + + CUSOLVER_CHECK(cusolverRfBatchSetupHost(batchSize, + numRows, nnz, + A_rowPtr_cpu.data_ptr(), A_colInd_cpu.data_ptr(), pA_val_array_cpu, + L_nnz, L_rowPtr.data_ptr(), L_colInd.data_ptr(), L_val.data_ptr(), + U_nnz, U_rowPtr.data_ptr(), U_colInd.data_ptr(), U_val.data_ptr(), + P_cpu.data_ptr(), Q_cpu.data_ptr(), + cusolverRfH)); + + CUSOLVER_CHECK(cusolverRfBatchAnalyze(cusolverRfH)); + + P = P_cpu.cuda(); + Q = Q_cpu.cuda(); +} + +std::vector CusolverLUSolver::factor(const torch::Tensor& A_val) { + + TORCH_CHECK(A_val.device().is_cuda()); + TORCH_CHECK(A_val.dim() == 2); + + // we ideally would like to check "<=" and support irregular (smaller) + // batch sizes, but (disappointingly) cuda fails unless "==" holds + TORCH_CHECK(A_val.size(0) == batchSize); + TORCH_CHECK(A_val.size(1) == nnz); + + factorId++; + factoredBatchSize = A_val.size(0); + + at::Tensor A_val_array_cpu = torch::empty(factoredBatchSize * sizeof(double*), torch::TensorOptions(torch::kByte)); + double* pA_val = A_val.data_ptr(); + double** pA_val_array_cpu = (double**)A_val_array_cpu.data_ptr(); + for(int i = 0; i < factoredBatchSize; i++) { + pA_val_array_cpu[i] = pA_val + nnz * i; + } + at::Tensor A_val_array = A_val_array_cpu.cuda(); + + CUSOLVER_CHECK(cusolverRfBatchResetValues(factoredBatchSize, + numRows, nnz, + A_rowPtr.data_ptr(), A_colInd.data_ptr(), (double**)A_val_array.data_ptr(), + P.data_ptr(), Q.data_ptr(), + cusolverRfH)); + + CUSOLVER_CHECK(cusolverRfBatchRefactor(cusolverRfH)); + + std::vector singularityPositions(factoredBatchSize); + CUSOLVER_CHECK(cusolverRfBatchZeroPivot(cusolverRfH, singularityPositions.data())); + for(int i = 0; i < factoredBatchSize; i++) { + if (singularityPositions[i] >= 0){ + fprintf(stderr, "Error: A[%d] is not invertible, singularity=%d\n", i, singularityPositions[i]); + } + } + + return singularityPositions; +} + +void CusolverLUSolver::solve(const torch::Tensor& b) { + + TORCH_CHECK(b.device().is_cuda()); + TORCH_CHECK(b.dim() == 2); + TORCH_CHECK(b.size(0) == factoredBatchSize); + TORCH_CHECK(b.size(1) == numRows); + + at::Tensor b_array_cpu = torch::empty(factoredBatchSize * sizeof(double*), + torch::TensorOptions(torch::kByte)); + double* pB = b.data_ptr(); + double** pB_array_cpu = (double**)b_array_cpu.data_ptr(); + for(int i = 0; i < factoredBatchSize; i++) { + pB_array_cpu[i] = pB + numRows * i; + } + at::Tensor b_array = b_array_cpu.cuda(); + at::Tensor temp = torch::empty(numRows * 2 * factoredBatchSize, + torch::TensorOptions(torch::kDouble).device(A_rowPtr.device())); + + CUSOLVER_CHECK(cusolverRfBatchSolve(cusolverRfH, + P.data_ptr(), Q.data_ptr(), + 1, // nrhs + temp.data_ptr(), numRows, + (double**)b_array.data_ptr(), numRows)); +} + +PYBIND11_MODULE(cusolver_lu_solver, m) { + m.doc() = "Python bindings for cusolver-based LU solver"; + py::enum_(m, "Ordering", + "Enumerated class for fill-reducing re-ordering types" + ) + .value("AMD", AMD, "(Symmetric) Approximate Minimum Degree algorithm based on Quotient Graph") + .value("RCM", RCM, "(Symmetric) Reverse Cuthill-McKee permutation") + .value("MDQ", MDQ, "(Symmetric) Minimum Degree algorithm based on Quotient Graph"); + py::class_(m, "CusolverLUSolver", + "Solver class for LU decomposition" + ) + .def(py::init(), + "Initialization, it computes the fill-reducing permutation,\n" + "performs the symbolic factorization, preparing the data structures", + py::arg("batch_size"), + py::arg("num_cols"), + py::arg("A_rowPtr"), + py::arg("A_colInd"), + py::arg("ordering") = AMD + ) + .def("factor", &CusolverLUSolver::factor, + "Compute the LU factorization, batched. Result be used for one or more 'solve'", + py::arg("A_val") + ) + .def("solve", &CusolverLUSolver::solve, + "Solve in place (b is modified), batch size must match previous call to 'factor'", + py::arg("b") + ) + .def_readonly("factor_id", &CusolverLUSolver::factorId) + .def_readonly("batch_size", &CusolverLUSolver::batchSize) + .def_readonly("num_rows", &CusolverLUSolver::numRows) + .def_readonly("num_cols", &CusolverLUSolver::numCols) + .def_readonly("nnz", &CusolverLUSolver::nnz) + .def_readonly("A_rowPtr", &CusolverLUSolver::A_rowPtr) + .def_readonly("A_colInd", &CusolverLUSolver::A_colInd); +}; diff --git a/theseus/extlib/cusolver_sp_defs.cpp b/theseus/extlib/cusolver_sp_defs.cpp new file mode 100644 index 000000000..5abdf4d85 --- /dev/null +++ b/theseus/extlib/cusolver_sp_defs.cpp @@ -0,0 +1,69 @@ +// Copyright (c) Meta Platforms, Inc. and affiliates. +// +// This source code is licensed under the MIT license found in the +// LICENSE file in the root directory of this source tree. + +#pragma once + +#include "cusolver_sp_defs.h" +#include +#include +#include + +// functions are defined in this headers are inline so this can be included multiple times +// in units compiled independently (such as Torch extensions formed by one .cu/.cpp file) +namespace theseus::cusolver_sp { + + const char* cusolverGetErrorMessage(cusolverStatus_t status) { + switch (status) { + case CUSOLVER_STATUS_SUCCESS: return "CUSOLVER_STATUS_SUCCES"; + case CUSOLVER_STATUS_NOT_INITIALIZED: return "CUSOLVER_STATUS_NOT_INITIALIZED"; + case CUSOLVER_STATUS_ALLOC_FAILED: return "CUSOLVER_STATUS_ALLOC_FAILED"; + case CUSOLVER_STATUS_INVALID_VALUE: return "CUSOLVER_STATUS_INVALID_VALUE"; + case CUSOLVER_STATUS_ARCH_MISMATCH: return "CUSOLVER_STATUS_ARCH_MISMATCH"; + case CUSOLVER_STATUS_EXECUTION_FAILED: return "CUSOLVER_STATUS_EXECUTION_FAILED"; + case CUSOLVER_STATUS_INTERNAL_ERROR: return "CUSOLVER_STATUS_INTERNAL_ERROR"; + case CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED: return "CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED"; + default: return "Unknown cusolver error number"; + } + } + + void createCusolverSpHandle(cusolverSpHandle_t *handle) { + CUSOLVER_CHECK(cusolverSpCreate(handle)); + } + + // The switch below look weird, but we will be adopting the same policy as for CusolverDn handle in Torch source + void destroyCusolverSpHandle(cusolverSpHandle_t handle) { + // this is because of something dumb in the ordering of + // destruction. Sometimes atexit, the cuda context (or something) + // would already be destroyed by the time this gets destroyed. It + // happens in fbcode setting. @colesbury and @soumith decided to not destroy + // the handle as a workaround. + // - Comments of @soumith copied from cuDNN handle pool implementation +#ifdef NO_CUDNN_DESTROY_HANDLE +#else + cusolverSpDestroy(handle); +#endif + } + + using CuSolverSpPoolType = at::cuda::DeviceThreadHandlePool; + + cusolverSpHandle_t getCurrentCUDASolverSpHandle() { + int device; + AT_CUDA_CHECK(cudaGetDevice(&device)); + + // Thread local PoolWindows are lazily-initialized + // to avoid initialization issues that caused hangs on Windows. + // See: https://github.com/pytorch/pytorch/pull/22405 + // This thread local unique_ptrs will be destroyed when the thread terminates, + // releasing its reserved handles back to the pool. + static auto pool = std::make_shared(); + thread_local std::unique_ptr myPoolWindow(pool->newPoolWindow()); + + auto handle = myPoolWindow->reserve(device); + auto stream = c10::cuda::getCurrentCUDAStream(); + CUSOLVER_CHECK(cusolverSpSetStream(handle, stream)); + return handle; + } + +} // namespace theseus::cusolver_sp diff --git a/theseus/extlib/cusolver_sp_defs.h b/theseus/extlib/cusolver_sp_defs.h new file mode 100644 index 000000000..9ce4e9753 --- /dev/null +++ b/theseus/extlib/cusolver_sp_defs.h @@ -0,0 +1,25 @@ +// Copyright (c) Meta Platforms, Inc. and affiliates. +// +// This source code is licensed under the MIT license found in the +// LICENSE file in the root directory of this source tree. + +#pragma once + +#include + +#define CUSOLVER_CHECK(EXPR) \ + do { \ + cusolverStatus_t __err = EXPR; \ + TORCH_CHECK(__err == CUSOLVER_STATUS_SUCCESS, \ + "cusolver error: ", \ + theseus::cusolver_sp::cusolverGetErrorMessage(__err), \ + ", when calling `" #EXPR "`"); \ + } while (0) + +namespace theseus::cusolver_sp { + + const char* cusolverGetErrorMessage(cusolverStatus_t status); + + cusolverSpHandle_t getCurrentCUDASolverSpHandle(); + +} // namespace theseus::cusolver_sp diff --git a/theseus/extlib/tests/test_cusolver_lu_solver.py b/theseus/extlib/tests/test_cusolver_lu_solver.py new file mode 100644 index 000000000..48cbe51f8 --- /dev/null +++ b/theseus/extlib/tests/test_cusolver_lu_solver.py @@ -0,0 +1,121 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# +# This source code is licensed under the MIT license found in the +# LICENSE file in the root directory of this source tree. + +import numpy as np +import pytest # noqa: F401 +import torch # needed for import of Torch C++ extensions to work +from scipy.sparse import csr_matrix + +from theseus.utils import random_sparse_binary_matrix + + +# ideally we would like to support batch_size <= init_batch_size, but +# because of limitations of cublas those have to be always identical +def check_lu_solver( + init_batch_size, batch_size, num_rows, num_cols, fill, verbose=False +): + # this is necessary assumption, so that the hessian is full rank + assert num_rows >= num_cols + + if not torch.cuda.is_available(): + return + from theseus.extlib.cusolver_lu_solver import CusolverLUSolver + + A_skel = random_sparse_binary_matrix( + num_rows, num_cols, fill, min_entries_per_col=3 + ) + A_num_cols = num_cols + A_rowPtr = torch.tensor(A_skel.indptr, dtype=torch.int).cuda() + A_colInd = torch.tensor(A_skel.indices, dtype=torch.int).cuda() + A_num_rows = A_rowPtr.size(0) - 1 + A_nnz = A_colInd.size(0) + A_val = torch.rand((batch_size, A_nnz), dtype=torch.double).cuda() + b = torch.rand((batch_size, A_num_rows), dtype=torch.double).cuda() + + A_csr = [ + csr_matrix( + (A_val[i].cpu(), A_colInd.cpu(), A_rowPtr.cpu()), (A_num_rows, A_num_cols) + ) + for i in range(batch_size) + ] + if verbose: + print("A[0]:\n", A_csr[0].todense()) + print("b[0]:\n", b[0]) + + AtA_csr = [(a.T @ a).tocsr() for a in A_csr] + AtA_rowPtr = torch.tensor(AtA_csr[0].indptr).cuda() + AtA_colInd = torch.tensor(AtA_csr[0].indices).cuda() + AtA_val = torch.tensor(np.array([m.data for m in AtA_csr])).cuda() + AtA_num_rows = AtA_rowPtr.size(0) - 1 + AtA_num_cols = AtA_num_rows + AtA_nnz = AtA_colInd.size(0) # noqa: F841 + + if verbose: + print("AtA[0]:\n", AtA_csr[0].todense()) + + slv = CusolverLUSolver(init_batch_size, AtA_num_cols, AtA_rowPtr, AtA_colInd) + singularities = slv.factor(AtA_val) + + if verbose: + print("singularities:", singularities) + + b = torch.rand((batch_size, A_num_rows), dtype=torch.double).cuda() + Atb = torch.tensor( + np.array([A_csr[i].T @ b[i].cpu().numpy() for i in range(batch_size)]) + ).cuda() + if verbose: + print("Atb[0]:", Atb[0]) + + sol = Atb.clone() + slv.solve(sol) + if verbose: + print("x[0]:", sol[0]) + + residuals = [ + AtA_csr[i] @ sol[i].cpu().numpy() - Atb[i].cpu().numpy() + for i in range(batch_size) + ] + if verbose: + print("residual[0]:", residuals[0]) + + assert all(np.linalg.norm(res) < 1e-10 for res in residuals) + + +def test_lu_solver_1(): + check_lu_solver(init_batch_size=5, batch_size=5, num_rows=50, num_cols=30, fill=0.2) + + +def test_lu_solver_2(): + check_lu_solver( + init_batch_size=5, batch_size=5, num_rows=150, num_cols=60, fill=0.2 + ) + + +def test_lu_solver_3(): + check_lu_solver( + init_batch_size=10, batch_size=10, num_rows=300, num_cols=90, fill=0.2 + ) + + +def test_lu_solver_4(): + check_lu_solver(init_batch_size=5, batch_size=5, num_rows=50, num_cols=30, fill=0.1) + + +def test_lu_solver_5(): + check_lu_solver( + init_batch_size=5, batch_size=5, num_rows=150, num_cols=60, fill=0.1 + ) + + +def test_lu_solver_6(): + check_lu_solver( + init_batch_size=10, batch_size=10, num_rows=300, num_cols=90, fill=0.1 + ) + + +# would like to test when irregular batch_size < init_batch_size, +# but this is currently not supported by cublas, maybe in the future +# def test_lu_solver_7(): +# check_lu_solver(init_batch_size=10, batch_size=5, num_rows=150, num_cols=60, fill=0.2) diff --git a/theseus/utils/__init__.py b/theseus/utils/__init__.py index 7cd52a654..3429c5ee9 100644 --- a/theseus/utils/__init__.py +++ b/theseus/utils/__init__.py @@ -3,4 +3,5 @@ # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. +from .sparse_matrix_utils import random_sparse_binary_matrix from .utils import build_mlp, gather_from_rows_cols, numeric_jacobian diff --git a/theseus/utils/sparse_matrix_utils.py b/theseus/utils/sparse_matrix_utils.py new file mode 100644 index 000000000..db1fb8cf9 --- /dev/null +++ b/theseus/utils/sparse_matrix_utils.py @@ -0,0 +1,26 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# +# This source code is licensed under the MIT license found in the +# LICENSE file in the root directory of this source tree. + +import numpy as np +from scipy.sparse import csr_matrix, lil_matrix + + +def random_sparse_binary_matrix(rows, cols, fill, min_entries_per_col) -> csr_matrix: + retv = lil_matrix((rows, cols)) + + if min_entries_per_col > 0: + min_entries_per_col = min(rows, min_entries_per_col) + rows_array = np.arange(rows) + for c in range(cols): + for r in np.random.choice(rows_array, min_entries_per_col): + retv[r, c] = 1.0 + + num_entries = int(fill * rows * cols) + while retv.getnnz() < num_entries: + col = np.random.randint(cols) + row = np.random.randint(rows) + retv[row, col] = 1.0 + + return retv.tocsr() From dbb3943015f84ee224ad159aa07c8bfae9227c55 Mon Sep 17 00:00:00 2001 From: Maurizio Monge Date: Tue, 21 Dec 2021 19:01:31 +0100 Subject: [PATCH 07/15] CUDA batch matrix multiplication and ops (#23) * update continuous integration * cublas-based sparse LU solver class * batched sparse cuda matrix operations * update cuda installs in ci * add test to ci * add missing files * add missing files * fix install of torch tools in ci * add missing new line * add C++ extensions to gitignore * clear lingering printf * license, move tests and utils * license, move tests * fix tests in ci * fix comparisons * rename util to random_sparse_binary_matrix, rename init_batch_size for clarity * rename util to random_sparse_binary_matrix * restore looping idiom, random_sparse_binary_matrix in toplevel __init__ * re-remove from toplevel init * cols/rows -> num_cols/num_rows * cols/rows -> num_cols/num_rows Co-authored-by: Maurizio Monge --- .circleci/config.yml | 1 + setup.py | 3 + theseus/extlib/mat_mult.cu | 396 ++++++++++++++++++++++++++ theseus/extlib/tests/test_mat_mult.py | 140 +++++++++ 4 files changed, 540 insertions(+) create mode 100644 theseus/extlib/mat_mult.cu create mode 100644 theseus/extlib/tests/test_mat_mult.py diff --git a/.circleci/config.yml b/.circleci/config.yml index cdf390651..98e262399 100644 --- a/.circleci/config.yml +++ b/.circleci/config.yml @@ -117,6 +117,7 @@ run_tests: &run_tests working_directory: ~/project command: | pytest -s theseus/tests/test_theseus_layer.py + pytest -s theseus/extlib/tests/test_mat_mult.py pytest -s theseus/extlib/tests/test_cusolver_lu_solver.py # ------------------------------------------------------------------------------------- diff --git a/setup.py b/setup.py index 0a8376d91..4a697c962 100644 --- a/setup.py +++ b/setup.py @@ -29,6 +29,9 @@ def parse_requirements_file(path): if "CUDA_HOME" in os.environ: ext_modules = [ + torch_cpp_ext.CUDAExtension( + name="theseus.extlib.mat_mult", sources=["theseus/extlib/mat_mult.cu"] + ), torch_cpp_ext.CUDAExtension( name="theseus.extlib.cusolver_lu_solver", sources=[ diff --git a/theseus/extlib/mat_mult.cu b/theseus/extlib/mat_mult.cu new file mode 100644 index 000000000..32730d37a --- /dev/null +++ b/theseus/extlib/mat_mult.cu @@ -0,0 +1,396 @@ +// Copyright (c) Meta Platforms, Inc. and affiliates. +// +// This source code is licensed under the MIT license found in the +// LICENSE file in the root directory of this source tree. + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +__device__ int bisect_index(const int* values, int len, int needle) { + + int a = 0, b = len; + while (b > a + 1) { + int m = (a + b) / 2; + if(values[m] > needle) { + b = m; + } else { + a = m; + } + } + if(values[a] != needle) { + printf("Error!! needle %d not found in array of length %d\n", needle, len); + } + return a; +} + +__global__ void mult_MtM_kernel(int batchSize, + int M_numRows, + int M_nnz, + const int* M_rowPtr, + const int* M_colInd, + const double* Ms_val, + int MtM_numRows, + int MtM_nnz, + const int* MtM_rowPtr, + const int* MtM_colInd, + double* MtMs_val) { + + int row = blockIdx.x * blockDim.x + threadIdx.x; + int batchIndex = blockIdx.y * blockDim.y + threadIdx.y; + if(batchIndex >= batchSize || row >= M_numRows) { + return; + } + + // matrices are in CSR format: + // rowPtr determines begin/end of row data, + // colInd determines the column index + int srcRow_offset = M_rowPtr[row]; + int srcRow_len = M_rowPtr[row+1] - srcRow_offset; + const int* srcRow_colInd = M_colInd + srcRow_offset; + const double* srcRow_val = Ms_val + batchIndex * M_nnz + srcRow_offset; + double* MtMs_batch_val = MtMs_val + batchIndex * MtM_nnz; + for(int i = 0; i < srcRow_len; i++) { + int dstRow = srcRow_colInd[i]; + int dstRow_offset = MtM_rowPtr[dstRow]; + int dstRow_len = MtM_rowPtr[dstRow + 1] - MtM_rowPtr[dstRow]; + const int* dstRow_colInd = MtM_colInd + dstRow_offset; + double* dstRow_val = MtMs_batch_val + dstRow_offset; + for(int j = 0; j < srcRow_len; j++) { + double val = srcRow_val[i] * srcRow_val[j]; + int dstCol = srcRow_colInd[j]; + + // The result has a different sparsity pattern. Therefore we have to + // identify where the destination's `colInd` is `dstCol`, working + // in row of order `dstRow` in destination + int positionInDstRow = bisect_index(dstRow_colInd, dstRow_len, dstCol); + atomicAdd(dstRow_val + positionInDstRow, val); + } + } +} + +torch::Tensor mult_MtM(int batchSize, + const torch::Tensor& M_rowPtr, + const torch::Tensor& M_colInd, + const torch::Tensor& Ms_val, + const torch::Tensor& MtM_rowPtr, + const torch::Tensor& MtM_colInd) { + + int64_t M_numRows = M_rowPtr.size(0) - 1; + int64_t M_nnz = M_colInd.size(0); + + TORCH_CHECK(M_rowPtr.device().is_cuda()); + TORCH_CHECK(M_colInd.device().is_cuda()); + TORCH_CHECK(Ms_val.device().is_cuda()); + TORCH_CHECK(M_rowPtr.dtype() == torch::kInt); + TORCH_CHECK(M_colInd.dtype() == torch::kInt); + TORCH_CHECK(Ms_val.dtype() == torch::kDouble); // TODO: add support for float + TORCH_CHECK(M_rowPtr.dim() == 1); + TORCH_CHECK(M_colInd.dim() == 1); + TORCH_CHECK(Ms_val.dim() == 2); + TORCH_CHECK(Ms_val.size(0) == batchSize); + TORCH_CHECK(Ms_val.size(1) == M_nnz); + + int64_t MtM_numRows = MtM_rowPtr.size(0) - 1; + int64_t MtM_nnz = MtM_colInd.size(0); + + TORCH_CHECK(MtM_rowPtr.device().is_cuda()); + TORCH_CHECK(MtM_colInd.device().is_cuda()); + TORCH_CHECK(MtM_rowPtr.dim() == 1); + TORCH_CHECK(MtM_colInd.dim() == 1); + + auto xOptions = torch::TensorOptions().dtype(torch::kDouble).device(Ms_val.device()); + torch::Tensor MtMs_val = torch::zeros({(long)batchSize, (long)MtM_nnz}, xOptions); + + // TODO: do experiments on choice of work group size + dim3 wgs(1, 16); + dim3 numBlocks((M_numRows + wgs.x - 1) / wgs.x, (batchSize + wgs.y - 1) / wgs.y); + + M_rowPtr.data_ptr(); + M_colInd.data_ptr(); + Ms_val.data_ptr(); + MtM_rowPtr.data_ptr(); + MtM_colInd.data_ptr(); + MtMs_val.data_ptr(); + + // TODO: set stream according to torch + mult_MtM_kernel<<>>(batchSize, + M_numRows, + M_nnz, + M_rowPtr.data_ptr(), + M_colInd.data_ptr(), + Ms_val.data_ptr(), + MtM_numRows, + MtM_nnz, + MtM_rowPtr.data_ptr(), + MtM_colInd.data_ptr(), + MtMs_val.data_ptr()); + return MtMs_val; +} + +__global__ void mat_vec_kernel(int batchSize, + int M_numRows, + int M_numCols, + int M_nnz, + const int* M_rowPtr, + const int* M_colInd, + const double* Ms_val, + const double* vec, + double* retv) { + + int row = blockIdx.x * blockDim.x + threadIdx.x; + int batchIndex = blockIdx.y * blockDim.y + threadIdx.y; + if(batchIndex >= batchSize || row >= M_numRows) { + return; + } + + int srcRow_offset = M_rowPtr[row]; + int srcRow_len = M_rowPtr[row+1] - srcRow_offset; + const int* srcRow_colInd = M_colInd + srcRow_offset; + const double* srcRow_val = Ms_val + batchIndex * M_nnz + srcRow_offset; + const double* srcVec = vec + batchIndex * M_numCols; + + double value = 0.0; + for(int i = 0; i < srcRow_len; i++) { + value += srcRow_val[i] * srcVec[srcRow_colInd[i]]; + } + + *(retv + batchIndex * M_numRows + row) = value; +} + +torch::Tensor mat_vec(int batchSize, + int M_numCols, + const torch::Tensor& M_rowPtr, + const torch::Tensor& M_colInd, + const torch::Tensor& Ms_val, + const torch::Tensor& vec) { + + int64_t M_numRows = M_rowPtr.size(0) - 1; + int64_t M_nnz = M_colInd.size(0); + + TORCH_CHECK(M_rowPtr.device().is_cuda()); + TORCH_CHECK(M_colInd.device().is_cuda()); + TORCH_CHECK(Ms_val.device().is_cuda()); + TORCH_CHECK(M_rowPtr.dtype() == torch::kInt); + TORCH_CHECK(M_colInd.dtype() == torch::kInt); + TORCH_CHECK(Ms_val.dtype() == torch::kDouble); // TODO: add support for float + TORCH_CHECK(M_rowPtr.dim() == 1); + TORCH_CHECK(M_colInd.dim() == 1); + TORCH_CHECK(Ms_val.dim() == 2); + TORCH_CHECK(Ms_val.size(0) == batchSize); + TORCH_CHECK(Ms_val.size(1) == M_nnz); + TORCH_CHECK(vec.device().is_cuda()); + TORCH_CHECK(vec.dim() == 2); + TORCH_CHECK(vec.size(0) == batchSize); + TORCH_CHECK(vec.size(1) == M_numCols); + + auto xOptions = torch::TensorOptions().dtype(torch::kDouble).device(Ms_val.device()); + torch::Tensor retv = torch::empty({(long)batchSize, (long)M_numRows}, xOptions); + + // TODO: do experiments on choice of work group size + dim3 wgs(1, 16); + dim3 numBlocks((M_numRows + wgs.x - 1) / wgs.x, (batchSize + wgs.y - 1) / wgs.y); + + mat_vec_kernel<<>>(batchSize, + M_numRows, + M_numCols, + M_nnz, + M_rowPtr.data_ptr(), + M_colInd.data_ptr(), + Ms_val.data_ptr(), + vec.data_ptr(), + retv.data_ptr()); + return retv; +} + + + +__global__ void tmat_vec_kernel(int batchSize, + int M_numRows, + int M_numCols, + int M_nnz, + const int* M_rowPtr, + const int* M_colInd, + const double* Ms_val, + const double* vec, + double* retv) { + + int row = blockIdx.x * blockDim.x + threadIdx.x; + int batchIndex = blockIdx.y * blockDim.y + threadIdx.y; + if(batchIndex >= batchSize || row >= M_numRows) { + return; + } + + int srcRow_offset = M_rowPtr[row]; + int srcRow_len = M_rowPtr[row+1] - srcRow_offset; + const int* srcRow_colInd = M_colInd + srcRow_offset; + const double* srcRow_val = Ms_val + batchIndex * M_nnz + srcRow_offset; + double vecVal = vec[batchIndex * M_numRows + row]; + double* dstVec = retv + batchIndex * M_numCols; + + for(int i = 0; i < srcRow_len; i++) { + atomicAdd(dstVec + srcRow_colInd[i], vecVal * srcRow_val[i]); + } +} + +torch::Tensor tmat_vec(int batchSize, + int M_numCols, + const torch::Tensor& M_rowPtr, + const torch::Tensor& M_colInd, + const torch::Tensor& Ms_val, + const torch::Tensor& vec) { + + int64_t M_numRows = M_rowPtr.size(0) - 1; + int64_t M_nnz = M_colInd.size(0); + + TORCH_CHECK(M_rowPtr.device().is_cuda()); + TORCH_CHECK(M_colInd.device().is_cuda()); + TORCH_CHECK(Ms_val.device().is_cuda()); + TORCH_CHECK(M_rowPtr.dtype() == torch::kInt); + TORCH_CHECK(M_colInd.dtype() == torch::kInt); + TORCH_CHECK(Ms_val.dtype() == torch::kDouble); // TODO: add support for float + TORCH_CHECK(M_rowPtr.dim() == 1); + TORCH_CHECK(M_colInd.dim() == 1); + TORCH_CHECK(Ms_val.dim() == 2); + TORCH_CHECK(Ms_val.size(0) == batchSize); + TORCH_CHECK(Ms_val.size(1) == M_nnz); + TORCH_CHECK(vec.device().is_cuda()); + TORCH_CHECK(vec.dim() == 2); + TORCH_CHECK(vec.size(0) == batchSize); + TORCH_CHECK(vec.size(1) == M_numRows); + + auto xOptions = torch::TensorOptions().dtype(torch::kDouble).device(Ms_val.device()); + torch::Tensor retv = torch::zeros({(long)batchSize, (long)M_numCols}, xOptions); + + // TODO: do experiments on choice of work group size + dim3 wgs(1, 16); + dim3 numBlocks((M_numRows + wgs.x - 1) / wgs.x, (batchSize + wgs.y - 1) / wgs.y); + + tmat_vec_kernel<<>>(batchSize, + M_numRows, + M_numCols, + M_nnz, + M_rowPtr.data_ptr(), + M_colInd.data_ptr(), + Ms_val.data_ptr(), + vec.data_ptr(), + retv.data_ptr()); + return retv; +} + + +__global__ void apply_damping_kernel(int batchSize, + int M_numRows, + int M_numCols, + int M_nnz, + const int* M_rowPtr, + const int* M_colInd, + double* Ms_val, + double alpha, + double beta) { + + int row = blockIdx.x * blockDim.x + threadIdx.x; + int batchIndex = blockIdx.y * blockDim.y + threadIdx.y; + if(batchIndex >= batchSize || row >= M_numRows) { + return; + } + + int srcRow_offset = M_rowPtr[row]; + int srcRow_len = M_rowPtr[row+1] - srcRow_offset; + const int* srcRow_colInd = M_colInd + srcRow_offset; + double* srcRow_val = Ms_val + batchIndex * M_nnz + srcRow_offset; + + for(int i = 0; i < srcRow_len; i++) { + if(srcRow_colInd[i] == row) { + srcRow_val[i] += alpha * srcRow_val[i] + beta; + } + } +} + +void apply_damping(int batchSize, + int M_numCols, + const torch::Tensor& M_rowPtr, + const torch::Tensor& M_colInd, + const torch::Tensor& Ms_val, + double alpha, + double beta) { + + int64_t M_numRows = M_rowPtr.size(0) - 1; + int64_t M_nnz = M_colInd.size(0); + + TORCH_CHECK(M_rowPtr.device().is_cuda()); + TORCH_CHECK(M_colInd.device().is_cuda()); + TORCH_CHECK(Ms_val.device().is_cuda()); + TORCH_CHECK(M_rowPtr.dtype() == torch::kInt); + TORCH_CHECK(M_colInd.dtype() == torch::kInt); + TORCH_CHECK(Ms_val.dtype() == torch::kDouble); // TODO: add support for float + TORCH_CHECK(M_rowPtr.dim() == 1); + TORCH_CHECK(M_colInd.dim() == 1); + TORCH_CHECK(Ms_val.dim() == 2); + TORCH_CHECK(Ms_val.size(0) == batchSize); + TORCH_CHECK(Ms_val.size(1) == M_nnz); + + // TODO: do experiments on choice of work group size + dim3 wgs(1, 16); + dim3 numBlocks((M_numRows + wgs.x - 1) / wgs.x, (batchSize + wgs.y - 1) / wgs.y); + + apply_damping_kernel<<>>(batchSize, + M_numRows, + M_numCols, + M_nnz, + M_rowPtr.data_ptr(), + M_colInd.data_ptr(), + Ms_val.data_ptr(), + alpha, + beta); +} + +PYBIND11_MODULE(mat_mult, m) { + m.doc() = "Python bindings for batched mat operations"; + m.def("mult_MtM", &mult_MtM, + "Batched multiplication of mat by transpose: Mt * M\n" + "The sparse structure of the result must be computed\n" + "beforehand and supplied as MtM_rowPtr, MtM_colInd", + py::arg("batch_size"), + py::arg("M_rowPtr"), + py::arg("M_colInd"), + py::arg("Ms_val"), + py::arg("MtM_rowPtr"), + py::arg("MtM_colInd") + ); + m.def("mat_vec", &mat_vec, + "Batched multiplication of mat by vector: M * v", + py::arg("batch_size"), + py::arg("M_numCols"), + py::arg("M_rowPtr"), + py::arg("M_colInd"), + py::arg("Ms_val"), + py::arg("vec") + ); + m.def("tmat_vec", &tmat_vec, + "Batched multiplication of transposed mat by vector: Mt * v", + py::arg("batch_size"), + py::arg("M_numCols"), + py::arg("M_rowPtr"), + py::arg("M_colInd"), + py::arg("Ms_val"), + py::arg("vec") + ); + m.def("apply_damping", &apply_damping, + "M.diagonal() += M.diagonal() * alpha + beta", + py::arg("batch_size"), + py::arg("M_numCols"), + py::arg("M_rowPtr"), + py::arg("M_colInd"), + py::arg("Ms_val"), + py::arg("alpha"), + py::arg("beta") + ); +}; diff --git a/theseus/extlib/tests/test_mat_mult.py b/theseus/extlib/tests/test_mat_mult.py new file mode 100644 index 000000000..0aff3936f --- /dev/null +++ b/theseus/extlib/tests/test_mat_mult.py @@ -0,0 +1,140 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# +# This source code is licensed under the MIT license found in the +# LICENSE file in the root directory of this source tree. + +import numpy as np +import pytest # noqa: F401 +import torch # needed for import of Torch C++ extensions to work +from scipy.sparse import csr_matrix + +from theseus.utils import random_sparse_binary_matrix + + +def check_mat_mult(batch_size, num_rows, num_cols, fill, verbose=False): + if not torch.cuda.is_available(): + return + from theseus.extlib.mat_mult import apply_damping, mat_vec, mult_MtM, tmat_vec + + A_skel = random_sparse_binary_matrix( + num_rows, num_cols, fill, min_entries_per_col=3 + ) + A_num_cols = num_cols + A_rowPtr = torch.tensor(A_skel.indptr, dtype=torch.int).cuda() + A_colInd = torch.tensor(A_skel.indices, dtype=torch.int).cuda() + A_num_rows = A_rowPtr.size(0) - 1 + A_nnz = A_colInd.size(0) + A_val = torch.rand((batch_size, A_nnz), dtype=torch.double).cuda() + + A_csr = [ + csr_matrix( + (A_val[i].cpu(), A_colInd.cpu(), A_rowPtr.cpu()), (A_num_rows, A_num_cols) + ) + for i in range(batch_size) + ] + if verbose: + print("A[0]:\n", A_csr[0].todense()) + + # test At * A + AtA_csr = [(a.T @ a).tocsr() for a in A_csr] + AtA_rowPtr = torch.tensor(AtA_csr[0].indptr).cuda() + AtA_colInd = torch.tensor(AtA_csr[0].indices).cuda() + AtA_val = torch.tensor(np.array([m.data for m in AtA_csr])).cuda() + AtA_num_rows = AtA_rowPtr.size(0) - 1 + AtA_num_cols = AtA_num_rows + AtA_nnz = AtA_colInd.size(0) # noqa: F841 + + if verbose: + print("\nAtA[0]:\n", AtA_csr[0].todense()) + + res = mult_MtM(batch_size, A_rowPtr, A_colInd, A_val, AtA_rowPtr, AtA_colInd) + if verbose: + print( + "res[0]:\n", + csr_matrix( + (res[0].cpu(), AtA_colInd.cpu(), AtA_rowPtr.cpu()), + (AtA_num_rows, AtA_num_cols), + ).todense(), + ) + + assert AtA_val.isclose(res, atol=1e-10).all() + + # test damping + old_diagonals = torch.tensor( + np.array( + [ + csr_matrix( + (res[x].cpu(), AtA_colInd.cpu(), AtA_rowPtr.cpu()), + (AtA_num_rows, AtA_num_cols), + ).diagonal() + for x in range(batch_size) + ] + ) + ) + alpha = 0.3 + beta = 0.7 + apply_damping(batch_size, AtA_num_cols, AtA_rowPtr, AtA_colInd, res, alpha, beta) + new_diagonals = torch.tensor( + np.array( + [ + csr_matrix( + (res[x].cpu(), AtA_colInd.cpu(), AtA_rowPtr.cpu()), + (AtA_num_rows, AtA_num_cols), + ).diagonal() + for x in range(batch_size) + ] + ) + ) + assert new_diagonals.isclose(old_diagonals * (1 + alpha) + beta, atol=1e-10).all() + + # test A * b + v = torch.rand((batch_size, A_num_cols), dtype=torch.double).cuda() + A_v = torch.tensor( + np.array([A_csr[i] @ v[i].cpu() for i in range(batch_size)]) + ).cuda() + + A_v_test = mat_vec(batch_size, A_num_cols, A_rowPtr, A_colInd, A_val, v) + + if verbose: + print("A_v:", A_v) + print("A_v_test:", A_v_test) + + assert A_v.isclose(A_v_test, atol=1e-10).all() + + # test At * b + w = torch.rand((batch_size, A_num_rows), dtype=torch.double).cuda() + At_w = torch.tensor( + np.array([A_csr[i].T @ w[i].cpu() for i in range(batch_size)]) + ).cuda() + + At_w_test = tmat_vec(batch_size, A_num_cols, A_rowPtr, A_colInd, A_val, w) + + if verbose: + print("A_w:", At_w) + print("A_w_test:", At_w_test) + + assert At_w.isclose(At_w_test, atol=1e-10).all() + + +def test_mat_mult_1(): + check_mat_mult(batch_size=5, num_rows=50, num_cols=30, fill=0.2) + + +def test_mat_mult_2(): + check_mat_mult(batch_size=5, num_rows=150, num_cols=60, fill=0.2) + + +def test_mat_mult_3(): + check_mat_mult(batch_size=10, num_rows=300, num_cols=90, fill=0.2) + + +def test_mat_mult_4(): + check_mat_mult(batch_size=5, num_rows=50, num_cols=30, fill=0.1) + + +def test_mat_mult_5(): + check_mat_mult(batch_size=5, num_rows=150, num_cols=60, fill=0.1) + + +def test_mat_mult_6(): + check_mat_mult(batch_size=10, num_rows=300, num_cols=90, fill=0.1) From 3b3ba0fdd3969a58f5f742926d23394e0f2ad0ef Mon Sep 17 00:00:00 2001 From: Mustafa Mukadam Date: Wed, 22 Dec 2021 14:16:11 -0500 Subject: [PATCH 08/15] Update contrib and add gitattributes (#33) --- .gitattributes | 1 + CONTRIBUTING.md | 21 +++++++++++++-------- 2 files changed, 14 insertions(+), 8 deletions(-) create mode 100644 .gitattributes diff --git a/.gitattributes b/.gitattributes new file mode 100644 index 000000000..2f77e919c --- /dev/null +++ b/.gitattributes @@ -0,0 +1 @@ +*.ipynb linguist-documentation diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index f70f2bfc2..9767d2457 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -4,12 +4,17 @@ We want to make contributing to Theseus as easy and transparent as possible. ### Developer Guide -- Fork the repo and make a branch from `develop`. See the hybrid [workflow model](#workflow-model) we follow. +- Fork the repo and install with development requirements. ```bash - git checkout -b . develop + git clone && cd theseus + pip install -e ".[dev]" + ``` +- Make a branch from `main`. See the [workflow model](#workflow-model) we follow. + ```bash + git checkout -b . main ```` -- Make small, independent, and well documented commits. If you've changed APIs, update the documentation. Add or modify unit tests as appropriate. Follow this [code style](#code-style). -- See [pull requests](#pull-requests) guide when you are ready to have your code reviewed to be merged into `develop`. It will be included in the next release on `main` following this [versioning](#versioning). +- Make small, independent, and well documented commits. If you've changed the API, update the documentation. Add or modify unit tests as appropriate. Follow this [code style](#code-style). +- See [pull requests](#pull-requests) guide when you are ready to have your code reviewed to be merged into `main`. It will be included in the next release following this [versioning](#versioning). - See [issues](#issues) for questions, suggestions, and bugs. - If you haven't already, complete the [Contributor License Agreement](#contributor-license-agreement) and see [license](#license). @@ -17,7 +22,7 @@ We want to make contributing to Theseus as easy and transparent as possible. ## Workflow Model -We follow a hyrbid between [Gitflow](https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow) and [Trunk-based](https://www.atlassian.com/continuous-delivery/continuous-integration/trunk-based-development) models. From the former we adopt hosting latest stable release on `main` branch and feature development on `develop` branch, and from the latter we adopt small and frequent merges of new features into `develop`. +We follow the [Trunk-based](https://www.atlassian.com/continuous-delivery/continuous-integration/trunk-based-development) model. Small and frequent PR of new features will be merged to `main` and a tagged release will indicate latest stable version on `main` history. ## Code Style @@ -30,11 +35,11 @@ pip install pre-commit && pre-commit install && pre-commit run --all-files - We encourage more smaller and focused PRs rather than big PRs with many independent changes. - Use this [PR template](.github/PULL_REQUEST_TEMPLATE.md) to submit your code for review. Consider using the [draft PR](https://github.blog/2019-02-14-introducing-draft-pull-requests/) option to gather early feedback. -- Add yourself to the `Assignees`, add at least one core Theseus team member to `Reviewers`, link to any open issues that can be closed when the PR is merged, and add appropriate `Labels` and `Milestone`. +- Add yourself to the `Assignees`, add at least one [core Theseus team](THANKS.md) member to `Reviewers`, link to any open issues that can be closed when the PR is merged, and add appropriate `Labels` and `Milestone`. - We expect the PR is ready for final review only if Continuous Integration tests are passing. -- Keep your branch up-to-date with `develop` by rebasing as necessary. +- Keep your branch up-to-date with `main` by rebasing as necessary. - We employ `squash-and-merge` for incorporating PRs. Add a brief change summary to the commit message. -- After PR is approved and merged into `develop`, delete the branch to reduce clutter. +- After PR is approved and merged into `main`, delete the branch to reduce clutter. ## Versioning From b021b0899c83b281e6308ce0d4858c764c8ce32c Mon Sep 17 00:00:00 2001 From: Paloma Sodhi Date: Mon, 27 Dec 2021 11:02:59 -0500 Subject: [PATCH 09/15] Adds support for energy based learning with NLL loss (LEO) (#30) * add tests for leo with GN/LM optimizers * add sampler to GN/LM optimizers * run leo on 2d state estimation, add viz, learning_method options --- examples/state_estimation_2d.py | 131 +++++++++++++++++++++-- theseus/optimizer/dense_linearization.py | 3 + theseus/optimizer/linearization.py | 3 + theseus/tests/test_theseus_layer.py | 89 ++++++++++++++- theseus/theseus_layer.py | 39 +++++++ 5 files changed, 252 insertions(+), 13 deletions(-) diff --git a/examples/state_estimation_2d.py b/examples/state_estimation_2d.py index 5f99e83ac..2e2a3ca54 100644 --- a/examples/state_estimation_2d.py +++ b/examples/state_estimation_2d.py @@ -10,17 +10,51 @@ import torch.nn.functional as F import theseus as th +import matplotlib.pyplot as plt device = "cpu" torch.manual_seed(0) path_length = 50 state_size = 2 batch_size = 4 +learning_method = "leo" # "default", "leo" + +vis_flag = True +plt.ion() # --------------------------------------------------- # # --------------------- Utilities ------------------- # # --------------------------------------------------- # +def plot_path(optimizer_path, groundtruth_path): + plt.cla() + plt.gca().axis("equal") + + plt.xlim(-250, 250) + plt.ylim(-100, 400) + + batch_idx = 0 + plt.plot( + optimizer_path[batch_idx, :, 0], + optimizer_path[batch_idx, :, 1], + linewidth=2, + linestyle="-", + color="tab:orange", + label="optimizer", + ) + plt.plot( + groundtruth_path[batch_idx, :, 0], + groundtruth_path[batch_idx, :, 1], + linewidth=2, + linestyle="-", + color="tab:green", + label="groundtruth", + ) + + plt.show() + plt.pause(1e-12) + + def generate_path_data( batch_size_, num_measurements_, @@ -120,6 +154,42 @@ def get_path_from_values(batch_size_, values_, path_length_): return path +def get_values_from_path(path_): + """ + :param path_: tensor of dim batch_size_ x path_length_ x 2 + :return: values: dict of (x,y) pos values + """ + [batch_size_, path_length_, dim] = path_.shape + values = {} + for i in range(path_length_): + values[f"pose_{i}"] = path_[:, i, :2] + return values + + +def get_average_sample_cost(x_samples, cost_weights_model, objective, mode_): + cost_opt = None + n_samples = x_samples.shape[-1] + for sidx in range(0, n_samples): + x_sample_vals = get_values_from_path( + x_samples[:, :, sidx].reshape(x_samples.shape[0], -1, 2) + ) + theseus_inputs = run_model( + mode_, + cost_weights_model, + x_sample_vals, + path_length, + print_stuff=False, + ) + objective.update(theseus_inputs) + if cost_opt is not None: + cost_opt = cost_opt + torch.sum(objective.error(), dim=1) + else: + cost_opt = torch.sum(objective.error(), dim=1) + cost_opt = cost_opt / n_samples + + return cost_opt + + # ------------------------------------------------------------- # # --------------------------- Learning ------------------------ # # ------------------------------------------------------------- # @@ -132,7 +202,7 @@ def run_learning(mode_, path_data_, gps_targets_, measurements_): def cost_weights_model(): return model_params * torch.ones(1) - model_optimizer = torch.optim.Adam([model_params], lr=3e-2) + model_optimizer = torch.optim.Adam([model_params], lr=5e-2) else: cost_weights_model = SimpleNN(state_size, 2, hid_size=100, use_offset=False).to( device @@ -201,14 +271,14 @@ def cost_weights_model(): state_estimator.to(device) # ## Learning loop - path_tensor = torch.stack(path_data_).permute(1, 0, 2) best_loss = 1000.0 + inner_loop_iters = 3 + groundtruth_path = torch.stack(path_data_).permute(1, 0, 2) best_solution = None losses = [] - for epoch in range(200): + for epoch in range(500): model_optimizer.zero_grad() - inner_loop_iters = 3 theseus_inputs = get_initial_inputs(gps_targets_) theseus_inputs = run_model( mode_, @@ -236,21 +306,64 @@ def cost_weights_model(): print_stuff=epoch % 10 == 0 and i == 0, ) - solution_path = get_path_from_values( + optimizer_path = get_path_from_values( objective.batch_size, theseus_inputs, path_length ) + mse_loss = F.mse_loss(optimizer_path, groundtruth_path) + + # LEO (Sodhi et al., https://arxiv.org/abs/2108.02274) is a method to learn + # models end-to-end within second-order optimizers. The main difference is that + # instead of unrolling the optimizer and minimizing the MSE tracking loss, + # it uses a NLL energy-based loss that does not backpropagate through the optimizer. + if learning_method == "leo": + x_samples = state_estimator.compute_samples( + optimizer.linear_solver, n_samples=10, temperature=1.0 + ) # batch_size x n_vars x n_samples + # When x_samples is None, this defaults to a perceptron loss + # using the mean trajectory solution from the optimizer. + if x_samples is None: + x_opt_dict = {key: val.detach() for key, val in theseus_inputs.items()} + x_samples = get_path_from_values( + objective.batch_size, x_opt_dict, path_length + ) + x_samples = x_samples.reshape(x_samples.shape[0], -1).unsqueeze( + -1 + ) # batch_size x n_vars x 1 + cost_opt = get_average_sample_cost( + x_samples, cost_weights_model, objective, mode_ + ) + x_gt = get_values_from_path(groundtruth_path) + theseus_inputs_gt = run_model( + mode_, + cost_weights_model, + x_gt, + path_length, + print_stuff=False, + ) + objective.update(theseus_inputs_gt) + cost_gt = torch.sum(objective.error(), dim=1) + loss = cost_gt - cost_opt + else: + loss = mse_loss - loss = F.mse_loss(solution_path, path_tensor) + loss = torch.mean(loss, dim=0) loss.backward() model_optimizer.step() + loss_value = loss.item() losses.append(loss_value) if loss_value < best_loss: best_loss = loss_value - best_solution = solution_path.detach() + best_solution = optimizer_path.detach() if epoch % 10 == 0: - print("TOTAL LOSS: ", loss.item()) + if vis_flag: + plot_path( + optimizer_path.detach().cpu().numpy(), + groundtruth_path.detach().cpu().numpy(), + ) + print("Loss: ", loss.item()) + print("MSE error: ", mse_loss.item()) print(f" ---------------- END EPOCH {epoch} -------------- ") return best_solution, losses @@ -269,8 +382,6 @@ def cost_weights_model(): measurement_noise = 0.005 * torch.randn(batch_size, 2).view(batch_size, 2) measurements.append(measurement + measurement_noise) -mlp_solution, mlp_losses = run_learning("mlp", path_data, gps_targets, measurements) -print(" -------------------------------------------------------------- ") constant_solution, constant_losses = run_learning( "constant", path_data, gps_targets, measurements ) diff --git a/theseus/optimizer/dense_linearization.py b/theseus/optimizer/dense_linearization.py index ebfb920a5..8a771b522 100644 --- a/theseus/optimizer/dense_linearization.py +++ b/theseus/optimizer/dense_linearization.py @@ -60,3 +60,6 @@ def _linearize_hessian_impl(self): At = self.A.transpose(1, 2) self.AtA = At.bmm(self.A) self.Atb = At.bmm(self.b.unsqueeze(2)) + + def hessian_approx(self): + return self.AtA diff --git a/theseus/optimizer/linearization.py b/theseus/optimizer/linearization.py index ee4e583db..32fa87643 100644 --- a/theseus/optimizer/linearization.py +++ b/theseus/optimizer/linearization.py @@ -52,3 +52,6 @@ def linearize(self): "Attempted to linearize an objective with an incomplete variable order." ) self._linearize_hessian_impl() + + def hessian_approx(self): + raise NotImplementedError diff --git a/theseus/tests/test_theseus_layer.py b/theseus/tests/test_theseus_layer.py index b8fc10d13..ec25c2180 100644 --- a/theseus/tests/test_theseus_layer.py +++ b/theseus/tests/test_theseus_layer.py @@ -134,6 +134,26 @@ def error_fn(optim_vars, aux_vars): return theseus_layer +def get_average_sample_cost( + x_samples, layer_to_learn, cost_weight_param_name, cost_weight_fn +): + cost_opt = None + n_samples = x_samples.shape[-1] + for sidx in range(0, n_samples): + input_values_opt = { + "coefficients": x_samples[:, :, sidx], + cost_weight_param_name: cost_weight_fn(), + } + layer_to_learn.objective.update(input_values_opt) + if cost_opt is not None: + cost_opt = cost_opt + torch.sum(layer_to_learn.objective.error(), dim=1) + else: + cost_opt = torch.sum(layer_to_learn.objective.error(), dim=1) + cost_opt = cost_opt / n_samples + + return cost_opt + + def test_layer_solver_constructor(): dummy = torch.ones(1, 1) for linear_solver_cls in [th.LUDenseSolver, th.CholeskyDenseSolver]: @@ -154,6 +174,7 @@ def _run_optimizer_test( cost_weight_model, use_learnable_error=False, verbose=True, + learning_method="default", ): device = "cuda:0" if torch.cuda.is_available() else "cpu" print(f"_run_test_for: {device}") @@ -280,11 +301,45 @@ def cost_weight_fn(): | (info.status == th.NonlinearOptimizerStatus.FAIL) ).all() - loss = F.mse_loss(pred_vars["coefficients"], target_vars["coefficients"]) + mse_loss = F.mse_loss(pred_vars["coefficients"], target_vars["coefficients"]) + + if learning_method == "leo": + # groundtruth cost + x_gt = target_vars["coefficients"] + input_values_gt = { + "coefficients": x_gt, + cost_weight_param_name: cost_weight_fn(), + } + layer_to_learn.objective.update(input_values_gt) + cost_gt = torch.sum(layer_to_learn.objective.error(), dim=1) + + # optimizer cost + x_opt = pred_vars["coefficients"].detach() + x_samples = layer_to_learn.compute_samples( + layer_to_learn.optimizer.linear_solver, n_samples=10, temperature=1.0 + ) # batch_size x n_vars x n_samples + if x_samples is None: # use mean solution + x_samples = x_opt.reshape(x_opt.shape[0], -1).unsqueeze( + -1 + ) # batch_size x n_vars x n_samples + cost_opt = get_average_sample_cost( + x_samples, layer_to_learn, cost_weight_param_name, cost_weight_fn + ) + + # loss value + l2_reg = F.mse_loss( + cost_weight_fn(), torch.zeros((1, num_points), device=device) + ) + loss = (cost_gt - cost_opt) + 10.0 * l2_reg + loss = torch.mean(loss, dim=0) + else: + loss = mse_loss + loss.backward() - print(i, loss.item(), loss.item() / loss0) optimizer.step() - if loss.item() / loss0 < 5e-3: + + print(i, mse_loss.item()) + if mse_loss.item() / loss0 < 5e-3: solved = True break assert solved @@ -340,6 +395,34 @@ def test_backward_levenberg_marquardt_choleskysparse(): ) +def test_backward_gauss_newton_leo(): + for use_learnable_error in [True, False]: + for linear_solver_cls in [th.CholeskyDenseSolver, th.LUDenseSolver]: + for cost_weight_model in ["mlp"]: + _run_optimizer_test( + th.GaussNewton, + linear_solver_cls, + {}, + cost_weight_model, + use_learnable_error=use_learnable_error, + learning_method="leo", + ) + + +def test_backward_levenberg_marquardt_leo(): + for use_learnable_error in [True, False]: + for linear_solver_cls in [th.CholeskyDenseSolver, th.LUDenseSolver]: + for cost_weight_model in ["mlp"]: + _run_optimizer_test( + th.LevenbergMarquardt, + linear_solver_cls, + {"damping": 0.01}, + cost_weight_model, + use_learnable_error=use_learnable_error, + learning_method="leo", + ) + + def test_send_to_device(): device = "cuda:0" if torch.cuda.is_available() else "cpu" print(f"test_send_to_device: {device}") diff --git a/theseus/theseus_layer.py b/theseus/theseus_layer.py index 66542811b..efeb95cef 100644 --- a/theseus/theseus_layer.py +++ b/theseus/theseus_layer.py @@ -9,6 +9,7 @@ import torch.nn as nn from theseus.optimizer import Optimizer, OptimizerInfo +from theseus.optimizer.linear import LinearSolver class TheseusLayer(nn.Module): @@ -45,6 +46,44 @@ def forward( ) return values, info + def compute_samples( + self, + linear_solver: LinearSolver = None, + n_samples: int = 10, + temperature: float = 1.0, + ) -> torch.Tensor: + # When samples are not available, return None. This makes the outer learning loop default + # to a perceptron loss using the mean trajectory solution from the optimizer. + if linear_solver is None: + return None + + # Sampling from multivariate normal using a Cholesky decomposition of AtA, + # http://www.statsathome.com/2018/10/19/sampling-from-multivariate-normal-precision-and-covariance-parameterizations/ + delta = linear_solver.solve() + AtA = linear_solver.linearization.hessian_approx() / temperature + sqrt_AtA = torch.linalg.cholesky(AtA).permute(0, 2, 1) + + batch_size, n_vars = delta.shape + y = torch.normal( + mean=torch.zeros((n_vars, n_samples), device=delta.device), + std=torch.ones((n_vars, n_samples), device=delta.device), + ) + delta_samples = (torch.triangular_solve(y, sqrt_AtA).solution) + ( + delta.unsqueeze(-1) + ).repeat(1, 1, n_samples) + + x_samples = torch.zeros((batch_size, n_vars, n_samples), device=delta.device) + for sidx in range(0, n_samples): + var_idx = 0 + for var in linear_solver.linearization.ordering: + new_var = var.retract( + delta_samples[:, var_idx : var_idx + var.dof(), sidx] + ) + x_samples[:, var_idx : var_idx + var.dof(), sidx] = new_var.data + var_idx = var_idx + var.dof() + + return x_samples + # Applies to() with given args to all tensors in the objective def to(self, *args, **kwargs): super().to(*args, **kwargs) From 6d89db7abc8a9fe42ba2ec71fffff887a059470f Mon Sep 17 00:00:00 2001 From: Brandon Amos Date: Wed, 19 Jan 2022 11:52:13 -0400 Subject: [PATCH 10/15] Initial implicit/truncated backward modes (#29) * Initial WIP commit of implicit/truncated backward modes * spacing * add numdifftools requirement * fix mypy and GPU issues * import BackwardMode as part of the main thesus module * add ValueError messages * add comments to backward_modes and add it to examples/README * Remove error_increase_induces * move converged_indices from the info back into the optimizaiton loop * fix gradient scaling for #39 * update backward tests * add type hints/remove unused track_best_solution * remove erroneous update --- examples/README.md | 4 +- examples/backward_modes.py | 204 ++++++++++++++++++ requirements/main.txt | 3 +- theseus/__init__.py | 1 + theseus/optimizer/nonlinear/__init__.py | 1 + .../nonlinear/nonlinear_optimizer.py | 195 ++++++++++++----- .../nonlinear/tests/test_backwards.py | 117 ++++++++++ 7 files changed, 474 insertions(+), 51 deletions(-) create mode 100755 examples/backward_modes.py create mode 100644 theseus/optimizer/nonlinear/tests/test_backwards.py diff --git a/examples/README.md b/examples/README.md index 3a40dff8e..1f3c7f656 100644 --- a/examples/README.md +++ b/examples/README.md @@ -7,12 +7,14 @@ learn the cost weight as a function of pose. problem, inspired by [Bhardwaj et al. 2020](https://arxiv.org/pdf/1907.09591.pdf). - tactile_pose_estimation.py: Is an example of how to set up learning models for tactile pose estimation, as described in [Sodhi et al. 2021](https://arxiv.org/abs/1705.10664) +- backward_modes.py: Shows how to compute derivatives through Theseus solves and switch between backward modes. These can be run from your root `theseus` directory by doing python examples/state_estimation_2d.py python examples/motion_planning_2d.py python examples/tactile_pose_estimation.py + python examples/backward_modes.py The motion planning and tactile estimation examples require `hydra` installation which you can obtain by running. @@ -20,4 +22,4 @@ by running. pip install hydra-core Any outputs generated by these scripts will be saved under `examples/outputs`. You can -change this directory by passing the CLI option `hydra.run.dir=` \ No newline at end of file +change this directory by passing the CLI option `hydra.run.dir=` diff --git a/examples/backward_modes.py b/examples/backward_modes.py new file mode 100755 index 000000000..57d4b58e4 --- /dev/null +++ b/examples/backward_modes.py @@ -0,0 +1,204 @@ +#!/usr/bin/env python3 +# Copyright (c) Meta Platforms, Inc. and affiliates. +# +# This source code is licensed under the MIT license found in the +# LICENSE file in the root directory of this source tree. +# +# This example illustrates the three backward modes (FULL, IMPLICIT, and TRUNCATED) +# on a problem fitting a quadratic to data. + +import torch +import theseus as th + +import numpy as np +import numdifftools as nd + +from collections import defaultdict +import time + +torch.manual_seed(0) + + +# Sample from a quadratic y = ax^2 + b*noise +def generate_data(num_points=10, a=1.0, b=0.5, noise_factor=0.01): + data_x = torch.rand((1, num_points)) + noise = torch.randn((1, num_points)) * noise_factor + data_y = a * data_x.square() + b + noise + return data_x, data_y + + +num_points = 10 +data_x, data_y = generate_data(num_points) +x = th.Variable(data_x.requires_grad_(), name="x") +y = th.Variable(data_y.requires_grad_(), name="y") + +# We now attempt to recover the quadratic from the data with +# theseus by formulating it as a non-linear least squares +# optimization problem. +# We write the model as \hat y = \hat a x^2 + \hat b, +# where the parameters \hat a and \hat b are just `a` and `b` +# in the code here. +a = th.Vector(1, name="a") +b = th.Vector(1, name="b") + + +# The error is y - \hat y +def quad_error_fn(optim_vars, aux_vars): + a, b = optim_vars + x, y = aux_vars + est = a.data * x.data.square() + b.data + err = y.data - est + return err + + +# We then use Theseus to optimize \hat a and \hat b so that +# y = \hat y for all datapoints +optim_vars = [a, b] +aux_vars = [x, y] +cost_function = th.AutoDiffCostFunction( + optim_vars, # type: ignore + quad_error_fn, + num_points, + aux_vars=aux_vars, + name="quadratic_cost_fn", +) +objective = th.Objective() +objective.add(cost_function) +optimizer = th.GaussNewton( + objective, + max_iterations=15, + step_size=0.5, +) + +theseus_inputs = { + "a": 2 * torch.ones((1, 1)).requires_grad_(), + "b": torch.ones((1, 1)).requires_grad_(), + "x": data_x, + "y": data_y, +} +theseus_optim = th.TheseusLayer(optimizer) +updated_inputs, info = theseus_optim.forward( + theseus_inputs, + track_best_solution=True, + verbose=False, + backward_mode=th.BackwardMode.FULL, +) + +# The quadratic \hat y is now fit and we can also use Theseus +# to obtain the adjoint derivatives of \hat a with respect +# to other inputs or hyper-parameters, such as the data itself. +# Here we compute the derivative of \hat a with respect to the data, +# i.e. \partial a / \partial x using the full backward mode. +da_dx = torch.autograd.grad(updated_inputs["a"], data_x, retain_graph=True)[0].squeeze() + +print("--- backward_mode=FULL") +print(da_dx.numpy()) + +# We can also compute this using implicit differentiation by calling +# forward again and changing the backward_mode flag. +updated_inputs, info = theseus_optim.forward( + theseus_inputs, + track_best_solution=True, + verbose=False, + backward_mode=th.BackwardMode.IMPLICIT, +) + +da_dx = torch.autograd.grad(updated_inputs["a"], data_x, retain_graph=True)[0].squeeze() +print("\n--- backward_mode=IMPLICIT") +print(da_dx.numpy()) + +# We can also use truncated unrolling to compute the derivative: +updated_inputs, info = theseus_optim.forward( + theseus_inputs, + track_best_solution=True, + verbose=False, + backward_mode=th.BackwardMode.TRUNCATED, + backward_num_iterations=5, +) + +da_dx = torch.autograd.grad(updated_inputs["a"], data_x, retain_graph=True)[0].squeeze() + +print("\n--- backward_mode=TRUNCATED, backward_num_iterations=5") +print(da_dx.numpy()) + + +# Next we numerically check the derivative +def fit_x(data_x_np): + theseus_inputs["x"] = ( + torch.from_numpy(data_x_np).float().clone().requires_grad_().unsqueeze(0) + ) + updated_inputs, info = theseus_optim.forward( + theseus_inputs, track_best_solution=True, verbose=False + ) + return updated_inputs["a"].item() + + +data_x_np = data_x.detach().clone().numpy() +dfit_x = nd.Gradient(fit_x) +g = dfit_x(data_x_np) + +print("\n--- Numeric derivative") +print(g) + +theseus_inputs["x"] = data_x + +# Next we run 10 trials of these computations and report the runtime +# of the forward and backward passes. +n_trials = 10 +times = defaultdict(list) +for trial in range(n_trials + 1): + start = time.time() + updated_inputs, info = theseus_optim.forward( + theseus_inputs, + track_best_solution=True, + verbose=False, + backward_mode=th.BackwardMode.FULL, + ) + times["fwd"].append(time.time() - start) + + start = time.time() + da_dx = torch.autograd.grad(updated_inputs["a"], data_x, retain_graph=True)[ + 0 + ].squeeze() + times["bwd"].append(time.time() - start) + + updated_inputs, info = theseus_optim.forward( + theseus_inputs, + track_best_solution=True, + verbose=False, + backward_mode=th.BackwardMode.IMPLICIT, + ) + start = time.time() + da_dx = torch.autograd.grad(updated_inputs["a"], data_x, retain_graph=True)[ + 0 + ].squeeze() + times["bwd_impl"].append(time.time() - start) + + updated_inputs, info = theseus_optim.forward( + theseus_inputs, + track_best_solution=True, + verbose=False, + backward_mode=th.BackwardMode.TRUNCATED, + backward_num_iterations=5, + ) + start = time.time() + da_dx = torch.autograd.grad(updated_inputs["a"], data_x, retain_graph=True)[ + 0 + ].squeeze() + times["bwd_trunc"].append(time.time() - start) + + +print("\n=== Runtimes") +k = "fwd" +print(f"Forward: {np.mean(times[k]):.2e} s +/- {np.std(times[k]):.2e} s") + +k = "bwd" +print(f"Backward (FULL): {np.mean(times[k]):.2e} s +/- {np.std(times[k]):.2e} s") + +k = "bwd_impl" +print(f"Backward (IMPLICIT) {np.mean(times[k]):.2e} s +/- {np.std(times[k]):.2e} s") + +k = "bwd_trunc" +print( + f"Backward (TRUNCATED, 5 steps) {np.mean(times[k]):.2e} s +/- {np.std(times[k]):.2e} s" +) diff --git a/requirements/main.txt b/requirements/main.txt index ee54035e2..89bfa98d9 100644 --- a/requirements/main.txt +++ b/requirements/main.txt @@ -3,4 +3,5 @@ scipy>=1.5.3 scikit-sparse>=0.4.5 # torch>=1.7.1 will do separate install instructions for now (CUDA dependent) pytest>=6.2.1 -pybind11>=2.7.1 +numdifftools>=0.9.40 +pybind11>=2.7.1 \ No newline at end of file diff --git a/theseus/__init__.py b/theseus/__init__.py index c44f63e99..678a11e7d 100644 --- a/theseus/__init__.py +++ b/theseus/__init__.py @@ -41,6 +41,7 @@ NonlinearLeastSquares, NonlinearOptimizerParams, NonlinearOptimizerStatus, + BackwardMode, ) from .theseus_layer import TheseusLayer diff --git a/theseus/optimizer/nonlinear/__init__.py b/theseus/optimizer/nonlinear/__init__.py index 61c1e0303..236c69c36 100644 --- a/theseus/optimizer/nonlinear/__init__.py +++ b/theseus/optimizer/nonlinear/__init__.py @@ -7,6 +7,7 @@ from .levenberg_marquardt import LevenbergMarquardt from .nonlinear_least_squares import NonlinearLeastSquares from .nonlinear_optimizer import ( + BackwardMode, NonlinearOptimizer, NonlinearOptimizerParams, NonlinearOptimizerStatus, diff --git a/theseus/optimizer/nonlinear/nonlinear_optimizer.py b/theseus/optimizer/nonlinear/nonlinear_optimizer.py index 9138cbcfb..7d3ac98f2 100644 --- a/theseus/optimizer/nonlinear/nonlinear_optimizer.py +++ b/theseus/optimizer/nonlinear/nonlinear_optimizer.py @@ -47,6 +47,14 @@ class NonlinearOptimizerInfo(OptimizerInfo): converged_iter: torch.Tensor best_iter: torch.Tensor err_history: Optional[torch.Tensor] + last_err: torch.Tensor + best_err: torch.Tensor + + +class BackwardMode(Enum): + FULL = 0 + IMPLICIT = 1 + TRUNCATED = 2 class NonlinearOptimizer(Optimizer, abc.ABC): @@ -101,8 +109,11 @@ def _maybe_init_best_solution( return solution_dict def _init_info( - self, last_err: torch.Tensor, track_best_solution: bool, verbose: bool + self, track_best_solution: bool, verbose: bool ) -> NonlinearOptimizerInfo: + with torch.no_grad(): + last_err = self.objective.error_squared_norm() / 2 + best_err = last_err.clone() if track_best_solution else None if verbose: err_history = ( torch.ones(self.objective.batch_size, self.params.max_iterations + 1) @@ -114,6 +125,8 @@ def _init_info( err_history = None return NonlinearOptimizerInfo( best_solution=self._maybe_init_best_solution(do_init=track_best_solution), + last_err=last_err, + best_err=best_err, status=np.array( [NonlinearOptimizerStatus.START] * self.objective.batch_size ), @@ -122,56 +135,47 @@ def _init_info( err_history=err_history, ) - # Only copy best solution if needed (None means track_best_solution=False) - def _update_info( self, info: NonlinearOptimizerInfo, current_iter: int, - best_err: Optional[torch.Tensor], err: torch.Tensor, converged_indices: torch.Tensor, - ) -> torch.Tensor: + ): info.converged_iter += 1 - converged_indices.long() if info.err_history is not None: assert err.grad_fn is None info.err_history[:, current_iter + 1] = err.clone().cpu() - if info.best_solution is None: - return best_err - # Only copy best solution if needed (None means track_best_solution=False) - assert best_err is not None - good_indices = err < best_err - info.best_iter[good_indices] = current_iter - for var in self.linear_solver.linearization.ordering: - info.best_solution[var.name][good_indices] = ( - var.data.detach().clone()[good_indices].cpu() - ) - return torch.minimum(best_err, err) - # `track_best_solution` keeps a **detached** copy (as in no gradient info) - # of the best variables found, but it is optional to avoid unnecessary copying - # if this is not needed - # - # if verbose, info will also keep track of the full error history - def _optimize_impl( - self, - track_best_solution: bool = False, - verbose: bool = False, - **kwargs, - ) -> OptimizerInfo: - # All errors are only used for stopping conditions, so they are outside - # compute graph - last_err = self.objective.error_squared_norm().detach() / 2 + if info.best_solution is not None: + # Only copy best solution if needed (None means track_best_solution=False) + assert info.best_err is not None + good_indices = err < info.best_err + info.best_iter[good_indices] = current_iter + for var in self.linear_solver.linearization.ordering: + info.best_solution[var.name][good_indices] = ( + var.data.detach().clone()[good_indices].cpu() + ) - if verbose: - print( - f"Nonlinear optimizer. Iteration: {0}. Error: {last_err.mean().item()}" - ) + info.best_err = torch.minimum(info.best_err, err) - best_err = last_err.clone() if track_best_solution else None - converged_indices = torch.zeros_like(last_err).bool() - info = self._init_info(last_err, track_best_solution, verbose) - for it_ in range(self.params.max_iterations): + converged_indices = self._check_convergence(err, info.last_err) + info.status[ + np.array(converged_indices.detach().cpu()) + ] = NonlinearOptimizerStatus.CONVERGED + + # loop for the iterative optimizer + def _optimize_loop( + self, + start_iter: int, + num_iter: int, + info: NonlinearOptimizerInfo, + verbose: bool, + truncated_grad_loop: bool, + **kwargs, + ): + converged_indices = torch.zeros_like(info.last_err).bool() + for it_ in range(start_iter, start_iter + num_iter): # do optimizer step self.linear_solver.linearization.linearize() try: @@ -191,31 +195,117 @@ def _optimize_impl( warnings.warn(msg, RuntimeWarning) info.status[:] = NonlinearOptimizerStatus.FAIL return info - self.retract_and_update_variables(delta, converged_indices) + + if truncated_grad_loop: + step_size = 1.0 + force_update = True + else: + step_size = self.params.step_size + force_update = False + + self.retract_and_update_variables( + delta, converged_indices, step_size, force_update=force_update + ) # check for convergence with torch.no_grad(): - err = self.objective.error_squared_norm().detach() / 2 - best_err = self._update_info( - info, it_, best_err, err, converged_indices - ) + err = self.objective.error_squared_norm() / 2 + self._update_info(info, it_, err, converged_indices) if verbose: print( - f"Nonlinear optimizer. Iteration: {it_ + 1}. " + f"Nonlinear optimizer. Iteration: {it_+1}. " f"Error: {err.mean().item()}" ) - converged_indices = self._check_convergence(err, last_err) + converged_indices = self._check_convergence(err, info.last_err) info.status[ converged_indices.cpu().numpy() ] = NonlinearOptimizerStatus.CONVERGED if converged_indices.all(): break # nothing else will happen at this point - last_err = err + info.last_err = err + info.status[ info.status == NonlinearOptimizerStatus.START ] = NonlinearOptimizerStatus.MAX_ITERATIONS return info + # `track_best_solution` keeps a **detached** copy (as in no gradient info) + # of the best variables found, but it is optional to avoid unnecessary copying + # if this is not needed + # + # if verbose, info will also keep track of the full error history + def _optimize_impl( + self, + track_best_solution: bool = False, + verbose: bool = False, + backward_mode: BackwardMode = BackwardMode.FULL, + **kwargs, + ) -> OptimizerInfo: + with torch.no_grad(): + info = self._init_info(track_best_solution, verbose) + + if verbose: + print( + f"Nonlinear optimizer. Iteration: 0. " + f"Error: {info.last_err.mean().item()}" + ) + + if backward_mode == BackwardMode.FULL: + return self._optimize_loop( + start_iter=0, + num_iter=self.params.max_iterations, + info=info, + verbose=verbose, + truncated_grad_loop=False, + **kwargs, + ) + elif backward_mode in [BackwardMode.IMPLICIT, BackwardMode.TRUNCATED]: + if backward_mode == BackwardMode.IMPLICIT: + backward_num_iterations = 1 + else: + if "backward_num_iterations" not in kwargs: + raise ValueError( + "backward_num_iterations expected but not received" + ) + backward_num_iterations = kwargs["backward_num_iterations"] + + num_no_grad_iter = self.params.max_iterations - backward_num_iterations + with torch.no_grad(): + self._optimize_loop( + start_iter=0, + num_iter=num_no_grad_iter, + info=info, + verbose=verbose, + truncated_grad_loop=False, + **kwargs, + ) + + grad_loop_info = self._init_info(track_best_solution, verbose) + self._optimize_loop( + start_iter=0, + num_iter=backward_num_iterations, + info=grad_loop_info, + verbose=verbose, + truncated_grad_loop=True, + **kwargs, + ) + + # Merge the converged status into the info from the detached loop, + # and for now, don't update the best err tracking or best solution. + M = info.status == NonlinearOptimizerStatus.MAX_ITERATIONS + assert np.all( + (grad_loop_info.status[M] == NonlinearOptimizerStatus.MAX_ITERATIONS) + | (grad_loop_info.status[M] == NonlinearOptimizerStatus.CONVERGED) + ) + info.status[M] = grad_loop_info.status[M] + info.converged_iter[M] = ( + info.converged_iter[M] + grad_loop_info.converged_iter[M] + ) + + return info + else: + raise ValueError("Unrecognized backward mode") + @abc.abstractmethod def compute_delta(self, **kwargs) -> torch.Tensor: pass @@ -223,11 +313,18 @@ def compute_delta(self, **kwargs) -> torch.Tensor: # retracts all variables in the given order and updates their values # with the result def retract_and_update_variables( - self, delta: torch.Tensor, converged_indices: torch.Tensor + self, + delta: torch.Tensor, + converged_indices: torch.Tensor, + step_size: float, + force_update: bool = False, ): var_idx = 0 - delta = self.params.step_size * delta + delta = step_size * delta for var in self.linear_solver.linearization.ordering: new_var = var.retract(delta[:, var_idx : var_idx + var.dof()]) - var.update(new_var.data, batch_ignore_mask=converged_indices) + if force_update: + var.update(new_var.data) + else: + var.update(new_var.data, batch_ignore_mask=converged_indices) var_idx += var.dof() diff --git a/theseus/optimizer/nonlinear/tests/test_backwards.py b/theseus/optimizer/nonlinear/tests/test_backwards.py new file mode 100644 index 000000000..11d830297 --- /dev/null +++ b/theseus/optimizer/nonlinear/tests/test_backwards.py @@ -0,0 +1,117 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# +# This source code is licensed under the MIT license found in the +# LICENSE file in the root directory of this source tree. + +import numdifftools as nd +import pytest # noqa: F401 +import torch + +import theseus as th + +torch.manual_seed(0) + + +def generate_data(num_points=10, a=1.0, b=0.5, noise_factor=0.01): + data_x = torch.rand((1, num_points)) + noise = torch.randn((1, num_points)) * noise_factor + data_y = a * data_x.square() + b + noise + return data_x, data_y + + +num_points = 10 +data_x, data_y = generate_data(num_points) + +x = th.Variable(data_x.requires_grad_(), name="x") +y = th.Variable(data_y.requires_grad_(), name="y") +a = th.Vector(1, name="a") +b = th.Vector(1, name="b") + + +def quad_error_fn(optim_vars, aux_vars): + a, b = optim_vars + x, y = aux_vars + est = a.data * x.data.square() + b.data + err = y.data - est + return err + + +optim_vars = [a, b] +aux_vars = [x, y] +cost_function = th.AutoDiffCostFunction( + optim_vars, # type: ignore + quad_error_fn, + num_points, + aux_vars=aux_vars, + name="quadratic_cost_fn", +) +objective = th.Objective() +objective.add(cost_function) +optimizer = th.GaussNewton( + objective, + max_iterations=15, + step_size=0.5, +) + +theseus_inputs = { + "a": 2 * torch.ones((1, 1)).requires_grad_(), + "b": torch.ones((1, 1)).requires_grad_(), + "x": data_x, + "y": data_y, +} +theseus_optim = th.TheseusLayer(optimizer) + + +def test_backwards(): + # First we use numdifftools to numerically compute the gradient + # the optimal a w.r.t. the x part of the data + def fit_x(data_x_np): + theseus_inputs["x"] = ( + torch.from_numpy(data_x_np).float().clone().requires_grad_().unsqueeze(0) + ) + updated_inputs, info = theseus_optim.forward( + theseus_inputs, track_best_solution=True, verbose=False + ) + return updated_inputs["a"].item() + + data_x_np = data_x.detach().clone().numpy() + dfit_x = nd.Gradient(fit_x) + da_dx_numeric = torch.from_numpy(dfit_x(data_x_np)).float() + + theseus_inputs["x"] = data_x + updated_inputs, info = theseus_optim.forward( + theseus_inputs, + track_best_solution=True, + verbose=False, + backward_mode=th.BackwardMode.FULL, + ) + da_dx_full = torch.autograd.grad(updated_inputs["a"], data_x, retain_graph=True)[ + 0 + ].squeeze() + assert torch.allclose(da_dx_numeric, da_dx_full, atol=1e-3) + + updated_inputs, info = theseus_optim.forward( + theseus_inputs, + track_best_solution=True, + verbose=False, + backward_mode=th.BackwardMode.IMPLICIT, + ) + da_dx_implicit = torch.autograd.grad( + updated_inputs["a"], data_x, retain_graph=True + )[0].squeeze() + assert torch.allclose(da_dx_numeric, da_dx_implicit, atol=1e-4) + + updated_inputs, info = theseus_optim.forward( + theseus_inputs, + track_best_solution=True, + verbose=False, + backward_mode=th.BackwardMode.TRUNCATED, + backward_num_iterations=5, + ) + da_dx_truncated = torch.autograd.grad( + updated_inputs["a"], data_x, retain_graph=True + )[0].squeeze() + assert torch.allclose(da_dx_numeric, da_dx_truncated, atol=1e-4) + + +test_backwards() From 58d3c6ee6aac256677a4932a75c5ec4de7e079c3 Mon Sep 17 00:00:00 2001 From: Luis Pineda Date: Mon, 24 Jan 2022 16:38:22 -0500 Subject: [PATCH 11/15] Changed TheseusLayer.forward() to receive optimizer_kwargs as a single dict (#45) * [refactor] Changed TheseusLayer so that optimizer_kwargs are passed as a single dict. * Updated all tutorials to use optimizer_kwargs dict in forward(). * Updated examples to use optimizer_kwargs dict in forward(). * Add additional test to check that TheseusLayer.forward(aux_vars=) is not accepted. --- .pre-commit-config.yaml | 2 +- examples/backward_modes.py | 56 +++++---- examples/motion_planning_2d.py | 10 +- examples/state_estimation_2d.py | 8 +- examples/tactile_pose_estimation.py | 4 +- requirements/dev.txt | 1 + requirements/main.txt | 3 +- theseus/core/objective.py | 1 + .../nonlinear/tests/test_backwards.py | 40 ++++--- theseus/tests/test_theseus_layer.py | 91 ++++++++++++-- theseus/theseus_layer.py | 11 +- tutorials/01_least_squares_optimization.ipynb | 16 +-- .../02_differentiating_theseus_layer.ipynb | 113 ++---------------- tutorials/04_motion_planning.ipynb | 37 ++---- .../05_differentiable_motion_planning.ipynb | 45 ++++--- 15 files changed, 223 insertions(+), 215 deletions(-) diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index cd68e9eb4..979fe5f74 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -15,7 +15,7 @@ repos: rev: v0.910 hooks: - id: mypy - additional_dependencies: [torch==1.9.0, tokenize-rt==3.2.0, types-PyYAML] + additional_dependencies: [torch==1.9.0, tokenize-rt==3.2.0, types-PyYAML, types-mock] args: [--no-strict-optional, --ignore-missing-imports] exclude: setup.py diff --git a/examples/backward_modes.py b/examples/backward_modes.py index 57d4b58e4..b90f23ed4 100755 --- a/examples/backward_modes.py +++ b/examples/backward_modes.py @@ -79,9 +79,11 @@ def quad_error_fn(optim_vars, aux_vars): theseus_optim = th.TheseusLayer(optimizer) updated_inputs, info = theseus_optim.forward( theseus_inputs, - track_best_solution=True, - verbose=False, - backward_mode=th.BackwardMode.FULL, + optimizer_kwargs={ + "track_best_solution": True, + "verbose": False, + "backward_mode": th.BackwardMode.FULL, + }, ) # The quadratic \hat y is now fit and we can also use Theseus @@ -98,9 +100,11 @@ def quad_error_fn(optim_vars, aux_vars): # forward again and changing the backward_mode flag. updated_inputs, info = theseus_optim.forward( theseus_inputs, - track_best_solution=True, - verbose=False, - backward_mode=th.BackwardMode.IMPLICIT, + optimizer_kwargs={ + "track_best_solution": True, + "verbose": False, + "backward_mode": th.BackwardMode.IMPLICIT, + }, ) da_dx = torch.autograd.grad(updated_inputs["a"], data_x, retain_graph=True)[0].squeeze() @@ -110,10 +114,12 @@ def quad_error_fn(optim_vars, aux_vars): # We can also use truncated unrolling to compute the derivative: updated_inputs, info = theseus_optim.forward( theseus_inputs, - track_best_solution=True, - verbose=False, - backward_mode=th.BackwardMode.TRUNCATED, - backward_num_iterations=5, + optimizer_kwargs={ + "track_best_solution": True, + "verbose": False, + "backward_mode": th.BackwardMode.TRUNCATED, + "backward_num_iterations": 5, + }, ) da_dx = torch.autograd.grad(updated_inputs["a"], data_x, retain_graph=True)[0].squeeze() @@ -127,8 +133,8 @@ def fit_x(data_x_np): theseus_inputs["x"] = ( torch.from_numpy(data_x_np).float().clone().requires_grad_().unsqueeze(0) ) - updated_inputs, info = theseus_optim.forward( - theseus_inputs, track_best_solution=True, verbose=False + updated_inputs, _ = theseus_optim.forward( + theseus_inputs, optimizer_kwargs={"track_best_solution": True, "verbose": False} ) return updated_inputs["a"].item() @@ -150,9 +156,11 @@ def fit_x(data_x_np): start = time.time() updated_inputs, info = theseus_optim.forward( theseus_inputs, - track_best_solution=True, - verbose=False, - backward_mode=th.BackwardMode.FULL, + optimizer_kwargs={ + "track_best_solution": True, + "verbose": False, + "backward_mode": th.BackwardMode.FULL, + }, ) times["fwd"].append(time.time() - start) @@ -164,9 +172,11 @@ def fit_x(data_x_np): updated_inputs, info = theseus_optim.forward( theseus_inputs, - track_best_solution=True, - verbose=False, - backward_mode=th.BackwardMode.IMPLICIT, + optimizer_kwargs={ + "track_best_solution": True, + "verbose": False, + "backward_mode": th.BackwardMode.IMPLICIT, + }, ) start = time.time() da_dx = torch.autograd.grad(updated_inputs["a"], data_x, retain_graph=True)[ @@ -176,10 +186,12 @@ def fit_x(data_x_np): updated_inputs, info = theseus_optim.forward( theseus_inputs, - track_best_solution=True, - verbose=False, - backward_mode=th.BackwardMode.TRUNCATED, - backward_num_iterations=5, + optimizer_kwargs={ + "track_best_solution": True, + "verbose": False, + "backward_mode": th.BackwardMode.TRUNCATED, + "backward_num_iterations": 5, + }, ) start = time.time() da_dx = torch.autograd.grad(updated_inputs["a"], data_x, retain_graph=True)[ diff --git a/examples/motion_planning_2d.py b/examples/motion_planning_2d.py index ccb867905..65568eca5 100644 --- a/examples/motion_planning_2d.py +++ b/examples/motion_planning_2d.py @@ -149,9 +149,13 @@ def run_learning_loop(cfg): _, info = motion_planner.layer.forward( planner_inputs, - track_best_solution=True, - verbose=cfg.verbose, - **cfg.optim_params.kwargs, + optimizer_kwargs={ + **{ + "track_best_solution": True, + "verbose": cfg.verbose, + }, + **cfg.optim_params.kwargs, + }, ) if cfg.do_learning and cfg.include_imitation_loss: solution_trajectory = motion_planner.get_trajectory() diff --git a/examples/state_estimation_2d.py b/examples/state_estimation_2d.py index 2e2a3ca54..33745f325 100644 --- a/examples/state_estimation_2d.py +++ b/examples/state_estimation_2d.py @@ -293,10 +293,12 @@ def cost_weights_model(): print("Initial error:", objective.error_squared_norm().mean().item()) for i in range(inner_loop_iters): - theseus_inputs, info = state_estimator.forward( + theseus_inputs, _ = state_estimator.forward( theseus_inputs, - track_best_solution=True, - verbose=epoch % 10 == 0, + optimizer_kwargs={ + "track_best_solution": True, + "verbose": epoch % 10 == 0, + }, ) theseus_inputs = run_model( mode_, diff --git a/examples/tactile_pose_estimation.py b/examples/tactile_pose_estimation.py index 3c77064ce..2d303fa3b 100644 --- a/examples/tactile_pose_estimation.py +++ b/examples/tactile_pose_estimation.py @@ -325,7 +325,9 @@ def run_learning_loop(cfg): (sdf_tensor.data).repeat(batch_size, 1, 1).to(device) ) - theseus_inputs, _ = theseus_layer.forward(theseus_inputs, verbose=True) + theseus_inputs, _ = theseus_layer.forward( + theseus_inputs, optimizer_kwargs={"verbose": True} + ) obj_poses_opt = theg.get_tactile_poses_from_values( batch_size=batch_size, diff --git a/requirements/dev.txt b/requirements/dev.txt index 3776d7f55..84115c118 100644 --- a/requirements/dev.txt +++ b/requirements/dev.txt @@ -5,3 +5,4 @@ nox==2020.8.22 pre-commit>=2.9.2 isort>=5.6.4 types-PyYAML==5.4.3 +types-mock>=4.0.8 \ No newline at end of file diff --git a/requirements/main.txt b/requirements/main.txt index 89bfa98d9..5de6f0c78 100644 --- a/requirements/main.txt +++ b/requirements/main.txt @@ -4,4 +4,5 @@ scikit-sparse>=0.4.5 # torch>=1.7.1 will do separate install instructions for now (CUDA dependent) pytest>=6.2.1 numdifftools>=0.9.40 -pybind11>=2.7.1 \ No newline at end of file +pybind11>=2.7.1 +mock>=4.0.3 \ No newline at end of file diff --git a/theseus/core/objective.py b/theseus/core/objective.py index 77c8bbda2..328e33454 100644 --- a/theseus/core/objective.py +++ b/theseus/core/objective.py @@ -422,6 +422,7 @@ def _get_batch_size(batch_sizes: Sequence[int]) -> int: return max_bs raise ValueError("Provided data tensors must be broadcastable.") + input_data = input_data or {} for var_name, data in input_data.items(): if data.ndim < 2: raise ValueError( diff --git a/theseus/optimizer/nonlinear/tests/test_backwards.py b/theseus/optimizer/nonlinear/tests/test_backwards.py index 11d830297..438326982 100644 --- a/theseus/optimizer/nonlinear/tests/test_backwards.py +++ b/theseus/optimizer/nonlinear/tests/test_backwards.py @@ -69,8 +69,9 @@ def fit_x(data_x_np): theseus_inputs["x"] = ( torch.from_numpy(data_x_np).float().clone().requires_grad_().unsqueeze(0) ) - updated_inputs, info = theseus_optim.forward( - theseus_inputs, track_best_solution=True, verbose=False + updated_inputs, _ = theseus_optim.forward( + theseus_inputs, + optimizer_kwargs={"track_best_solution": True, "verbose": False}, ) return updated_inputs["a"].item() @@ -79,39 +80,42 @@ def fit_x(data_x_np): da_dx_numeric = torch.from_numpy(dfit_x(data_x_np)).float() theseus_inputs["x"] = data_x - updated_inputs, info = theseus_optim.forward( + updated_inputs, _ = theseus_optim.forward( theseus_inputs, - track_best_solution=True, - verbose=False, - backward_mode=th.BackwardMode.FULL, + optimizer_kwargs={ + "track_best_solution": True, + "verbose": False, + "backward_mode": th.BackwardMode.FULL, + }, ) da_dx_full = torch.autograd.grad(updated_inputs["a"], data_x, retain_graph=True)[ 0 ].squeeze() assert torch.allclose(da_dx_numeric, da_dx_full, atol=1e-3) - updated_inputs, info = theseus_optim.forward( + updated_inputs, _ = theseus_optim.forward( theseus_inputs, - track_best_solution=True, - verbose=False, - backward_mode=th.BackwardMode.IMPLICIT, + optimizer_kwargs={ + "track_best_solution": True, + "verbose": False, + "backward_mode": th.BackwardMode.IMPLICIT, + }, ) da_dx_implicit = torch.autograd.grad( updated_inputs["a"], data_x, retain_graph=True )[0].squeeze() assert torch.allclose(da_dx_numeric, da_dx_implicit, atol=1e-4) - updated_inputs, info = theseus_optim.forward( + updated_inputs, _ = theseus_optim.forward( theseus_inputs, - track_best_solution=True, - verbose=False, - backward_mode=th.BackwardMode.TRUNCATED, - backward_num_iterations=5, + optimizer_kwargs={ + "track_best_solution": True, + "verbose": False, + "backward_mode": th.BackwardMode.TRUNCATED, + "backward_num_iterations": 5, + }, ) da_dx_truncated = torch.autograd.grad( updated_inputs["a"], data_x, retain_graph=True )[0].squeeze() assert torch.allclose(da_dx_numeric, da_dx_truncated, atol=1e-4) - - -test_backwards() diff --git a/theseus/tests/test_theseus_layer.py b/theseus/tests/test_theseus_layer.py index ec25c2180..f2d20db23 100644 --- a/theseus/tests/test_theseus_layer.py +++ b/theseus/tests/test_theseus_layer.py @@ -5,6 +5,7 @@ import math +import mock import pytest # noqa: F401 import torch import torch.nn as nn @@ -214,7 +215,7 @@ def _run_optimizer_test( with torch.no_grad(): input_values = {"coefficients": torch.ones(batch_size, 2, device=device) * 0.75} target_vars, _ = layer_ref.forward( - input_values, verbose=verbose, **optimizer_kwargs + input_values, optimizer_kwargs={**optimizer_kwargs, **{"verbose": verbose}} ) # Now create another that starts with a random cost weight and use backpropagation to @@ -275,7 +276,9 @@ def cost_weight_fn(): } with torch.no_grad(): - pred_vars, info = layer_to_learn.forward(input_values, **optimizer_kwargs) + pred_vars, info = layer_to_learn.forward( + input_values, optimizer_kwargs=optimizer_kwargs + ) loss0 = F.mse_loss( pred_vars["coefficients"], target_vars["coefficients"] ).item() @@ -294,7 +297,7 @@ def cost_weight_fn(): cost_weight_param_name: cost_weight_fn(), } pred_vars, info = layer_to_learn.forward( - input_values, verbose=verbose, **optimizer_kwargs + input_values, optimizer_kwargs={**optimizer_kwargs, **{"verbose": verbose}} ) assert not ( (info.status == th.NonlinearOptimizerStatus.START) @@ -433,14 +436,14 @@ def test_send_to_device(): xs = torch.linspace(0, 10, num_points).repeat(batch_size, 1) ys = model(xs, torch.ones(batch_size, 2)) - objective = create_qf_theseus_layer(xs, ys) + layer = create_qf_theseus_layer(xs, ys) input_values = {"coefficients": torch.ones(batch_size, 2, device=device) * 0.5} with torch.no_grad(): if device != "cpu": with pytest.raises(RuntimeError): - objective.forward(input_values) - objective.to(device) - output_values, _ = objective.forward(input_values) + layer.forward(input_values) + layer.to(device) + output_values, _ = layer.forward(input_values) for k, v in output_values.items(): assert v.device == input_values[k].device @@ -470,3 +473,77 @@ def _do_check(layer_, optimizer_): optimizer = th.GaussNewton(objective, th.CholeskyDenseSolver) objective.erase(cost_functions[0].name) _do_check(layer, optimizer) + + +def test_pass_optimizer_kwargs(): + # Create the dataset to fit, model(x) is the true data generation process + batch_size = 16 + num_points = 10 + xs = torch.linspace(0, 10, num_points).repeat(batch_size, 1) + ys = model(xs, torch.ones(batch_size, 2)) + + layer = create_qf_theseus_layer( + xs, + ys, + nonlinear_optimizer_cls=th.GaussNewton, + linear_solver_cls=th.CholmodSparseSolver, + ) + layer.to("cpu") + input_values = {"coefficients": torch.ones(batch_size, 2) * 0.5} + for tbs in [True, False]: + _, info = layer.forward( + input_values, optimizer_kwargs={"track_best_solution": tbs} + ) + if tbs: + assert ( + isinstance(info.best_solution, dict) + and "coefficients" in info.best_solution + ) + else: + assert info.best_solution is None + + # Pass invalid backward mode to trigger exception + with pytest.raises(ValueError): + layer.forward(input_values, optimizer_kwargs={"backward_mode": -1}) + + # Now test that compute_delta() args passed correctly + # Path compute_delta() to receive args we control + def _mock_compute_delta(cls, fake_arg=None, **kwargs): + if fake_arg is not None: + raise ValueError + return layer.optimizer.linear_solver.solve() + + with mock.patch.object(th.GaussNewton, "compute_delta", _mock_compute_delta): + layer_2 = create_qf_theseus_layer(xs, ys) + layer_2.forward(input_values) + # If fake_arg is passed correctly, the mock of compute_delta will trigger + with pytest.raises(ValueError): + layer_2.forward(input_values, {"fake_arg": True}) + + +def test_no_layer_kwargs(): + # Create the dataset to fit, model(x) is the true data generation process + batch_size = 16 + num_points = 10 + xs = torch.linspace(0, 10, num_points).repeat(batch_size, 1) + ys = model(xs, torch.ones(batch_size, 2)) + + layer = create_qf_theseus_layer( + xs, + ys, + nonlinear_optimizer_cls=th.GaussNewton, + linear_solver_cls=th.CholmodSparseSolver, + ) + layer.to("cpu") + input_values = {"coefficients": torch.ones(batch_size, 2) * 0.5} + + # Trying a few variations of aux_vars. In general, no kwargs should be accepted + # beyong input_data and optimization_kwargs, but I'm not sure how to test for this + with pytest.raises(TypeError): + layer.forward(input_values, aux_vars=None) + + with pytest.raises(TypeError): + layer.forward(input_values, aux_variables=None) + + with pytest.raises(TypeError): + layer.forward(input_values, auxiliary_vars=None) diff --git a/theseus/theseus_layer.py b/theseus/theseus_layer.py index efeb95cef..93b83907e 100644 --- a/theseus/theseus_layer.py +++ b/theseus/theseus_layer.py @@ -3,7 +3,7 @@ # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. -from typing import Dict, Optional, Tuple +from typing import Any, Dict, Optional, Tuple import torch import torch.nn as nn @@ -25,9 +25,7 @@ def __init__( def forward( self, input_data: Optional[Dict[str, torch.Tensor]] = None, - track_best_solution: bool = False, - verbose: bool = False, - **optimizer_kwargs + optimizer_kwargs: Optional[Dict[str, Any]] = None, ) -> Tuple[Dict[str, torch.Tensor], OptimizerInfo]: if self._objectives_version != self.objective.current_version: raise RuntimeError( @@ -35,9 +33,8 @@ def forward( "currently not supported." ) self.objective.update(input_data) - info = self.optimizer.optimize( - track_best_solution=track_best_solution, verbose=verbose, **optimizer_kwargs - ) + optimizer_kwargs = optimizer_kwargs or {} + info = self.optimizer.optimize(**optimizer_kwargs) values = dict( [ (var_name, var.data) diff --git a/tutorials/01_least_squares_optimization.ipynb b/tutorials/01_least_squares_optimization.ipynb index daf65da1e..4e6352b4e 100644 --- a/tutorials/01_least_squares_optimization.ipynb +++ b/tutorials/01_least_squares_optimization.ipynb @@ -21,7 +21,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAaMElEQVR4nO3dfYxc1XnH8d+z4yGMIWHd2KlgwDGtwATjEiebQEqVAEmxQ4JxISG4oZQoCVJaUEvQtqCi2HlRIbLSNJUSUTehNG+8o5WTEDlVcYVEasS6izEmmLiQgIdEbBIWqXgb1uunf8yMmZ29987d3blz7537/UhRdmauZ8/FcJ57znPOc8zdBQAoroG0GwAASBeBAAAKjkAAAAVHIACAgiMQAEDBLUq7AXO1dOlSX7FiRdrNAIBc2bVr16/cfVnQZ7kLBCtWrNDo6GjazQCAXDGzn4d9xtQQABQcgQAACo5AAAAFRyAAgIIjEABAweVu1RAAFM3IWE1btu/TCxOTOmGwouG1K7VhTbVr308gAIAMGxmr6cb792hyalqSVJuY1I3375GkrgUDpoYAIMO2bN93JAg0TU5Na8v2fV37HQQCAMiwFyYm5/T+fBAIACDDThiszOn9+SAQAECGDa9dqUq5NOO9Srmk4bUru/Y7SBYDQIY1E8KsGgKAgghbKtrNjr8dgQAAMqIXS0WDkCMAgIzoxVLRIAQCAMiIXiwVDUIgAICM6MVS0SAEAgDIiF4sFQ1CshgAMqIXS0WDEAgAIEOSXioahEAAAD2SdDnp+SIQAEAPpLVHIA6SxQDQA2ntEYgjsUBgZreZ2Ytm9kSH695hZofM7ENJtQUA0pbWHoE4khwR3C5pXdQFZlaS9EVJP0qwHQCQurT2CMSRWCBw94ck/abDZddKuk/Si0m1AwDSNjJW08FXD816vxd7BOJILVlsZlVJfyLpPEnvSKsdAJCk9iRx02ClrM3rV6WeKJbSTRb/o6S/dffDnS40s6vNbNTMRsfHx5NvGQB0SVCSWJKOed2iTAQBKd3lo0OS7jQzSVoq6UIzO+TuI+0XuvtWSVslaWhoyHvZSACYj+aegVqGk8RNqQUCdz+5+bOZ3S7p+0FBAADyJmw6qFUWksRNiQUCM7tD0rmSlprZAUmbJJUlyd1vTer3AkDawqaDmsoly0SSuCmxQODuG+dw7VVJtQMAemlkrBY6HdR0zFHZyQ9I7CwGgK5pTgl18vLkVA9aEx+BAAC6pNOUUFOW8gMSRecAYEFaK4rGWdKYlU1krQgEADBPcVYHtapmqPR0KwIBAMxT3KkgqR4EHr7h/IRbND/kCABgnuJuCsvidFArAgEAzNNxlXLg+4OVsqqDFZnqI4GbL1mduemgVkwNAcA8jIzV9EpARdHygGWmmFxcjAgAYB62bN+nqenZ64SOPTpbm8XiIBAAwDyE5QcmDmZrs1gcTA0BQAyt+wVOGKxocHFZLwV0+lnbLBYHgQAAOmjfL1CbmFR5wFQu2YzpoayvDgrD1BAAdBC0X2DqsOuYoxblanVQGEYEANCmfRoorJroy5NTemzTBT1uXfcRCACgRdA0kEmBdYTymA8IwtQQALQImgZySdZ2XV7zAUEIBADQImxZqEt9kQ8IwtQQALQIywlkuWjcQjEiAIAWw2tXqlIuzXivn6aBgjAiAIAWzeme1lVDWTxDoJsIBADQZsOaal93/O0IBADQ0L5/oN9HAk0EAgBQ8P6BG+/fI0l9HwxIFgOAgvcPTE5Na8v2fSm1qHcIBACg8P0DcY+jzDMCAQAovFxEv5SRiEKOAEAhtSeGzzttme7bVZsxPdTv+weaGBEAKJxmYrg2MSlXPTF8366aLn17tW/LSERhRACgb4UtBw1LDO94arxvy0hEIRAA6EtRy0GLnBgOwtQQgL4UtRy0yInhIIkFAjO7zcxeNLMnQj7/qJk9bmZ7zOzHZnZmUm0BUDxRT/1FLCwXJckRwe2S1kV8/qyk97j7akmfl7Q1wbYAKJiop/4Na6q6+ZLVhUwMB0ksR+DuD5nZiojPf9zycqekE5NqC4DiGV67ckaOQJr51F+0wnJRspIs/rikH4Z9aGZXS7pakpYvX96rNgHIsSKWk54vcw86krlLX14fEXzf3c+IuOY8SV+T9Efu/utO3zk0NOSjo6PdayQAFICZ7XL3oaDPUh0RmNkfSPq6pPfHCQIAgO5LLRCY2XJJ90v6M3d/Oq12AOgfRT1PYKESCwRmdoekcyUtNbMDkjZJKkuSu98q6TOS3ijpa2YmSYfChi0A0EmRzxNYqCRXDW3s8PknJH0iqd8PoFiiNpARCKJlZdUQAMzLyFhNn/3eXr10cCrw86KWjZgLAgGA3BoZq2n43t2amg5f/VjUshFzQSAAkDvNpHCtw9N+kctGzAWBAECutCeFoxS5bMRcUH0UQK4EJYWDVBs1hdAZIwIAuRB3OkiSygPGlNAcEAgAZN5cpoMGK2VtXr+K0cAcEAgAZF6n6aBKuUQ+YAEIBAAyL2ovQJVSEgtGIACQOe01g46rlDUxOXvDWHWwUsjD5ruNQAAgU4JqBpVLpvKAaerwaxvH2CPQPSwfBZApQfmAqWnXsUcv4mjJhDAiAJApYfmAiYNTGvvMBT1uTTEwIgCQKVGHziMZBAIAmTK8dqUq5dKM98gHJIupIQCZwqHzvUcgAJAZ7ctGv/yRtxIAeoBAACATOGoyPeQIAGRC1FGTSBYjAgA91z4FNLx2ZeiyUY6aTB6BAEBPhU0BhZWRYNlo8pgaAtBTYVNAU9OHWTaaEgIBgJ4Km+p55dVpXfr2KmUkUsDUEICeOmGwEnrK2I6nxqkmmgICAYCuGxmrafO2vUfm/JcsLmvTRaskSa/89lDonyMxnA4CAYCuGhmrafie3TNKRr90cErX37NbA9KM99uRGE4HgQBAV23Zvi+ws58+7Io6cZjEcHoIBAC6aj7TOxw3mS4CAYCuikoGB+G4yfSxfBRAVw2vXanygM16vzRgs95nOigbEhsRmNltkj4o6UV3PyPgc5P0FUkXSjoo6Sp3/++k2gOgu4LKRGxYUz0yvRO2aojy0tlj7uEZ/AV9sdm7Jf2vpG+GBIILJV2reiA4S9JX3P2sTt87NDTko6Oj3W4ugDm4aWSPvrPzObX2HpVyiQ1gGWZmu9x9KOizxKaG3P0hSb+JuORi1YOEu/tOSYNmdnxS7QHQHSNjtVlBQKJSaJ6lmSOoSnq+5fWBxnuzmNnVZjZqZqPj4+M9aRyAYFu275sVBJrYEJZPHQOBmV1rZkt60Zgw7r7V3YfcfWjZsmVpNgUovKjOng1h+RRnRPC7kh41s7vNbF0jydsNNUkntbw+sfEegAw7rlIO/ey803hQy6OOgcDdb5J0iqRvSLpK0k/N7O/N7PcX+Lu3SbrS6s6W9LK7/2KB3wkgYa8eCt8fvOMppm7zKNbyUXd3M/ulpF9KOiRpiaR7zezf3f1vgv6Mmd0h6VxJS83sgKRNksqN77tV0gOqrxjar/ry0Y8t7FYAJGlkrKbPfm+vDk4dDr2GHEE+dQwEZvZXkq6U9CtJX5c07O5TZjYg6aeSAgOBu2+M+l6vr1v9yzm3GEDPtZ8qFoYcQT7FGRH8jqRL3P3nrW+6+2Ez+2AyzQKQFSNjNV1392PqtOWoPGDsEs6pjoHA3TdFfPaT7jYHQJY0S0p3CgJm0pYPn8lmspyi1hCAUGElpVtVyiV9+bK3EgRyjEAAIFSn5O9gpUxZiT5AGWoAoaJKSg9Wynps0wU9bhGSwIgAQKiwktLlkmnz+lUptAhJYEQAFFhYKemmqJLSTAf1DwIBUFDtewNqE5O68f49kjQrGNDp9zemhoCC2rJ936wNYpSSLiZGBEBBtE8DhSWBKRNRPAQCoACCpoFMCjxXgDIRxcPUEFAAQdNALql9PRCHyRcTgQAogLDpHpdUHazIGv/P5rBiYmoIKIDjKuUjyz9bVQcreviG81NoEbKEQAD0mfak8HmnLdMrrx6adR3VQtFEIAD6QLPzb08C1yYm9Z2dzwUmhY89ehHTQJBEIAByr31FUHunH1Y7dOLg7KkiFBPJYiDnglYExcEyUTQRCICci7MBjGWiiEIgAHJsZKymAZtdHbRVpVzSR89ezjJRhCJHAORUMzcwHXCOZDNhXA2oKAq0IxAAORWWGyiZ6UuXcX4w4mNqCMihm0b2hBaNO+xOEMCcMCIAcqQ+HfS4JqcOh17DaiDMFSMCICde2y8QHgRYDYT5IBAAORFnvwCrgTAfBAIgJzrtFyiZEQQwL+QIgAzodIi8pMhTxSRp41knJd1M9ClGBEDKmnP/tYlJuV47RH5krDbjuuG1K1Upl2b9+QGTrjh7ub6wYXWPWox+Yx6wGSXLhoaGfHR0NO1mAF1zzi0PBj7pD1bKOuZ1i2aMEiR1HDkAQcxsl7sPBX3G1BCQsrC5/4nJqSOHyTRHCTdfspqDZNB1iU4Nmdk6M9tnZvvN7IaAz5eb2Q4zGzOzx83swiTbA2RR3HX/k1PT2rJ9X8KtQRElFgjMrCTpq5LeL+l0SRvN7PS2y26SdLe7r5F0uaSvJdUeIKvC5v6DxKk0CsxVkiOCd0ra7+7PuPurku6UdHHbNS7pDY2fj5P0QoLtATJpw5qqbr5k9YzqoEsWlwOvZdcwkpBkjqAq6fmW1wckndV2zWZJPzKzayUdI+l9QV9kZldLulqSli9f3vWGAmlpXzb65Y+8VRvWVGedOiaxaxjJSTtZvFHS7e7+JTN7l6RvmdkZ7j5jD727b5W0VaqvGkqhncC8RO0PaO/smwlhSUeuYYUQeiGx5aONjn2zu69tvL5Rktz95pZr9kpa5+7PN14/I+lsd38x7HtZPoq8CHqql+rLQjevX3XksPl21cEKK4PQdVHLR5PMETwq6RQzO9nMjlI9Gbyt7ZrnJL230ci3SDpa0niCbQJ6Jqw20MTk1JENZEFICKPXEgsE7n5I0jWStkv6ieqrg/aa2efMbH3jsuslfdLMdku6Q9JVnrcdbkCIqHIQk1PTKoUcMUlCGL2WaI7A3R+Q9EDbe59p+flJSeck2QYgLSWzwGMkm6bdVSmXSAgjddQaAhISFQSk1w6R51B5pC3tVUNA36pGVAttPvlvWFOl40fqGBEA8zQyVtM5tzyok2/4gc655cHY1UKXLC7z5I9MYUQAzEFzX0BtYlKm+tZ4KXgPAHsBkBcEAiCm9n0B7RmAZlG41o6eqR/kAVNDQExxzgxmDwDyiEAAxBSnk2cPAPKIQADEFKeTf+W3h2YljYGsIxAALaJWAsU5N6BZPoJggDwhEAANnQ6RDzo3YLAy+9wAThJD3rBqCGgISga3rwRqXwV08g0/CPwuksbIE0YEQENY5x3VqYflDUgaI08IBEDDfDr1oLwBheOQN0wNobDaTw8777Rlum9XbU7VQNk9jH6Q2AllSeGEMnRD2JnAl769qh1PjdOpo+9EnVDGiAB9L+jc4LDE8I6nxjkmEoVDIEBfCzsgPqxUBKt9UEQki9HXwp78OSYSeA2BAH0t7GCY5jGRrVjtg6IiEKCvhTz4q2TGMZFAAzkC9IXWA2Oah8YPVsoKWxQ37c5ZAUADgQC5EbT6Z8Oa6qyEcPPQ+InJqdDvqpILAI4gECAXwlb/SPEOjGlHLgB4DTkC5EJUQbi5LvkcrJSZEgJaMCJApoRN/0QVhDthsBK6OqhdpVzS5vWrutlkIPcYESAzos4DiCoIF3VgTHnAtGRxmZVBQARGBMiMqOmf4bUrA2sDtdYCal81VKVWEBALgQCZETX906nKJ0tBgfkjECAzwub6m9NCdPZAMsgRoCeiDoVv4pAXIB2JBgIzW2dm+8xsv5ndEHLNZWb2pJntNbPvJtkepKPTofBNQYfDk9wFkpfYwTRmVpL0tKQ/lnRA0qOSNrr7ky3XnCLpbknnu/tLZvYmd38x6ns5mCYfRsZq+uz39uqlg9G7e6n9D/RG1ME0SY4I3ilpv7s/4+6vSrpT0sVt13xS0lfd/SVJ6hQEkA8jYzUN37s7MghI1P4HsiLJQFCV9HzL6wON91qdKulUM3vYzHaa2bqgLzKzq81s1MxGx8fHE2ouumXL9n2amu480qT2P5ANaa8aWiTpFEnnSjpR0kNmttrdJ1ovcvetkrZK9amhHrcRAdqnfgYrZX3wzOO146nxWLt8SQID2ZFkIKhJOqnl9YmN91odkPSIu09JetbMnlY9MDyaYLuwACNjNW3etndWZc+JySl9e+dzsb6DjV5AtiQZCB6VdIqZnax6ALhc0p+2XTMiaaOkfzWzpapPFT2TYJsQIazOT+vnw/fs1tTh+Q3KygOmLR8+kwAAZExigcDdD5nZNZK2SypJus3d95rZ5ySNuvu2xmcXmNmTkqYlDbv7r5NqE8JFlXludtybt+2ddxAYrJS1ef0qggCQQYnmCNz9AUkPtL33mZafXdKnG/9DiqLq/DQ776iDXsKwRBTIvrSTxeiBTlM+Uvgh73HLOwchIQzkAyUm+lzcXb2lkFPeB1reXrK4HPp7BitlXXH2cnYFAznEiKBPBD31S9J1dz826wD39ikf6bVzftsd9vp3b1hT1aaLVmn43t0z9giUS6YtHyIBDOQZgSDD4kzpNK9rXc1Tm5jUp+96TDZgs4JAU/uu3mrEKV/NoNGpFDSAfCIQZFScVTw3jezRHY88H/g0f1iqP86HOK4yc5pneO1K/fVdjwVe2xo0KAUN9B9yBD0WpxyzFL2KR6oHgW/vfC50SqeTV149NON3b1hT1WAlOAdAKQigvxEIeqhT4rY1SESt4hkZq8XexRtmatqPBJWmzetXcR4AUECJlaFOSp7LUJ9zy4OBHfySxWW5x1+nXx6weW/samWSnr3lAzPei5uXAJAvUWWoyRG0idMRzrezDHvK71SuuV03goAUPOVDDgAonkIEgrgd900je/Sdnc+p2c0GJWjjJHHD2tArUSuAmpjyAdDU9zmCuBuqmvPu7c/arQlaqXMSNywZvHnb3q7fW7srzl6un93yAT18w/mqRiR42ewFoFXfjwjCOu7r794945qoJ+jW5ZNhp2q90Ejiho0W5lOnpzxgkqnjIS+VcmlWxz68duWMtoRdBwB9HwjCOu5pdw3fu1vyznPurXPpJ4RMu5wwWOk4WghTKZdm/bkli8vadNEqSdL1d+8OXSYaVtufzV8A4ur7QBDWcUudn7SbWufSw560h9eu1HURG7KWLC4HJoWbHX6nDns+T/ckfgHE0feBIKjjnoujSjajM4160g6bYmpeE1SnZ9NFqzp22DzdA0hS3weCZmcZNb0SZfFRs/8RhXXcUaOFhXbmPN0DSErfBwLptWDQ3kmXS9YxR/DyHJK8nTp7OnMAWVSIQCCFd9LN98LyCHOts0NnDyBvChMIpPBOesOa6qylnxKbrgAUQ6ECQRQSsgCKikDQgmkdAEXU9yUmAADRCAQAUHAEAgAoOAIBABQcgQAACi53R1Wa2bikn8/zjy+V9KsuNicPuOdiKOI9S8W87/ne85vdfVnQB7kLBAthZqNhZ3b2K+65GIp4z1Ix7zuJe2ZqCAAKjkAAAAVXtECwNe0GpIB7LoYi3rNUzPvu+j0XKkcAAJitaCMCAEAbAgEAFFxfBgIzW2dm+8xsv5ndEPD568zsrsbnj5jZihSa2VUx7vnTZvakmT1uZv9hZm9Oo53d1OmeW6671MzczHK/zDDOPZvZZY2/671m9t1et7HbYvy7vdzMdpjZWOPf7wvTaGc3mdltZvaimT0R8rmZ2T81/pk8bmZvW9AvdPe++p+kkqT/kfR7ko6StFvS6W3X/IWkWxs/Xy7prrTb3YN7Pk/S4sbPnyrCPTeue72khyTtlDSUdrt78Pd8iqQxSUsar9+Udrt7cM9bJX2q8fPpkn6Wdru7cN/vlvQ2SU+EfH6hpB9KMklnS3pkIb+vH0cE75S0392fcfdXJd0p6eK2ay6W9G+Nn++V9F4zsx62sds63rO773D3g42XOyWd2OM2dlucv2dJ+rykL0r6v142LiFx7vmTkr7q7i9Jkru/2OM2dluce3ZJb2j8fJykF3rYvkS4+0OSfhNxycWSvul1OyUNmtnx8/19/RgIqpKeb3l9oPFe4DXufkjSy5Le2JPWJSPOPbf6uOpPE3nW8Z4bw+WT3P0HvWxYguL8PZ8q6VQze9jMdprZup61Lhlx7nmzpCvM7ICkByRd25umpWqu/81H4oSygjGzKyQNSXpP2m1JkpkNSPoHSVel3JReW6T69NC5qo/6HjKz1e4+kWajErZR0u3u/iUze5ekb5nZGe5+OO2G5UU/jghqkk5qeX1i473Aa8xskerDyV/3pHXJiHPPMrP3Sfo7Sevd/bc9altSOt3z6yWdIek/zexnqs+jbst5wjjO3/MBSdvcfcrdn5X0tOqBIa/i3PPHJd0tSe7+X5KOVr0wWz+L9d98XP0YCB6VdIqZnWxmR6meDN7Wds02SX/e+PlDkh70RgYmpzres5mtkfTPqgeBvM8bSx3u2d1fdvel7r7C3VeonhdZ7+6j6TS3K+L8uz2i+mhAZrZU9amiZ3rYxm6Lc8/PSXqvJJnZW1QPBOM9bWXvbZN0ZWP10NmSXnb3X8z3y/puasjdD5nZNZK2q77i4DZ332tmn5M06u7bJH1D9eHjftUTMpen1+KFi3nPWyQdK+meRl78OXdfn1qjFyjmPfeVmPe8XdIFZvakpGlJw+6e29FuzHu+XtK/mNl1qieOr8r5g53M7A7VA/rSRu5jk6SyJLn7rarnQi6UtF/SQUkfW9Dvy/k/LwDAAvXj1BAAYA4IBABQcAQCACg4AgEAFByBAAAKjkAAAAVHIACAgiMQAAtkZu9o1IQ/2syOaZwDcEba7QLiYkMZ0AVm9gXVSxtUJB1w95tTbhIQG4EA6IJGHZxHVT/34A/dfTrlJgGxMTUEdMcbVa/l9HrVRwZAbjAiALrAzLapfnrWyZKOd/drUm4SEFvfVR8Fes3MrpQ05e7fNbOSpB+b2fnu/mDabQPiYEQAAAVHjgAACo5AAAAFRyAAgIIjEABAwREIAKDgCAQAUHAEAgAouP8HDFHlL2ASrMgAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAaMElEQVR4nO3dfYxc1XnH8d+z4yGMIWHd2KlgwDGtwATjEiebQEqVAEmxQ4JxISG4oZQoCVJaUEvQtqCi2HlRIbLSNJUSUTehNG+8o5WTEDlVcYVEasS6izEmmLiQgIdEbBIWqXgb1uunf8yMmZ29987d3blz7537/UhRdmauZ8/FcJ57znPOc8zdBQAoroG0GwAASBeBAAAKjkAAAAVHIACAgiMQAEDBLUq7AXO1dOlSX7FiRdrNAIBc2bVr16/cfVnQZ7kLBCtWrNDo6GjazQCAXDGzn4d9xtQQABQcgQAACo5AAAAFRyAAgIIjEABAweVu1RAAFM3IWE1btu/TCxOTOmGwouG1K7VhTbVr308gAIAMGxmr6cb792hyalqSVJuY1I3375GkrgUDpoYAIMO2bN93JAg0TU5Na8v2fV37HQQCAMiwFyYm5/T+fBAIACDDThiszOn9+SAQAECGDa9dqUq5NOO9Srmk4bUru/Y7SBYDQIY1E8KsGgKAgghbKtrNjr8dgQAAMqIXS0WDkCMAgIzoxVLRIAQCAMiIXiwVDUIgAICM6MVS0SAEAgDIiF4sFQ1CshgAMqIXS0WDEAgAIEOSXioahEAAAD2SdDnp+SIQAEAPpLVHIA6SxQDQA2ntEYgjsUBgZreZ2Ytm9kSH695hZofM7ENJtQUA0pbWHoE4khwR3C5pXdQFZlaS9EVJP0qwHQCQurT2CMSRWCBw94ck/abDZddKuk/Si0m1AwDSNjJW08FXD816vxd7BOJILVlsZlVJfyLpPEnvSKsdAJCk9iRx02ClrM3rV6WeKJbSTRb/o6S/dffDnS40s6vNbNTMRsfHx5NvGQB0SVCSWJKOed2iTAQBKd3lo0OS7jQzSVoq6UIzO+TuI+0XuvtWSVslaWhoyHvZSACYj+aegVqGk8RNqQUCdz+5+bOZ3S7p+0FBAADyJmw6qFUWksRNiQUCM7tD0rmSlprZAUmbJJUlyd1vTer3AkDawqaDmsoly0SSuCmxQODuG+dw7VVJtQMAemlkrBY6HdR0zFHZyQ9I7CwGgK5pTgl18vLkVA9aEx+BAAC6pNOUUFOW8gMSRecAYEFaK4rGWdKYlU1krQgEADBPcVYHtapmqPR0KwIBAMxT3KkgqR4EHr7h/IRbND/kCABgnuJuCsvidFArAgEAzNNxlXLg+4OVsqqDFZnqI4GbL1mduemgVkwNAcA8jIzV9EpARdHygGWmmFxcjAgAYB62bN+nqenZ64SOPTpbm8XiIBAAwDyE5QcmDmZrs1gcTA0BQAyt+wVOGKxocHFZLwV0+lnbLBYHgQAAOmjfL1CbmFR5wFQu2YzpoayvDgrD1BAAdBC0X2DqsOuYoxblanVQGEYEANCmfRoorJroy5NTemzTBT1uXfcRCACgRdA0kEmBdYTymA8IwtQQALQImgZySdZ2XV7zAUEIBADQImxZqEt9kQ8IwtQQALQIywlkuWjcQjEiAIAWw2tXqlIuzXivn6aBgjAiAIAWzeme1lVDWTxDoJsIBADQZsOaal93/O0IBADQ0L5/oN9HAk0EAgBQ8P6BG+/fI0l9HwxIFgOAgvcPTE5Na8v2fSm1qHcIBACg8P0DcY+jzDMCAQAovFxEv5SRiEKOAEAhtSeGzzttme7bVZsxPdTv+weaGBEAKJxmYrg2MSlXPTF8366aLn17tW/LSERhRACgb4UtBw1LDO94arxvy0hEIRAA6EtRy0GLnBgOwtQQgL4UtRy0yInhIIkFAjO7zcxeNLMnQj7/qJk9bmZ7zOzHZnZmUm0BUDxRT/1FLCwXJckRwe2S1kV8/qyk97j7akmfl7Q1wbYAKJiop/4Na6q6+ZLVhUwMB0ksR+DuD5nZiojPf9zycqekE5NqC4DiGV67ckaOQJr51F+0wnJRspIs/rikH4Z9aGZXS7pakpYvX96rNgHIsSKWk54vcw86krlLX14fEXzf3c+IuOY8SV+T9Efu/utO3zk0NOSjo6PdayQAFICZ7XL3oaDPUh0RmNkfSPq6pPfHCQIAgO5LLRCY2XJJ90v6M3d/Oq12AOgfRT1PYKESCwRmdoekcyUtNbMDkjZJKkuSu98q6TOS3ijpa2YmSYfChi0A0EmRzxNYqCRXDW3s8PknJH0iqd8PoFiiNpARCKJlZdUQAMzLyFhNn/3eXr10cCrw86KWjZgLAgGA3BoZq2n43t2amg5f/VjUshFzQSAAkDvNpHCtw9N+kctGzAWBAECutCeFoxS5bMRcUH0UQK4EJYWDVBs1hdAZIwIAuRB3OkiSygPGlNAcEAgAZN5cpoMGK2VtXr+K0cAcEAgAZF6n6aBKuUQ+YAEIBAAyL2ovQJVSEgtGIACQOe01g46rlDUxOXvDWHWwUsjD5ruNQAAgU4JqBpVLpvKAaerwaxvH2CPQPSwfBZApQfmAqWnXsUcv4mjJhDAiAJApYfmAiYNTGvvMBT1uTTEwIgCQKVGHziMZBAIAmTK8dqUq5dKM98gHJIupIQCZwqHzvUcgAJAZ7ctGv/yRtxIAeoBAACATOGoyPeQIAGRC1FGTSBYjAgA91z4FNLx2ZeiyUY6aTB6BAEBPhU0BhZWRYNlo8pgaAtBTYVNAU9OHWTaaEgIBgJ4Km+p55dVpXfr2KmUkUsDUEICeOmGwEnrK2I6nxqkmmgICAYCuGxmrafO2vUfm/JcsLmvTRaskSa/89lDonyMxnA4CAYCuGhmrafie3TNKRr90cErX37NbA9KM99uRGE4HgQBAV23Zvi+ws58+7Io6cZjEcHoIBAC6aj7TOxw3mS4CAYCuikoGB+G4yfSxfBRAVw2vXanygM16vzRgs95nOigbEhsRmNltkj4o6UV3PyPgc5P0FUkXSjoo6Sp3/++k2gOgu4LKRGxYUz0yvRO2aojy0tlj7uEZ/AV9sdm7Jf2vpG+GBIILJV2reiA4S9JX3P2sTt87NDTko6Oj3W4ugDm4aWSPvrPzObX2HpVyiQ1gGWZmu9x9KOizxKaG3P0hSb+JuORi1YOEu/tOSYNmdnxS7QHQHSNjtVlBQKJSaJ6lmSOoSnq+5fWBxnuzmNnVZjZqZqPj4+M9aRyAYFu275sVBJrYEJZPHQOBmV1rZkt60Zgw7r7V3YfcfWjZsmVpNgUovKjOng1h+RRnRPC7kh41s7vNbF0jydsNNUkntbw+sfEegAw7rlIO/ey803hQy6OOgcDdb5J0iqRvSLpK0k/N7O/N7PcX+Lu3SbrS6s6W9LK7/2KB3wkgYa8eCt8fvOMppm7zKNbyUXd3M/ulpF9KOiRpiaR7zezf3f1vgv6Mmd0h6VxJS83sgKRNksqN77tV0gOqrxjar/ry0Y8t7FYAJGlkrKbPfm+vDk4dDr2GHEE+dQwEZvZXkq6U9CtJX5c07O5TZjYg6aeSAgOBu2+M+l6vr1v9yzm3GEDPtZ8qFoYcQT7FGRH8jqRL3P3nrW+6+2Ez+2AyzQKQFSNjNV1392PqtOWoPGDsEs6pjoHA3TdFfPaT7jYHQJY0S0p3CgJm0pYPn8lmspyi1hCAUGElpVtVyiV9+bK3EgRyjEAAIFSn5O9gpUxZiT5AGWoAoaJKSg9Wynps0wU9bhGSwIgAQKiwktLlkmnz+lUptAhJYEQAFFhYKemmqJLSTAf1DwIBUFDtewNqE5O68f49kjQrGNDp9zemhoCC2rJ936wNYpSSLiZGBEBBtE8DhSWBKRNRPAQCoACCpoFMCjxXgDIRxcPUEFAAQdNALql9PRCHyRcTgQAogLDpHpdUHazIGv/P5rBiYmoIKIDjKuUjyz9bVQcreviG81NoEbKEQAD0mfak8HmnLdMrrx6adR3VQtFEIAD6QLPzb08C1yYm9Z2dzwUmhY89ehHTQJBEIAByr31FUHunH1Y7dOLg7KkiFBPJYiDnglYExcEyUTQRCICci7MBjGWiiEIgAHJsZKymAZtdHbRVpVzSR89ezjJRhCJHAORUMzcwHXCOZDNhXA2oKAq0IxAAORWWGyiZ6UuXcX4w4mNqCMihm0b2hBaNO+xOEMCcMCIAcqQ+HfS4JqcOh17DaiDMFSMCICde2y8QHgRYDYT5IBAAORFnvwCrgTAfBAIgJzrtFyiZEQQwL+QIgAzodIi8pMhTxSRp41knJd1M9ClGBEDKmnP/tYlJuV47RH5krDbjuuG1K1Upl2b9+QGTrjh7ub6wYXWPWox+Yx6wGSXLhoaGfHR0NO1mAF1zzi0PBj7pD1bKOuZ1i2aMEiR1HDkAQcxsl7sPBX3G1BCQsrC5/4nJqSOHyTRHCTdfspqDZNB1iU4Nmdk6M9tnZvvN7IaAz5eb2Q4zGzOzx83swiTbA2RR3HX/k1PT2rJ9X8KtQRElFgjMrCTpq5LeL+l0SRvN7PS2y26SdLe7r5F0uaSvJdUeIKvC5v6DxKk0CsxVkiOCd0ra7+7PuPurku6UdHHbNS7pDY2fj5P0QoLtATJpw5qqbr5k9YzqoEsWlwOvZdcwkpBkjqAq6fmW1wckndV2zWZJPzKzayUdI+l9QV9kZldLulqSli9f3vWGAmlpXzb65Y+8VRvWVGedOiaxaxjJSTtZvFHS7e7+JTN7l6RvmdkZ7j5jD727b5W0VaqvGkqhncC8RO0PaO/smwlhSUeuYYUQeiGx5aONjn2zu69tvL5Rktz95pZr9kpa5+7PN14/I+lsd38x7HtZPoq8CHqql+rLQjevX3XksPl21cEKK4PQdVHLR5PMETwq6RQzO9nMjlI9Gbyt7ZrnJL230ci3SDpa0niCbQJ6Jqw20MTk1JENZEFICKPXEgsE7n5I0jWStkv6ieqrg/aa2efMbH3jsuslfdLMdku6Q9JVnrcdbkCIqHIQk1PTKoUcMUlCGL2WaI7A3R+Q9EDbe59p+flJSeck2QYgLSWzwGMkm6bdVSmXSAgjddQaAhISFQSk1w6R51B5pC3tVUNA36pGVAttPvlvWFOl40fqGBEA8zQyVtM5tzyok2/4gc655cHY1UKXLC7z5I9MYUQAzEFzX0BtYlKm+tZ4KXgPAHsBkBcEAiCm9n0B7RmAZlG41o6eqR/kAVNDQExxzgxmDwDyiEAAxBSnk2cPAPKIQADEFKeTf+W3h2YljYGsIxAALaJWAsU5N6BZPoJggDwhEAANnQ6RDzo3YLAy+9wAThJD3rBqCGgISga3rwRqXwV08g0/CPwuksbIE0YEQENY5x3VqYflDUgaI08IBEDDfDr1oLwBheOQN0wNobDaTw8777Rlum9XbU7VQNk9jH6Q2AllSeGEMnRD2JnAl769qh1PjdOpo+9EnVDGiAB9L+jc4LDE8I6nxjkmEoVDIEBfCzsgPqxUBKt9UEQki9HXwp78OSYSeA2BAH0t7GCY5jGRrVjtg6IiEKCvhTz4q2TGMZFAAzkC9IXWA2Oah8YPVsoKWxQ37c5ZAUADgQC5EbT6Z8Oa6qyEcPPQ+InJqdDvqpILAI4gECAXwlb/SPEOjGlHLgB4DTkC5EJUQbi5LvkcrJSZEgJaMCJApoRN/0QVhDthsBK6OqhdpVzS5vWrutlkIPcYESAzos4DiCoIF3VgTHnAtGRxmZVBQARGBMiMqOmf4bUrA2sDtdYCal81VKVWEBALgQCZETX906nKJ0tBgfkjECAzwub6m9NCdPZAMsgRoCeiDoVv4pAXIB2JBgIzW2dm+8xsv5ndEHLNZWb2pJntNbPvJtkepKPTofBNQYfDk9wFkpfYwTRmVpL0tKQ/lnRA0qOSNrr7ky3XnCLpbknnu/tLZvYmd38x6ns5mCYfRsZq+uz39uqlg9G7e6n9D/RG1ME0SY4I3ilpv7s/4+6vSrpT0sVt13xS0lfd/SVJ6hQEkA8jYzUN37s7MghI1P4HsiLJQFCV9HzL6wON91qdKulUM3vYzHaa2bqgLzKzq81s1MxGx8fHE2ouumXL9n2amu480qT2P5ANaa8aWiTpFEnnSjpR0kNmttrdJ1ovcvetkrZK9amhHrcRAdqnfgYrZX3wzOO146nxWLt8SQID2ZFkIKhJOqnl9YmN91odkPSIu09JetbMnlY9MDyaYLuwACNjNW3etndWZc+JySl9e+dzsb6DjV5AtiQZCB6VdIqZnax6ALhc0p+2XTMiaaOkfzWzpapPFT2TYJsQIazOT+vnw/fs1tTh+Q3KygOmLR8+kwAAZExigcDdD5nZNZK2SypJus3d95rZ5ySNuvu2xmcXmNmTkqYlDbv7r5NqE8JFlXludtybt+2ddxAYrJS1ef0qggCQQYnmCNz9AUkPtL33mZafXdKnG/9DiqLq/DQ776iDXsKwRBTIvrSTxeiBTlM+Uvgh73HLOwchIQzkAyUm+lzcXb2lkFPeB1reXrK4HPp7BitlXXH2cnYFAznEiKBPBD31S9J1dz826wD39ikf6bVzftsd9vp3b1hT1aaLVmn43t0z9giUS6YtHyIBDOQZgSDD4kzpNK9rXc1Tm5jUp+96TDZgs4JAU/uu3mrEKV/NoNGpFDSAfCIQZFScVTw3jezRHY88H/g0f1iqP86HOK4yc5pneO1K/fVdjwVe2xo0KAUN9B9yBD0WpxyzFL2KR6oHgW/vfC50SqeTV149NON3b1hT1WAlOAdAKQigvxEIeqhT4rY1SESt4hkZq8XexRtmatqPBJWmzetXcR4AUECJlaFOSp7LUJ9zy4OBHfySxWW5x1+nXx6weW/samWSnr3lAzPei5uXAJAvUWWoyRG0idMRzrezDHvK71SuuV03goAUPOVDDgAonkIEgrgd900je/Sdnc+p2c0GJWjjJHHD2tArUSuAmpjyAdDU9zmCuBuqmvPu7c/arQlaqXMSNywZvHnb3q7fW7srzl6un93yAT18w/mqRiR42ewFoFXfjwjCOu7r794945qoJ+jW5ZNhp2q90Ejiho0W5lOnpzxgkqnjIS+VcmlWxz68duWMtoRdBwB9HwjCOu5pdw3fu1vyznPurXPpJ4RMu5wwWOk4WghTKZdm/bkli8vadNEqSdL1d+8OXSYaVtufzV8A4ur7QBDWcUudn7SbWufSw560h9eu1HURG7KWLC4HJoWbHX6nDns+T/ckfgHE0feBIKjjnoujSjajM4160g6bYmpeE1SnZ9NFqzp22DzdA0hS3weCZmcZNb0SZfFRs/8RhXXcUaOFhXbmPN0DSErfBwLptWDQ3kmXS9YxR/DyHJK8nTp7OnMAWVSIQCCFd9LN98LyCHOts0NnDyBvChMIpPBOesOa6qylnxKbrgAUQ6ECQRQSsgCKikDQgmkdAEXU9yUmAADRCAQAUHAEAgAoOAIBABQcgQAACi53R1Wa2bikn8/zjy+V9KsuNicPuOdiKOI9S8W87/ne85vdfVnQB7kLBAthZqNhZ3b2K+65GIp4z1Ix7zuJe2ZqCAAKjkAAAAVXtECwNe0GpIB7LoYi3rNUzPvu+j0XKkcAAJitaCMCAEAbAgEAFFxfBgIzW2dm+8xsv5ndEPD568zsrsbnj5jZihSa2VUx7vnTZvakmT1uZv9hZm9Oo53d1OmeW6671MzczHK/zDDOPZvZZY2/671m9t1et7HbYvy7vdzMdpjZWOPf7wvTaGc3mdltZvaimT0R8rmZ2T81/pk8bmZvW9AvdPe++p+kkqT/kfR7ko6StFvS6W3X/IWkWxs/Xy7prrTb3YN7Pk/S4sbPnyrCPTeue72khyTtlDSUdrt78Pd8iqQxSUsar9+Udrt7cM9bJX2q8fPpkn6Wdru7cN/vlvQ2SU+EfH6hpB9KMklnS3pkIb+vH0cE75S0392fcfdXJd0p6eK2ay6W9G+Nn++V9F4zsx62sds63rO773D3g42XOyWd2OM2dlucv2dJ+rykL0r6v142LiFx7vmTkr7q7i9Jkru/2OM2dluce3ZJb2j8fJykF3rYvkS4+0OSfhNxycWSvul1OyUNmtnx8/19/RgIqpKeb3l9oPFe4DXufkjSy5Le2JPWJSPOPbf6uOpPE3nW8Z4bw+WT3P0HvWxYguL8PZ8q6VQze9jMdprZup61Lhlx7nmzpCvM7ICkByRd25umpWqu/81H4oSygjGzKyQNSXpP2m1JkpkNSPoHSVel3JReW6T69NC5qo/6HjKz1e4+kWajErZR0u3u/iUze5ekb5nZGe5+OO2G5UU/jghqkk5qeX1i473Aa8xskerDyV/3pHXJiHPPMrP3Sfo7Sevd/bc9altSOt3z6yWdIek/zexnqs+jbst5wjjO3/MBSdvcfcrdn5X0tOqBIa/i3PPHJd0tSe7+X5KOVr0wWz+L9d98XP0YCB6VdIqZnWxmR6meDN7Wds02SX/e+PlDkh70RgYmpzres5mtkfTPqgeBvM8bSx3u2d1fdvel7r7C3VeonhdZ7+6j6TS3K+L8uz2i+mhAZrZU9amiZ3rYxm6Lc8/PSXqvJJnZW1QPBOM9bWXvbZN0ZWP10NmSXnb3X8z3y/puasjdD5nZNZK2q77i4DZ332tmn5M06u7bJH1D9eHjftUTMpen1+KFi3nPWyQdK+meRl78OXdfn1qjFyjmPfeVmPe8XdIFZvakpGlJw+6e29FuzHu+XtK/mNl1qieOr8r5g53M7A7VA/rSRu5jk6SyJLn7rarnQi6UtF/SQUkfW9Dvy/k/LwDAAvXj1BAAYA4IBABQcAQCACg4AgEAFByBAAAKjkAAAAVHIACAgiMQAAtkZu9o1IQ/2syOaZwDcEba7QLiYkMZ0AVm9gXVSxtUJB1w95tTbhIQG4EA6IJGHZxHVT/34A/dfTrlJgGxMTUEdMcbVa/l9HrVRwZAbjAiALrAzLapfnrWyZKOd/drUm4SEFvfVR8Fes3MrpQ05e7fNbOSpB+b2fnu/mDabQPiYEQAAAVHjgAACo5AAAAFRyAAgIIjEABAwREIAKDgCAQAUHAEAgAouP8HDFHlL2ASrMgAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -183,7 +183,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAwK0lEQVR4nO3deXiTVdr48e+dNN0LxS4sRQQUUATZirKog6Ky7yoybuiMjuOLg4pVHHkVdxRHx9+4zyviLiJacdRBERQVFwoFWaQIsjXspaWUpm3ant8faUPSBUppkqa5P9fVy+ackzz3I/Dcec45zzlijEEppVTosgQ6AKWUUoGliUAppUKcJgKllApxmgiUUirEaSJQSqkQFxboAE5UYmKiad++faDDUEqpoLJy5coDxpikmuqCLhG0b9+ejIyMQIehlFJBRUS211anXUNKKRXiNBEopVSI00SglFIhLujGCGridDrJzs6mqKgo0KGoRioyMpK2bdtis9kCHYpSjU6TSATZ2dnExcXRvn17RCTQ4ahGxhhDTk4O2dnZdOjQIdDhKNXoNImuoaKiIhISEjQJqBqJCAkJCXrHqFQtmsQdAaBJQB2T/v1QwSo9087sRVnsynPQJj6KtCFdGNsrpUGP0STuCJRSqilKz7Rz+78+YNUraZQeycWe5+DeD9eSnmlv0ONoImgg2dnZjBkzhk6dOnH66aczdepUSkpKjvmevLw8XnjhBffrXbt2cfnll5/Qce+//34WL15cr5g9xcbGnvRnnIjJkyfzwQcfnNB70tPT2bBhg/t1Q527Uo3VYwt+IvuDRynauordc2+n2L4Rh7OM2YuyGvQ4mggagDGG8ePHM3bsWH777Tc2bdpEQUEB99133zHfVzURtGnT5oQvjg899BCXXHJJveJujMrKymqtq5oImtq5K+WprKyMtW89RNnh/a7XBTnseWc6zrw97MpzNOixmmQiEJF6/fTp06dex1uyZAmRkZHccMMNAFitVp555hnmzJlDYWEhc+fOZcyYMQwaNIhOnTrx4IMPAjB9+nS2bNlCz549SUtLY9u2bXTr1g2AuXPnMnbsWC699FLat2/Pc889x9NPP02vXr3o168fBw8eBI5+s87IyKBnz5707NmT7t27u/vEt2zZwtChQ+nTpw8XXHABGzduBGDr1q3079+f7t27M2PGjFrP7dFHH6Vz586cf/75TJo0iaeeegqAQYMGuZf6OHDgAJXrP23bto0LLriA3r1707t3b5YvXw64kuWUKVPo0qULl1xyCfv27XMfo3379txzzz307t2b+fPn8+9//5u+ffvSo0cPJkyYQGFhIcuXL2fhwoWkpaXRs2dPtmzZ4nVXsWLFCgYMGECPHj0499xzOXz4cL3+LJVqLGbMmEHR9jVeZXG9R2CLb0Wb+KgGPVaTGSwOpPXr11dLIs2aNaNdu3Zs3rwZgJ9//pl169YRHR1N3759GTFiBLNmzWLdunWsXr0acF1EPa1bt47MzEyKioo444wzeOKJJ8jMzOSOO+7gjTfe4Pbbb3e3TU1NdX9OWloaQ4cOBeDmm2/mpZdeolOnTvz000/ceuutLFmyhKlTp/LXv/6V6667jueff77G81q5ciXvvfceq1evprS0lN69ex83WSYnJ/Pll18SGRnJb7/9xqRJk8jIyOCjjz4iKyuLDRs2sHfvXrp27cqNN97ofl9CQgKrVq0CICcnh5tuuglw/WN49dVXue222xg9ejQjR46s1n1WUlLCxIkTmTdvHn379iU/P5+oqIb9h6KUP3344YfMmjXLqyyi7dm0GHQDUTYraUO6NOjxNBH4yaWXXkpCQgIA48eP57vvvmPs2LHHfM9FF11EXFwccXFxNG/enFGjRgHQvXt3fvnllxrfM2/ePFatWsUXX3xBQUEBy5cv54orrnDXFxcXA/D999+zYMECAK699lruueeeap/17bffMm7cOKKjowEYPXr0cc/T6XQyZcoUVq9ejdVqZdOmTQAsW7aMSZMmYbVaadOmDRdffLHX+yZOnOj+fd26dcyYMYO8vDwKCgoYMmTIMY+ZlZVF69at6du3L+BKwkoFq19//ZXrr7/eq8wWl0DSmOm0TYjzyawhTQQNoGvXrtX69vPz89mxYwdnnHEGq1atqjZ9sS7TGSMiIty/WywW92uLxUJpaWm19uvWrWPmzJksW7YMq9VKeXk58fHx7juFqk5mSmVYWBjl5eUAXvPzn3nmGVq2bMmaNWsoLy8nMjKyTp8XExPj/n3y5Mmkp6fTo0cP5s6dy9dff13vOJUKJu98u5E/TxiCo6DAXRYWFsaSz9I5//zzfXbcJjlGYIyp18/KlSvrdbzBgwdTWFjIG2+8AbgGeaZNm8bkyZPd36a//PJLDh48iMPhID09nYEDBxIXF9dgfdl5eXlMmjSJN954g6Qk15LjzZo1o0OHDsyfPx9w/X9Zs8bV5zhw4EDee+89AN5+++0aP/PCCy8kPT0dh8PB4cOH+eSTT9x17du3d///8kyChw4donXr1lgsFt5880334O+FF17IvHnzKCsrY/fu3SxdurTWczl8+DCtW7fG6XR6xVbb/68uXbqwe/duVqxY4X5/TYlSqcbsw5U7+ctNN+LYv9Or/IZpM32aBKCJJgJ/ExE++ugj5s+fT6dOnejcuTORkZE89thj7jbnnnsuEyZM4JxzzmHChAmkpqaSkJDAwIED6datG2lpaScVw8cff8z27du56aab3IPG4LrIv/rqq/To0YOzzz6bjz/+GIBnn32W559/nu7du2O31zwnuXfv3kycOJEePXowbNgwd9cLwF133cWLL75Ir169OHDggLv81ltv5fXXX6dHjx5s3LjR/U1/3LhxdOrUia5du3LdddfRv3//Ws/l4Ycf5rzzzmPgwIGceeaZ7vKrrrqK2bNn06tXL7Zs2eIuDw8PZ968edx222306NGDSy+9VJ8iVkHn9nsfoCDrB6+ymG6DWde8n8+PLcYYnx+kIaWmppqqG9P8+uuvnHXWWQGK6Pjmzp1LRkYGzz33XKBDOSkzZ84kNjaWu+66K9Ch1Etj/3uiQtenn37KyJGjgKPX4/CWp9Py6iex2iLYOmvESR9DRFYaY1JrqtM7AqWUCqDNmzdz9dVX45kELFHNSBr3dyy2iAafKloTHSz2g8mTJzN58uRAh3HSZs6cGegQlGpykpOTueiii0hPT3cViIXEMfcQ1rylT6aK1qTJ3BEEWxeX8i/9+6Eaq2bNmrFgwQIefvhhRIT2w24m+rQepMRH8fj47g0+VbQmTeKOIDIykpycHF2KWtWocj+Cuk5lVcrfLBYLM2bMYPjw4fTq1cvv17EmkQjatm1LdnY2+/fvD3QoqpGq3KFMqUCpy3LSvXv3DkhsTSIR2Gw23XlKKdVopWfauffDtTicZZjyMvdy0oBfun6Op8mMESilVGM1e1EWDmcZZUUF7J47lSO/LvPJctL15bNEICJzRGSfiKw7Tru+IlIqIie2EL9SSgWJXXkOTHkZBz5+Auf+bRxY+CS5y97Ennsk0KEBvr0jmAsMPVYDEbECTwBf+DAOpZQKqDbxUeQunUPRtkx3Wf4P87Bs/DKAUR3ls0RgjFkGHDxOs9uABcC+47RTSqmglJ5pJ/vnzzmc8bFXeVTbrjzx99sDE1QVARsjEJEUYBzwYh3a3iwiGSKSoTODlFLBIj3TztRn57Fj4T+9ym3NEnl+zltccV7HwARWRSAHi/8J3GOMKT9eQ2PMK8aYVGNMauXKmkop1dg9Mm8Z2fMfhrKjq+FKWDhnXfsQN1zaK4CReQvk9NFU4L2KBycSgeEiUmqMSQ9gTEopddLSM+3M+mQ1v7w2g/LCPK+6hGFTyY9tF5jAahGwRGCMcU/8F5G5wH80CSilgl16pp3pC9awc/5jOPf97lXXrP9EYrr+wS8LyZ0InyUCEXkXGAQkikg28ABgAzDGvOSr4yqlVKCkZ9qZ9v4acpa9SeGm5V51UZ36EX/B1dis4peF5E6EzxKBMWbSCbSd7Ks4lFLKHyqfHs5f/zWHlr/nVWdLak/iyGmIWIgJD2sUTxN70ieLlVKqAcxelEXe9g0c+OyfXuWW6OYkT7gfS7irO+iQwxmA6I6tSaw1pJRSgeC5kJwBHJt/hjKPC701jKRx9xHWPNld1NjGB0ATgVJK1YvnQnKV4i+8FktMPLlf/RtMOQlDbyOybVd3vb82mjlRmgiUUqoeKheSq6pZn1HYWrShePcmYrsNdpen1LL0dGOgiUAppephV56j1rqojn2I6tjH9bvN6redxupLB4uVUqoeauvrj4+ykRIfhYBft5s8GXpHoJRS9XBp8708v3gp0X1Gu7eWtFmEmaPPbvQX/qo0ESil1AnasGEDs+/+C4UFh4k9uItTLrkZsVghSLdM164hpZQ6AXv37mXEiBEUFhwGoCDzU/YteAhjynGWmUaz69iJ0DsCpZQ6jsrnBbL353Lw/RkUZG/zqo86rQciru/VxxpEbqw0ESil1DFUPi9QWOLkwH+epjB7o1d9bI8hxPUd537dGB8YOx7tGlJKqWOofF4g7+u51RaSi+nYm1Mu/at7sLixPjB2PJoIlFLqGHblOTi86lPyf/7Qq9yWeBovv/YWbRPigmqqaE20a0gppTx4rh/UJj4Kdqzk4OKXvdpYY1pwzp8e5+oLz+LqC88KUKQNRxOBUkpVqLp+0O+//sLeDx4Djx11xRbJqVc9yIyJFwYqzAanXUNKKVXBc/0gZ94e9n3wIMZZfLSBWDjzj/fzzP+MD8ouoNroHYFSSlWonPpZ5shn3/wHqu03/OILz3PLLbcEIDLf0jsCpZSqUDn1s2hrJqUH7V51d999d5NMAqCJQCml3NKGdCHKZiWm6x9IHH03WF2dJucPGcPjjz8e4Oh8R7uGlFKqQmW//+xFWew660JatmpN7G+LWPzxPCyWpvu9WROBUkpRfdroMxN7MrbXCOD2QIfmc5oIlFIhr+q0UXueg3s/XAvQpGYH1abp3usopVQdfPHFF9x621QKS5xe5Q5nWVCuJFofekeglApZGRkZjB8/niNHjhCds4/EEXciYTZ3fTCuJFofekeglApJv/32G8OHD+fIkSMAFG78ln0fzMSUH92QPhhXEq0PTQRKqZCze/duhgwZwv79+73Ko84417XTGMG7kmh9aNeQUiqkHDp0iGHDhrF161av8v7jbkTOvco9ayhtSJeQGCgGTQRKqRBSVFTE6NGjWbNmjVd5TLeLOdj1cmaF0MXfkyYCpVST5flsQOu4cMq/+gc/LVvm1SaqYyoJQ/9GUWk5sxdlaSJQSqmmwvPZAGMMv8ybzZG1X3q1iWhzJoljpyMVS0mEyiyhqnw2WCwic0Rkn4isq6X+ahH5RUTWishyEenhq1iUUqHHc0npvK9fq5YEbAntSLr8ASy2SHdZqMwSqsqXs4bmAkOPUb8V+IMxpjvwMPCKD2NRSoWYym/3h378oNo2k0mtUmh39SNYo+LcZaE0S6gqnyUCY8wy4OAx6pcbY3IrXv4ItPVVLEqp0NMmPorDq/9L3jdzvcrDYuL57pslPDX5YlLio4J+v+GG0FjGCP4EfF5bpYjcDNwM0K5dO3/FpJQKYmlDujBlZbxrKemyUgAs4VHMeuVdOnfuTGdCYx2hugj4A2UichGuRHBPbW2MMa8YY1KNMalJSUn+C04pFbTG9krhub/fQtfrH0VsEUiYjQefe51pfzxWj3VoCugdgYicA/wfMMwYkxPIWJRSTc/YXimMffVufvjzBeTk5DBy5MhAh9QoBSwRiEg74EPgWmPMpkDFoZRqGqruJ+D5ZHD//v0DHF3j5rNEICLvAoOARBHJBh4AbADGmJeA+4EE4AURASg1xqT6Kh6lVNOVnmnnrjmLcUa1QCzWkNtP4GT5LBEYYyYdp/7PwJ99dXylVOh4+J2lbJt7p+sBsdFpiNXm3k9AE8HxBXywWCmlTsaOHTtY88qdlBUcpHDTcvYteIRyZxEQuk8KnyhNBEqpoDXni1V06T2Asvyjy0kXbV1JwZpFQOg+KXyiGstzBEopdUJeX/ILf716HCU5dq/ymG4XE9dnFDarhOyTwidKE4FSKqikZ9p57KMVrH55Gs4DO7zqorucT8KwqYhYiAkP0/GBOtJEoJQKGumZdu5+50e2v3Uvzn2/e9VFnd6XxFHT3DuMHXI4a/oIVQNNBEqpoJCeaeeON39g97z/pWTPb151kaf1JGnsvYj16MbzOj5QdzpYrJRq9NIz7dzz3gp2z59J8a6NXnURp3YjacIMJCzcXRbKK4nWh94RKKUavVmfrGH7ew9QnL3eqzyizZkkT7gfiy0SqwhlxpASYvsNNwRNBEqpRq2oqIg1r82geMcvXuXhrTqRfOWDxMTGhfQS0g1BE4FSqlGpumbQuFOLKLFv8GoT3vJ0kic+jC0yVpNAA9AxAqVUo1G5z7A9z4EB7HkOXt1oYdL/Po+ERQBgS+5A8sSHiY1rzj+u7KFJoAFoIlBKNRqe+wxXcjjL2GrrwEMvvEnsqWfRauIjtGvdUu8EGpB2DSmlGo3a1gbaledgxvQruO/Pl1OxWrFqQHpHoJRqNFrFWCl3Flcrr3wmQJOAb2giUEo1Cg6Hg6LPZnEw/TFMaYm7XJ8J8D1NBEqpgCssLGT06NGs/vEbjvy+kvxPHseUlpASH6VjAX6gYwRKqYAqKChg1KhRfP311+6yvE0rGGj/hP88NSdwgYUQvSNQSgXM4cOHGTZsmFcSALAlnkZW68tIz7TX/EbVoDQRKKUCIi8vjyFDhvDdd995lduSO9By0mM4w+OYvSgrQNGFFk0ESim/e2PpOtqefS4//PCDV3l4y9NpedVjWKObA7rVpL/oGIFSyq/mfrWGW/44luJ927zKw1t3IvnKh7FGxrrLdClp/9BEoJTyG7vdzq2TRlO833tnsYiUrrS8YiYSEe0u02mj/qNdQ0opv9i6dSsXXHABjqpJoN05JF/5IBIRTUp8FAI6bdTP9I5AKeVzWVlZDB48GLvdexZQZIfeJI27D4stAgHdRyBANBEopRpc1aWkJ5zmJPfQYa82UZ36kTT6HiTMtb2kwbXonCYC/9OuIaVUg0rPtJP2wRqvpaSfX1tGi3H/i9hcS0lHd/0DSWOmu5NAJZ0lFBh6R6CUalAPfrIeZ5nxKisrN4S1OYukcffh2PwTLQbfjFis1d6rs4QCQxOBUqpB5RY6a62L6tCbqA69a67TWUIBo11DSqkGdWTjd5QXH6lTW6uIzhJqBPSOQCnVYJ588kkOfDyLiLZnk3zlg1hskbW2jbJZ9eLfSGgiUErVi+fMoNbNIkje+AEfv/kyAMXZ6znw8RMkjbsPsYZhswgTzz2VpRv3u2cS6VTRxsNniUBE5gAjgX3GmG411AvwLDAcKAQmG2NW+SoepVTDmZG+lrd/3IEBTFkpv7z7DEfWfeXVpmj7apx7t9Cha0+96DdyvrwjmAs8B7xRS/0woFPFz3nAixX/VUo1YumZdncSKHcWceDjJ3BsWeHVJi4ujoULFzJo0KCAxKhOjM8Gi40xy4CDx2gyBnjDuPwIxItIa1/Fo5RqGLMXZWGAMkc++96bUS0JJCcn880332gSCCLHTQQicpuItPDBsVOAnR6vsyvKaorhZhHJEJGM/fv3+yAUpVRd2fMclObvY89bd1O8a6NXXUSL1nz//ff06tUrQNGp+qjLHUFLYIWIvC8iQyv69v3KGPOKMSbVGJOalJTk78MrpSqkZ9px7t/GnjfTKD2Y7VVnS2rPC+/9hzPOOCNA0an6Om4iMMbMwNWP/yowGfhNRB4TkdNP8th24FSP120rypRSjdRdz77N7rfupqwgx6s8ol13xtz3CjdeVvPDYqpxq9MYgTHGAHsqfkqBFsAHIvLkSRx7IXCduPQDDhljdp/E5ymlfGjarBfY8uZ9mJJCr/LoLgNpecWD7HJUXzJCBYfjzhoSkanAdcAB4P+ANGOMU0QswG/A3bW8711gEJAoItnAA4ANwBjzEvAZrqmjm3FNH73hZE9GKeUbDoeDf816CMpLvcrjeo+kxeCbEItVF4wLYnWZPnoKMN4Ys92z0BhTLiIja3uTMWbSsT604i7jf+oUpVIqYCqfGUiccD973r4bU7F8RPygyTQ7dwKVw4a6YFzwqssYwQNVk4BH3a8NH5JSqrGYkb6WtyqeGQhPOo3k8fchtkgSRk6j+XmXu5OALhgX3HSJCaVUrd79aafX68h255Byy6tYo5u7y+KjbMwcfbY+ORzENBEopbysW7eOmJgYOnToQJkx1eo9k0CLaBuZ91/mz/CUD+gy1Eopt0WLFjFw4ECGDx9Obm4u1mM8NhRls/LAqLP9GJ3yFU0ESikAXnzxRUaMGEF+fj4bN25kwoQJXNm7VY1tY8J1CemmRBOBUiGurKyMO++8k1tvvZWysjJ3+dKlS+latJ5r+rVz3xlYRbimXzvWPzRUk0ATomMESoWwd77dyJSbJpOb9ZNXuYjw1FNPcc011yAiPDK2e4AiVP6giUCpEPXKpz/ytxsmUbx/m1d5RGQU7897j9GjRwcmMOV3mgiUCgGeu4m1iY9iRPIhHvjbjZQeyfNqZ409hS6TH9UkEGI0ESjVxKVn2rn3w7U4nK7+/43ffMzyL16otlxEeKszSBo/g/yYxECEqQJIE4FSTdzsRVk4nGWY8jJyl7zK4ZULq7WJ7jKQhBF3YLFF6lIRIUgTgVJN3K48B+VFBexPn0XR9tXV6psPmETz8ychYtGlIkKUJgKlmrg28VHs3F9MeXGBV7nFFsGdjzzL8vJO7rED3WQ+NGkiUKqJqTow3D4hCnueg6Rx97H79TsoL8zDGpfI9Q88x+xpEwMdrmoENBEo1YRUHRi25znc+wSENUsiady95H37Nkmj09jo1G1flYsmAqWCnOcdgEWE0rJSxHJ0tzDPZeMi255Ny6seRUR0IxnlpktMKBXEKu8A7HkODODY+zu750yh2L6x1vfoRjKqKk0ESgWxyqmhAAXrl7Lnzbtw5uxkf/pjlBXkuttVXUNUZwcpT5oIlApi9jwHpszJwcUvk/Off2BKiwEoKzjI/vTHMWVOomxWru7XjpT4KARIiY/SlUOVFx0jUCpIpWfaKcvfz76PZ1GyK6tavS2pHW2aR3LPCL3oq2PTRKBUkLrvubfZ9e6jlDvyvSusNqbMmMW/Zt4ZmMBU0NFEoFSQKSsr46Krp7Bh3st4zwkCa7Nkksb9nX/NnBqY4FRQ0kSgVJBIz7Tz6IIfWffWIzUuFRHZsQ+JI++iXetk/wengpomAqWCQHqmnanPvI39oycoKzhYpVZofv4faT5gItHhNp0NpE6YJgKlgsDU6fez48u5YMq9yi3R8SSOuouo9j0BdDaQqhdNBEoFgUOHj1RLAhGndiNxVBphcQmAaz9hTQKqPvQ5AqWCQNcRfyLi1G4Vr4Rm/a+k5VWPupMAwKTzTg1McCro6R2BUo1A1RVDqy4Hfffwrty17x52vHMfLS7+M1EdervrrCJMOu9U3WBe1ZsYY47fqhFJTU01GRkZgQ5DqQbjuWKoM28PYXGJhNtsxEaGkVfodCcGgCc//5Xd+cW6d4A6YSKy0hiTWlOd3hEoFWCzF2VRWFLKkbVfcnDxyzRLHUv8hdeSW+gEXMtI3PvhWh4f353lf78kwNGqpsinYwQiMlREskRks4hMr6G+nYgsFZFMEflFRIb7Mh6lGqOdu/dyIP1xcj7/fxhnMYd+eJ+iHWu92jicZcxeVH0ZCaUags8SgYhYgeeBYUBXYJKIdK3SbAbwvjGmF3AV8IKv4lGqMVq8eDF7595G4ablHqWGA//5B+XFhV5tdf8A5Su+vCM4F9hsjPndGFMCvAeMqdLGAM0qfm8O7PJhPEo1Gg6Hg9tvv51LL72UkvwcrzqxRdB84CQk3Hu/AN0/QPmKL8cIUoCdHq+zgfOqtJkJfCEitwExQI0doCJyM3AzQLt27Ro8UKX8aeXKlVx77bX8+uuv1erCW51Bh8unU9asNc6yoxM5dP8A5UuBfo5gEjDXGNMWGA68KSLVYjLGvGKMSTXGpCYl6T6rKjg5nU4eeugh+vXrV0MSEJr1u4IONzzNrBuHMvvyHrp/gPIbX94R2AHPJ1zaVpR5+hMwFMAY84OIRAKJwD4fxqWUX3g+GxBZsIvtHz2FY9emau2szVuSOOIOIk/tRlG5axbR99Mv1gu/8htfJoIVQCcR6YArAVwF/LFKmx3AYGCuiJwFRAL7fRiTUn6Rnmkn7YM1lDhLyV+RTt63b0GZs1q72HMuo8XFf8YSEe0u00Fh5W8+SwTGmFIRmQIsAqzAHGPMehF5CMgwxiwEpgH/FpE7cA0cTzbB9oSbUjV48JP1OMsMptRJwer/VksCluh4koZOIbJTv2rv1UFh5W8+faDMGPMZ8FmVsvs9ft8ADPRlDEoFQuXDYJbwSBKGT2XvO0cfo4nuPIBThvwP1ujmRNms7s3nQQeFVWAEerBYqSYv8tRuxPUZhSUylsRRd5E49l6s0c3dg8A6KKwCTZeYUKoBFBcXs3LlSgYMGABAfJSNPMfR7qD4C6+nWb8rCIs9BTj6zX9srxS98KuA0zsCpeopPdPOwFlLaH3NU7Ro15mLBg9my5YtAMwcfTY2i7jbWsIj3UlAv/mrxkbvCJSqh/RMO3e/8yO7v3qNgszPqNxEfvwfJ7P6x2Xui/yxlpZWqrHQZaiVOgHpmXae/O9Gfvv5K3IXv1zD/sHw+uuvc9111wUgOqVqp8tQK9UA0jPtTJuzmN2fP49jy4oa28SecxmjRo3yc2RKnRxNBErVQUlJCVPvncnOr97ElBZXqw9r0ZpThkzhjB79aNGiRQAiVKr+NBEodRxLlixhypQp7KhhkTgsVpqddznN+1+J1RbBRWfqWlgq+GgiUMqD5/pAiZYjRK56h+8WfVxj24iUrpwy5FbCk9oDruHiBSvtpJ52ig4Kq6CiiUCpCp57BxtjWPNKGs6cHdXaWSLjaHHRDcR0v4Sqi+VW7iSmiUAFE32OQKkKsxdluZd7EBGan191jUQYPGYife56nbhzLquWBCrponEq2OgdgVIVql7Ao7sMJKLdORTv+IWePXvywgsv0L9/f3f9wFlLsNdw0ddF41Sw0TsCFdJyc3NZsmQJUP0CLiKccslf6DD6NjIyMrySAEDakC5E2axeZbponApGmghUSPrg5210HH0biW1O47Lho5j71ZoaL+zN23Tk6Zn3YLVaq33G2F4pumicahL0yWIVUowx/P2ZOTz96AOUHDy6YV587+G89n+vALoshGqa9MliFdIqp4Ru3bCagm9f4/C2ddXa5GX+l5mv/5fV//yTXvhVyNFEoJq09Ew7d/77c/Z+9RqFm5bX2EbCo2je7wpyrfpEsApNmghUk5Wdnc0tf7mFvRmfgymv3kAsxHa/hPgLrsUa24IUne2jQpQmAtXk5OTk8Pjjj/Pcc89RXFx9XSCAqI6pxA+6gfCk01yvdbaPCmGaCFST8s033zBq1CgOHz5cY314q07ED5pMdPsetGkepYPCSqGJQDURlQPCO/fmcKRUqtWHtWhN/IXXE91lICKCMfD99IsDEKlSjY8mAhU0PBeE8/wW77lGkCUimmbnjSfv67kAWGMTaD5wErHdL0GsR/+663iAUkdpIlBBwfNiX1ZUwIZFC5iePw7wXiMIIK7XSI6sW0ps98HE9hqBxRZR7fN0PECpozQRqKAwe1EWBXk55K9cyOGVn2BKHFgiY5ndLKbaGkGW8Eha3/gcItW7iADio2w6HqCUB00EqtHbvn07a+c/Q8EvX3rtDpb/43zs3S8h5ZTYaou/1ZYEomxWZo4+26fxKhVsNBGoRsVzHKC5Yxcttiziu0UfU1paWq1tad4ebNt+IG3SFHe3UVU2ixAbGUZeoVNnBylVC00EqtFIz7QzfcEv5G5eRf7PH7Ft68pa21qimpHQbwIP3na9+8I+e1EW9jwHVhHKjCFFL/xK1YkmAtUoFBcXk/b4v9j+zfs4922ttV148yRi+oyl8x/GMH1UT/dFfmyvFL3gK1VPmghUwC1evJhrrrmGvXv31tqmc+fO3HPPPVxzzTWEh4f7MTqlmj5NBMovansGAFwX+QMHDtT4voiUs+hw8STWz70Pi0W3z1DKF3z6L0tEhopIlohsFpHptbS5UkQ2iMh6EXnHl/GowKh8BiA7txAD2PMc3PvhWtIzXfsBtGvXjnHjxnm8Q4juPICWV8+mww1P8/gdN2oSUMqHfHZHICJW4HngUiAbWCEiC40xGzzadALuBQYaY3JFJNlX8Sj/Ss+08+An68ktdOLM2cnh1f+lZM9mWv5xFiKCw1nG7EVZ7ruC22+/nUWLFnHhyCvYnXIRB60tdJaPUn7iy66hc4HNxpjfAUTkPWAMsMGjzU3A88aYXABjzD4fxqP8JD3TzrR3f+bQhu8oWLOI4uz17rri7PVEntoN8N4sfsCAAdjtduLi4vwer1KhzpeJIAXY6fE6GzivSpvOACLyPWAFZhpj/lv1g0TkZuBmcHUjqMbJGENGRga33PYw+1YvwRQfqdbm8OrP3YnAc7N4EdEkoFSABHqwOAzoBAwC2gLLRKS7MSbPs5Ex5hXgFXDtWeznGFUNPLt+Sg8foHzTtzizvubAzi3HfF/xjrWYUifRUZG63o9SjYQvE4EdONXjdduKMk/ZwE/GGCewVUQ24UoMK3wYlzoJ6Zl2Zi5cz8G8QxRu+oEjG76maPuamncA8xBxajdiewwhpstA2iY2075/pRoRXyaCFUAnEemAKwFcBfyxSpt0YBLwmogk4uoq+t2HMaljONYUz8r6ez9cS6GjCPtLN1JeVHDMz7NExxPb7WJiz7kMW0JbbBZh9hU9NAEo1cj4LBEYY0pFZAqwCFf//xxjzHoReQjIMMYsrKi7TEQ2AGVAmjEmx1cxqdp5LvMMR6d4Al5LODicZUiYjch259S8GbxYiOrYh9hzLiPq9L7uPQDio2zMHH22JgGlGiGfjhEYYz4DPqtSdr/H7wa4s+JHBZDnmv7lJUU4tq4kZ+sqnoyc5r54e67wGXP2IK9EYEvuSGy3wcR0vRBrTAt3eUp8lO4EplQjF+jBYuUHx+vyAdhh34VjywoKN/9M0dZVmNISALaceQGuR0FwL+YGENWxL7bkDkR1TCWm6yD3JvCedEN4pYKDJoImrrYuH2MM7WU/n376KZ9++inZP/4EVJ+Q5cj6zv17ZRIAkDAbbW74l/t1fJSNkT1as3Tjft0QXqkgo4mgiajpWz/AHe+vpvL6XebIp2hrJge2ZjLx2Uych48/HHMkazkLVmxnQt/TSImPqrYBDGj3j1LBThNBI1aXLp3Kdmnz1+Asd13x7XkO7py3GrEIxkBpwUH2L3iIkj1bqOlbf02szZKJ7tyf6M79+ceXvzGh72mkDelSbQMY7f5RKvhpImik6jKLZ0b6Wt79aae7y8aYckRci7OVA1QkBmt0c0rz9nC8JBDe8nSizjiP6E7nYUvu6N7ucXd+sddx65KclFLBQxOBn9X1W77nLJ5Kngu1zUhfy9zFqym2/+r6yf4VS0Q0LSc+XO2zxGKtcbpnZFQ0Qy67lBEjRjBs2DBGvrqBPIez2vs9l4LQDWCUano0EfhRXb7lV9pVpS++vLiQkr2b2fDTZgZ89TQ///QzZYf3e7WRsHBMqRMJs1U7dmT7nhRuWu6a6dOhN1Ed+tDh7F6kzxjqbjNztGjXj1IhSBOBHx3rW35lvT3PgSnMo2jPFkr2baVk3++U7N1C6cGjq3P8UMvnm9ISivdsJrLtWdXqYrr+gejOA7DGxLvL9hR4x6JdP0qFJk0EVdSl66au3TtVeX7LN8a4++Ar7wwqk8SBL1+mcOO39YrfuW9LjYnAEhEDEd5lnl0+lbTrR6nQEzKJoK4X+Kqzb9LmrwGOfls+ke4dp9PJzp072b59O7///juHv/sSR84uSnN34czdRdu/voYlMhYRvO4UwpPa1y0RWMMITz6diLZnEZHi+gmLPaXWaZ6etMtHKVUpJBJBXS/eMxeudyeBSs5yw8yF66utt1OpZP92CvZuZmrGAr45M5af1v3G2qzfceTuo+xI7jFX5XQetBPRpgumymQeW1L7GloLtoS2hLc6g/DWnYlo3Znw5I5e4wHX9GvHI2O7AzBw1pJak0GKdvkopTyERCKovHgX79nsmkZpyjliDH9b9xWLz2nJ57/Yyc0/gikrwThLMM4iyp1FmBIH5SWF7CkuZM9fvqRVq1bVBnGP/LqM/B/mkQP8s9qWOsfmzN1FRJvq38rDk9sT3qoT4ckdsCV3ILxlR8KTOmCJiK7xc6JsVh4f393rwl7bnP+q7ZRSKiQSQeXFu2DNfylY7X21fj69bp+Rk5NDq1ataFOl28Ua3azecZXm7gKgRbSNIme5+6Id1rwlra9/BgCbRSg1ptpdQ6Xavt3rwK9Sqq5CIhG4L94VD1vVx6FDh4Dq37St0fHHfJ81pgXWZsnEJbXGGZOMLb4VYfGtCDulLdaYFgjwwKizgaOzhioXd0vxWCqiPt/udeBXKVUXIZEI0oZ04fZ5qwGp92fk5+cDNXzTPq0jZ142mtSuHflo4xEKwpoRFpeANS4Ra2wCFluE+4Je9WIuwNX92rk/83gXbf12r5TyBTG19Tk0UqmpqSYjI+OE39froS/Y8cN/KNq6yn1nINYwsFgRSxgSZkPCwhFrOBIegcUWhdgisUREMWVID6ZccQmnnHLKMY9RdVAavL+513faqVJKnSwRWWmMSa2xLlQSQU0XaZtVwFBtplBV22aNOKHj6MVeKdXYHCsRhETXENQ+eFpZdqyplid6HL3wK6WCScgkAqj9Il3ZbaPr7CilQlFIJYJj0emWSqlQpYnAg3brKKVCUf0n1iullGoSNBEopVSI00SglFIhThOBUkqFOE0ESikV4oLuyWIR2Q9sr+fbE4EDDRhOMNBzDg16zqHhZM75NGNMUk0VQZcIToaIZNT2iHVTpeccGvScQ4Ovzlm7hpRSKsRpIlBKqRAXaonglUAHEAB6zqFBzzk0+OScQ2qMQCmlVHWhdkeglFKqCk0ESikV4ppkIhCRoSKSJSKbRWR6DfURIjKvov4nEWkfgDAbVB3O+U4R2SAiv4jIVyJyWiDibEjHO2ePdhNExIhI0E81rMs5i8iVFX/W60XkHX/H2NDq8He7nYgsFZHMir/fwwMRZ0MRkTkisk9E1tVSLyLy/yr+f/wiIr1P+qDGmCb1A1iBLUBHIBxYA3St0uZW4KWK368C5gU6bj+c80VAdMXvfw2Fc65oFwcsA34EUgMdtx/+nDsBmUCLitfJgY7bD+f8CvDXit+7AtsCHfdJnvOFQG9gXS31w4HPAQH6AT+d7DGb4h3BucBmY8zvxpgS4D1gTJU2Y4DXK37/ABgsIuLHGBvacc/ZGLPUGFNY8fJHoK2fY2xodflzBngYeAIo8mdwPlKXc74JeN4YkwtgjNnn5xgbWl3O2QDNKn5vDuzyY3wNzhizDDh4jCZjgDeMy49AvIi0PpljNsVEkALs9HidXVFWYxtjTClwCEjwS3S+UZdz9vQnXN8ogtlxz7nilvlUY8yn/gzMh+ry59wZ6Cwi34vIjyIy1G/R+UZdznkmcI2IZAOfAbf5J7SAOdF/78elO5SFGBG5BkgF/hDoWHxJRCzA08DkAIfib2G4uocG4brrWyYi3Y0xeYEMyscmAXONMf8Qkf7AmyLSzRhTHujAgkVTvCOwA6d6vG5bUVZjGxEJw3U7meOX6HyjLueMiFwC3AeMNsYU+yk2XzneOccB3YCvRWQbrr7UhUE+YFyXP+dsYKExxmmM2QpswpUYglVdzvlPwPsAxpgfgEhci7M1VXX6934immIiWAF0EpEOIhKOazB4YZU2C4HrK36/HFhiKkZhgtRxz1lEegEv40oCwd5vDMc5Z2PMIWNMojGmvTGmPa5xkdHGmIzAhNsg6vJ3Ox3X3QAikoirq+h3P8bY0OpyzjuAwQAichauRLDfr1H610LguorZQ/2AQ8aY3SfzgU2ua8gYUyoiU4BFuGYczDHGrBeRh4AMY8xC4FVct4+bcQ3KXBW4iE9eHc95NhALzK8YF99hjBkdsKBPUh3PuUmp4zkvAi4TkQ1AGZBmjAnau906nvM04N8icgeugePJwfzFTkTexZXMEyvGPR4AbADGmJdwjYMMBzYDhcANJ33MIP7/pZRSqgE0xa4hpZRSJ0ATgVJKhThNBEopFeI0ESilVIjTRKCUUiFOE4FSSoU4TQRKKRXiNBEodZJEpG/FuvCRIhJTsQ9At0DHpVRd6QNlSjUAEXkE19IGUUC2MebxAIekVJ1pIlCqAVSsg7MC174HA4wxZQEOSak6064hpRpGAq61nOJw3RkoFTT0jkCpBiAiC3HtntUBaG2MmRLgkJSqsya3+qhS/iYi1wFOY8w7ImIFlovIxcaYJYGOTam60DsCpZQKcTpGoJRSIU4TgVJKhThNBEopFeI0ESilVIjTRKCUUiFOE4FSSoU4TQRKKRXi/j/BrITJH5J20gAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAwK0lEQVR4nO3deXiTVdr48e+dNN0LxS4sRQQUUATZirKog6Ky7yoybuiMjuOLg4pVHHkVdxRHx9+4zyviLiJacdRBERQVFwoFWaQIsjXspaWUpm3ant8faUPSBUppkqa5P9fVy+ackzz3I/Dcec45zzlijEEppVTosgQ6AKWUUoGliUAppUKcJgKllApxmgiUUirEaSJQSqkQFxboAE5UYmKiad++faDDUEqpoLJy5coDxpikmuqCLhG0b9+ejIyMQIehlFJBRUS211anXUNKKRXiNBEopVSI00SglFIhLujGCGridDrJzs6mqKgo0KGoRioyMpK2bdtis9kCHYpSjU6TSATZ2dnExcXRvn17RCTQ4ahGxhhDTk4O2dnZdOjQIdDhKNXoNImuoaKiIhISEjQJqBqJCAkJCXrHqFQtmsQdAaBJQB2T/v1QwSo9087sRVnsynPQJj6KtCFdGNsrpUGP0STuCJRSqilKz7Rz+78+YNUraZQeycWe5+DeD9eSnmlv0ONoImgg2dnZjBkzhk6dOnH66aczdepUSkpKjvmevLw8XnjhBffrXbt2cfnll5/Qce+//34WL15cr5g9xcbGnvRnnIjJkyfzwQcfnNB70tPT2bBhg/t1Q527Uo3VYwt+IvuDRynauordc2+n2L4Rh7OM2YuyGvQ4mggagDGG8ePHM3bsWH777Tc2bdpEQUEB99133zHfVzURtGnT5oQvjg899BCXXHJJveJujMrKymqtq5oImtq5K+WprKyMtW89RNnh/a7XBTnseWc6zrw97MpzNOixmmQiEJF6/fTp06dex1uyZAmRkZHccMMNAFitVp555hnmzJlDYWEhc+fOZcyYMQwaNIhOnTrx4IMPAjB9+nS2bNlCz549SUtLY9u2bXTr1g2AuXPnMnbsWC699FLat2/Pc889x9NPP02vXr3o168fBw8eBI5+s87IyKBnz5707NmT7t27u/vEt2zZwtChQ+nTpw8XXHABGzduBGDr1q3079+f7t27M2PGjFrP7dFHH6Vz586cf/75TJo0iaeeegqAQYMGuZf6OHDgAJXrP23bto0LLriA3r1707t3b5YvXw64kuWUKVPo0qULl1xyCfv27XMfo3379txzzz307t2b+fPn8+9//5u+ffvSo0cPJkyYQGFhIcuXL2fhwoWkpaXRs2dPtmzZ4nVXsWLFCgYMGECPHj0499xzOXz4cL3+LJVqLGbMmEHR9jVeZXG9R2CLb0Wb+KgGPVaTGSwOpPXr11dLIs2aNaNdu3Zs3rwZgJ9//pl169YRHR1N3759GTFiBLNmzWLdunWsXr0acF1EPa1bt47MzEyKioo444wzeOKJJ8jMzOSOO+7gjTfe4Pbbb3e3TU1NdX9OWloaQ4cOBeDmm2/mpZdeolOnTvz000/ceuutLFmyhKlTp/LXv/6V6667jueff77G81q5ciXvvfceq1evprS0lN69ex83WSYnJ/Pll18SGRnJb7/9xqRJk8jIyOCjjz4iKyuLDRs2sHfvXrp27cqNN97ofl9CQgKrVq0CICcnh5tuuglw/WN49dVXue222xg9ejQjR46s1n1WUlLCxIkTmTdvHn379iU/P5+oqIb9h6KUP3344YfMmjXLqyyi7dm0GHQDUTYraUO6NOjxNBH4yaWXXkpCQgIA48eP57vvvmPs2LHHfM9FF11EXFwccXFxNG/enFGjRgHQvXt3fvnllxrfM2/ePFatWsUXX3xBQUEBy5cv54orrnDXFxcXA/D999+zYMECAK699lruueeeap/17bffMm7cOKKjowEYPXr0cc/T6XQyZcoUVq9ejdVqZdOmTQAsW7aMSZMmYbVaadOmDRdffLHX+yZOnOj+fd26dcyYMYO8vDwKCgoYMmTIMY+ZlZVF69at6du3L+BKwkoFq19//ZXrr7/eq8wWl0DSmOm0TYjzyawhTQQNoGvXrtX69vPz89mxYwdnnHEGq1atqjZ9sS7TGSMiIty/WywW92uLxUJpaWm19uvWrWPmzJksW7YMq9VKeXk58fHx7juFqk5mSmVYWBjl5eUAXvPzn3nmGVq2bMmaNWsoLy8nMjKyTp8XExPj/n3y5Mmkp6fTo0cP5s6dy9dff13vOJUKJu98u5E/TxiCo6DAXRYWFsaSz9I5//zzfXbcJjlGYIyp18/KlSvrdbzBgwdTWFjIG2+8AbgGeaZNm8bkyZPd36a//PJLDh48iMPhID09nYEDBxIXF9dgfdl5eXlMmjSJN954g6Qk15LjzZo1o0OHDsyfPx9w/X9Zs8bV5zhw4EDee+89AN5+++0aP/PCCy8kPT0dh8PB4cOH+eSTT9x17du3d///8kyChw4donXr1lgsFt5880334O+FF17IvHnzKCsrY/fu3SxdurTWczl8+DCtW7fG6XR6xVbb/68uXbqwe/duVqxY4X5/TYlSqcbsw5U7+ctNN+LYv9Or/IZpM32aBKCJJgJ/ExE++ugj5s+fT6dOnejcuTORkZE89thj7jbnnnsuEyZM4JxzzmHChAmkpqaSkJDAwIED6datG2lpaScVw8cff8z27du56aab3IPG4LrIv/rqq/To0YOzzz6bjz/+GIBnn32W559/nu7du2O31zwnuXfv3kycOJEePXowbNgwd9cLwF133cWLL75Ir169OHDggLv81ltv5fXXX6dHjx5s3LjR/U1/3LhxdOrUia5du3LdddfRv3//Ws/l4Ycf5rzzzmPgwIGceeaZ7vKrrrqK2bNn06tXL7Zs2eIuDw8PZ968edx222306NGDSy+9VJ8iVkHn9nsfoCDrB6+ymG6DWde8n8+PLcYYnx+kIaWmppqqG9P8+uuvnHXWWQGK6Pjmzp1LRkYGzz33XKBDOSkzZ84kNjaWu+66K9Ch1Etj/3uiQtenn37KyJGjgKPX4/CWp9Py6iex2iLYOmvESR9DRFYaY1JrqtM7AqWUCqDNmzdz9dVX45kELFHNSBr3dyy2iAafKloTHSz2g8mTJzN58uRAh3HSZs6cGegQlGpykpOTueiii0hPT3cViIXEMfcQ1rylT6aK1qTJ3BEEWxeX8i/9+6Eaq2bNmrFgwQIefvhhRIT2w24m+rQepMRH8fj47g0+VbQmTeKOIDIykpycHF2KWtWocj+Cuk5lVcrfLBYLM2bMYPjw4fTq1cvv17EmkQjatm1LdnY2+/fvD3QoqpGq3KFMqUCpy3LSvXv3DkhsTSIR2Gw23XlKKdVopWfauffDtTicZZjyMvdy0oBfun6Op8mMESilVGM1e1EWDmcZZUUF7J47lSO/LvPJctL15bNEICJzRGSfiKw7Tru+IlIqIie2EL9SSgWJXXkOTHkZBz5+Auf+bRxY+CS5y97Ennsk0KEBvr0jmAsMPVYDEbECTwBf+DAOpZQKqDbxUeQunUPRtkx3Wf4P87Bs/DKAUR3ls0RgjFkGHDxOs9uABcC+47RTSqmglJ5pJ/vnzzmc8bFXeVTbrjzx99sDE1QVARsjEJEUYBzwYh3a3iwiGSKSoTODlFLBIj3TztRn57Fj4T+9ym3NEnl+zltccV7HwARWRSAHi/8J3GOMKT9eQ2PMK8aYVGNMauXKmkop1dg9Mm8Z2fMfhrKjq+FKWDhnXfsQN1zaK4CReQvk9NFU4L2KBycSgeEiUmqMSQ9gTEopddLSM+3M+mQ1v7w2g/LCPK+6hGFTyY9tF5jAahGwRGCMcU/8F5G5wH80CSilgl16pp3pC9awc/5jOPf97lXXrP9EYrr+wS8LyZ0InyUCEXkXGAQkikg28ABgAzDGvOSr4yqlVKCkZ9qZ9v4acpa9SeGm5V51UZ36EX/B1dis4peF5E6EzxKBMWbSCbSd7Ks4lFLKHyqfHs5f/zWHlr/nVWdLak/iyGmIWIgJD2sUTxN70ieLlVKqAcxelEXe9g0c+OyfXuWW6OYkT7gfS7irO+iQwxmA6I6tSaw1pJRSgeC5kJwBHJt/hjKPC701jKRx9xHWPNld1NjGB0ATgVJK1YvnQnKV4i+8FktMPLlf/RtMOQlDbyOybVd3vb82mjlRmgiUUqoeKheSq6pZn1HYWrShePcmYrsNdpen1LL0dGOgiUAppephV56j1rqojn2I6tjH9bvN6redxupLB4uVUqoeauvrj4+ykRIfhYBft5s8GXpHoJRS9XBp8708v3gp0X1Gu7eWtFmEmaPPbvQX/qo0ESil1AnasGEDs+/+C4UFh4k9uItTLrkZsVghSLdM164hpZQ6AXv37mXEiBEUFhwGoCDzU/YteAhjynGWmUaz69iJ0DsCpZQ6jsrnBbL353Lw/RkUZG/zqo86rQciru/VxxpEbqw0ESil1DFUPi9QWOLkwH+epjB7o1d9bI8hxPUd537dGB8YOx7tGlJKqWOofF4g7+u51RaSi+nYm1Mu/at7sLixPjB2PJoIlFLqGHblOTi86lPyf/7Qq9yWeBovv/YWbRPigmqqaE20a0gppTx4rh/UJj4Kdqzk4OKXvdpYY1pwzp8e5+oLz+LqC88KUKQNRxOBUkpVqLp+0O+//sLeDx4Djx11xRbJqVc9yIyJFwYqzAanXUNKKVXBc/0gZ94e9n3wIMZZfLSBWDjzj/fzzP+MD8ouoNroHYFSSlWonPpZ5shn3/wHqu03/OILz3PLLbcEIDLf0jsCpZSqUDn1s2hrJqUH7V51d999d5NMAqCJQCml3NKGdCHKZiWm6x9IHH03WF2dJucPGcPjjz8e4Oh8R7uGlFKqQmW//+xFWew660JatmpN7G+LWPzxPCyWpvu9WROBUkpRfdroMxN7MrbXCOD2QIfmc5oIlFIhr+q0UXueg3s/XAvQpGYH1abp3usopVQdfPHFF9x621QKS5xe5Q5nWVCuJFofekeglApZGRkZjB8/niNHjhCds4/EEXciYTZ3fTCuJFofekeglApJv/32G8OHD+fIkSMAFG78ln0fzMSUH92QPhhXEq0PTQRKqZCze/duhgwZwv79+73Ko84417XTGMG7kmh9aNeQUiqkHDp0iGHDhrF161av8v7jbkTOvco9ayhtSJeQGCgGTQRKqRBSVFTE6NGjWbNmjVd5TLeLOdj1cmaF0MXfkyYCpVST5flsQOu4cMq/+gc/LVvm1SaqYyoJQ/9GUWk5sxdlaSJQSqmmwvPZAGMMv8ybzZG1X3q1iWhzJoljpyMVS0mEyiyhqnw2WCwic0Rkn4isq6X+ahH5RUTWishyEenhq1iUUqHHc0npvK9fq5YEbAntSLr8ASy2SHdZqMwSqsqXs4bmAkOPUb8V+IMxpjvwMPCKD2NRSoWYym/3h378oNo2k0mtUmh39SNYo+LcZaE0S6gqnyUCY8wy4OAx6pcbY3IrXv4ItPVVLEqp0NMmPorDq/9L3jdzvcrDYuL57pslPDX5YlLio4J+v+GG0FjGCP4EfF5bpYjcDNwM0K5dO3/FpJQKYmlDujBlZbxrKemyUgAs4VHMeuVdOnfuTGdCYx2hugj4A2UichGuRHBPbW2MMa8YY1KNMalJSUn+C04pFbTG9krhub/fQtfrH0VsEUiYjQefe51pfzxWj3VoCugdgYicA/wfMMwYkxPIWJRSTc/YXimMffVufvjzBeTk5DBy5MhAh9QoBSwRiEg74EPgWmPMpkDFoZRqGqruJ+D5ZHD//v0DHF3j5rNEICLvAoOARBHJBh4AbADGmJeA+4EE4AURASg1xqT6Kh6lVNOVnmnnrjmLcUa1QCzWkNtP4GT5LBEYYyYdp/7PwJ99dXylVOh4+J2lbJt7p+sBsdFpiNXm3k9AE8HxBXywWCmlTsaOHTtY88qdlBUcpHDTcvYteIRyZxEQuk8KnyhNBEqpoDXni1V06T2Asvyjy0kXbV1JwZpFQOg+KXyiGstzBEopdUJeX/ILf716HCU5dq/ymG4XE9dnFDarhOyTwidKE4FSKqikZ9p57KMVrH55Gs4DO7zqorucT8KwqYhYiAkP0/GBOtJEoJQKGumZdu5+50e2v3Uvzn2/e9VFnd6XxFHT3DuMHXI4a/oIVQNNBEqpoJCeaeeON39g97z/pWTPb151kaf1JGnsvYj16MbzOj5QdzpYrJRq9NIz7dzz3gp2z59J8a6NXnURp3YjacIMJCzcXRbKK4nWh94RKKUavVmfrGH7ew9QnL3eqzyizZkkT7gfiy0SqwhlxpASYvsNNwRNBEqpRq2oqIg1r82geMcvXuXhrTqRfOWDxMTGhfQS0g1BE4FSqlGpumbQuFOLKLFv8GoT3vJ0kic+jC0yVpNAA9AxAqVUo1G5z7A9z4EB7HkOXt1oYdL/Po+ERQBgS+5A8sSHiY1rzj+u7KFJoAFoIlBKNRqe+wxXcjjL2GrrwEMvvEnsqWfRauIjtGvdUu8EGpB2DSmlGo3a1gbaledgxvQruO/Pl1OxWrFqQHpHoJRqNFrFWCl3Flcrr3wmQJOAb2giUEo1Cg6Hg6LPZnEw/TFMaYm7XJ8J8D1NBEqpgCssLGT06NGs/vEbjvy+kvxPHseUlpASH6VjAX6gYwRKqYAqKChg1KhRfP311+6yvE0rGGj/hP88NSdwgYUQvSNQSgXM4cOHGTZsmFcSALAlnkZW68tIz7TX/EbVoDQRKKUCIi8vjyFDhvDdd995lduSO9By0mM4w+OYvSgrQNGFFk0ESim/e2PpOtqefS4//PCDV3l4y9NpedVjWKObA7rVpL/oGIFSyq/mfrWGW/44luJ927zKw1t3IvnKh7FGxrrLdClp/9BEoJTyG7vdzq2TRlO833tnsYiUrrS8YiYSEe0u02mj/qNdQ0opv9i6dSsXXHABjqpJoN05JF/5IBIRTUp8FAI6bdTP9I5AKeVzWVlZDB48GLvdexZQZIfeJI27D4stAgHdRyBANBEopRpc1aWkJ5zmJPfQYa82UZ36kTT6HiTMtb2kwbXonCYC/9OuIaVUg0rPtJP2wRqvpaSfX1tGi3H/i9hcS0lHd/0DSWOmu5NAJZ0lFBh6R6CUalAPfrIeZ5nxKisrN4S1OYukcffh2PwTLQbfjFis1d6rs4QCQxOBUqpB5RY6a62L6tCbqA69a67TWUIBo11DSqkGdWTjd5QXH6lTW6uIzhJqBPSOQCnVYJ588kkOfDyLiLZnk3zlg1hskbW2jbJZ9eLfSGgiUErVi+fMoNbNIkje+AEfv/kyAMXZ6znw8RMkjbsPsYZhswgTzz2VpRv3u2cS6VTRxsNniUBE5gAjgX3GmG411AvwLDAcKAQmG2NW+SoepVTDmZG+lrd/3IEBTFkpv7z7DEfWfeXVpmj7apx7t9Cha0+96DdyvrwjmAs8B7xRS/0woFPFz3nAixX/VUo1YumZdncSKHcWceDjJ3BsWeHVJi4ujoULFzJo0KCAxKhOjM8Gi40xy4CDx2gyBnjDuPwIxItIa1/Fo5RqGLMXZWGAMkc++96bUS0JJCcn880332gSCCLHTQQicpuItPDBsVOAnR6vsyvKaorhZhHJEJGM/fv3+yAUpVRd2fMclObvY89bd1O8a6NXXUSL1nz//ff06tUrQNGp+qjLHUFLYIWIvC8iQyv69v3KGPOKMSbVGJOalJTk78MrpSqkZ9px7t/GnjfTKD2Y7VVnS2rPC+/9hzPOOCNA0an6Om4iMMbMwNWP/yowGfhNRB4TkdNP8th24FSP120rypRSjdRdz77N7rfupqwgx6s8ol13xtz3CjdeVvPDYqpxq9MYgTHGAHsqfkqBFsAHIvLkSRx7IXCduPQDDhljdp/E5ymlfGjarBfY8uZ9mJJCr/LoLgNpecWD7HJUXzJCBYfjzhoSkanAdcAB4P+ANGOMU0QswG/A3bW8711gEJAoItnAA4ANwBjzEvAZrqmjm3FNH73hZE9GKeUbDoeDf816CMpLvcrjeo+kxeCbEItVF4wLYnWZPnoKMN4Ys92z0BhTLiIja3uTMWbSsT604i7jf+oUpVIqYCqfGUiccD973r4bU7F8RPygyTQ7dwKVw4a6YFzwqssYwQNVk4BH3a8NH5JSqrGYkb6WtyqeGQhPOo3k8fchtkgSRk6j+XmXu5OALhgX3HSJCaVUrd79aafX68h255Byy6tYo5u7y+KjbMwcfbY+ORzENBEopbysW7eOmJgYOnToQJkx1eo9k0CLaBuZ91/mz/CUD+gy1Eopt0WLFjFw4ECGDx9Obm4u1mM8NhRls/LAqLP9GJ3yFU0ESikAXnzxRUaMGEF+fj4bN25kwoQJXNm7VY1tY8J1CemmRBOBUiGurKyMO++8k1tvvZWysjJ3+dKlS+latJ5r+rVz3xlYRbimXzvWPzRUk0ATomMESoWwd77dyJSbJpOb9ZNXuYjw1FNPcc011yAiPDK2e4AiVP6giUCpEPXKpz/ytxsmUbx/m1d5RGQU7897j9GjRwcmMOV3mgiUCgGeu4m1iY9iRPIhHvjbjZQeyfNqZ409hS6TH9UkEGI0ESjVxKVn2rn3w7U4nK7+/43ffMzyL16otlxEeKszSBo/g/yYxECEqQJIE4FSTdzsRVk4nGWY8jJyl7zK4ZULq7WJ7jKQhBF3YLFF6lIRIUgTgVJN3K48B+VFBexPn0XR9tXV6psPmETz8ychYtGlIkKUJgKlmrg28VHs3F9MeXGBV7nFFsGdjzzL8vJO7rED3WQ+NGkiUKqJqTow3D4hCnueg6Rx97H79TsoL8zDGpfI9Q88x+xpEwMdrmoENBEo1YRUHRi25znc+wSENUsiady95H37Nkmj09jo1G1flYsmAqWCnOcdgEWE0rJSxHJ0tzDPZeMi255Ny6seRUR0IxnlpktMKBXEKu8A7HkODODY+zu750yh2L6x1vfoRjKqKk0ESgWxyqmhAAXrl7Lnzbtw5uxkf/pjlBXkuttVXUNUZwcpT5oIlApi9jwHpszJwcUvk/Off2BKiwEoKzjI/vTHMWVOomxWru7XjpT4KARIiY/SlUOVFx0jUCpIpWfaKcvfz76PZ1GyK6tavS2pHW2aR3LPCL3oq2PTRKBUkLrvubfZ9e6jlDvyvSusNqbMmMW/Zt4ZmMBU0NFEoFSQKSsr46Krp7Bh3st4zwkCa7Nkksb9nX/NnBqY4FRQ0kSgVJBIz7Tz6IIfWffWIzUuFRHZsQ+JI++iXetk/wengpomAqWCQHqmnanPvI39oycoKzhYpVZofv4faT5gItHhNp0NpE6YJgKlgsDU6fez48u5YMq9yi3R8SSOuouo9j0BdDaQqhdNBEoFgUOHj1RLAhGndiNxVBphcQmAaz9hTQKqPvQ5AqWCQNcRfyLi1G4Vr4Rm/a+k5VWPupMAwKTzTg1McCro6R2BUo1A1RVDqy4Hfffwrty17x52vHMfLS7+M1EdervrrCJMOu9U3WBe1ZsYY47fqhFJTU01GRkZgQ5DqQbjuWKoM28PYXGJhNtsxEaGkVfodCcGgCc//5Xd+cW6d4A6YSKy0hiTWlOd3hEoFWCzF2VRWFLKkbVfcnDxyzRLHUv8hdeSW+gEXMtI3PvhWh4f353lf78kwNGqpsinYwQiMlREskRks4hMr6G+nYgsFZFMEflFRIb7Mh6lGqOdu/dyIP1xcj7/fxhnMYd+eJ+iHWu92jicZcxeVH0ZCaUags8SgYhYgeeBYUBXYJKIdK3SbAbwvjGmF3AV8IKv4lGqMVq8eDF7595G4ablHqWGA//5B+XFhV5tdf8A5Su+vCM4F9hsjPndGFMCvAeMqdLGAM0qfm8O7PJhPEo1Gg6Hg9tvv51LL72UkvwcrzqxRdB84CQk3Hu/AN0/QPmKL8cIUoCdHq+zgfOqtJkJfCEitwExQI0doCJyM3AzQLt27Ro8UKX8aeXKlVx77bX8+uuv1erCW51Bh8unU9asNc6yoxM5dP8A5UuBfo5gEjDXGNMWGA68KSLVYjLGvGKMSTXGpCYl6T6rKjg5nU4eeugh+vXrV0MSEJr1u4IONzzNrBuHMvvyHrp/gPIbX94R2AHPJ1zaVpR5+hMwFMAY84OIRAKJwD4fxqWUX3g+GxBZsIvtHz2FY9emau2szVuSOOIOIk/tRlG5axbR99Mv1gu/8htfJoIVQCcR6YArAVwF/LFKmx3AYGCuiJwFRAL7fRiTUn6Rnmkn7YM1lDhLyV+RTt63b0GZs1q72HMuo8XFf8YSEe0u00Fh5W8+SwTGmFIRmQIsAqzAHGPMehF5CMgwxiwEpgH/FpE7cA0cTzbB9oSbUjV48JP1OMsMptRJwer/VksCluh4koZOIbJTv2rv1UFh5W8+faDMGPMZ8FmVsvs9ft8ADPRlDEoFQuXDYJbwSBKGT2XvO0cfo4nuPIBThvwP1ujmRNms7s3nQQeFVWAEerBYqSYv8tRuxPUZhSUylsRRd5E49l6s0c3dg8A6KKwCTZeYUKoBFBcXs3LlSgYMGABAfJSNPMfR7qD4C6+nWb8rCIs9BTj6zX9srxS98KuA0zsCpeopPdPOwFlLaH3NU7Ro15mLBg9my5YtAMwcfTY2i7jbWsIj3UlAv/mrxkbvCJSqh/RMO3e/8yO7v3qNgszPqNxEfvwfJ7P6x2Xui/yxlpZWqrHQZaiVOgHpmXae/O9Gfvv5K3IXv1zD/sHw+uuvc9111wUgOqVqp8tQK9UA0jPtTJuzmN2fP49jy4oa28SecxmjRo3yc2RKnRxNBErVQUlJCVPvncnOr97ElBZXqw9r0ZpThkzhjB79aNGiRQAiVKr+NBEodRxLlixhypQp7KhhkTgsVpqddznN+1+J1RbBRWfqWlgq+GgiUMqD5/pAiZYjRK56h+8WfVxj24iUrpwy5FbCk9oDruHiBSvtpJ52ig4Kq6CiiUCpCp57BxtjWPNKGs6cHdXaWSLjaHHRDcR0v4Sqi+VW7iSmiUAFE32OQKkKsxdluZd7EBGan191jUQYPGYife56nbhzLquWBCrponEq2OgdgVIVql7Ao7sMJKLdORTv+IWePXvywgsv0L9/f3f9wFlLsNdw0ddF41Sw0TsCFdJyc3NZsmQJUP0CLiKccslf6DD6NjIyMrySAEDakC5E2axeZbponApGmghUSPrg5210HH0biW1O47Lho5j71ZoaL+zN23Tk6Zn3YLVaq33G2F4pumicahL0yWIVUowx/P2ZOTz96AOUHDy6YV587+G89n+vALoshGqa9MliFdIqp4Ru3bCagm9f4/C2ddXa5GX+l5mv/5fV//yTXvhVyNFEoJq09Ew7d/77c/Z+9RqFm5bX2EbCo2je7wpyrfpEsApNmghUk5Wdnc0tf7mFvRmfgymv3kAsxHa/hPgLrsUa24IUne2jQpQmAtXk5OTk8Pjjj/Pcc89RXFx9XSCAqI6pxA+6gfCk01yvdbaPCmGaCFST8s033zBq1CgOHz5cY314q07ED5pMdPsetGkepYPCSqGJQDURlQPCO/fmcKRUqtWHtWhN/IXXE91lICKCMfD99IsDEKlSjY8mAhU0PBeE8/wW77lGkCUimmbnjSfv67kAWGMTaD5wErHdL0GsR/+663iAUkdpIlBBwfNiX1ZUwIZFC5iePw7wXiMIIK7XSI6sW0ps98HE9hqBxRZR7fN0PECpozQRqKAwe1EWBXk55K9cyOGVn2BKHFgiY5ndLKbaGkGW8Eha3/gcItW7iADio2w6HqCUB00EqtHbvn07a+c/Q8EvX3rtDpb/43zs3S8h5ZTYaou/1ZYEomxWZo4+26fxKhVsNBGoRsVzHKC5Yxcttiziu0UfU1paWq1tad4ebNt+IG3SFHe3UVU2ixAbGUZeoVNnBylVC00EqtFIz7QzfcEv5G5eRf7PH7Ft68pa21qimpHQbwIP3na9+8I+e1EW9jwHVhHKjCFFL/xK1YkmAtUoFBcXk/b4v9j+zfs4922ttV148yRi+oyl8x/GMH1UT/dFfmyvFL3gK1VPmghUwC1evJhrrrmGvXv31tqmc+fO3HPPPVxzzTWEh4f7MTqlmj5NBMovansGAFwX+QMHDtT4voiUs+hw8STWz70Pi0W3z1DKF3z6L0tEhopIlohsFpHptbS5UkQ2iMh6EXnHl/GowKh8BiA7txAD2PMc3PvhWtIzXfsBtGvXjnHjxnm8Q4juPICWV8+mww1P8/gdN2oSUMqHfHZHICJW4HngUiAbWCEiC40xGzzadALuBQYaY3JFJNlX8Sj/Ss+08+An68ktdOLM2cnh1f+lZM9mWv5xFiKCw1nG7EVZ7ruC22+/nUWLFnHhyCvYnXIRB60tdJaPUn7iy66hc4HNxpjfAUTkPWAMsMGjzU3A88aYXABjzD4fxqP8JD3TzrR3f+bQhu8oWLOI4uz17rri7PVEntoN8N4sfsCAAdjtduLi4vwer1KhzpeJIAXY6fE6GzivSpvOACLyPWAFZhpj/lv1g0TkZuBmcHUjqMbJGENGRga33PYw+1YvwRQfqdbm8OrP3YnAc7N4EdEkoFSABHqwOAzoBAwC2gLLRKS7MSbPs5Ex5hXgFXDtWeznGFUNPLt+Sg8foHzTtzizvubAzi3HfF/xjrWYUifRUZG63o9SjYQvE4EdONXjdduKMk/ZwE/GGCewVUQ24UoMK3wYlzoJ6Zl2Zi5cz8G8QxRu+oEjG76maPuamncA8xBxajdiewwhpstA2iY2075/pRoRXyaCFUAnEemAKwFcBfyxSpt0YBLwmogk4uoq+t2HMaljONYUz8r6ez9cS6GjCPtLN1JeVHDMz7NExxPb7WJiz7kMW0JbbBZh9hU9NAEo1cj4LBEYY0pFZAqwCFf//xxjzHoReQjIMMYsrKi7TEQ2AGVAmjEmx1cxqdp5LvMMR6d4Al5LODicZUiYjch259S8GbxYiOrYh9hzLiPq9L7uPQDio2zMHH22JgGlGiGfjhEYYz4DPqtSdr/H7wa4s+JHBZDnmv7lJUU4tq4kZ+sqnoyc5r54e67wGXP2IK9EYEvuSGy3wcR0vRBrTAt3eUp8lO4EplQjF+jBYuUHx+vyAdhh34VjywoKN/9M0dZVmNISALaceQGuR0FwL+YGENWxL7bkDkR1TCWm6yD3JvCedEN4pYKDJoImrrYuH2MM7WU/n376KZ9++inZP/4EVJ+Q5cj6zv17ZRIAkDAbbW74l/t1fJSNkT1as3Tjft0QXqkgo4mgiajpWz/AHe+vpvL6XebIp2hrJge2ZjLx2Uych48/HHMkazkLVmxnQt/TSImPqrYBDGj3j1LBThNBI1aXLp3Kdmnz1+Asd13x7XkO7py3GrEIxkBpwUH2L3iIkj1bqOlbf02szZKJ7tyf6M79+ceXvzGh72mkDelSbQMY7f5RKvhpImik6jKLZ0b6Wt79aae7y8aYckRci7OVA1QkBmt0c0rz9nC8JBDe8nSizjiP6E7nYUvu6N7ucXd+sddx65KclFLBQxOBn9X1W77nLJ5Kngu1zUhfy9zFqym2/+r6yf4VS0Q0LSc+XO2zxGKtcbpnZFQ0Qy67lBEjRjBs2DBGvrqBPIez2vs9l4LQDWCUano0EfhRXb7lV9pVpS++vLiQkr2b2fDTZgZ89TQ///QzZYf3e7WRsHBMqRMJs1U7dmT7nhRuWu6a6dOhN1Ed+tDh7F6kzxjqbjNztGjXj1IhSBOBHx3rW35lvT3PgSnMo2jPFkr2baVk3++U7N1C6cGjq3P8UMvnm9ISivdsJrLtWdXqYrr+gejOA7DGxLvL9hR4x6JdP0qFJk0EVdSl66au3TtVeX7LN8a4++Ar7wwqk8SBL1+mcOO39YrfuW9LjYnAEhEDEd5lnl0+lbTrR6nQEzKJoK4X+Kqzb9LmrwGOfls+ke4dp9PJzp072b59O7///juHv/sSR84uSnN34czdRdu/voYlMhYRvO4UwpPa1y0RWMMITz6diLZnEZHi+gmLPaXWaZ6etMtHKVUpJBJBXS/eMxeudyeBSs5yw8yF66utt1OpZP92CvZuZmrGAr45M5af1v3G2qzfceTuo+xI7jFX5XQetBPRpgumymQeW1L7GloLtoS2hLc6g/DWnYlo3Znw5I5e4wHX9GvHI2O7AzBw1pJak0GKdvkopTyERCKovHgX79nsmkZpyjliDH9b9xWLz2nJ57/Yyc0/gikrwThLMM4iyp1FmBIH5SWF7CkuZM9fvqRVq1bVBnGP/LqM/B/mkQP8s9qWOsfmzN1FRJvq38rDk9sT3qoT4ckdsCV3ILxlR8KTOmCJiK7xc6JsVh4f393rwl7bnP+q7ZRSKiQSQeXFu2DNfylY7X21fj69bp+Rk5NDq1ataFOl28Ua3azecZXm7gKgRbSNIme5+6Id1rwlra9/BgCbRSg1ptpdQ6Xavt3rwK9Sqq5CIhG4L94VD1vVx6FDh4Dq37St0fHHfJ81pgXWZsnEJbXGGZOMLb4VYfGtCDulLdaYFgjwwKizgaOzhioXd0vxWCqiPt/udeBXKVUXIZEI0oZ04fZ5qwGp92fk5+cDNXzTPq0jZ142mtSuHflo4xEKwpoRFpeANS4Ra2wCFluE+4Je9WIuwNX92rk/83gXbf12r5TyBTG19Tk0UqmpqSYjI+OE39froS/Y8cN/KNq6yn1nINYwsFgRSxgSZkPCwhFrOBIegcUWhdgisUREMWVID6ZccQmnnHLKMY9RdVAavL+513faqVJKnSwRWWmMSa2xLlQSQU0XaZtVwFBtplBV22aNOKHj6MVeKdXYHCsRhETXENQ+eFpZdqyplid6HL3wK6WCScgkAqj9Il3ZbaPr7CilQlFIJYJj0emWSqlQpYnAg3brKKVCUf0n1iullGoSNBEopVSI00SglFIhThOBUkqFOE0ESikV4oLuyWIR2Q9sr+fbE4EDDRhOMNBzDg16zqHhZM75NGNMUk0VQZcIToaIZNT2iHVTpeccGvScQ4Ovzlm7hpRSKsRpIlBKqRAXaonglUAHEAB6zqFBzzk0+OScQ2qMQCmlVHWhdkeglFKqCk0ESikV4ppkIhCRoSKSJSKbRWR6DfURIjKvov4nEWkfgDAbVB3O+U4R2SAiv4jIVyJyWiDibEjHO2ePdhNExIhI0E81rMs5i8iVFX/W60XkHX/H2NDq8He7nYgsFZHMir/fwwMRZ0MRkTkisk9E1tVSLyLy/yr+f/wiIr1P+qDGmCb1A1iBLUBHIBxYA3St0uZW4KWK368C5gU6bj+c80VAdMXvfw2Fc65oFwcsA34EUgMdtx/+nDsBmUCLitfJgY7bD+f8CvDXit+7AtsCHfdJnvOFQG9gXS31w4HPAQH6AT+d7DGb4h3BucBmY8zvxpgS4D1gTJU2Y4DXK37/ABgsIuLHGBvacc/ZGLPUGFNY8fJHoK2fY2xodflzBngYeAIo8mdwPlKXc74JeN4YkwtgjNnn5xgbWl3O2QDNKn5vDuzyY3wNzhizDDh4jCZjgDeMy49AvIi0PpljNsVEkALs9HidXVFWYxtjTClwCEjwS3S+UZdz9vQnXN8ogtlxz7nilvlUY8yn/gzMh+ry59wZ6Cwi34vIjyIy1G/R+UZdznkmcI2IZAOfAbf5J7SAOdF/78elO5SFGBG5BkgF/hDoWHxJRCzA08DkAIfib2G4uocG4brrWyYi3Y0xeYEMyscmAXONMf8Qkf7AmyLSzRhTHujAgkVTvCOwA6d6vG5bUVZjGxEJw3U7meOX6HyjLueMiFwC3AeMNsYU+yk2XzneOccB3YCvRWQbrr7UhUE+YFyXP+dsYKExxmmM2QpswpUYglVdzvlPwPsAxpgfgEhci7M1VXX6934immIiWAF0EpEOIhKOazB4YZU2C4HrK36/HFhiKkZhgtRxz1lEegEv40oCwd5vDMc5Z2PMIWNMojGmvTGmPa5xkdHGmIzAhNsg6vJ3Ox3X3QAikoirq+h3P8bY0OpyzjuAwQAichauRLDfr1H610LguorZQ/2AQ8aY3SfzgU2ua8gYUyoiU4BFuGYczDHGrBeRh4AMY8xC4FVct4+bcQ3KXBW4iE9eHc95NhALzK8YF99hjBkdsKBPUh3PuUmp4zkvAi4TkQ1AGZBmjAnau906nvM04N8icgeugePJwfzFTkTexZXMEyvGPR4AbADGmJdwjYMMBzYDhcANJ33MIP7/pZRSqgE0xa4hpZRSJ0ATgVJKhThNBEopFeI0ESilVIjTRKCUUiFOE4FSSoU4TQRKKRXiNBEodZJEpG/FuvCRIhJTsQ9At0DHpVRd6QNlSjUAEXkE19IGUUC2MebxAIekVJ1pIlCqAVSsg7MC174HA4wxZQEOSak6064hpRpGAq61nOJw3RkoFTT0jkCpBiAiC3HtntUBaG2MmRLgkJSqsya3+qhS/iYi1wFOY8w7ImIFlovIxcaYJYGOTam60DsCpZQKcTpGoJRSIU4TgVJKhThNBEopFeI0ESilVIjTRKCUUiFOE4FSSoU4TQRKKRXi/j/BrITJH5J20gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -202,7 +202,8 @@ "\"b\": torch.ones((1, 1))\n", "}\n", "with torch.no_grad():\n", - " updated_inputs, info = theseus_optim.forward(theseus_inputs, track_best_solution=True, verbose=True)\n", + " updated_inputs, info = theseus_optim.forward(\n", + " theseus_inputs, optimizer_kwargs={\"track_best_solution\": True, \"verbose\":True})\n", "print(\"Best solution:\", info.best_solution)\n", "\n", "# Plot the optimized function\n", @@ -285,7 +286,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAwDUlEQVR4nO3deXhURfbw8e/pTifpbIRs7BiEgAKRxbAoiqAioLJvoqKoo+O+EgVlBIFRkFFwFHVwGYQRxQUi+sNBfFGZ0QEJAoIoCCKYgIJggEACnaTePzpp0kmHJJBOd6fP53l4TNet27cuxHvurap7SowxKKWUCl4WXzdAKaWUb2kgUEqpIKeBQCmlgpwGAqWUCnIaCJRSKsiF+LoB1ZWQkGCSk5N93QyllAoo69at+90Yk+hpW8AFguTkZDIzM33dDKWUCigisquibdo1pJRSQU4DgVJKBTkNBEopFeQCbozAE4fDQVZWFvn5+b5uivJT4eHhNG3aFJvN5uumKOV36kQgyMrKIjo6muTkZETE181RfsYYw4EDB8jKyqJFixa+bo5SfqdOdA3l5+cTHx+vQUB5JCLEx8frE6NSFagTgQDQIKBOSX8/lKpYnQkESilVF61Zs4YrrriC3377zWvH0EBQQ7Kyshg0aBApKSm0bNmS++67jxMnTpxyn5ycHF588UXX5z179jB8+PBqHffxxx/n008/Pa02lxYVFXXG31EdY8eO5b333qvWPhkZGWzZssX1uabOXSl/9dtvvzFs2DBWrFjB+eefz5o1a7xyHA0ENcAYw9ChQxk8eDA//vgj27ZtIzc3l8cee+yU+5UNBI0bN672xXHKlClcfvnlp9Vuf1RYWFjhtrKBoK6du1KlFRQUMGrUKLKzswHIzs6mZ8+e7Ny5s8aPVScDgYic1p/zzz//tI63cuVKwsPDuemmmwCwWq3MmjWL119/nWPHjjFv3jwGDRpEr169SElJ4YknngBg/Pjx7Nixg44dO5Kens7PP/9M+/btAZg3bx6DBw+mT58+JCcn88ILL/Dss8/SqVMnunfvzsGDB4GTd9aZmZl07NiRjh07kpqa6uoT37FjB/369eP888/n4osv5ocffgBg586dXHDBBaSmpjJx4sQKz+2vf/0rrVu35qKLLmL06NH87W9/A6BXr16uVB+///47Jfmffv75Zy6++GI6d+5M586d+eqrrwBnsLz77rtp06YNl19+Ofv27XMdIzk5mUceeYTOnTvz7rvv8sorr9ClSxc6dOjAsGHDOHbsGF999RVLly4lPT2djh07smPHDrenirVr13LhhRfSoUMHunbtypEjR07r31Ipf/HII4/wxRdfuJUldBvExpzQGj9WnZg+6mvfffdduSASExND8+bN2b59OwBff/01mzdvJiIigi5dunDVVVcxffp0Nm/ezIYNGwDnRbS0zZs3s379evLz82nVqhUzZsxg/fr1PPDAA8yfP5/777/fVTctLc31Penp6fTr1w+A2267jZdffpmUlBTWrFnDnXfeycqVK7nvvvu44447uOGGG5gzZ47H81q3bh1vv/02GzZsoKCggM6dO1caLJOSklixYgXh4eH8+OOPjB49mszMTJYsWcLWrVvZsmULv/32G23btuXmm2927RcfH88333wDwIEDB7j11lsBmDhxIq+99hr33HMPAwcO5Oqrry7XfXbixAlGjRrFokWL6NKlC4cPH8Zut5+ynUr5s7feeotnn33WrSyseSoh3a9nwuJNAAzu1KTGjqeBoJb06dOH+Ph4AIYOHcp///tfBg8efMp9evfuTXR0NNHR0dSrV48BAwYAkJqayrfffutxn0WLFvHNN9/wySefkJuby1dffcWIESNc248fPw7Al19+yfvvvw/AmDFjeOSRR8p913/+8x+GDBlCREQEAAMHDqz0PB0OB3fffTcbNmzAarWybds2AFatWsXo0aOxWq00btyYSy+91G2/UaNGuX7evHkzEydOJCcnh9zcXPr27XvKY27dupVGjRrRpUsXwBmElQpUGzdu5JZbbnErs0YnkDjwEcRiJc9RyMzlWzUQ+Ju2bduW69s/fPgwu3fvplWrVnzzzTflpi9WZTpjWFiY62eLxeL6bLFYKCgoKFd/8+bNTJ48mVWrVmG1WikqKiI2Ntb1pFDWmUypDAkJoaioCMBtfv6sWbNo0KABGzdupKioiPDw8Cp9X2RkpOvnsWPHkpGRQYcOHZg3bx6ff/75abdTqUBy4MABBg8eTF5e3slCq43EIY9ijYx1Fe3JySu/8xmok2MExpjT+rNu3brTOt5ll13GsWPHmD9/PuAc8HzooYcYO3as6256xYoVHDx4kLy8PDIyMujRowfR0dE11pedk5PD6NGjmT9/PomJzpTjMTExtGjRgnfffRdw/r1s3LgRgB49evD2228D8Oabb3r8zp49e5KRkUFeXh5Hjhzhww8/dG1LTk52/X2VDoKHDh2iUaNGWCwWFixY4Br87dmzJ4sWLaKwsJC9e/fy2WefVXguR44coVGjRjgcDre2VfT31aZNG/bu3cvatWtd+3sKlEr5s4KCAkaPHl2uizj+ijsJa9TaraxxbM12fdbJQFDbRIQlS5bw7rvvkpKSQuvWrQkPD+fJJ5901enatSvDhg3jvPPOY9iwYaSlpREfH0+PHj1o37496enpZ9SGDz74gF27dnHrrbe6Bo3BeZF/7bXX6NChA+3ateODDz4A4LnnnmPOnDmkpqa6ZiWU1blzZ0aNGkWHDh3o37+/q+sFYNy4cbz00kt06tSJ33//3VV+55138sYbb9ChQwd++OEH153+kCFDSElJoW3bttxwww1ccMEFFZ7L1KlT6datGz169OCcc85xlV9zzTXMnDmTTp06sWPHDld5aGgoixYt4p577qFDhw706dNH3yJWAWfChAmsWLHCraz/yBtJPL+fW5ndZiW9b5saPbYYY2r0C70tLS3NlF2Y5vvvv+fcc8/1UYsqN2/ePDIzM3nhhRd83ZQzMnnyZKKiohg3bpyvm3Ja/P33RAWvN998k+uvv96tLDq5Pa8tWorNFsrM5VvZk5NH41g76X3bnNb4gIisM8akedqmYwRKKeVjcXFxRETFcCz3MADWqHjqXfUIj3+4laeGpvLl+Esr+YYzo08EKmjo74nyZ50feoPNb/wFR86vNLxuhmtcoEmsvUYCQVA8ERhjNLGYqlCg3fCo4POHLYGGY57h+N5tboPDNT1DyJM6MVgcHh7OgQMH9H925VHJegRVncqqlC80jrVjCYvAntyxXLm31YkngqZNm5KVlcX+/ft93RTlp0pWKFPKX6X3bcOExZvIc5zMt+WNGUKe1IlAYLPZdOUppVRA+OKLL3j66adZsGABcXFxrvKSmUA1MUOouurEYLFSSgWCnTt30qVLFw4cOEDLli354IMPaNeuXa0c+1SDxXVijEAppfzdW//dSvsLLuPAgQOAMzPwhRde6JaJ11c0ECillJctXvcLt91yE8d+c19L4MprbyUpKclHrTpJA4FSSnnZvePGk7vtf25lEW0uYlfz/j5qkTuvBQIReV1E9onI5krqdRGRAhGp3hqNSikVAN58802yP1/oVhbaoCXxV93P3kP+kRPLm08E84B+p6ogIlZgBvCJF9uhlFI+sWbNmnJrC1giY0kcOhGLLbxW3hGoCq8FAmPMKuBgJdXuAd4HfD9aopRSNeiXX35h0KBBrsWgALDaSBoykZCYxFp7R6AqfDZGICJNgCHAS1Woe5uIZIpIpr40ppTyd7m5uQwYMIDffvvNrTy+/72ENTmHWLuNp4am1so7AlXhy8Hi2cAjxpiiyioaY+YaY9KMMWkli64opZQ/Kiws5LrrrnMtAlUipvtwotr1BiAyLMRvggD49s3iNODt4kRxCcCVIlJgjMnwYZuUUuqMTJgwgaVLl7qV2VO6E9vzBtfn2kgkVx0+CwTGGFdOCBGZB3ykQUApFcgOHjzIa/Pmu5XZks4m4eqHEDnZAeMvg8QlvDl99C3gf0AbEckSkVtE5HYRud1bx1RKKV9atSuPqJFPE9qgJQDWyPokDXscS+jJC7/NKn4zSFzCa08ExpjR1ag71lvtUEqp2pCxPpsJizchUfE0uHYGB5e/QHTaQEJiEtzqRYb61/gA1JHso0op5Wszl291pZC2hIaTMMDz2t6H8hy12awq0UCglFKnKWN9tittdFXzOPvb+ABoriGllDotS77J4k/3prNr964qBwF/eomsNA0ESil1Gu5Nf5QD/32LX+c/xPG9P1Zav0ms3a9eIitNu4aUUqqa5s+fT9bKBQAUHv2D3xaOJ3HIo9jPPr9cXbvN6rcBoIQGAqWUqoaVK1eWSyQntjBC6jcGINZuIzIspNaXmzwTGgiUUqqKvvvuO4YOHUpBQcHJQquNxKETsdVvhM0iTB7Yzu8v/GXpGIFSSlXB3r17ufLKKzl06JBbecJVDxDetK3zg/igYTVAA4FSSlUiNzeXq6++mt27d7uVx/YaS+S5PV2fHYWGmcu31nbzzpgGAqWUOoWCggIu6TeQb775xq08qmM/YroOK1ff3xLKVYUGAqWUqoAxhitH3sg3X37mVh7ZMo2WA++lOHuyG398YawyGgiUUqoCTz75JCuWlF9vOG7gI2CxYrdZ3bb56wtjldFAoJRSHsybN4+JEye6lVljkkgaPhlLqJ1DeQ6eGppKk1g7gn+/MFYZnT6qlFKlZKzP5ullW1j3/DS3ckt4FA1GPIE1qj7g7AIa3KlJQF74y9InAqWUKlaSSnrPkRM0GP0kYc3PA0BK3hVIaAYEbhdQRfSJQCmlirmlkg6LpMGIJzjw8XMktr+IxqldAupt4erQQKCUUsXKTv2UEJtrXYEvx1/qiybVCu0aUkqpYhVN/QzEKaHVoYFAKRXUTpw4wdixY9m4cSPpfdvUmSmh1aGBQCkVtIqKirjpppt444036NmzJ/VyttWZKaHVoWMESqmgZIzhwQcfZOFC5wtjhw8f5rI+fUkcOpFWnS9i1qiOdT4AlNAnAqVUUJo+fTrPPfecW5k1JoHQBi3JzsljwuJNZKzP9lHrapcGAqVU0HnllVd49NFH3cqskfVJGjkVa2QsAHmOwoDMJHo6NBAopYLK4sWLuf32293KJDSCpJFPYItt6FYeiJlET4eOESilgsbKlSsZPXo0RUVFrrKwsDBa3TCN3Lizy9Wv69NGS+gTgVIqKKxdu5ZBgwZx4sSJk4UWC/Wuehhb03bYLO4ppYNh2mgJDQRKqTpvy5Yt9O/fn9zcXLfy+H73YU/pxh/HHCDOheeDadpoCe0aUkrVWRnrs5n69hdsfPFeCnMPuG2r3/tmolIvc312FBoiw0LYMOmK2m6mz2kgUErVSRnrs0mf/wU/vzGuXBCod8FIYroOLbdPsAwOl6VdQ0qpOmnm8q0cl1BCYhLdyht0G0jbAbd53CdYBofL8logEJHXRWSfiGyuYPt1IvKtiGwSka9EpIO32qKUCj57cvKwhNpJGj4Ze6tuAEScewnhl/yJh/udE5Q5hSrizSeCeUC/U2zfCVxijEkFpgJzvdgWpVSQKbm7l5BQEgdPoP6lfyLhqvtpUj+SwZ2aBGVOoYp4bYzAGLNKRJJPsf2rUh9XA0291RalVPBJ79uGCYs3kecoRKwhxHQZ7HbXX1eWmawJ/jJGcAvwcUUbReQ2EckUkcz9+/fXYrOUUoGioKCALVu2uD7rXX/ViTHGe1/ufCL4yBjT/hR1egMvAhcZYw5UVK9EWlqayczMrLlGKqUCXlFREWPHjmXx4sV89NFH9OrVy9dN8jsiss4Yk+Zpm0+fCETkPOBVYFBVgoBSSpVljOH2229nwYIFHD16lP79+/PxxxV2MCgPfBYIRKQ5sBgYY4zZ5qt2KKUClzGG++67j1deecVVlp+fz9AbbuO9r3/2XcMCjNcGi0XkLaAXkCAiWcAkwAZgjHkZeByIB14UEYCCih5blFKqLGMMjzzyCM8//7xbuTUqjrihk/jLhz8QYrPpmEAVeHPW0OhKtv8J+JO3jq+UqtsmTZrEzJkz3cosEbE0uOav2Oo3cq0noIGgcv4ya0gppaps6tSpTJ061a3MYo+hwTXTsMU3c5UFa8qI6tJAoJQKKDNmzODxxx93K5OwSJJGTiE0MdmtPFhTRlSXBgKlVMB45plnGD9+vFuZhNppMHIKYQ1buZdD0KaMqC4NBEqpgDBr1izGjRvnVia2cJJGTCGscfkLvgEdH6giDQRKKb/397//nQcffNCtTELCSBoxmfCm53rcp4l2C1WZBgKllF8rKipi5cqVbmUSEkbi8McJb+Y5aUEwZxI9HRoIlFJ+zWKxcN2js4hqfQFQnE102F+wn+Weud7qfB9JcwqdBl2hTCnl92av3EncwIcpWjabqPaXY0/u6Npmt1n1wn+GNBAopfxKxvpsZi7fyp6cPBrH2knv24Y9OXmI1UbigPRy9TUInDntGlJK+Y2M9dk89NonZOfkYYDsnDwmLN5EPbvNY/0msXYNAjVAA4FSym/cN2ESP718G3k7Tqaaz3MUIoIuLelFGgiUUj5njGHKlCnsXv4aFBawb8lfydv5jWt7zjGHLjLjRTpGoJTyKWMMEydO5MknnzxZWOjg9w//RpPbX8MSaqdxcReQXvi9QwOBUspnjDGMGzeOZ5991q1cQu0kDnkUS6hdu4BqgQYCpZRPFBUVce+99zJnzhy38oioaM6+/q/k1jvbNWtInwS8SwOBUqrWFRYWcuutt/LPf/7TrdwaHkW9oU8Qc1Y7pmoAqDUaCJRStcrhcDBmzBgWLVrkVm61x5A0ahqhDc52TRsFTRxXG3TWkFKq1uTn5zN8+PByQcAWHUfS6CcJbXC2q6xkhTHlffpEoJSqFbm5uQwaNKhcArnQekkkjJyKLa78nb+uMFY7NBAopbwuNzeXPn36sHr1arfykNhGJF7zV2z1kjAe9tMVxmqHdg0ppbwuIiKC1q1bu5XZ4pvT4NrphBQHASmzj04brT0aCJRSXmexWHjttdcYMmQIAKENW9Hg2qcIiY531TGgbw77iHYNKaVqRUhICG+99RYt+47F0mkIlrBIt+0lawzrxb/2aSBQStU4T6mkAWYu30pI9+s97mOKt2sgqH0aCJRSNeqJl9/mxWVrsbe9FHCmkn7o3Y1YAEeRpyHhk3SWkG9oIFBK1Zj33nuPJ+6+AVNUSKItkoiUbgAUFhkKq7C/zhLyDR0sVkrViJdeeomRI0diCh1gitj/wXTyd2+q8v46S8h3NBAopc6IMYZJkyZx5513Ykyprp9CB47fd51yX6uIzhLyA9o1pJQ6bQUFBdx1113MnTvXfYNYiL/yPqLaX1bhvrrovP/w2hOBiLwuIvtEZHMF20VE/i4i20XkWxHp7K22KKVq3qKvtpN03iXlgkBoeDiNhv/FLQjYLML13ZvrewJ+yptPBPOAF4D5FWzvD6QU/+kGvFT8X6WUn3tw/n94ccJtHN/zg1t5VL1YVvz7Y34Na1Zu+qhe9P1XpYFARO4B/mWM+aM6X2yMWSUiyaeoMgiYb5ydiqtFJFZEGhlj9lbnOEqp2jX3/1bz/APXUnAwy63cGp1Iq5tn0L17d0DTRweSqnQNNQDWisg7ItJPRMqmBDldTYBfSn3OKi5TSvmpdevWcfc1V5YLArbEZBqOmUlOaJKPWqbORKWBwBgzEWf3zWvAWOBHEXlSRFp6uW0uInKbiGSKSOb+/ftr67BKqVI+/vhjLrnkEhy57p0DYc1TaXjtdEKiE/Q9gABVpcHi4u6bX4v/FAD1gfdE5OkzOHY20KzU56bFZZ6OP9cYk2aMSUtMTDyDQyqlTte6des4evSoW1nEORfTYMQULOFRrlxBKvBUGghE5D4RWQc8DXwJpBpj7gDOB4adwbGXAjcUzx7qDhzS8QGl/Ndjjz1G/Y5XuD7HdB1KwsB0JMQGwIUt43RcIEBVZdZQHDDUGOP2ZogxpkhErq5oJxF5C+gFJIhIFjAJsBXv+zKwDLgS2A4cA246nRNQStWOv3ywmejL7yQvZz/2Vl2JOX+A2/afD2ieoEBVaSAwxkw6xbbvT7FtdCXfa4C7Kju+Usr3MtZn8+bq3Yg1hKSRTyBSvjNBE8YFLk0xoZRy8/333/PMM8+4Pk/M2MT9iza4lpL0FARAE8YFMk0xoZRy+fTTTxkxYgQ5OTnUq1ePnxO68a/VuyvdTxPGBTZ9IlBKAfDyyy/Tr18/cnJyALjjjjt4fdGHle4Xa7dpuogAp08ESgW5wsJCxo0bx+zZs93KCwoKyN3+NXFndfC4nwDXdW/OtMGp3m+k8ioNBEoFsUOHDnHNNdfw73//261cRJg+fTovH2xHUQX7zhrVUZ8C6gjtGlIqSG3fvp3u3buXCwIREREsXryYhx9+mGu7N/e47/Xdm2sQqEP0iUCpILRy5UqGDx/OH3+4p4uIT2rIin8vo1OnTgCubp+31vxCoTFYRRjdrZl2B9UxGgiUCiLGGJ5//nkefPBBCgvdVxEObdSG+iMfZxdJdCpVPm1wql746zgNBEoFgYz12cz4v01sfudZcjetKLc9sm0v4vvfiyMklJnLt2q3T5DRQKBUHZexPpvx73/Lrn+NJ3/Xt2W2CrE9xxDTfQQlGeb1DeHgo4PFStVxM5dvJb+giMjUPm7lEmoncdhE6l0wktLLjOgbwsFHA4FSdVzJHX5Uu95EdxkMQEj9RjQc8wzx517oVlffEA5O2jWkVB3XONZOdnEwqN/rJiwhYUR3HULzhomk922jawsrDQRK1TVZWVnExsYSFRUFOBeLSX93I44ig1isxPYcg80irou+XviVBgKl6pCVK1cyZPhIbE1Tier/EE3qR9D7nERnPojSamrlcVUn6BiBUgEuY302Fz71/4jrdROXXd6Hw38c4MCmzzn09RKyc/J4c/VuHIXGbR9HoWHm8q2+abDyO/pEoFQAy1ifzcML/0fWB8+Q9+Nqt205X8wj/KzzCGvYyuO+Ok1UldBAoFQAm/T6h+z81xMU5PxaZotQr8doQhucXeG+Ok1UldBAoFQAMsbwyiuv8O1L90Khw22bJTyahAHjsJ99vqtMgNKdQzpNVJWmYwRKBZgjR45w3XXX8ec//7lcEAhtlEKjsbPdgoDdZuW67s1pEmtHgCaxdl1IRrnRJwKlAsi3337LiBEj2LZtW7lt0Z2von7vPxESGkp0WAiH8hz6boCqEg0ESgUAYwz/+Mc/uP/++zl+/LjbNrGFE9/vbiLb9gIgOiyEDZOu8EErVaDSQKBUAJgyZQqTJ08uV25LOIvEweOxxTdzlR3Kc5Srp9Sp6BiBUgHgxhtvJDK6nltZ1HlX0PCGZ9yCAOhsIFV9GgiUCgAb/rAR2/cewJk1NP7qh4jvfy8WW7hbPZ0NpE6Hdg0pFQBmLt9KSMvu1O99M/ZW3bDFeR781dlA6nToE4FSfmTJkiWsWrWqXHnJW8AxXYdWGARi7TYNAuq0aCBQyg+89eU2GnS9iqFDh9Jn4HAWfL7ZbXtl/f42izB5YDtvNlHVYRoIlPKxGW8s5cYBvdm3dhkAJw7t564772DJN1muOul922C3Wd32K0kg2iTWzswRHfRpQJ02McZUXsuPpKWlmczMTF83Q6kz5nA4mDZtGlOmTYOiIveNlhCa3vQcIQlnuV4KA3QRGXXaRGSdMSbN0zavDhaLSD/gOcAKvGqMmV5me3PgDSC2uM54Y8wyb7ZJKX/w/fffM2bMGNatW1duW0hcUxIGjMOacBYGyM7JY8LiTTw1NJUvx19a+41VdZ7XuoZExArMAfoDbYHRItK2TLWJwDvGmE7ANcCL3mqPUv6gqKiI2bNn06lTJ49BIKrTVTQaO7tc6ug8R6GuH6C8xptPBF2B7caYnwBE5G1gELClVB0DxBT/XA/Y48X2KOVTP/30EzfffDNffPFFuW3WyPrE978Xe8suFe6v6wcob/FmIGgC/FLqcxbQrUydycAnInIPEAlc7umLROQ24DaA5s2b13hDlfKmkjxB48aN4+jRo+W2x7W/mIjetxMaGUuhMVhFKPQwdqdvDCtv8fWsodHAPGNMU+BKYIGIlGuTMWauMSbNGJOWmJhY641U6nQZY7j66qu54447ygWBiKgYGg1KJ+rKh7FG1KPQGOw2K6O7NSs3Q0jfGFbe5M1AkA2UToLStListFuAdwCMMf8DwoEEL7ZJqVqTsT6bi2Z8xle55X+lO11wCefePZfQcy5B5ORK8nmOQj77YT9PDU3V9QNUrfFm19BaIEVEWuAMANcA15apsxu4DJgnIufiDAT7vdgmpWpFxvps0t/biKPQENNtGMe2fcWJX7cjoXbq976FY2lXkl9Q5HHfPTl5DO7URC/8qtZ4LRAYYwpE5G5gOc6poa8bY74TkSlApjFmKfAQ8IqIPIBz4HisCbQXG5Ty4IkPv8NR6PxVFouV+CvvJ+fzecRdcQch9RqQX1CkYwHKb3j1PYLidwKWlSl7vNTPW4Ae3myDUrVh3bp1PP3007zxxhuEh4fzx7EyS0gmJpM0YrJbWcmYQJ6j0FWmYwHKF3w9WKxUQDt69CgPPfQQXbt25Z133uHJJ5+s8r4lff86FqB8TdNQK3WaPvroI+666y52797tKps+fTqjRo0i1m4j5xQrhZXc+etYgPIH+kSgVDVlZWUxfPhwBgwY4BYEwJk/KCMjg8kD22GziMf99c5f+Rt9IlCqihwOB88//zyTJk0iNze33PaQekmMn/Y3Hrt7jKtMk8SpQKCBQKkq+O9//8udd97Jpk2bym8UCzFpg6h30bWszI1janGxdvuoQKGBQKlT+PXXX3n44YdZsGCBx+2hjVoT3/duQhucDWg+IBWYNBAoVYE5c+bw6KOPcvjw4XLbJCyS+pfcSFSHvojlZDoIfQdABSINBEpVICsry2MQiGzXm/q9b8YaWd+tXIDe52guLBV4NBAoVUrG+mzXAG8D+0XEJTbg4P7fAIho2ILoS/9MeLP2Hvc1wPvrskk7K07HBlRA0emjKuiVZDXJWJ/NhMWbyM7JwwC/5kHYhTcQERXN7Nmzmb/0M+qf3eGU36ULyKhApE8EKmg5HA7mzp3Lu+++y6effsrM5Vvd0j0A2Nr0pF3qBdx33xAArCEhrieGipJi6YCxCjQaCFTQMcbw0UcfkZ6eztatzrv3V199lT05zcrVFRH2O0Jdn0tPCe0xfSXZHi76OmCsAo12Damg8vXXX9OrVy8GDhzoCgIAjz/+OEnhntNCV3RhT+/bRheQUXWCBgIVFLZt28aoUaPo1q0bq1atKrf9SO5RrmqUV60L++BOTTRpnKoTtGtI1Wl79uxhypQpvPrqqxQWFnqoIUSd14eGvW/kvK49OK9r9dJC6NvDqi7QQKDqpN9//50ZM2bwwgsvkJ+f77FO+NnnU/+SsYQmtcCBMwB8Of5SvbCroKOBQNUphw4dYtasWTz77LMcOXLEY53QBi2J7XUT9uSObuU620cFKw0Eqk7Zt28f06ZN89gNFFK/EbEXjyHinIsQKT88prN9VLDSwWJVp6SkpDBmzBi3MmtUHHFX3EnjW14i8tyeHoOAzvZRwUwDgQpIhw8fdr0RXNZf/vIXrFYr8fHx1O99M41ve4XoTlciVvcHYJ3to5STdg2pgLJv3z5mzZrFnDlzWLp0Kb169QJO5gjKzsnDKkLc4Mdo0LoTR4psHr+nfoSNL8dfWostV8p/aSBQAWHXrl3cNf4JPn5/IUWO4wDcP/5xNqxe5coRVJIeotAYIlp15Yjn98MAmDSgXW00W6mAoIFA+bVNmzYxc+ZM3ly4kKIyA8Ab1/yHpxd8xAfZEeVyBFVGu4GUOkkDgfI7xhhWrlzJzJkzWb58eYX1LBH1eH35Oo43TavW9zfR2UFKudFAoPzG8ePHSZ/xEq+9/ALH9u6osJ41Kp6YrkOJ6tiX47ZwGsfaPSZ/80RnBylVngYC5XP79+/npZdeYvbzc/jj930V1guJa0q9bsOIbNcLsToHgUvSQJQeIyjNZhGiwkPIOeaoUsoIpYKRBgLlczt27GDSpEkVbo8+qx133fsASw42Ir/g5JTRkrv7kgt76VlDhcbQRC/8SlWJVDQX21+lpaWZzMxMXzdD1SBjDN26dWPt2rWlSgV76+7EdBmKvem57Jx+ldsyknp3r1T1iMg6Y4zHATV9IlC1Ys6SVTw7fwlFbS4vdxEXEe69917GjBmDhNqJSu1DdNpAbLENgZOpHzTTp1LeoYFAeU1eXh7vv/8+02fP4bt1qwGh8Z/bk01DJizeBJycxjlixAhWbd7F54XncMIa7voOHdxVyvu8mmJCRPqJyFYR2S4i4yuoM1JEtojIdyKy0JvtUd5njCEzM5P+I8cSHZfImDFjioMAgCF347+B8ou8h4WFMXf6Yzx9bXdN/aBULfPaE4GIWIE5QB8gC1grIkuNMVtK1UkBJgA9jDF/iEiSt9qjvOvXX39l4cKF/POf/2Tz5s0V1sv9dgWxF12HWG0e0z5r949Stc+bXUNdge3GmJ8ARORtYBCwpVSdW4E5xpg/AIwxFc8dVH4nNzeXpUuXsmDBAj755BOKik6R0wEIa9qWqI79AQE07bNS/sKbgaAJ8Eupz1lAtzJ1WgOIyJeAFZhsjPl32S8SkduA2wCaN2/ulcaqqisoKODGG28kIyODY8eOnbKuxR5DVPvLiDrvCmwJzVzl2vevlP/w9WBxCJAC9AKaAqtEJNUYk1O6kjFmLjAXnNNHa7mNqpSSKZzrvtjA8YqCgFiwn30+Ual9sLfq4nr5q4TO71fKv3gzEGQDzUp9blpcVloWsMYY4wB2isg2nIFhLcqn8vPzWbVqFX369EHE2ZVTOstnZNtLOJ69xW0fW1ILotpdSkTbSwiJivP4vU1i7Zr+WSk/481AsBZIEZEWOAPANcC1ZepkAKOBf4pIAs6uop+82CZ1Cv/64jumvLSQ7A1fkL9zHUUn8tm4cSPnnXce4HxztySNQ8Q5F3Hw/83FGhlHZNueRLbtRWhSi1N+v3YHKeWfvBYIjDEFInI3sBxn///rxpjvRGQKkGmMWVq87QoR2QIUAunGmAPeapNyZ4xh69atLFu2jH++9R6b160B4z7gO+2F13ln7mwAt8Ru1oh6NBr7HLaE5h6XfnTVE6HIGH0TWCk/pikmgsyRI0f47LPPWL58OcuWLePnn38+Zf2wxObk79sFQMsJyyisxu+L3WbV9wCU8hOaYiLIvbnqeyZMfZp9WzM5kf09pqhqi7hYo+KwNW3P8ePHCQsLqzQIWARiwm0cytNMn0oFEg0EdYSnhGwAT3z4HQcO5fLLZ29CoaPS77ElNMfeqisRKRcQ2igFEQthYWGAc6C3orz/sXYbkwe20wu/UgFIA4Efq0q2zcOHDzNr4TL+vvAjCouKiL3oOrJz8nhw0QasVsFRaLDYwghvei75u74td4ywsDB69erFZmmBOSvNleitbDsGd2riMe+/dv8oFfg0EPipsguyZ+fkMf69Dez68XuijuxizZo1fLDiC/bt2u4a4LWER1Ovx2hELBQBRYUnu3LCz+roCgQhcU2wt+jMwsm30bt3byIjI8lYn839izZ4bMvM5VvdUj9oKmil6hYNBLWsqjn1Z3y0iZxftuLY9xMnfvuJE79u58S+ndxfcLzC7y7KP4LjQBahCeXfvo5o0wNLRCz25A6E1GuAAAVNOhIZGQk4c/xUFAhK5wTSXEBK1T0aCGqRp7v8sumYAe666y5Wv/wPqOKgbmnHs77zGAhscU2wxZ08huHknX6JisYANCeQUnWbBoJa4HA42L17N4+98D77snZR8MdeHH9kkzDwYfIId6VjLllq8dD636sVBGzxzQhrci5hTc4hPLlzlfcrm/2zojEAfQlMqbpNA0EZVem6KV2nYaSVmzrHkhpn2Lt3L9nZ2WRlZZGVlcXu3bvZtWsX2dnZHjNzFvyxl9CkFq4ng5ILcEjCWRW2zxIRS1jDVoQ2bkNYo9aENmqN1R59Wuda9k5fxwCUCk5BFQgOHTrE0aNHKSoqoqioCIfD4fqTn5/Pim9/Yc6KLThO5FHkOM4PJ/L40yd5/KtFFK8+M4XY2Nhy3Ttb/u9V/vz4+6fVHscfewhNaoEIbnfhtkRnILDGJBHa4GxCE1sQ2rAloQ1aYY2Od+X+qcippnmWqOhOX8cAlAo+QRMIMtZnc/vtt/Pb1x9Ve9/3P4O/PnwXsbGxbvl2wJlq4XQVHHTm4Cv7npYtvhnN7nsbS3hUtb7v+u7NmTY4FYAe01dWGAw0+6dSqrSgCAQld/FHHadeOOVUDh06BJTvV7dUMRDYouOwxDQkJLYBIbGNsMU1IbSx5753sViRagQBT3P5dc6/UqqqgiIQnLyLP3WXyqmUBILGZbpdrJH1sUbFER4TT2h0HI7wWKzRCYREJzj/Wy+J5s2a8+vRQipK0FA/wka+o8jtol3CZhEKjCn31FCiort77e9XSlVVUASCkrt4S3gk1qg4QEAEsVjBGuK8Aw8JRayhSEgIYgtHbHYstjAkLAJLWCTJyclA+Ttte4vOpNz/Jk8NTeWBRRs8Xux/PVpYLoCUEGDSgHbAyVlDVhEKjXFd5IHTurvX/n6lVFUERSAouQjX73kD9XveUO39Y+02UlJSgFPfaZdcyD0d31NXjQDXdW/u+s7KLtp6d6+U8oagSEOdsT67wrv1qpg9qmOVLrplZxSB+517Vd8qVkqpmhb0aagHd2pC5q6DvLl6t1swsFkFDDiKTh0iqnqxrqxfXrtqlFL+KCgCAcC0wamknRXnMVVzRV064ByMrQ692CulAk3QBAKo+CJd0m2j6RWUUsEoqALBqeh0S6VUsNJAUIp26yilgpHF1w1QSinlWxoIlFIqyGkgUEqpIKeBQCmlgpwGAqWUCnIBl2JCRPYDu05z9wTg9xpsTiDQcw4Oes7B4UzO+SxjTKKnDQEXCM6EiGRWlGujrtJzDg56zsHBW+esXUNKKRXkNBAopVSQC7ZAMNfXDfABPefgoOccHLxyzkE1RqCUUqq8YHsiUEopVYYGAqWUCnJ1MhCISD8R2Soi20VkvIftYSKyqHj7GhFJ9kEza1QVzvlBEdkiIt+KyP8TkbN80c6aVNk5l6o3TESMiAT8VMOqnLOIjCz+t/5ORBbWdhtrWhV+t5uLyGcisr749/tKX7SzpojI6yKyT0Q2V7BdROTvxX8f34pI5zM+qDGmTv0BrMAO4GwgFNgItC1T507g5eKfrwEW+brdtXDOvYGI4p/vCIZzLq4XDawCVgNpvm53Lfw7pwDrgfrFn5N83e5aOOe5wB3FP7cFfvZ1u8/wnHsCnYHNFWy/EvgYEKA7sOZMj1kXnwi6AtuNMT8ZY04AbwODytQZBLxR/PN7wGUiIrXYxppW6TkbYz4zxhwr/rgaaFrLbaxpVfl3BpgKzADya7NxXlKVc74VmGOM+QPAGLOvlttY06pyzgaIKf65HrCnFttX44wxq4CDp6gyCJhvnFYDsSLS6EyOWRcDQRPgl1Kfs4rLPNYxxhQAh4D4Wmmdd1TlnEu7BecdRSCr9JyLH5mbGWP+rzYb5kVV+XduDbQWkS9FZLWI9Ku11nlHVc55MnC9iGQBy4B7aqdpPlPd/98rpSuUBRkRuR5IAy7xdVu8SUQswLPAWB83pbaF4Owe6oXzqW+ViKQaY3J82SgvGw3MM8Y8IyIXAAtEpL0xpsjXDQsUdfGJIBtoVupz0+Iyj3VEJATn4+SBWmmdd1TlnBGRy4HHgIHGmOO11DZvqeyco4H2wOci8jPOvtSlAT5gXJV/5yxgqTHGYYzZCWzDGRgCVVXO+RbgHQBjzP+AcJzJ2eqqKv3/Xh11MRCsBVJEpIWIhOIcDF5aps5S4Mbin4cDK03xKEyAqvScRaQT8A+cQSDQ+42hknM2xhwyxiQYY5KNMck4x0UGGmMyfdPcGlGV3+0MnE8DiEgCzq6in2qxjTWtKue8G7gMQETOxRkI9tdqK2vXUuCG4tlD3YFDxpi9Z/KFda5ryBhTICJ3A8txzjh43RjznYhMATKNMUuB13A+Pm7HOShzje9afOaqeM4zgSjg3eJx8d3GmIE+a/QZquI51ylVPOflwBUisgUoBNKNMQH7tFvFc34IeEVEHsA5cDw2kG/sROQtnME8oXjcYxJgAzDGvIxzHORKYDtwDLjpjI8ZwH9fSimlakBd7BpSSilVDRoIlFIqyGkgUEqpIKeBQCmlgpwGAqWUCnIaCJRSKshpIFBKqSCngUCpMyQiXYrzwoeLSGTxOgDtfd0upapKXyhTqgaIyDScqQ3sQJYx5ikfN0mpKtNAoFQNKM6DsxbnugcXGmMKfdwkpapMu4aUqhnxOHM5ReN8MlAqYOgTgVI1QESW4lw9qwXQyBhzt4+bpFSV1bnso0rVNhG5AXAYYxaKiBX4SkQuNcas9HXblKoKfSJQSqkgp2MESikV5DQQKKVUkNNAoJRSQU4DgVJKBTkNBEopFeQ0ECilVJDTQKCUUkHu/wO679uS86yYRgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAwDUlEQVR4nO3deXhURfbw8e/pTifpbIRs7BiEgAKRxbAoiqAioLJvoqKoo+O+EgVlBIFRkFFwFHVwGYQRxQUi+sNBfFGZ0QEJAoIoCCKYgIJggEACnaTePzpp0kmHJJBOd6fP53l4TNet27cuxHvurap7SowxKKWUCl4WXzdAKaWUb2kgUEqpIKeBQCmlgpwGAqWUCnIaCJRSKsiF+LoB1ZWQkGCSk5N93QyllAoo69at+90Yk+hpW8AFguTkZDIzM33dDKWUCigisquibdo1pJRSQU4DgVJKBTkNBEopFeQCbozAE4fDQVZWFvn5+b5uivJT4eHhNG3aFJvN5uumKOV36kQgyMrKIjo6muTkZETE181RfsYYw4EDB8jKyqJFixa+bo5SfqdOdA3l5+cTHx+vQUB5JCLEx8frE6NSFagTgQDQIKBOSX8/lKpYnQkESilVF61Zs4YrrriC3377zWvH0EBQQ7Kyshg0aBApKSm0bNmS++67jxMnTpxyn5ycHF588UXX5z179jB8+PBqHffxxx/n008/Pa02lxYVFXXG31EdY8eO5b333qvWPhkZGWzZssX1uabOXSl/9dtvvzFs2DBWrFjB+eefz5o1a7xyHA0ENcAYw9ChQxk8eDA//vgj27ZtIzc3l8cee+yU+5UNBI0bN672xXHKlClcfvnlp9Vuf1RYWFjhtrKBoK6du1KlFRQUMGrUKLKzswHIzs6mZ8+e7Ny5s8aPVScDgYic1p/zzz//tI63cuVKwsPDuemmmwCwWq3MmjWL119/nWPHjjFv3jwGDRpEr169SElJ4YknngBg/Pjx7Nixg44dO5Kens7PP/9M+/btAZg3bx6DBw+mT58+JCcn88ILL/Dss8/SqVMnunfvzsGDB4GTd9aZmZl07NiRjh07kpqa6uoT37FjB/369eP888/n4osv5ocffgBg586dXHDBBaSmpjJx4sQKz+2vf/0rrVu35qKLLmL06NH87W9/A6BXr16uVB+///47Jfmffv75Zy6++GI6d+5M586d+eqrrwBnsLz77rtp06YNl19+Ofv27XMdIzk5mUceeYTOnTvz7rvv8sorr9ClSxc6dOjAsGHDOHbsGF999RVLly4lPT2djh07smPHDrenirVr13LhhRfSoUMHunbtypEjR07r31Ipf/HII4/wxRdfuJUldBvExpzQGj9WnZg+6mvfffdduSASExND8+bN2b59OwBff/01mzdvJiIigi5dunDVVVcxffp0Nm/ezIYNGwDnRbS0zZs3s379evLz82nVqhUzZsxg/fr1PPDAA8yfP5/777/fVTctLc31Penp6fTr1w+A2267jZdffpmUlBTWrFnDnXfeycqVK7nvvvu44447uOGGG5gzZ47H81q3bh1vv/02GzZsoKCggM6dO1caLJOSklixYgXh4eH8+OOPjB49mszMTJYsWcLWrVvZsmULv/32G23btuXmm2927RcfH88333wDwIEDB7j11lsBmDhxIq+99hr33HMPAwcO5Oqrry7XfXbixAlGjRrFokWL6NKlC4cPH8Zut5+ynUr5s7feeotnn33WrSyseSoh3a9nwuJNAAzu1KTGjqeBoJb06dOH+Ph4AIYOHcp///tfBg8efMp9evfuTXR0NNHR0dSrV48BAwYAkJqayrfffutxn0WLFvHNN9/wySefkJuby1dffcWIESNc248fPw7Al19+yfvvvw/AmDFjeOSRR8p913/+8x+GDBlCREQEAAMHDqz0PB0OB3fffTcbNmzAarWybds2AFatWsXo0aOxWq00btyYSy+91G2/UaNGuX7evHkzEydOJCcnh9zcXPr27XvKY27dupVGjRrRpUsXwBmElQpUGzdu5JZbbnErs0YnkDjwEcRiJc9RyMzlWzUQ+Ju2bduW69s/fPgwu3fvplWrVnzzzTflpi9WZTpjWFiY62eLxeL6bLFYKCgoKFd/8+bNTJ48mVWrVmG1WikqKiI2Ntb1pFDWmUypDAkJoaioCMBtfv6sWbNo0KABGzdupKioiPDw8Cp9X2RkpOvnsWPHkpGRQYcOHZg3bx6ff/75abdTqUBy4MABBg8eTF5e3slCq43EIY9ijYx1Fe3JySu/8xmok2MExpjT+rNu3brTOt5ll13GsWPHmD9/PuAc8HzooYcYO3as6256xYoVHDx4kLy8PDIyMujRowfR0dE11pedk5PD6NGjmT9/PomJzpTjMTExtGjRgnfffRdw/r1s3LgRgB49evD2228D8Oabb3r8zp49e5KRkUFeXh5Hjhzhww8/dG1LTk52/X2VDoKHDh2iUaNGWCwWFixY4Br87dmzJ4sWLaKwsJC9e/fy2WefVXguR44coVGjRjgcDre2VfT31aZNG/bu3cvatWtd+3sKlEr5s4KCAkaPHl2uizj+ijsJa9TaraxxbM12fdbJQFDbRIQlS5bw7rvvkpKSQuvWrQkPD+fJJ5901enatSvDhg3jvPPOY9iwYaSlpREfH0+PHj1o37496enpZ9SGDz74gF27dnHrrbe6Bo3BeZF/7bXX6NChA+3ateODDz4A4LnnnmPOnDmkpqa6ZiWU1blzZ0aNGkWHDh3o37+/q+sFYNy4cbz00kt06tSJ33//3VV+55138sYbb9ChQwd++OEH153+kCFDSElJoW3bttxwww1ccMEFFZ7L1KlT6datGz169OCcc85xlV9zzTXMnDmTTp06sWPHDld5aGgoixYt4p577qFDhw706dNH3yJWAWfChAmsWLHCraz/yBtJPL+fW5ndZiW9b5saPbYYY2r0C70tLS3NlF2Y5vvvv+fcc8/1UYsqN2/ePDIzM3nhhRd83ZQzMnnyZKKiohg3bpyvm3Ja/P33RAWvN998k+uvv96tLDq5Pa8tWorNFsrM5VvZk5NH41g76X3bnNb4gIisM8akedqmYwRKKeVjcXFxRETFcCz3MADWqHjqXfUIj3+4laeGpvLl+Esr+YYzo08EKmjo74nyZ50feoPNb/wFR86vNLxuhmtcoEmsvUYCQVA8ERhjNLGYqlCg3fCo4POHLYGGY57h+N5tboPDNT1DyJM6MVgcHh7OgQMH9H925VHJegRVncqqlC80jrVjCYvAntyxXLm31YkngqZNm5KVlcX+/ft93RTlp0pWKFPKX6X3bcOExZvIc5zMt+WNGUKe1IlAYLPZdOUppVRA+OKLL3j66adZsGABcXFxrvKSmUA1MUOouurEYLFSSgWCnTt30qVLFw4cOEDLli354IMPaNeuXa0c+1SDxXVijEAppfzdW//dSvsLLuPAgQOAMzPwhRde6JaJ11c0ECillJctXvcLt91yE8d+c19L4MprbyUpKclHrTpJA4FSSnnZvePGk7vtf25lEW0uYlfz/j5qkTuvBQIReV1E9onI5krqdRGRAhGp3hqNSikVAN58802yP1/oVhbaoCXxV93P3kP+kRPLm08E84B+p6ogIlZgBvCJF9uhlFI+sWbNmnJrC1giY0kcOhGLLbxW3hGoCq8FAmPMKuBgJdXuAd4HfD9aopRSNeiXX35h0KBBrsWgALDaSBoykZCYxFp7R6AqfDZGICJNgCHAS1Woe5uIZIpIpr40ppTyd7m5uQwYMIDffvvNrTy+/72ENTmHWLuNp4am1so7AlXhy8Hi2cAjxpiiyioaY+YaY9KMMWkli64opZQ/Kiws5LrrrnMtAlUipvtwotr1BiAyLMRvggD49s3iNODt4kRxCcCVIlJgjMnwYZuUUuqMTJgwgaVLl7qV2VO6E9vzBtfn2kgkVx0+CwTGGFdOCBGZB3ykQUApFcgOHjzIa/Pmu5XZks4m4eqHEDnZAeMvg8QlvDl99C3gf0AbEckSkVtE5HYRud1bx1RKKV9atSuPqJFPE9qgJQDWyPokDXscS+jJC7/NKn4zSFzCa08ExpjR1ag71lvtUEqp2pCxPpsJizchUfE0uHYGB5e/QHTaQEJiEtzqRYb61/gA1JHso0op5Wszl291pZC2hIaTMMDz2t6H8hy12awq0UCglFKnKWN9tittdFXzOPvb+ABoriGllDotS77J4k/3prNr964qBwF/eomsNA0ESil1Gu5Nf5QD/32LX+c/xPG9P1Zav0ms3a9eIitNu4aUUqqa5s+fT9bKBQAUHv2D3xaOJ3HIo9jPPr9cXbvN6rcBoIQGAqWUqoaVK1eWSyQntjBC6jcGINZuIzIspNaXmzwTGgiUUqqKvvvuO4YOHUpBQcHJQquNxKETsdVvhM0iTB7Yzu8v/GXpGIFSSlXB3r17ufLKKzl06JBbecJVDxDetK3zg/igYTVAA4FSSlUiNzeXq6++mt27d7uVx/YaS+S5PV2fHYWGmcu31nbzzpgGAqWUOoWCggIu6TeQb775xq08qmM/YroOK1ff3xLKVYUGAqWUqoAxhitH3sg3X37mVh7ZMo2WA++lOHuyG398YawyGgiUUqoCTz75JCuWlF9vOG7gI2CxYrdZ3bb56wtjldFAoJRSHsybN4+JEye6lVljkkgaPhlLqJ1DeQ6eGppKk1g7gn+/MFYZnT6qlFKlZKzP5ullW1j3/DS3ckt4FA1GPIE1qj7g7AIa3KlJQF74y9InAqWUKlaSSnrPkRM0GP0kYc3PA0BK3hVIaAYEbhdQRfSJQCmlirmlkg6LpMGIJzjw8XMktr+IxqldAupt4erQQKCUUsXKTv2UEJtrXYEvx1/qiybVCu0aUkqpYhVN/QzEKaHVoYFAKRXUTpw4wdixY9m4cSPpfdvUmSmh1aGBQCkVtIqKirjpppt444036NmzJ/VyttWZKaHVoWMESqmgZIzhwQcfZOFC5wtjhw8f5rI+fUkcOpFWnS9i1qiOdT4AlNAnAqVUUJo+fTrPPfecW5k1JoHQBi3JzsljwuJNZKzP9lHrapcGAqVU0HnllVd49NFH3cqskfVJGjkVa2QsAHmOwoDMJHo6NBAopYLK4sWLuf32293KJDSCpJFPYItt6FYeiJlET4eOESilgsbKlSsZPXo0RUVFrrKwsDBa3TCN3Lizy9Wv69NGS+gTgVIqKKxdu5ZBgwZx4sSJk4UWC/Wuehhb03bYLO4ppYNh2mgJDQRKqTpvy5Yt9O/fn9zcXLfy+H73YU/pxh/HHCDOheeDadpoCe0aUkrVWRnrs5n69hdsfPFeCnMPuG2r3/tmolIvc312FBoiw0LYMOmK2m6mz2kgUErVSRnrs0mf/wU/vzGuXBCod8FIYroOLbdPsAwOl6VdQ0qpOmnm8q0cl1BCYhLdyht0G0jbAbd53CdYBofL8logEJHXRWSfiGyuYPt1IvKtiGwSka9EpIO32qKUCj57cvKwhNpJGj4Ze6tuAEScewnhl/yJh/udE5Q5hSrizSeCeUC/U2zfCVxijEkFpgJzvdgWpVSQKbm7l5BQEgdPoP6lfyLhqvtpUj+SwZ2aBGVOoYp4bYzAGLNKRJJPsf2rUh9XA0291RalVPBJ79uGCYs3kecoRKwhxHQZ7HbXX1eWmawJ/jJGcAvwcUUbReQ2EckUkcz9+/fXYrOUUoGioKCALVu2uD7rXX/ViTHGe1/ufCL4yBjT/hR1egMvAhcZYw5UVK9EWlqayczMrLlGKqUCXlFREWPHjmXx4sV89NFH9OrVy9dN8jsiss4Yk+Zpm0+fCETkPOBVYFBVgoBSSpVljOH2229nwYIFHD16lP79+/PxxxV2MCgPfBYIRKQ5sBgYY4zZ5qt2KKUClzGG++67j1deecVVlp+fz9AbbuO9r3/2XcMCjNcGi0XkLaAXkCAiWcAkwAZgjHkZeByIB14UEYCCih5blFKqLGMMjzzyCM8//7xbuTUqjrihk/jLhz8QYrPpmEAVeHPW0OhKtv8J+JO3jq+UqtsmTZrEzJkz3cosEbE0uOav2Oo3cq0noIGgcv4ya0gppaps6tSpTJ061a3MYo+hwTXTsMU3c5UFa8qI6tJAoJQKKDNmzODxxx93K5OwSJJGTiE0MdmtPFhTRlSXBgKlVMB45plnGD9+vFuZhNppMHIKYQ1buZdD0KaMqC4NBEqpgDBr1izGjRvnVia2cJJGTCGscfkLvgEdH6giDQRKKb/397//nQcffNCtTELCSBoxmfCm53rcp4l2C1WZBgKllF8rKipi5cqVbmUSEkbi8McJb+Y5aUEwZxI9HRoIlFJ+zWKxcN2js4hqfQFQnE102F+wn+Weud7qfB9JcwqdBl2hTCnl92av3EncwIcpWjabqPaXY0/u6Npmt1n1wn+GNBAopfxKxvpsZi7fyp6cPBrH2knv24Y9OXmI1UbigPRy9TUInDntGlJK+Y2M9dk89NonZOfkYYDsnDwmLN5EPbvNY/0msXYNAjVAA4FSym/cN2ESP718G3k7Tqaaz3MUIoIuLelFGgiUUj5njGHKlCnsXv4aFBawb8lfydv5jWt7zjGHLjLjRTpGoJTyKWMMEydO5MknnzxZWOjg9w//RpPbX8MSaqdxcReQXvi9QwOBUspnjDGMGzeOZ5991q1cQu0kDnkUS6hdu4BqgQYCpZRPFBUVce+99zJnzhy38oioaM6+/q/k1jvbNWtInwS8SwOBUqrWFRYWcuutt/LPf/7TrdwaHkW9oU8Qc1Y7pmoAqDUaCJRStcrhcDBmzBgWLVrkVm61x5A0ahqhDc52TRsFTRxXG3TWkFKq1uTn5zN8+PByQcAWHUfS6CcJbXC2q6xkhTHlffpEoJSqFbm5uQwaNKhcArnQekkkjJyKLa78nb+uMFY7NBAopbwuNzeXPn36sHr1arfykNhGJF7zV2z1kjAe9tMVxmqHdg0ppbwuIiKC1q1bu5XZ4pvT4NrphBQHASmzj04brT0aCJRSXmexWHjttdcYMmQIAKENW9Hg2qcIiY531TGgbw77iHYNKaVqRUhICG+99RYt+47F0mkIlrBIt+0lawzrxb/2aSBQStU4T6mkAWYu30pI9+s97mOKt2sgqH0aCJRSNeqJl9/mxWVrsbe9FHCmkn7o3Y1YAEeRpyHhk3SWkG9oIFBK1Zj33nuPJ+6+AVNUSKItkoiUbgAUFhkKq7C/zhLyDR0sVkrViJdeeomRI0diCh1gitj/wXTyd2+q8v46S8h3NBAopc6IMYZJkyZx5513Ykyprp9CB47fd51yX6uIzhLyA9o1pJQ6bQUFBdx1113MnTvXfYNYiL/yPqLaX1bhvrrovP/w2hOBiLwuIvtEZHMF20VE/i4i20XkWxHp7K22KKVq3qKvtpN03iXlgkBoeDiNhv/FLQjYLML13ZvrewJ+yptPBPOAF4D5FWzvD6QU/+kGvFT8X6WUn3tw/n94ccJtHN/zg1t5VL1YVvz7Y34Na1Zu+qhe9P1XpYFARO4B/mWM+aM6X2yMWSUiyaeoMgiYb5ydiqtFJFZEGhlj9lbnOEqp2jX3/1bz/APXUnAwy63cGp1Iq5tn0L17d0DTRweSqnQNNQDWisg7ItJPRMqmBDldTYBfSn3OKi5TSvmpdevWcfc1V5YLArbEZBqOmUlOaJKPWqbORKWBwBgzEWf3zWvAWOBHEXlSRFp6uW0uInKbiGSKSOb+/ftr67BKqVI+/vhjLrnkEhy57p0DYc1TaXjtdEKiE/Q9gABVpcHi4u6bX4v/FAD1gfdE5OkzOHY20KzU56bFZZ6OP9cYk2aMSUtMTDyDQyqlTte6des4evSoW1nEORfTYMQULOFRrlxBKvBUGghE5D4RWQc8DXwJpBpj7gDOB4adwbGXAjcUzx7qDhzS8QGl/Ndjjz1G/Y5XuD7HdB1KwsB0JMQGwIUt43RcIEBVZdZQHDDUGOP2ZogxpkhErq5oJxF5C+gFJIhIFjAJsBXv+zKwDLgS2A4cA246nRNQStWOv3ywmejL7yQvZz/2Vl2JOX+A2/afD2ieoEBVaSAwxkw6xbbvT7FtdCXfa4C7Kju+Usr3MtZn8+bq3Yg1hKSRTyBSvjNBE8YFLk0xoZRy8/333/PMM8+4Pk/M2MT9iza4lpL0FARAE8YFMk0xoZRy+fTTTxkxYgQ5OTnUq1ePnxO68a/VuyvdTxPGBTZ9IlBKAfDyyy/Tr18/cnJyALjjjjt4fdGHle4Xa7dpuogAp08ESgW5wsJCxo0bx+zZs93KCwoKyN3+NXFndfC4nwDXdW/OtMGp3m+k8ioNBEoFsUOHDnHNNdfw73//261cRJg+fTovH2xHUQX7zhrVUZ8C6gjtGlIqSG3fvp3u3buXCwIREREsXryYhx9+mGu7N/e47/Xdm2sQqEP0iUCpILRy5UqGDx/OH3+4p4uIT2rIin8vo1OnTgCubp+31vxCoTFYRRjdrZl2B9UxGgiUCiLGGJ5//nkefPBBCgvdVxEObdSG+iMfZxdJdCpVPm1wql746zgNBEoFgYz12cz4v01sfudZcjetKLc9sm0v4vvfiyMklJnLt2q3T5DRQKBUHZexPpvx73/Lrn+NJ3/Xt2W2CrE9xxDTfQQlGeb1DeHgo4PFStVxM5dvJb+giMjUPm7lEmoncdhE6l0wktLLjOgbwsFHA4FSdVzJHX5Uu95EdxkMQEj9RjQc8wzx517oVlffEA5O2jWkVB3XONZOdnEwqN/rJiwhYUR3HULzhomk922jawsrDQRK1TVZWVnExsYSFRUFOBeLSX93I44ig1isxPYcg80irou+XviVBgKl6pCVK1cyZPhIbE1Tier/EE3qR9D7nERnPojSamrlcVUn6BiBUgEuY302Fz71/4jrdROXXd6Hw38c4MCmzzn09RKyc/J4c/VuHIXGbR9HoWHm8q2+abDyO/pEoFQAy1ifzcML/0fWB8+Q9+Nqt205X8wj/KzzCGvYyuO+Ok1UldBAoFQAm/T6h+z81xMU5PxaZotQr8doQhucXeG+Ok1UldBAoFQAMsbwyiuv8O1L90Khw22bJTyahAHjsJ99vqtMgNKdQzpNVJWmYwRKBZgjR45w3XXX8ec//7lcEAhtlEKjsbPdgoDdZuW67s1pEmtHgCaxdl1IRrnRJwKlAsi3337LiBEj2LZtW7lt0Z2von7vPxESGkp0WAiH8hz6boCqEg0ESgUAYwz/+Mc/uP/++zl+/LjbNrGFE9/vbiLb9gIgOiyEDZOu8EErVaDSQKBUAJgyZQqTJ08uV25LOIvEweOxxTdzlR3Kc5Srp9Sp6BiBUgHgxhtvJDK6nltZ1HlX0PCGZ9yCAOhsIFV9GgiUCgAb/rAR2/cewJk1NP7qh4jvfy8WW7hbPZ0NpE6Hdg0pFQBmLt9KSMvu1O99M/ZW3bDFeR781dlA6nToE4FSfmTJkiWsWrWqXHnJW8AxXYdWGARi7TYNAuq0aCBQyg+89eU2GnS9iqFDh9Jn4HAWfL7ZbXtl/f42izB5YDtvNlHVYRoIlPKxGW8s5cYBvdm3dhkAJw7t564772DJN1muOul922C3Wd32K0kg2iTWzswRHfRpQJ02McZUXsuPpKWlmczMTF83Q6kz5nA4mDZtGlOmTYOiIveNlhCa3vQcIQlnuV4KA3QRGXXaRGSdMSbN0zavDhaLSD/gOcAKvGqMmV5me3PgDSC2uM54Y8wyb7ZJKX/w/fffM2bMGNatW1duW0hcUxIGjMOacBYGyM7JY8LiTTw1NJUvx19a+41VdZ7XuoZExArMAfoDbYHRItK2TLWJwDvGmE7ANcCL3mqPUv6gqKiI2bNn06lTJ49BIKrTVTQaO7tc6ug8R6GuH6C8xptPBF2B7caYnwBE5G1gELClVB0DxBT/XA/Y48X2KOVTP/30EzfffDNffPFFuW3WyPrE978Xe8suFe6v6wcob/FmIGgC/FLqcxbQrUydycAnInIPEAlc7umLROQ24DaA5s2b13hDlfKmkjxB48aN4+jRo+W2x7W/mIjetxMaGUuhMVhFKPQwdqdvDCtv8fWsodHAPGNMU+BKYIGIlGuTMWauMSbNGJOWmJhY641U6nQZY7j66qu54447ygWBiKgYGg1KJ+rKh7FG1KPQGOw2K6O7NSs3Q0jfGFbe5M1AkA2UToLStListFuAdwCMMf8DwoEEL7ZJqVqTsT6bi2Z8xle55X+lO11wCefePZfQcy5B5ORK8nmOQj77YT9PDU3V9QNUrfFm19BaIEVEWuAMANcA15apsxu4DJgnIufiDAT7vdgmpWpFxvps0t/biKPQENNtGMe2fcWJX7cjoXbq976FY2lXkl9Q5HHfPTl5DO7URC/8qtZ4LRAYYwpE5G5gOc6poa8bY74TkSlApjFmKfAQ8IqIPIBz4HisCbQXG5Ty4IkPv8NR6PxVFouV+CvvJ+fzecRdcQch9RqQX1CkYwHKb3j1PYLidwKWlSl7vNTPW4Ae3myDUrVh3bp1PP3007zxxhuEh4fzx7EyS0gmJpM0YrJbWcmYQJ6j0FWmYwHKF3w9WKxUQDt69CgPPfQQXbt25Z133uHJJ5+s8r4lff86FqB8TdNQK3WaPvroI+666y52797tKps+fTqjRo0i1m4j5xQrhZXc+etYgPIH+kSgVDVlZWUxfPhwBgwY4BYEwJk/KCMjg8kD22GziMf99c5f+Rt9IlCqihwOB88//zyTJk0iNze33PaQekmMn/Y3Hrt7jKtMk8SpQKCBQKkq+O9//8udd97Jpk2bym8UCzFpg6h30bWszI1janGxdvuoQKGBQKlT+PXXX3n44YdZsGCBx+2hjVoT3/duQhucDWg+IBWYNBAoVYE5c+bw6KOPcvjw4XLbJCyS+pfcSFSHvojlZDoIfQdABSINBEpVICsry2MQiGzXm/q9b8YaWd+tXIDe52guLBV4NBAoVUrG+mzXAG8D+0XEJTbg4P7fAIho2ILoS/9MeLP2Hvc1wPvrskk7K07HBlRA0emjKuiVZDXJWJ/NhMWbyM7JwwC/5kHYhTcQERXN7Nmzmb/0M+qf3eGU36ULyKhApE8EKmg5HA7mzp3Lu+++y6effsrM5Vvd0j0A2Nr0pF3qBdx33xAArCEhrieGipJi6YCxCjQaCFTQMcbw0UcfkZ6eztatzrv3V199lT05zcrVFRH2O0Jdn0tPCe0xfSXZHi76OmCsAo12Damg8vXXX9OrVy8GDhzoCgIAjz/+OEnhntNCV3RhT+/bRheQUXWCBgIVFLZt28aoUaPo1q0bq1atKrf9SO5RrmqUV60L++BOTTRpnKoTtGtI1Wl79uxhypQpvPrqqxQWFnqoIUSd14eGvW/kvK49OK9r9dJC6NvDqi7QQKDqpN9//50ZM2bwwgsvkJ+f77FO+NnnU/+SsYQmtcCBMwB8Of5SvbCroKOBQNUphw4dYtasWTz77LMcOXLEY53QBi2J7XUT9uSObuU620cFKw0Eqk7Zt28f06ZN89gNFFK/EbEXjyHinIsQKT88prN9VLDSwWJVp6SkpDBmzBi3MmtUHHFX3EnjW14i8tyeHoOAzvZRwUwDgQpIhw8fdr0RXNZf/vIXrFYr8fHx1O99M41ve4XoTlciVvcHYJ3to5STdg2pgLJv3z5mzZrFnDlzWLp0Kb169QJO5gjKzsnDKkLc4Mdo0LoTR4psHr+nfoSNL8dfWostV8p/aSBQAWHXrl3cNf4JPn5/IUWO4wDcP/5xNqxe5coRVJIeotAYIlp15Yjn98MAmDSgXW00W6mAoIFA+bVNmzYxc+ZM3ly4kKIyA8Ab1/yHpxd8xAfZEeVyBFVGu4GUOkkDgfI7xhhWrlzJzJkzWb58eYX1LBH1eH35Oo43TavW9zfR2UFKudFAoPzG8ePHSZ/xEq+9/ALH9u6osJ41Kp6YrkOJ6tiX47ZwGsfaPSZ/80RnBylVngYC5XP79+/npZdeYvbzc/jj930V1guJa0q9bsOIbNcLsToHgUvSQJQeIyjNZhGiwkPIOeaoUsoIpYKRBgLlczt27GDSpEkVbo8+qx133fsASw42Ir/g5JTRkrv7kgt76VlDhcbQRC/8SlWJVDQX21+lpaWZzMxMXzdD1SBjDN26dWPt2rWlSgV76+7EdBmKvem57Jx+ldsyknp3r1T1iMg6Y4zHATV9IlC1Ys6SVTw7fwlFbS4vdxEXEe69917GjBmDhNqJSu1DdNpAbLENgZOpHzTTp1LeoYFAeU1eXh7vv/8+02fP4bt1qwGh8Z/bk01DJizeBJycxjlixAhWbd7F54XncMIa7voOHdxVyvu8mmJCRPqJyFYR2S4i4yuoM1JEtojIdyKy0JvtUd5njCEzM5P+I8cSHZfImDFjioMAgCF347+B8ou8h4WFMXf6Yzx9bXdN/aBULfPaE4GIWIE5QB8gC1grIkuNMVtK1UkBJgA9jDF/iEiSt9qjvOvXX39l4cKF/POf/2Tz5s0V1sv9dgWxF12HWG0e0z5r949Stc+bXUNdge3GmJ8ARORtYBCwpVSdW4E5xpg/AIwxFc8dVH4nNzeXpUuXsmDBAj755BOKik6R0wEIa9qWqI79AQE07bNS/sKbgaAJ8Eupz1lAtzJ1WgOIyJeAFZhsjPl32S8SkduA2wCaN2/ulcaqqisoKODGG28kIyODY8eOnbKuxR5DVPvLiDrvCmwJzVzl2vevlP/w9WBxCJAC9AKaAqtEJNUYk1O6kjFmLjAXnNNHa7mNqpSSKZzrvtjA8YqCgFiwn30+Ual9sLfq4nr5q4TO71fKv3gzEGQDzUp9blpcVloWsMYY4wB2isg2nIFhLcqn8vPzWbVqFX369EHE2ZVTOstnZNtLOJ69xW0fW1ILotpdSkTbSwiJivP4vU1i7Zr+WSk/481AsBZIEZEWOAPANcC1ZepkAKOBf4pIAs6uop+82CZ1Cv/64jumvLSQ7A1fkL9zHUUn8tm4cSPnnXce4HxztySNQ8Q5F3Hw/83FGhlHZNueRLbtRWhSi1N+v3YHKeWfvBYIjDEFInI3sBxn///rxpjvRGQKkGmMWVq87QoR2QIUAunGmAPeapNyZ4xh69atLFu2jH++9R6b160B4z7gO+2F13ln7mwAt8Ru1oh6NBr7HLaE5h6XfnTVE6HIGH0TWCk/pikmgsyRI0f47LPPWL58OcuWLePnn38+Zf2wxObk79sFQMsJyyisxu+L3WbV9wCU8hOaYiLIvbnqeyZMfZp9WzM5kf09pqhqi7hYo+KwNW3P8ePHCQsLqzQIWARiwm0cytNMn0oFEg0EdYSnhGwAT3z4HQcO5fLLZ29CoaPS77ElNMfeqisRKRcQ2igFEQthYWGAc6C3orz/sXYbkwe20wu/UgFIA4Efq0q2zcOHDzNr4TL+vvAjCouKiL3oOrJz8nhw0QasVsFRaLDYwghvei75u74td4ywsDB69erFZmmBOSvNleitbDsGd2riMe+/dv8oFfg0EPipsguyZ+fkMf69Dez68XuijuxizZo1fLDiC/bt2u4a4LWER1Ovx2hELBQBRYUnu3LCz+roCgQhcU2wt+jMwsm30bt3byIjI8lYn839izZ4bMvM5VvdUj9oKmil6hYNBLWsqjn1Z3y0iZxftuLY9xMnfvuJE79u58S+ndxfcLzC7y7KP4LjQBahCeXfvo5o0wNLRCz25A6E1GuAAAVNOhIZGQk4c/xUFAhK5wTSXEBK1T0aCGqRp7v8sumYAe666y5Wv/wPqOKgbmnHs77zGAhscU2wxZ08huHknX6JisYANCeQUnWbBoJa4HA42L17N4+98D77snZR8MdeHH9kkzDwYfIId6VjLllq8dD636sVBGzxzQhrci5hTc4hPLlzlfcrm/2zojEAfQlMqbpNA0EZVem6KV2nYaSVmzrHkhpn2Lt3L9nZ2WRlZZGVlcXu3bvZtWsX2dnZHjNzFvyxl9CkFq4ng5ILcEjCWRW2zxIRS1jDVoQ2bkNYo9aENmqN1R59Wuda9k5fxwCUCk5BFQgOHTrE0aNHKSoqoqioCIfD4fqTn5/Pim9/Yc6KLThO5FHkOM4PJ/L40yd5/KtFFK8+M4XY2Nhy3Ttb/u9V/vz4+6fVHscfewhNaoEIbnfhtkRnILDGJBHa4GxCE1sQ2rAloQ1aYY2Od+X+qcippnmWqOhOX8cAlAo+QRMIMtZnc/vtt/Pb1x9Ve9/3P4O/PnwXsbGxbvl2wJlq4XQVHHTm4Cv7npYtvhnN7nsbS3hUtb7v+u7NmTY4FYAe01dWGAw0+6dSqrSgCAQld/FHHadeOOVUDh06BJTvV7dUMRDYouOwxDQkJLYBIbGNsMU1IbSx5753sViRagQBT3P5dc6/UqqqgiIQnLyLP3WXyqmUBILGZbpdrJH1sUbFER4TT2h0HI7wWKzRCYREJzj/Wy+J5s2a8+vRQipK0FA/wka+o8jtol3CZhEKjCn31FCiort77e9XSlVVUASCkrt4S3gk1qg4QEAEsVjBGuK8Aw8JRayhSEgIYgtHbHYstjAkLAJLWCTJyclA+Ttte4vOpNz/Jk8NTeWBRRs8Xux/PVpYLoCUEGDSgHbAyVlDVhEKjXFd5IHTurvX/n6lVFUERSAouQjX73kD9XveUO39Y+02UlJSgFPfaZdcyD0d31NXjQDXdW/u+s7KLtp6d6+U8oagSEOdsT67wrv1qpg9qmOVLrplZxSB+517Vd8qVkqpmhb0aagHd2pC5q6DvLl6t1swsFkFDDiKTh0iqnqxrqxfXrtqlFL+KCgCAcC0wamknRXnMVVzRV064ByMrQ692CulAk3QBAKo+CJd0m2j6RWUUsEoqALBqeh0S6VUsNJAUIp26yilgpHF1w1QSinlWxoIlFIqyGkgUEqpIKeBQCmlgpwGAqWUCnIBl2JCRPYDu05z9wTg9xpsTiDQcw4Oes7B4UzO+SxjTKKnDQEXCM6EiGRWlGujrtJzDg56zsHBW+esXUNKKRXkNBAopVSQC7ZAMNfXDfABPefgoOccHLxyzkE1RqCUUqq8YHsiUEopVYYGAqWUCnJ1MhCISD8R2Soi20VkvIftYSKyqHj7GhFJ9kEza1QVzvlBEdkiIt+KyP8TkbN80c6aVNk5l6o3TESMiAT8VMOqnLOIjCz+t/5ORBbWdhtrWhV+t5uLyGcisr749/tKX7SzpojI6yKyT0Q2V7BdROTvxX8f34pI5zM+qDGmTv0BrMAO4GwgFNgItC1T507g5eKfrwEW+brdtXDOvYGI4p/vCIZzLq4XDawCVgNpvm53Lfw7pwDrgfrFn5N83e5aOOe5wB3FP7cFfvZ1u8/wnHsCnYHNFWy/EvgYEKA7sOZMj1kXnwi6AtuNMT8ZY04AbwODytQZBLxR/PN7wGUiIrXYxppW6TkbYz4zxhwr/rgaaFrLbaxpVfl3BpgKzADya7NxXlKVc74VmGOM+QPAGLOvlttY06pyzgaIKf65HrCnFttX44wxq4CDp6gyCJhvnFYDsSLS6EyOWRcDQRPgl1Kfs4rLPNYxxhQAh4D4Wmmdd1TlnEu7BecdRSCr9JyLH5mbGWP+rzYb5kVV+XduDbQWkS9FZLWI9Ku11nlHVc55MnC9iGQBy4B7aqdpPlPd/98rpSuUBRkRuR5IAy7xdVu8SUQswLPAWB83pbaF4Owe6oXzqW+ViKQaY3J82SgvGw3MM8Y8IyIXAAtEpL0xpsjXDQsUdfGJIBtoVupz0+Iyj3VEJATn4+SBWmmdd1TlnBGRy4HHgIHGmOO11DZvqeyco4H2wOci8jPOvtSlAT5gXJV/5yxgqTHGYYzZCWzDGRgCVVXO+RbgHQBjzP+AcJzJ2eqqKv3/Xh11MRCsBVJEpIWIhOIcDF5aps5S4Mbin4cDK03xKEyAqvScRaQT8A+cQSDQ+42hknM2xhwyxiQYY5KNMck4x0UGGmMyfdPcGlGV3+0MnE8DiEgCzq6in2qxjTWtKue8G7gMQETOxRkI9tdqK2vXUuCG4tlD3YFDxpi9Z/KFda5ryBhTICJ3A8txzjh43RjznYhMATKNMUuB13A+Pm7HOShzje9afOaqeM4zgSjg3eJx8d3GmIE+a/QZquI51ylVPOflwBUisgUoBNKNMQH7tFvFc34IeEVEHsA5cDw2kG/sROQtnME8oXjcYxJgAzDGvIxzHORKYDtwDLjpjI8ZwH9fSimlakBd7BpSSilVDRoIlFIqyGkgUEqpIKeBQCmlgpwGAqWUCnIaCJRSKshpIFBKqSCngUCpMyQiXYrzwoeLSGTxOgDtfd0upapKXyhTqgaIyDScqQ3sQJYx5ikfN0mpKtNAoFQNKM6DsxbnugcXGmMKfdwkpapMu4aUqhnxOHM5ReN8MlAqYOgTgVI1QESW4lw9qwXQyBhzt4+bpFSV1bnso0rVNhG5AXAYYxaKiBX4SkQuNcas9HXblKoKfSJQSqkgp2MESikV5DQQKKVUkNNAoJRSQU4DgVJKBTkNBEopFeQ0ECilVJDTQKCUUkHu/wO679uS86yYRgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -320,7 +321,8 @@ "warnings.simplefilter(\"ignore\") \n", "\n", "with torch.no_grad():\n", - " _, info = theseus_optim.forward(theseus_inputs, track_best_solution=True, verbose=True)\n", + " _, info = theseus_optim.forward(\n", + " theseus_inputs, optimizer_kwargs={\"track_best_solution\": True, \"verbose\":True})\n", "print(\"Best solution:\", info.best_solution)\n", "\n", "# Plot the optimized function\n", @@ -352,9 +354,9 @@ "hash": "cc5406e9a0deef8e8d80dfeae7f152b84172dd1229ee5c42b512f2c6ec6850e3" }, "kernelspec": { - "display_name": "Python 3", + "display_name": "theseus_test", "language": "python", - "name": "python3" + "name": "theseus_test" }, "language_info": { "codemirror_mode": { diff --git a/tutorials/02_differentiating_theseus_layer.ipynb b/tutorials/02_differentiating_theseus_layer.ipynb index 72d989011..91b9801be 100644 --- a/tutorials/02_differentiating_theseus_layer.ipynb +++ b/tutorials/02_differentiating_theseus_layer.ipynb @@ -29,7 +29,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEKCAYAAAAVaT4rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABCRUlEQVR4nO2de5gcVZ33v7+q7pnpTMJMhlsmhIhkCUEQhKAiCIrxQVhEUFcW3V3UdWXfdXdfvL5ylYgo7KMryz66r4urr7ILcjcQEEEjKxclLCEmXHJBQoBkZgiQzJBM5tKX8/5RfXqqqs+pOlVd1dff53l8pqe7uro6jN/+9fd8f79DQggwDMMwnYPV6AtgGIZh6gsLP8MwTIfBws8wDNNhsPAzDMN0GCz8DMMwHQYLP8MwTIeRmvAT0cFE9CARPUtEzxDRheX7lxPRdiL6Q/l/f5rWNTAMwzDVUFo5fiIaBDAohHiSiOYAWAPgHADnAtgjhPhOKi/MMAzDBJJJ68RCiGEAw+Xbu4loA4CD0no9hmEYxozUKn7PixAdAuAhAEcB+CKATwF4A8ATAL4khNileM4FAC4AgN7e3qVLlixJ/ToZhmHaiTVr1rwmhNjff3/qwk9EswH8FsA3hRB3EtGBAF4DIAB8A44d9NdB5zj++OPFE088kep1MgzDtBtEtEYIcbz//lRTPUSUBXAHgBuFEHcCgBDiFSFEUQhRAvBDAO9I8xoYhmEYL2mmegjAjwBsEEJ813X/oOuwDwN4Oq1rYBiGYapJbXEXwEkA/grAU0T0h/J9lwD4OBG9DY7VsxXA36Z4DQzDMIyPNFM9jwAgxUO/SOs1GYZhmHC4c5dhGKbDSNPqYRiGYSJwx8hOXL1lGNun8jioO4uLDx3ER+cNJP46LPwMwzANQgr9tqk8CM7Cp2TbVB5f3vQyACQu/iz8DMMwKeGu4PttC9MAxosl5bGqjqqJksDVW4ZZ+BmGYZoRv02zbN85uHVkFyZKjqTv0gh+GNun8kleJgAWfoZhmEiofPjHx/bghqGdlap921Te83stHNSdTeAsXlj4GYZhDLhjZCcu27zNU7lvm8rj8xtfRl4x+iYJ0c9ZhIsPHQw/MCIs/AzDdDQmSZo7Rnbiy5tertg2blSinwRzMzauOuwgTvUwDMMkha6CVyVprt4yrBT9MPxJnSBsAEUAC1KMcUpY+BmGaSuCkjRzbQtXLV4AANoKXpWkibPASgDOnz+AVa/v1qZ60qzqg2DhZximJbljZCcue247dhWKAIAsgAK8FbY/SbOrWMLnN7yE2bYVWMH7hf6g7iy2acQ/SwQIAfejUvT/6fCF5m+ojrDwMwzTEgQ1OwGAaU2eR3i00p+kufjQQeU3BFmxA6hLx21SsPAzDNMw/LYMiDBaKFaJp39xNc3to1RJGnkdQeLezELvh4WfYZi68tVNL+G/hnai6Ls/aJE17uKqjrkZG5OlkraCV4n4R+cNtJS4B8HCzzBMTag6Vu9+ZbQi5BaAEpy0yptzXXh4dNzovO5F1iS7V7NAS9ozScLCzzCMMWFjCbZN5fHToZ2e58g6fttUXrtAqkMKftDiahBZAF22VZXqkQLfKULvh4WfYZhA/OkZSZJjCXTIRVbd4qqbLJwcfAlOJv4vmzhV02hY+BmmA1B1pwLhVscdIzu1IwmA+i2yuhdXt03l69rs1I6QSKndOEmOP/548cQTTzT6Mhim6fBX424rIyj+mAUAIo+g5yzCdw4/2COix//umVgWSxzmBqR6mHgQ0RohxPH++7niZ5gWQFex+6vxXcUS/n7DS7h5+HU88cZebfwxDwC+oi9ux2qUsQQ5i3D8PrPwu9FxFMGWTKNg4WeYBhNkw2ybyldSMRIZdeyxLK0FY5qc8ROlYxVwhPzceXMrYwnCUj1cxTcHLPwMkyBRvXR/Y5Ic8+seAaDqMZ0oCUyU/En42lF1rOo8/qDMO1fwZmzY+DUMDd0MlL//zJ9/Ho5YcmXqr8vCzzCG6DxzAvDu/l48vWfSk3zZNpXHP254CTZmxgmYNCalNebXjc7j13Ws6tYRmPg4on+j655i5fe0xZ8Xd5mORTeH3TNGIGMDQmBXsRTJyw5jQXcWT5x4JAYf/EPsc861LewpCe0Hhf965e8LIqR6GDPiVO6rfrO4fLwfG8vetzmR6+LFXabjuGNkJ/7P5m1Vm1vLDtJHRsc9W+V9edPLeHxsj3efVFcFn2SJVGtjUs6iynhh1XtUee8qYWehj8bwyF3Y8vx3MDk1jIzdB4FpFIt7fUeZVu46qy55C88PCz/TdLgr7hwBk8Lrcy/QVOf+qv1/b3wJRYVa6zpIJ0pCOUMmDYIak1Rjft34vfWgfwcmHsMjd2HDhkshxIT2mEJxNPAcQ0M3hwi/7EZQ3Z8uLPxMYug88LkZGx86oK+q+gTg2QGp17YgSiXsdYn1Xo1wq6pzt39+9ZZhpeiHUQ/R1zUm6VI9Js1K7TRArN64q/ie7kEM7HsqhoZ+BvWyehSC/5rmzz/P5/HP3J827PF3MCove7RYQo4Ik0KgBCeK516cnEWEbtuqNNks23cOVr2+O7JdkSVCsfwacdHVSwu6s9g+lY9lzejOGZcsET4xGG65MOniF/dDF30ZALB58zdQKOzyHZ3Uak64V592qkfn8bPwNxGq2eS7CsWqig/wVspBYqyqFr+66SX859DOmuuZZoUQzzuXuya5v0WojhGAMtXzwsQ0jxNoAlQV/MjInSiVZmwbomy5fy29ruT58/+iLtHMIDpW+KN6nyYbQ5ie0219SDGoVYhrqZRl12Tc5p5mI6jiv/jQQa3Hr8K9VZ7umxBX683P8Mhd2LjxUo/IJ1fBm9PffyKWHvefdX1NFR0p/P7mGEA9jyToeDcyKeGvCFXnDDuXfF47CXE9MflvEZTqkd+K2H5pLx599GRMTg2l/CrO7r6qVE/G7sfiw7+GwXlnp3wNZnSk8OsGTMkMtenxboKqTPc56zncqhUx/ebiHrUrMUn1MM3PjCUzBF1VTjQLRxxxlbGQrvrNnyjPEwXLymHevI9gePjOqlRPs1TypnRkjl83YCrq/W50C3/+5ya5Y1CrEyXV0wVEslU4zdLceBcvg9CMfRZ78eyzzkKsifj3dA9qKn7vB4vO43dX7I3259OkrYVft8Dnn0cSdrwbXcXvP2fcxpww0vL4swBm21ZNqZ44i5os2q2PKjEzOO9sxUiCuJSw5fnvGAn/oYu+XOXxywp+5+sPVqV6VNfdCbS18KuaY1TzSIKOdxPkK/vPabJjkKnHn0aqRzYq8VhcJgyvJeP8RfV0z6+Ip1toJ6eGsHHjpQBQrvSTYXJq2Og4Kdymgt4pQu+nrT1+oHVSPf6OUY4CMvVkeOQubNp0mWehkmgWhNgLnf9uWTlY1K3sYO3pnp/oImtP93ycdNLDiZ2vU+jIxV2GYdT4Z84Uim+g9k5VNwTHKEyiHc7CW95iZvUwXjpycZdhOoWg4WH+iKE/6x42cyYOM6MPavP4o6Z6GDNSE34iOhjADQAOhPM98XohxHVENADgFgCHANgK4FwhhL9nmmE6Ht2YAdV9QUJeKI7i2We/CsDxtLc8/x1fg1N8Mpm5KJUmqxZT3b56WKpHrhewuNeP1KweIhoEMCiEeJKI5gBYA+AcAJ8CsFMIcQ0RXQRgrhDiq0HnYquHaWdUIwaGh2+HEFO+I7NwBnfOpMWCfHY/0idPIusuX3vJkm8C6Nx0TNKsX78eq1atwtjYGIgIQgj09fVh2bJlOProoyOfr+5WjxBiGMBw+fZuItoA4CAAZwN4b/mwnwL4bwCBws8wrcTwyF2e4V9EOdh2DwqFUWTsPoAIhcKoco7M5NRQgD2S9++PjlJpAiWYVe8yGaPPugchF3i9qR4p8Cz08XALfS6Xw/T0NIpF59uRLMrHxsawcuVKAIgl/irq4vET0SEAjgWwGsCB5Q8FABiBYwUxTFOjijRm7H6PiEvbZcOGr3qqciEmUChU2zCOyN+Ees2R6el2osCqrLvzbcLyfMtwUj0TXMXXgFvY/ZX7+vXrsXLlSuTzzt/KxIT+Azyfz2PVqlWtI/xENBvAHQA+L4R4g4gqjwkhBBEp/+qJ6AIAFwDAwoWcMWfSxb84KgU9k+lHobAH3g5PpyLzi/jGjZfCom6P6IdTu+irfPZqspUPpqhZdyYYnT1z2GGHYd26dRVh91fuq1atqjxmwtjYWGLXnKrwE1EWjujfKIS4s3z3K0Q0KIQYLq8D7FA9VwhxPYDrAcfjT/M6mfZB10Ua9hzd4mj1rHY9UWyXuDijBrwe/+LFlwOAcaoHcMSfhT46/gp+YGAAL7zwQuVxtz2jWpd0V+5Rhbyvr6+2i3eRZqqHAPwIwAYhxHddD90N4JMArin/vCuta2Bak+GRu8opFG81JOebe6rzTD8gBArFMWTsPhRL4xVhdHeRBolckimXeJiNDe7vPxHz5/+Z9oONhTxZ/CKvquDjVOHyOX19fcbPz2azWLZsWeTX0pFmxX8SgL8C8BQR/aF83yVwBP9WIvoMgBcBnJviNTBNgDOzxb2VXRaZzOyqajqXOwz5/GvaKnto6Ebs3fsC3nhj7Ux17jpWlWwplSZC57yYjgMwIZOZi2Jxj7Hdo5ojM7DvqXjllZ+7umgJ8+d/ojI0jAU+WVQ+PACP/66r4OMgK/dly5Z5XgMALMtCd3c3JiYmEkn16Egz1fMInFJGRXIfXUwoQfaH39t2V8ySnu75GNj31FhDrtSDuvJKcZ+YeC70vYyO/i7CO3cIE/Z4KZdq3LaLaapHZ0W182TIZsK/wCp9+EwmE8l/N8VduUsh1y3+pgmPbGggwyN3YfOmKyuVKtEs2HZ3qCjocETWnRJRbRQIg8fCUY21lblu9zWv+s1i1GcLcz1hc17UuzaFo0r1cDXeXASlagDg2muvTXTR1E02m8UxxxyD5557ru7CLunIkQ1ROh/jJBzCzh9U3akqYSH2olBwvt6b+tMSdWUtfD9NHwtHZWWobZXGir7sIg3Cn3Lxp3qKxcnKhhyZzFwsXnw5C3yDUfnvfoEFqu0afx4+LdFvhMhHoW0rflUVp6pSTSvXuOd34+50fPbZL8FEdE2nEjZDZe1AWPa+P1Z+S/q6+vtP9Hj81cj1A67C2xW/PaMim80ik8kos/F9fX34whe+AEBf8edyORQKBc9rqCp41QdOM4l9x1X8qqSGqko1r1zjnV913vLRgcdKzBcem0H0Z5qEJPPnn5fQZhzhqR4W+tZClX/P5XIAnGYmnZCa5N/z+bz2GLfQqxZYs9kszjjjjMprNauo10LbCn+tSY2w58c9f9Tn+YVUj25vsHTQfVPy2ypykdI01SNK46GWG2fQW4+waKR0HtwVum5UQa32jDsPH7bA2i5C76dthb/WpEaY4MY9vzyvyXNN/GlJkpW1n1pSPYAj/pxSaW/Wr1+P++67ryLcbqvFP4MmSjRSNarANP+us2v8efijjz66bQVeR9sKv2oeSRSPP0xwTc/vxn1edYokvj89U1lXp3rc2+SpttBTibrp63Ll3b6orBj/Tx1uqyVoBo0JfpFX2TN+OsGuqYW2FX7dPBLT+8IEzeT8YZntpGelmFTWLNSMCpUVs2bNmoq4637WA/+oApU9E7TIykJfTdumehiGCcdv0TQb2WwWZ511Fot3TDou1cMwnYROwIPsDZNYZFr4o5FRUj1M7bDwM0wLEFSZ53I5TE1NoVSq3iw9aBOPqGOBa8E9g4YFvfGw8DNMAwgbJeA/dsWKFUphB8IXT3WbeKTVtQp4Uz0s9MGMr92BsZXPo7S34NyRJVhZG6W9Bdj93djnA4eg99gDEn1NFn6GSQCTBEyUUQJuVq1apRV9U1QiHxSLDEvtqB5ngQ9nfO0OvHH/VhRHp/RjsvICpbzzIVAcncLonc7wwiTFn4WfYULQVef33HOPJ/ki0SVggiY/Bm2tl0RlrtrEQxeLzOVyOOOMM/DSSy9V3h8RYenSpfjgBz9Y87V0Em6ht2ZlUJoszPQxGuZqRL6EN+7fysLPMHFwC3g2m0WhUAiNJWazWZRKJU/z0cqVK7F27VrPzkummI4ScBNlww4Vuk08TLpWWejDqbJqNIQ9HkRxdCr8oAiw8DNtgVvU/WSzWWWFbYLquHw+H0v0w9Btrbds2bJAjx9wFk8zmQymp6erzhlkv3Ri12qSjK/dgV23bwaK6cbi7f7uRM/Hws80BboNq2WlqtohSd4XlGoBzEW+XpiOEpBIYdalethbT4fxtTsw+vPnIKa9f1fuBdc37t+auuhT1sI+Hzgk2XNyAxcTF511Iv3ghQsXKgXbLWC5XA5HHnmkZ2CXG9u2IYTwiLplWSCiiv3SSsiGJIBHCTSa8bU7MHr3HyEmnL8ja1YGfWctQu+xBziV/G2bZvx4H5S10P+Rw7Drlk3JX5gFWD2ZRFI9ugYuFv4OQtWW/8wzz1SJcNh8cdPGH3/yw7IsCCHq2u6fBtlsFgsWLAi1e3SpHhb4xlC10Kry3G3C3D9bPJO8CUDaL5H8d5tAXZbzYeNL9VDORv+H/iTRRVwW/jqi27xZZ2WohFVVDQZlv/2PDQwMJOJD+1vmwzLl7Uoul6vKpKtSPZx+aRx+YRdCQEwUYfd3o3vJXEys2QGRD/+7tfu7jcV87p8fbuzxu79R1IuOFv6wZpk4/wfWVb3+EbSA2q6QWJaFc845xyOsqo0hjjnmmCo7xG0bpNl6b7JjUathmuqR0Uau0psPv1WTJCbib/d3Y/Cid4SmetJqwjKhY2f1+IXU3yxzzz33KGeDCyEq9/vFf/369bjzzjuVr6dafAvyokulEu677z5PtE6VQFHlxWX2W95OC7fQ11v0TT1+27bR1dWl/PeXqR62WloDd+WuE80wD74W5GuGefxywbX32AMaIuq10PbCrxNS2SyzZs2awOevWbOmSvil2CaFf9chFbrKtB5C7I4ZRsmUm3r8tm3j2GOPrRrYZZrqYUFvTXaueA57V484PjcByBCQ9/5t6DpX37h/ayqiD5s8HzRhqZ5Wpe2FXydS8v6wr/qqx9MUW52w6lropSindU3+mKFJpjxqqsfESlE9zkLf3Ogq9/G1O7Drzs1ekReoEv3KQ4rO1UQammwCrJnX9XvwrVjJm9L2wq8TUimYJjNJTM+pI8jjB1AZRQvoN3/Wefyq2S8myARP1FSPKlMeJN4s2J1Bld+eJaciLy96ysp96sUxTKzZoRV5HX6hj7IACzjWTG7pAZjauCvQQuoU2l74dUIqBXPp0qWB+38uXbpUeU6dxw+oR9AC6gYc27YrW8QBwW30qgraLaImqR5/SidO+oS7PTsHvx0z653z0P2mPk8l371kLvY+PuK1XhTCLvKlmXNFxN+5GubB+1M9nSzyKjjVg2RTPSYjdtmbZhpNUPRRiuTOFc9h72Mj1U/WTZVMCdkspVrg1TVgMQ4dHedkmE5EJ4xTL46pBb1MpSv11k3JC3zEDw2u1mujY+OcDNMphOXaS3sLRhFIuZiatOhLn13bSJV1Uj0s9unDws8wTY6/QUi29gMIH0HgxzACGbhRiCkEWLnqmTPjvjUCFvn6w8LPMHXCpDFJ9Rz/SAAxUXSGg9lUub+WWe8qKou2Bh5/pZJf96qR397OMclWgYWfYWpAtZWeFE0ZHVRhuqVe4NjflMYBy65UeV1hqZ7Ksecclsr1MMnDws8wLpRzV2SF6xJ22a4/eudzM351WYeLo1OBi6cSky31kt55CVb5p9/y0fjrA+cchgGFoHPFbs6Ghx/EwzffgN2vv4Y5++6Hk887H0ecfGpDr4mFn2lbVNYKgOrNrss/KWdDTBWrRVF4f1aq9QwZTXsMwmQQWFLiL+0XAOyxJ4BK0AF47jv02Lfjmd+uQmHa+W+4+7VX8cD13wOAhoo/xzmZtkBlubQCcsKjjsCt/Vwef+V31wgCIJ0Z74wj+g9c/72KoAOAlSn3QxhsEDRnv/1xwff/X5qXCIDjnEwTo1v0VHWNqmyH8bU7lJZLs2OypZ4U7LBUD1fuybLh4QfxwA+/h8JUWdiJcMz7z8D7/+ZzAJyq3i36AFAqmC+w7379tcSuNQ4s/EwkdNFCKThhs8kl2UX74MDPHlMl2tJG2fPEMPLPvzHzBIGKb+4X/zfu31qz5RIHa1YGIl+K9dpRukyDUjAs9PHxWzWHHvt2bFn7P9j92qvVBwuBdb/6BQDg/X/zuZqFe86++9X0/Fph4W9zTFrz/cepHtM1BomJotMUVMZ0N6L882/glR+uQ+n1qSrhFPmSV/Rd7F09UiX8iS+AGkBZq8ovN0n18FiBxqASeb/3LoU9iPWrfon3/83nMGff/dQfEAZkuror6wGNIjXhJ6IfA/gggB1CiKPK9y0H8FkA8l/sEiFE+L92ExE0atbTTJMvase96s7nx/+8qmraBuDSYuqy0P/hw7yC7aqm3VW4O04IQFl1S0K7PUvl2CEQKWKoE/dAVFZ3ggugsADKWN4Z7JpUj3t8L9M4wlIzfj/eVORViPKE3ZPPO9/I4890dePI9yxzvkl0SKrnJwC+B+AG3/3XCiG+k+LreghLduiqYN3zVAIpR82qBFb+vuv2zQC8IlHlTftwPw9QVNO+AlxMlyrVd++xB4RaIJXW/PJt3WMm3Z5xhTeyaFdPycY+Hzgk8N8x8FwBgs40HxsefhC/+en1mNy9GwCQ6e5GsVCoiK0qNaPy4+NCllV17qBUTzOIvIrUhF8I8RARHZLW+U1Q+ce7btsEkLrjUSfk8n7KWkqBNBo1WxRVmW0jb7r8PHk7lHL13XvsAUaCGnRMFEGWY3OjfgCoRJuyFjILZyu/Ecx657yq++S/qcpy8X/Qs7g3P7oKfsPDD+KXP7jOs4haWXx1UZiewsM331AR3CQXUo9ednrl9hEnn6oU9WYUej+N8Pj/gYjOB/AEgC8JIXal9UJKYS0BQSqtE/LARTxDd8MviqYiGVVM5fGmG0brXsNYzC1UBNbU4wecBV6/aMdJ9QDhYwBY6FsDlS0jK/iHb77BODnjFvta/PgKvlRPq1Nv4f+/AL4B5//K3wDwzwD+WnUgEV0A4AIAWLhwYawXi+37Ro0DGubG/ZtJmNocUatpeXyYBeKOE6qq7oqYB206rciJR0n1AHrR1nWNMs2Nu2Lv7p0NImBy926QZUGUSpiz3/5aC0Rly8gKPkrl7k7NqPx4lfdeSfU0uU2TBHUVfiHEK/I2Ef0QwD0Bx14P4HrAaeCK83qxF/00Qk45GyiIKoEMHDVbuRiqymwbedOu5xlV067q219Nh+1KFGSHmG54wQO4OgO3uPfMno389DSKCttlas/uym25MBrUvaoTdynGJpW7PzWj8+PbVdRNqKvwE9GgEGK4/OuHATyd5usphdWCx+OvukaNkFPWCmyacY+aNU31VHnTPlTPi5Lqka+RRFacxbxz2fDwg1j1k+s9Iu5GLrRGwe/DS3TiLsXa7/EDAIjQ3TsbU+N7tKKu8+M7lTTjnD8D8F4A+xHRNgBXAHgvEb0NTj29FcDfpvX6QLWwRkr1BMwMT7LSjfI8FmAmCbSNS6p0Sq3eeACq6l5ny7jF3J3q6Z49B8s+dQGLekR4Vg/DtDFhjUsqosycqQXdvJpmnGbZqvCsHoZpc5LqTo0ycyYuQd2rbMukDws/wzQpJpaMFMgku1OTpHv2nEipHgbYvHoEv7/reezZOYXZA91419mLsFjRv1ILLPwM0wRErdb9yZgku1NrpWfOHLzvk+y7R2Xz6hH8+oZnIVwO256dU3jwxo0AkKj4s/AzTEwqYq1YAJXiB4THCONW6+5kTJLdqaEePxEgBFfwMdi8egQP37oZk+OOndbda+OUcw8HAPzqJ88qY+SF6RJ+f9fzLPwMkxb+WTCq1Miv/+PfsO7X9wEBwYjJ3btx379dCxAFzpEBapslIwU/SsbdpHFJXhcvsEbDbdOYMDVexK9veBZdPXZgE6jp+Uxh4Wfankhz131M7dmN+/7vvwBwxPrX//Fvxt65bFhyo8qv11Ktyw5V0+7UKALOQh+NzatH8OCNG1GYjjYsUBSdD4AgZg90Bz4eFRZ+piXQVeKAekKi+1g3cRY9RbFYEev1q35Z4zupFvq4s2TcyRjuTq0vqgXY39/1fGTRN+VdZy9K9Hws/ExdcVffma4uFKanK37x0ctOrwzB8s97md477qmgp/bsxi++/11Ytl2JH+5+7VWnOhdCWW3XghTrJM7r330pqVkyHIOsDdM0jb+ylwuwtYh+T28Gk3sLSrtnweH99U/1ENE/AvivNKdoMs2JSSONvxJ3k+3pgZXJVlrp/UkV90hdUSpVKvGDDj/CI4S6UQEQoipznlbTkRRruaBpAlmWx+MH1Pl1rtbri0rgh58fxdMPDVWOCUrTqCr7wnQJZAEihvaTDZx87mIAwIM3bkBhuqz+BBx18ny85xNLop807DXDOneJ6CoA5wF4EsCPAdwv6tzuy5274ahEGoBRDvzX//FvWL/qlxClEsiysOAtb8WrL26pEnOybXTPmoXJPTNC/tSDDyTa8EOWhdkD+6Y6KiAqZNs44+8+H8njj5LqYZJFJ+zPPDKkFGbLJpQ0s7tmD3Tjk986yXPf9//Xb7SvnemyIlX+MtWTdEUv0XXuGo1sICICcBqATwM4HsCtAH4khHg+6QtVEVf4gypWk/SG6jx2V1fVFEJdbjko7jdnv/3RP28+tj37VFUFaWezyHT3YGrPTNOL/FlpiNmzBz2zZ0MIdUVs0naf6erG4OIlePnpddpjGkI5LtgM6FI97g9Kt0XF1Be/yPfvn8O2TaOeY2r9c/r7H7zP8/tPL3lUmbJxe/26FA5ZwJHvTqeKV75eLcJfPsExcIT/dAAPAjgBwK+EEP8nyQtVEUf4/dnoOPTMmYPDTzg5dLYJ4Ajt6f/rQm0nJWNGpIqfyOPxA051HuTxz9lv/9BUDw/+aj6UMUm5DWeKNYKq4leldzJdFk79iyWpVe5xiT2rh4guBHA+gNcA/AeArwgh8kRkAXgOQOrCH4ckOhknd+82ToCUCgVPTK+ZOilbiaOXnV7l8QOOoGeyWeQnJwFES/WwkLcG/ur9kKP2xdanX9dn2OvwpVCVppHinvZYhTQxSfUMAPiIEOJF951CiBIRfTCdy6qdJDsZ47xmI16/2fEnVYJSPYC5N96q+552Ir+9aWPFaycLOOiwfoy+OlEl7nt2TnkWW9PEsgkCwjMqAQCOOmW+VswXv3NeSwm9n1DhF0JcEfDYhmQvJzkS2Wczxms28vXdJO3x293dEMWix1aRQr7psYeNUj1Rm4dYvFsT08pdlFDlx9cbWa0DrV3BR6Vt5/HX22NvJo9fzk4B4qd6RkeGqo7jOemMjqijCuoKAQsW92P7c6OVbxr1XGBtJDUv7jaSmlM9NVTeViaDt556WkUwmzLVE6OiZpggdELe05vByecu9lTDcUcVJEWmi1CYFpVvF39cs6NqCFo7V+9BdKTwu9GJcKa7G0eeskyZ8uDxsky74RZ02XCU6SIU8sJZLCWnIvb73W4sm7Ds/CMqYqqLN6ZNJ1Xucen4HbjYM2banSBvXf6+8bGRSmUum5kqnaIAIIJFHwBKReEZE5yG6Kuuv91993rSMcLPMK2KbobM5tUj+O+bNiE/Va3U/lRM0ikZt9jPHuiOJf7+VI9K3N+TyNUyflj4GaZJuOvaJ0NTLnKGjDOCYBii1Bir1j0m+F1nL9J6/Fy5Nycs/AzTAPxVfLbLwq6RCaPnFqZL2rkz9cCyydPYZNLQxJV7OGMrV2LHtf+CwvAwMoODOOALn0ffWWel8los/AyTMLrt9aQQqsb6RqVRoq9K9QCt39BUDyrCPjRUNUCIcjmgUIDI5wEAhaEhDF/+NQBIRfxZ+BkG3grc7iIUyykXmRwZXNRvPKt91Q0bPNMe5fZ6gCOQSWzYEWcEcKbLwpIT5lVsF12qJ5OdiUeyLRMNXdU+tnIlhi//GkR55Ih/apyYqP62JyYnsePaf2HhZxhT3ELe05uBgMDUeLEidvKnKu1SdKVcRAl4+qEhPP3wUGU2TNisdtWIX1FEJQlTawpGCniQxx/krbPtkhxbP/1pTPz+MeVj7qp9x7X/MiP6ESgMD9d0fTpY+Jm2wC303b028pOligBLywWYqZLlT+O0i09fC9MlT6RREiTq8rG4KRjAa7UMLuqvSvUcdYo3184iXztjK1di+JvfghgdBQDY/f2Yc8bpGL39DqBszeiQVXtcAc8MDsZ6Xuh5Uzkrw9QRv2cetnF1UuhmsutEXSZhVCmYTJeFOQPdVQu87m8mftuFffVk8Xjwtg1o5lwVR0cx+rObjc8rbZ/CULQ4LfX04IAvfD7Sc0xh4Wci4YjsBk/Tj50hlIR3uqFlE7I9FqbGi6l7xWluch2EO9IoedfZi6o8fsDZXk8mYdphrG+r4/fiZ7/nFIz9fMWMHZPgFp7S6/d4/CosC/Y++6A4NsapHsYMVSu+avIgCBXbIuock82rR/CrnzxbZXsUC9U+c6koKpV3kCeeBHUZF+D6dwOcCj1oVntQqkcex0KfHmMrV2L4iuUQe/d67s/Mn18l8oWhoUgVfBRk1S4FXJfqsfv7ceCll6Qm9FXX1a6zetxzv91ku21YGXgW+uSWbXJ6nzwuP1XUftUOao/3pCRcqGaLqK5TVwEGdXDqGmjIBgj6PUXJBt5//luMRKjWmSyq3YySoNbr8qddakn1MPVlbOVKvPLNb6FY9t+N9lms09aemfnzU63aTeioIW2/vWljaps49PRm8CdLD/CkQKIiF+CCrtO/lVvQdm+1jsM1FeSgTaZN8e9fmgSqfxuyge6eDCbHC6GpHhbx1kBpz9x+RyX73gxQVxcGv3lVQ8XeTUcNaXvmkfR27pkcL9T8ofLMI0N4zyeWBF6nPzWi8rHlMbVaHabPryWNIp+fBuyZtzYmHav+HHxhaAijN9+SbOVu+E1Apnr2/PahunTZpkFbCn+juhpN8UcKdbhFVie4UujqIcjvOnuR0uM3QeeJJwV75s2NaWOTrmNVmYNPUPSppwd9Hz7HEXNVqse20X/uxzB4hXZDwpaiLYU/TldjPSFr5mfQdboFWSfusrqtxeM3FWQprM2W6mEaj8qGkRWx3deH4p49QHnbzrDGJlXHapKNTB6Rb9GKvVbaUviPfPf8um3UHIcj3z2/8jPI43cLsi777RbUtFM9AFfWnY6qcgdQbcO4UjKVhVcXYY1N/vvj5OBVNMOCazPQlou7gFmqJwiZ6vHH+IDqFEijUz0MkxT+lAz192Pw0ksAwNO9KqGeHqCnp+p+I4i0gp6ZPx+H/WaV57r8OXhZue++75dVqR4WeIeOSvWY4hbdoG3cWHCZdiHIkqG+Pojdu6ubl4hAmUzi6RkpzipBH/zGlcoF3nqNLW4XWPgZpk1RjRqQogqgIpbU06OcAtkI3OLOgp4eLPwM04aMrVyJoYsvqSycuqFsFkII5WNJYvf3ozQ5GTiOgLJZoLcXog7jCJgZ6p7jJ6IfA/gggB1CiKPK9w0AuAXAIQC2AjhXCLErrWtgmFbBXfXafX0oAY5v7qvg/WI5/M1vaYW9Ho1N1NODA8trADoLiYU+GvduuRfXPH4NRqdGK/f1d/fjondchDMPPTOR10gz1fMTAN8DcIPrvosArBJCXENEF5V//2qK18AwDcVvY2TftBATj/+P46MTAT09wMSEp3nIk4Ip++26fHusRdWoaDx+/3wZFvbaUAm+ZHRqFJc/ejkAJCL+qVo9RHQIgHtcFf8mAO8VQgwT0SCA/xZCHB52HrZ6mFbDP8M9Kfxplw1Ljkj0/MhkQF1dleFm7lQP+/Dxueqxq3Db5ttQEiVYZOFjiz+Gy064rPL4vVvuxfLfLcdkMXizlsHeQTzwZw8Yv26zjGw4UAghA7ojAA7UHUhEFwC4AAAWLlxYh0tjmBmCFkzDBE8VPUwKf77d7u9X5uQBA4+fCLkT3on8iy8ZCToLvRn3brkX1z15HUbGRzCvdx7eNOdNeGxkZpeukijhlk23AEBF/K978rpQ0QeAkfGRRK6xYQ1cQghBRNqvG0KI6wFcDzgVf90ujGkLhr/+dYzeepvZXHVfO36VcIfYLX7ibrNngn9HpgMvvQTDl1yqtWHk9ci4pgXUZd57O3PVY1dVhNtNX1cfTn/z6bjrj3dVRHx4fBjD4+omtds231YRflNBn9ebTIy83sL/ChENuqyeHXV+fabFUAq4yw+n/n70uQZm2X19KI6Ph26J56FYrHSaDl5xRaBwm2yAndY+qaodmTxz3jVVO4t7cuhEHwDGpse0j6koubo25/XO035ASLJWFhced6Hx+YOot/DfDeCTAK4p/7yrzq/PNBnuxc9KRepKsyhxrUsJ3zZ4OtvDhNFbb8PgFVeECnfY47WOF7D7+41TPYAj7CzuyeC3aS487kLPYuptm29L7LUsObQLwIXHXRjo8bdMqoeIfgbgvQD2I6JtAK6AI/i3EtFnALwI4Ny0Xp+pja2f/jQmfj/jS8KyQPvsU5XDrqX5xm+piNFRVKQ+wa3vjCm/Zphwh22Ardtmz+7vR9cRS6pTPZOTbL00Af4F1uHxYSz/3XIAM0maUoLTHz+2+GOV2/L8QR86ScINXC2KMvc9NubxccM8XY+N4vK5q0RfgZyT4tmnFPp2exXPvW9ZIoO3EsO2ccQzTwcuzpq+P+5GbRyqqh0IF9XTbj9Nabe4kzTH3HBMZPHvsXvwtv3fhsdfeVyb6kkL7tyFfrKgavHLLaa6hhTAO7hKbtDgGRoFKAdHDX/9696NJLJZ2L29Xpuj/JP6+z0CXrUxtCFu0Rr++teV+4z2f/w88/1HNXaMP3KoY8MRb6nLFnim9H/8PM8Cb9xUD5MuQXaMKhaZoQyICPnSzLpPj92D5Scu94j/0T89GkKx2QSBsP6T6wEEe/zytT66+KN4aNtDdancw+h44VdWcRnnDyJOhyNlsxCFQmThop4e9Bz7ttCKOi2kKG848ii1nRLkrZtChCM2PBt6WNNU/G22yUa74Rb6fbr2wZ78HhRdmz9krSy+cdI3cOahZ2qrdhX+TLxJxQ8Ep3oufufFDRN5Fc2S428YyqRGoRBnMykA8dvhxeRkw0QfcC1M6sQ9iujrKv4QD1yi88JDCUn1uL+pcYXe3LgbmwBgVmYWJgoT6Ovuw1RhChNF71C5semxqnPkS3lc8/g1OPPQMyPl3P3HqhZYe+yeqiTNZSdcVhebJk06RvjTiti1GhVR1lX2to3cO95ek8fvjxzq8EcRVaketlfaA1WVbMNGEd6/wb0Fp2NYNbYgCHm8SSxS4s/E13uBtZF0jPAntYNP02C4MbTnKS5R7j/3Y2qPX7fAq0n1zDruuJoWMTmK2J4EzZ2R+EU/CVRVu87jV2Xizzz0zLYUej/s8begx+/fMzTpVA/DBOFfXD1lwSmexcxTFpyCO5+70yO0adPX1YdHPv6I8vpMUz3tSMcv7gLtk+ph64NJi8/e/1nPXJkT5p2AH37gh5XfTYeJ1ZMMZXDVu6/qCCGPCgs/w3Q4shIeHh+GRZZxHt0t/lFSM2kg5+E0S1yy2en4VA/DdAo6q8NdqUdpQnJ/A0hqOqQOXaon6ZEFnQ4LP8O0KP4FVN10yOW/W45uuzsReyZKaiaMnJ3DZHGSq/YGwMLPME2CSsh1DUH3brkXlz96uWcBVTcdcrI4mZgnHzZMDHASM2f/ydm4f+v9qW4f2LasvxVYdSUwtg3oWwAs+xpwdLJjzVj4GSZh3F46gSpjAIL8aZ2QX/aI0yjkF8vrnryubqmZE+adULmtyrr7Uz3yPbV6k1NDWH8rsPJ/A/ly49rYy87vQKLiz4u7DBMDnY8ell33I2fGyA8KFart9nRzZXT0d/djshC98venepiUufYoR+z99B0MfOHpyKfjxV2GKeOuyCVRJiaqxvde/ujlEEKgIDTbHGqYLE5WPkB0qB6L4rX32D246B0XAUBoqmewd5D99lpw2zS5uc59E7vMLZuxbdHujwkLP9NR6HLoqn1Qdaj2R63FdpHfGnRCrtpu78LjLqyyhoDw6ZAs6DXy0w8BL/x25ne7Gzj7e46g+22aiZ0zx5laNn0LNBX/gtqv3QULP9NU3LvlXly9+urKMC65IAjM+Mp93X0QQuCN6Tc8t03SIWGbWrv3QdWRdKRRXrdOyHWjBQAYLwYzMVl/K3DfV70i7qY4Bfz8b53bq66cEX0V+QnnmCDhX/Y174cHAGRzzv0JwsLPJIZ/fC4RYXRqtGIr+G0E/2RGFaNTo7j0kUtBoIqN4vbQ3bdVOyb5CRNtk3x7kpFGOTMmjpB3ylyZ1KnYMy8DZAOi6Hjqh50GrP1PoDgd/HxRmrF3wgg7Rn4opJzq4cXdDiNojok/hQKYR/DCNqiQyMXMtTvWRtqYOgqqxVBJWOepRRbWnb8u8PwquyhrZUM9fu46bRL8PvzUbkBp1RFgvIBOepvGTcxF2rjw4m6T4hZinW1x1WNX4dZNt1YEOWfncMWJV2gFQ3dO/yYWw+PDuOThS2BbdsVi8CdFRqdGcfmjlwPQV9H3brnXWMTlYuYre18xOj4OQVX9hcddiIsevkj7uHsfVB268b2q+1jUG4w/E3/YacC6m9Q+fBURimJZmfttGjcpWDZx6YiK3y+cEmlB9HX1gYgwNjUW2ioeZmf0d/d7hHa6OF05l6ympeUBILQZZtE+i/D8G89X3W/BwrdO/laVsKQ1RKuWKtqP/1tF0gRdK6D/dsLRxTYgtJqPUsUbQhbw4X+fWeCtJdWTMB07pM3UgghCbu0GhAu1KT12D3oyPZE3nHCjEri0hmi59x31EzVTPtg7iFf2vmI8L8Ym2+PxB6HaS1VF0L6tTBOg614N6mr1p2rqgTvV04R0rNVz2+bbaj5HvpTHdU9eBwCJVdJJtNGrLI20hmipIoXux6Jkyi887kJjj7/L6sKVJ10JIJlUj4QXRpuAIHFXda++9JjXpvFHJMNSNVHJ5oBjPgE88/MZSyg3AJzxT00r9Ka0vfBHmUIYRNpTCeOgEuMkEyeSrJVVRgoluvktszKzsLewV5nqkaKrS/WoGqpYqFsYvwVSmALy4zOPu0VcJeD5CWDNT5zEjf9+GZE0bnLy2T12F9A12xF3d6pHfhB98LsR32zz0/bCH2XueBBSZJMU1b6uPkwVp2JV/hYspRibDNFy4274iZvqibtXaTtsWs24uOeLM+JMNrD0U45oBjU2uZEirhNwv+hL5PEmqRpZxT/3QKpxyWan7YX/Y4s/lojHb7oYa0qP3YOL33kxgBnBzGVylc2m3ce9bf+3YfXIaqNUj1+E/VaIbqBWrbB10qYoFytdlbH82dULTLsqeFEEnviRc/u5B8wtGCnGKgGXr+VHdrWqUjWVar5xC6zNSNsv7gLNm+rRjdvlRUemrii7UxNKv5DtNDiZnktaLKru1WM+4fX45f1n/at3gTfl5qdWomNTPQzT0bi7Uv3stwQY3xGSZU+AvoPDLRjAK+JxUj1MFSz8DNNuhGXGgfrHG/2QDXz4B+HX0SZpmWajY+OcDNOy+C0YshzbpOJ1u+wY1STITK6xog84C7z++TNN0NjU6bDwM0yjUQ0Jyw0Ak2PexUyZTqvcF/BtPT9Rf9G3bKBU9vPdqR7AEXYWd2NWrN2Ob9+/CUOjE5jfn8NXPnA4zjn2oMTOz8LPMEkRx3/2Rx2lqKftu8ehq9fpVFWlety5dyYSfpE/dcn+uGPNdkzknb+F7aMTuPjOpwAgMfFn4WcYU1QDv9xdnW7GXgZWfM65HSSGSXebuskNAIW4lb/LRmL/PTZhlfuKtdtx8Z1PeUT+xsdeqvouN5Ev4tv3b2LhZ5jYhM178Yv7cw+UUykuMRx7eSanrqOUdzz6IMFMeEu9CtmcI9ZAcKonP84JmRpZsXY7vr7yGezaG7wLm6py//b9myqiL9EZeEOjyRUILPxM++HxzK0Zbzzb62j3tGZUAFA9I8Yj7jEScGGWjUm3aSDlD6PcQPn1FAumLOaJctmKp/Cz1S+jKASo/M9v+pfhr9yjiPn8/lz0i9XAws80B6omIpXFoBsL4D6PxzN3jetwz4ZxI0cFyNv1JGiGu5V1Ok/ldftTPeyrp4rKpnnixZ34r8deqhwTJw3vFvv5/TlsV4i/v30ul7XxlQ8cHv3FNLDwM+ngF/LcANB7APDaRu9xuQHgyA+rt7ib2Anc9ffO7aPPdUTfXYG7xwJI8Y/rmadluchKXIcn6vgyi3qdkeK+fXQCNhGKQuCggAXWqYJmXlAE3JX7Vz5wuMfjBxyR/+jSg/DgxldTS/VwA1ensv5WYOXnvdXk0k87AnrPF4E1/89bLfur7zCffMXnNNvZxUBuV/f1AfWsFrKBK8ofMMv7EcuS6TvY+VmT7eLD7gLO/j6LdxPhruL7Z2WxZ7KAfKn67yWF7VoAOKJ+9UfeWrXAm1Z0kxu4moko7eiAt3LO9gIZX6QuNwAUp1zetd/39Y2bPey06hG3ouRUz1sfra7K5Tlk9Q2o56UDM3PRkxJ9YKYa101ndN8fxzN3b4kX2ula/reV/47+VI+0Y7hibxg6IfUnaIIWY9MQ/f5cFss/dGSVqJ9z7EGJVvMmNKTiJ6KtAHYDKAIoqD6R3MSu+LUJDcPuQdNt1HRDrt58CrBzS7WQ+6thKwu86UTghYfg+ZOzsgBKQKn2r5deaqhngipjWZnHrbqDXtO04o+6C1PYNxn33wwnX5oCtz1DNOOzz52VxZlHD3osGmCmypbPqYVc1sJEvnrMe5dNmC6q/+bnzsriirOqBb8eNNWsnrLwHy+EeM3k+FjCH1UAVFP+wjZOPutfndumtkY2B8DSLzK2BFT+qfq7IWD5KHDtUclZJm67xO/xS47/TPUCry7Vk+nmUQEthMqDj1O2HNSfw9DoRKTnqRZYr/7IW/HEizsrqR6bCB9/58G46py3Rryi+tB5wh9HfGRlafr8NHzhZsek4o/q8VtZ4Ljzq22TOKkepqXQLa7KBIt/4TMuBH2CRkU9FljrQbMJ/wsAdsH5QP13IcT1imMuAHABACxcuHDpiy++GO1FYtkN5YrV+PlB1W+Lst8StccPzFTfgHpeuv8bk2mqh7tC2xa3396TtTBVKKEkAJsIJxw6F0++NKYU9lzWRnfGwuhEMmtF8sPE/0GStQm9XRmMTuSrPnhaTeRVNNvi7ruFENuJ6AAAvyKijUKIh9wHlD8Mrgecij/yK8RZ5JM7+Zg+Xx4f5XXc1oMJlp28x1/Z1OLm+KkeIHguDQ/l6ihWrN2O5Xc/UxFqld/u9saLQuDR5/XNbRP5YuxKX5eBd3fLtnIVnwQNj3MS0XIAe4QQ39Ed01Ye/zGfqM6sWzYAy3cOAo7/a2DhCcmnetjbZiKgG0nQ22Xjmx92vO2v3LZOGYusN1mb8OdvP7jlLZqkaJqKn4h6AVhCiN3l26cBuDLxF/LPAI+a6ok6Q9w01XP0uY6Yq2KbugqaRZqpM5eteEo5LMzN+HQRX7ptHeZ0Z1IR/bmzspjMl5SVv6zq/ameRqVnWo26V/xEdCiAn5d/zQC4SQjxzaDncAMXw0RHlWcHwq2Oy1Y85RlL0AhkggaAdvGXBT6cplrcjQoLP8N4Uc1wd9sbpy7ZH7c8/rKnErcA2DYh78qbqzpJF138CxQT0oWw6OVJiwaw9fUJFvaUaBqrh2EYc3SpGDfbRyc8Fbr/d0kJQMnXZKSa8x5V9OdqRh/4/XZ/qqeZ8+/tDgs/wzQIk6pdl4pJEv9oYFl5m2BbhCvOOhIAqlI97Lc3Lyz8DJMg7lntkoN882Iq4wYwY4OoqvawxdWk8M95//g7Dzby+GWqR4o7i3zrwMLPMCGouktVfrRuUVSO9H3ixZ2eCj5M1Osh+qo579J+cX/w+EWeaW14cZfpGIKmNuqSLv6JjirkAumXbl0XaJFEsVBqJWsTiiXhWQ/gjHvnwYu7TNuhm/NyyL45/H7Lzoro5bIWPrp0gXJjDX8V7t8XVbUnqh+5QBom6nFE32QgGQE4sZyOiRrdZDoTrviZhhK2CYXpbPW46Krwg/pzePSi9+HNF91rZLkQACukoo9a8fsHhalSPRx9ZILgip9JBbcw9+WyyBdLGJ92xDiXtdCTtTG6N68Vdbd4+6vtoMdNKnETdEIsky6mEx1lCke3KCpF3D8rXlb0BylSPSzoTFqw8Hc4f/HD33uGZZ20aAA3fvZdld/9w7fc1sOsrIV8UVTy2/5JihP5UiWC6Bd1QC3e7lx50OP+CGJcdFW4TLqoJjr68Q8BC0r1HP+mAbZfmIbDVk/KqKYWytyzbpPne9YNzwhteRbJ3FlZCOEVV7cIy4YYALhp9UtVTT6qXLVf9CVS/Fes3Z748C1poQDQ2igE4IVrzgx8PMpsdffz/FMbVVW4v5vVNNXDMM1GR1o9YaIrfVN3YwwB+IsTFlZ1FIYlP3Q+9Bdv+QPcbTe79ubxpdvWwQIqgiqrQ1XHpfxcVu0P6haxohCB2etde/P4yu3rAMxU3LqxuPL+b9+/KfHhW+5KXSfestoOetykEndjAfjECQuVVkpYFd6IPVEZJk3aVvhV1apKdP3dkAKoCKgU/yCvGYD2seV3PwNVr2WxJJD0Lrom5Iuiqj0/iKTsFDfuZiGVeLtz5UGPu+0ik1TP1R85Wvu+WdiZTqNthV9XrZqK7s9Wv1wR/iCvWd5WPZbU7kFJEkXM49gpQfibhcI2xjB5nAWbYaLTtsJfa7XqXpzTnSvoNdKolpPAXXGftGhA6/EDTsUd5vFbBOzTk8XYRD5yqgcIF28Wd4ZJnrYV/lqrVZuocjvMi9Y9tne6oPTmASBrUd13LMra5Km4b/zsuwJTPVJwdame/lwWyz/Eg7gYptVoW+HXVau2RR6PX4dMyMhzBXnRgT717es8888B4C9PWFhZUGxkqgeAJ7qpgituhmk/2lb4VdVq3FSPySbNcR7TCWqtM8p5xjnDMEFwjp9hGKZN0eX4rUZcDMMwDNM4WPgZhmE6DBZ+hmGYDoOFn2EYpsNg4WcYhukwWiLVQ0SvAngx5tP3A/BagpfTCvB77gz4PXcGtbznNwkh9vff2RLCXwtE9IQqztTO8HvuDPg9dwZpvGe2ehiGYToMFn6GYZgOoxOE//pGX0AD4PfcGfB77gwSf89t7/EzDMMwXjqh4mcYhmFcsPAzDMN0GG0j/ER0OhFtIqI/EtFFise7ieiW8uOrieiQBlxmohi85y8S0bNEtJ6IVhHRmxpxnUkS9p5dx32UiAQRtXz0z+Q9E9G55f/WzxDRTfW+xqQx+NteSEQPEtHa8t/3nzbiOpOCiH5MRDuI6GnN40RE/1r+91hPRMfV9IJCiJb/HwAbwPMADgXQBWAdgLf4jvkcgB+Ub58H4JZGX3cd3vOpAGaVb/9dJ7zn8nFzADwE4DEAxzf6uuvw3/kwAGsBzC3/fkCjr7sO7/l6AH9Xvv0WAFsbfd01vudTABwH4GnN438K4D44W4acAGB1La/XLhX/OwD8UQixRQgxDeBmAGf7jjkbwE/Lt28HsIzItb9i6xH6noUQDwoh9pZ/fQzAgjpfY9KY/HcGgG8A+CcAk/W8uJQwec+fBfB9IcQuABBC7KjzNSaNyXsWAPYp3+4DMFTH60scIcRDAKo3wJ7hbAA3CIfHAPQT0WDc12sX4T8IwMuu37eV71MeI4QoABgDsG9dri4dTN6zm8/AqRhamdD3XP4KfLAQ4t56XliKmPx3XgxgMRE9SkSPEdHpdbu6dDB5z8sB/CURbQPwCwD/WJ9LaxhR//8eSNtuvcjMQER/CeB4AO9p9LWkCRFZAL4L4FMNvpR6k4Fj97wXzre6h4jorUKI0UZeVMp8HMBPhBD/TETvAvCfRHSUEKIU9kSmfSr+7QAOdv2+oHyf8hgiysD5evh6Xa4uHUzeM4jo/QAuBfAhIcRUna4tLcLe8xwARwH4byLaCscLvbvFF3hN/jtvA3C3ECIvhHgBwGY4HwStisl7/gyAWwFACPF7AD1whpm1K0b/fzelXYT/fwAcRkRvJqIuOIu3d/uOuRvAJ8u3/wzAb0R51aRFCX3PRHQsgH+HI/qt7vsCIe9ZCDEmhNhPCHGIEOIQOOsaHxJCtPKGzSZ/2yvgVPsgov3gWD9b6niNSWPynl8CsAwAiOgIOML/al2vsr7cDeD8crrnBABjQojhuCdrC6tHCFEgon8AcD+cRMCPhRDPENGVAJ4QQtwN4Edwvg7+Ec4iynmNu+LaMXzP3wYwG8Bt5XXsl4QQH2rYRdeI4XtuKwzf8/0ATiOiZwEUAXxFCNGy32YN3/OXAPyQiL4AZ6H3U61cyBHRz+B8eO9XXre4AkAWAIQQP4CzjvGnAP4IYC+AT9f0ei38b8UwDMPEoF2sHoZhGMYQFn6GYZgOg4WfYRimw2DhZxiG6TBY+BmGYToMFn6GYZgOg4WfYRimw2DhZ5gYENHby3PRe4iotzwH/6hGXxfDmMANXAwTEyK6Cs6ogByAbUKIqxt8SQxjBAs/w8SkPEfmf+DM/T9RCFFs8CUxjBFs9TBMfPaFMwtpDpzKn2FaAq74GSYmRHQ3nN2h3gxgUAjxDw2+JIYxoi2mczJMvSGi8wHkhRA3EZEN4HdE9D4hxG8afW0MEwZX/AzDMB0Ge/wMwzAdBgs/wzBMh8HCzzAM02Gw8DMMw3QYLPwMwzAdBgs/wzBMh8HCzzAM02H8f529XFbK1uFCAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEKCAYAAAAVaT4rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABCRUlEQVR4nO2de5gcVZ33v7+q7pnpTMJMhlsmhIhkCUEQhKAiCIrxQVhEUFcW3V3UdWXfdXdfvL5ylYgo7KMryz66r4urr7ILcjcQEEEjKxclLCEmXHJBQoBkZgiQzJBM5tKX8/5RfXqqqs+pOlVd1dff53l8pqe7uro6jN/+9fd8f79DQggwDMMwnYPV6AtgGIZh6gsLP8MwTIfBws8wDNNhsPAzDMN0GCz8DMMwHQYLP8MwTIeRmvAT0cFE9CARPUtEzxDRheX7lxPRdiL6Q/l/f5rWNTAMwzDVUFo5fiIaBDAohHiSiOYAWAPgHADnAtgjhPhOKi/MMAzDBJJJ68RCiGEAw+Xbu4loA4CD0no9hmEYxozUKn7PixAdAuAhAEcB+CKATwF4A8ATAL4khNileM4FAC4AgN7e3qVLlixJ/ToZhmHaiTVr1rwmhNjff3/qwk9EswH8FsA3hRB3EtGBAF4DIAB8A44d9NdB5zj++OPFE088kep1MgzDtBtEtEYIcbz//lRTPUSUBXAHgBuFEHcCgBDiFSFEUQhRAvBDAO9I8xoYhmEYL2mmegjAjwBsEEJ813X/oOuwDwN4Oq1rYBiGYapJbXEXwEkA/grAU0T0h/J9lwD4OBG9DY7VsxXA36Z4DQzDMIyPNFM9jwAgxUO/SOs1GYZhmHC4c5dhGKbDSNPqYRiGYSJwx8hOXL1lGNun8jioO4uLDx3ER+cNJP46LPwMwzANQgr9tqk8CM7Cp2TbVB5f3vQyACQu/iz8DMMwKeGu4PttC9MAxosl5bGqjqqJksDVW4ZZ+BmGYZoRv02zbN85uHVkFyZKjqTv0gh+GNun8kleJgAWfoZhmEiofPjHx/bghqGdlap921Te83stHNSdTeAsXlj4GYZhDLhjZCcu27zNU7lvm8rj8xtfRl4x+iYJ0c9ZhIsPHQw/MCIs/AzDdDQmSZo7Rnbiy5tertg2blSinwRzMzauOuwgTvUwDMMkha6CVyVprt4yrBT9MPxJnSBsAEUAC1KMcUpY+BmGaSuCkjRzbQtXLV4AANoKXpWkibPASgDOnz+AVa/v1qZ60qzqg2DhZximJbljZCcue247dhWKAIAsgAK8FbY/SbOrWMLnN7yE2bYVWMH7hf6g7iy2acQ/SwQIAfejUvT/6fCF5m+ojrDwMwzTEgQ1OwGAaU2eR3i00p+kufjQQeU3BFmxA6hLx21SsPAzDNMw/LYMiDBaKFaJp39xNc3to1RJGnkdQeLezELvh4WfYZi68tVNL+G/hnai6Ls/aJE17uKqjrkZG5OlkraCV4n4R+cNtJS4B8HCzzBMTag6Vu9+ZbQi5BaAEpy0yptzXXh4dNzovO5F1iS7V7NAS9ozScLCzzCMMWFjCbZN5fHToZ2e58g6fttUXrtAqkMKftDiahBZAF22VZXqkQLfKULvh4WfYZhA/OkZSZJjCXTIRVbd4qqbLJwcfAlOJv4vmzhV02hY+BmmA1B1pwLhVscdIzu1IwmA+i2yuhdXt03l69rs1I6QSKndOEmOP/548cQTTzT6Mhim6fBX424rIyj+mAUAIo+g5yzCdw4/2COix//umVgWSxzmBqR6mHgQ0RohxPH++7niZ5gWQFex+6vxXcUS/n7DS7h5+HU88cZebfwxDwC+oi9ux2qUsQQ5i3D8PrPwu9FxFMGWTKNg4WeYBhNkw2ybyldSMRIZdeyxLK0FY5qc8ROlYxVwhPzceXMrYwnCUj1cxTcHLPwMkyBRvXR/Y5Ic8+seAaDqMZ0oCUyU/En42lF1rOo8/qDMO1fwZmzY+DUMDd0MlL//zJ9/Ho5YcmXqr8vCzzCG6DxzAvDu/l48vWfSk3zZNpXHP254CTZmxgmYNCalNebXjc7j13Ws6tYRmPg4on+j655i5fe0xZ8Xd5mORTeH3TNGIGMDQmBXsRTJyw5jQXcWT5x4JAYf/EPsc861LewpCe0Hhf965e8LIqR6GDPiVO6rfrO4fLwfG8vetzmR6+LFXabjuGNkJ/7P5m1Vm1vLDtJHRsc9W+V9edPLeHxsj3efVFcFn2SJVGtjUs6iynhh1XtUee8qYWehj8bwyF3Y8vx3MDk1jIzdB4FpFIt7fUeZVu46qy55C88PCz/TdLgr7hwBk8Lrcy/QVOf+qv1/b3wJRYVa6zpIJ0pCOUMmDYIak1Rjft34vfWgfwcmHsMjd2HDhkshxIT2mEJxNPAcQ0M3hwi/7EZQ3Z8uLPxMYug88LkZGx86oK+q+gTg2QGp17YgSiXsdYn1Xo1wq6pzt39+9ZZhpeiHUQ/R1zUm6VI9Js1K7TRArN64q/ie7kEM7HsqhoZ+BvWyehSC/5rmzz/P5/HP3J827PF3MCove7RYQo4Ik0KgBCeK516cnEWEbtuqNNks23cOVr2+O7JdkSVCsfwacdHVSwu6s9g+lY9lzejOGZcsET4xGG65MOniF/dDF30ZALB58zdQKOzyHZ3Uak64V592qkfn8bPwNxGq2eS7CsWqig/wVspBYqyqFr+66SX859DOmuuZZoUQzzuXuya5v0WojhGAMtXzwsQ0jxNoAlQV/MjInSiVZmwbomy5fy29ruT58/+iLtHMIDpW+KN6nyYbQ5ie0219SDGoVYhrqZRl12Tc5p5mI6jiv/jQQa3Hr8K9VZ7umxBX683P8Mhd2LjxUo/IJ1fBm9PffyKWHvefdX1NFR0p/P7mGEA9jyToeDcyKeGvCFXnDDuXfF47CXE9MflvEZTqkd+K2H5pLx599GRMTg2l/CrO7r6qVE/G7sfiw7+GwXlnp3wNZnSk8OsGTMkMtenxboKqTPc56zncqhUx/ebiHrUrMUn1MM3PjCUzBF1VTjQLRxxxlbGQrvrNnyjPEwXLymHevI9gePjOqlRPs1TypnRkjl83YCrq/W50C3/+5ya5Y1CrEyXV0wVEslU4zdLceBcvg9CMfRZ78eyzzkKsifj3dA9qKn7vB4vO43dX7I3259OkrYVft8Dnn0cSdrwbXcXvP2fcxpww0vL4swBm21ZNqZ44i5os2q2PKjEzOO9sxUiCuJSw5fnvGAn/oYu+XOXxywp+5+sPVqV6VNfdCbS18KuaY1TzSIKOdxPkK/vPabJjkKnHn0aqRzYq8VhcJgyvJeP8RfV0z6+Ip1toJ6eGsHHjpQBQrvSTYXJq2Og4Kdymgt4pQu+nrT1+oHVSPf6OUY4CMvVkeOQubNp0mWehkmgWhNgLnf9uWTlY1K3sYO3pnp/oImtP93ycdNLDiZ2vU+jIxV2GYdT4Z84Uim+g9k5VNwTHKEyiHc7CW95iZvUwXjpycZdhOoWg4WH+iKE/6x42cyYOM6MPavP4o6Z6GDNSE34iOhjADQAOhPM98XohxHVENADgFgCHANgK4FwhhL9nmmE6Ht2YAdV9QUJeKI7i2We/CsDxtLc8/x1fg1N8Mpm5KJUmqxZT3b56WKpHrhewuNeP1KweIhoEMCiEeJKI5gBYA+AcAJ8CsFMIcQ0RXQRgrhDiq0HnYquHaWdUIwaGh2+HEFO+I7NwBnfOpMWCfHY/0idPIusuX3vJkm8C6Nx0TNKsX78eq1atwtjYGIgIQgj09fVh2bJlOProoyOfr+5WjxBiGMBw+fZuItoA4CAAZwN4b/mwnwL4bwCBws8wrcTwyF2e4V9EOdh2DwqFUWTsPoAIhcKoco7M5NRQgD2S9++PjlJpAiWYVe8yGaPPugchF3i9qR4p8Cz08XALfS6Xw/T0NIpF59uRLMrHxsawcuVKAIgl/irq4vET0SEAjgWwGsCB5Q8FABiBYwUxTFOjijRm7H6PiEvbZcOGr3qqciEmUChU2zCOyN+Ees2R6el2osCqrLvzbcLyfMtwUj0TXMXXgFvY/ZX7+vXrsXLlSuTzzt/KxIT+Azyfz2PVqlWtI/xENBvAHQA+L4R4g4gqjwkhBBEp/+qJ6AIAFwDAwoWcMWfSxb84KgU9k+lHobAH3g5PpyLzi/jGjZfCom6P6IdTu+irfPZqspUPpqhZdyYYnT1z2GGHYd26dRVh91fuq1atqjxmwtjYWGLXnKrwE1EWjujfKIS4s3z3K0Q0KIQYLq8D7FA9VwhxPYDrAcfjT/M6mfZB10Ua9hzd4mj1rHY9UWyXuDijBrwe/+LFlwOAcaoHcMSfhT46/gp+YGAAL7zwQuVxtz2jWpd0V+5Rhbyvr6+2i3eRZqqHAPwIwAYhxHddD90N4JMArin/vCuta2Bak+GRu8opFG81JOebe6rzTD8gBArFMWTsPhRL4xVhdHeRBolckimXeJiNDe7vPxHz5/+Z9oONhTxZ/CKvquDjVOHyOX19fcbPz2azWLZsWeTX0pFmxX8SgL8C8BQR/aF83yVwBP9WIvoMgBcBnJviNTBNgDOzxb2VXRaZzOyqajqXOwz5/GvaKnto6Ebs3fsC3nhj7Ux17jpWlWwplSZC57yYjgMwIZOZi2Jxj7Hdo5ojM7DvqXjllZ+7umgJ8+d/ojI0jAU+WVQ+PACP/66r4OMgK/dly5Z5XgMALMtCd3c3JiYmEkn16Egz1fMInFJGRXIfXUwoQfaH39t2V8ySnu75GNj31FhDrtSDuvJKcZ+YeC70vYyO/i7CO3cIE/Z4KZdq3LaLaapHZ0W182TIZsK/wCp9+EwmE8l/N8VduUsh1y3+pgmPbGggwyN3YfOmKyuVKtEs2HZ3qCjocETWnRJRbRQIg8fCUY21lblu9zWv+s1i1GcLcz1hc17UuzaFo0r1cDXeXASlagDg2muvTXTR1E02m8UxxxyD5557ru7CLunIkQ1ROh/jJBzCzh9U3akqYSH2olBwvt6b+tMSdWUtfD9NHwtHZWWobZXGir7sIg3Cn3Lxp3qKxcnKhhyZzFwsXnw5C3yDUfnvfoEFqu0afx4+LdFvhMhHoW0rflUVp6pSTSvXuOd34+50fPbZL8FEdE2nEjZDZe1AWPa+P1Z+S/q6+vtP9Hj81cj1A67C2xW/PaMim80ik8kos/F9fX34whe+AEBf8edyORQKBc9rqCp41QdOM4l9x1X8qqSGqko1r1zjnV913vLRgcdKzBcem0H0Z5qEJPPnn5fQZhzhqR4W+tZClX/P5XIAnGYmnZCa5N/z+bz2GLfQqxZYs9kszjjjjMprNauo10LbCn+tSY2w58c9f9Tn+YVUj25vsHTQfVPy2ypykdI01SNK46GWG2fQW4+waKR0HtwVum5UQa32jDsPH7bA2i5C76dthb/WpEaY4MY9vzyvyXNN/GlJkpW1n1pSPYAj/pxSaW/Wr1+P++67ryLcbqvFP4MmSjRSNarANP+us2v8efijjz66bQVeR9sKv2oeSRSPP0xwTc/vxn1edYokvj89U1lXp3rc2+SpttBTibrp63Ll3b6orBj/Tx1uqyVoBo0JfpFX2TN+OsGuqYW2FX7dPBLT+8IEzeT8YZntpGelmFTWLNSMCpUVs2bNmoq4637WA/+oApU9E7TIykJfTdumehiGCcdv0TQb2WwWZ511Fot3TDou1cMwnYROwIPsDZNYZFr4o5FRUj1M7bDwM0wLEFSZ53I5TE1NoVSq3iw9aBOPqGOBa8E9g4YFvfGw8DNMAwgbJeA/dsWKFUphB8IXT3WbeKTVtQp4Uz0s9MGMr92BsZXPo7S34NyRJVhZG6W9Bdj93djnA4eg99gDEn1NFn6GSQCTBEyUUQJuVq1apRV9U1QiHxSLDEvtqB5ngQ9nfO0OvHH/VhRHp/RjsvICpbzzIVAcncLonc7wwiTFn4WfYULQVef33HOPJ/ki0SVggiY/Bm2tl0RlrtrEQxeLzOVyOOOMM/DSSy9V3h8RYenSpfjgBz9Y87V0Em6ht2ZlUJoszPQxGuZqRL6EN+7fysLPMHFwC3g2m0WhUAiNJWazWZRKJU/z0cqVK7F27VrPzkummI4ScBNlww4Vuk08TLpWWejDqbJqNIQ9HkRxdCr8oAiw8DNtgVvU/WSzWWWFbYLquHw+H0v0w9Btrbds2bJAjx9wFk8zmQymp6erzhlkv3Ri12qSjK/dgV23bwaK6cbi7f7uRM/Hws80BboNq2WlqtohSd4XlGoBzEW+XpiOEpBIYdalethbT4fxtTsw+vPnIKa9f1fuBdc37t+auuhT1sI+Hzgk2XNyAxcTF511Iv3ghQsXKgXbLWC5XA5HHnmkZ2CXG9u2IYTwiLplWSCiiv3SSsiGJIBHCTSa8bU7MHr3HyEmnL8ja1YGfWctQu+xBziV/G2bZvx4H5S10P+Rw7Drlk3JX5gFWD2ZRFI9ugYuFv4OQtWW/8wzz1SJcNh8cdPGH3/yw7IsCCHq2u6fBtlsFgsWLAi1e3SpHhb4xlC10Kry3G3C3D9bPJO8CUDaL5H8d5tAXZbzYeNL9VDORv+H/iTRRVwW/jqi27xZZ2WohFVVDQZlv/2PDQwMJOJD+1vmwzLl7Uoul6vKpKtSPZx+aRx+YRdCQEwUYfd3o3vJXEys2QGRD/+7tfu7jcV87p8fbuzxu79R1IuOFv6wZpk4/wfWVb3+EbSA2q6QWJaFc845xyOsqo0hjjnmmCo7xG0bpNl6b7JjUathmuqR0Uau0psPv1WTJCbib/d3Y/Cid4SmetJqwjKhY2f1+IXU3yxzzz33KGeDCyEq9/vFf/369bjzzjuVr6dafAvyokulEu677z5PtE6VQFHlxWX2W95OC7fQ11v0TT1+27bR1dWl/PeXqR62WloDd+WuE80wD74W5GuGefxywbX32AMaIuq10PbCrxNS2SyzZs2awOevWbOmSvil2CaFf9chFbrKtB5C7I4ZRsmUm3r8tm3j2GOPrRrYZZrqYUFvTXaueA57V484PjcByBCQ9/5t6DpX37h/ayqiD5s8HzRhqZ5Wpe2FXydS8v6wr/qqx9MUW52w6lropSindU3+mKFJpjxqqsfESlE9zkLf3Ogq9/G1O7Drzs1ekReoEv3KQ4rO1UQammwCrJnX9XvwrVjJm9L2wq8TUimYJjNJTM+pI8jjB1AZRQvoN3/Wefyq2S8myARP1FSPKlMeJN4s2J1Bld+eJaciLy96ysp96sUxTKzZoRV5HX6hj7IACzjWTG7pAZjauCvQQuoU2l74dUIqBXPp0qWB+38uXbpUeU6dxw+oR9AC6gYc27YrW8QBwW30qgraLaImqR5/SidO+oS7PTsHvx0z653z0P2mPk8l371kLvY+PuK1XhTCLvKlmXNFxN+5GubB+1M9nSzyKjjVg2RTPSYjdtmbZhpNUPRRiuTOFc9h72Mj1U/WTZVMCdkspVrg1TVgMQ4dHedkmE5EJ4xTL46pBb1MpSv11k3JC3zEDw2u1mujY+OcDNMphOXaS3sLRhFIuZiatOhLn13bSJV1Uj0s9unDws8wTY6/QUi29gMIH0HgxzACGbhRiCkEWLnqmTPjvjUCFvn6w8LPMHXCpDFJ9Rz/SAAxUXSGg9lUub+WWe8qKou2Bh5/pZJf96qR397OMclWgYWfYWpAtZWeFE0ZHVRhuqVe4NjflMYBy65UeV1hqZ7Ksecclsr1MMnDws8wLpRzV2SF6xJ22a4/eudzM351WYeLo1OBi6cSky31kt55CVb5p9/y0fjrA+cchgGFoHPFbs6Ghx/EwzffgN2vv4Y5++6Hk887H0ecfGpDr4mFn2lbVNYKgOrNrss/KWdDTBWrRVF4f1aq9QwZTXsMwmQQWFLiL+0XAOyxJ4BK0AF47jv02Lfjmd+uQmHa+W+4+7VX8cD13wOAhoo/xzmZtkBlubQCcsKjjsCt/Vwef+V31wgCIJ0Z74wj+g9c/72KoAOAlSn3QxhsEDRnv/1xwff/X5qXCIDjnEwTo1v0VHWNqmyH8bU7lJZLs2OypZ4U7LBUD1fuybLh4QfxwA+/h8JUWdiJcMz7z8D7/+ZzAJyq3i36AFAqmC+w7379tcSuNQ4s/EwkdNFCKThhs8kl2UX74MDPHlMl2tJG2fPEMPLPvzHzBIGKb+4X/zfu31qz5RIHa1YGIl+K9dpRukyDUjAs9PHxWzWHHvt2bFn7P9j92qvVBwuBdb/6BQDg/X/zuZqFe86++9X0/Fph4W9zTFrz/cepHtM1BomJotMUVMZ0N6L882/glR+uQ+n1qSrhFPmSV/Rd7F09UiX8iS+AGkBZq8ovN0n18FiBxqASeb/3LoU9iPWrfon3/83nMGff/dQfEAZkuror6wGNIjXhJ6IfA/gggB1CiKPK9y0H8FkA8l/sEiFE+L92ExE0atbTTJMvase96s7nx/+8qmraBuDSYuqy0P/hw7yC7aqm3VW4O04IQFl1S0K7PUvl2CEQKWKoE/dAVFZ3ggugsADKWN4Z7JpUj3t8L9M4wlIzfj/eVORViPKE3ZPPO9/I4890dePI9yxzvkl0SKrnJwC+B+AG3/3XCiG+k+LreghLduiqYN3zVAIpR82qBFb+vuv2zQC8IlHlTftwPw9QVNO+AlxMlyrVd++xB4RaIJXW/PJt3WMm3Z5xhTeyaFdPycY+Hzgk8N8x8FwBgs40HxsefhC/+en1mNy9GwCQ6e5GsVCoiK0qNaPy4+NCllV17qBUTzOIvIrUhF8I8RARHZLW+U1Q+ce7btsEkLrjUSfk8n7KWkqBNBo1WxRVmW0jb7r8PHk7lHL13XvsAUaCGnRMFEGWY3OjfgCoRJuyFjILZyu/Ecx657yq++S/qcpy8X/Qs7g3P7oKfsPDD+KXP7jOs4haWXx1UZiewsM331AR3CQXUo9ednrl9hEnn6oU9WYUej+N8Pj/gYjOB/AEgC8JIXal9UJKYS0BQSqtE/LARTxDd8MviqYiGVVM5fGmG0brXsNYzC1UBNbU4wecBV6/aMdJ9QDhYwBY6FsDlS0jK/iHb77BODnjFvta/PgKvlRPq1Nv4f+/AL4B5//K3wDwzwD+WnUgEV0A4AIAWLhwYawXi+37Ro0DGubG/ZtJmNocUatpeXyYBeKOE6qq7oqYB206rciJR0n1AHrR1nWNMs2Nu2Lv7p0NImBy926QZUGUSpiz3/5aC0Rly8gKPkrl7k7NqPx4lfdeSfU0uU2TBHUVfiHEK/I2Ef0QwD0Bx14P4HrAaeCK83qxF/00Qk45GyiIKoEMHDVbuRiqymwbedOu5xlV067q219Nh+1KFGSHmG54wQO4OgO3uPfMno389DSKCttlas/uym25MBrUvaoTdynGJpW7PzWj8+PbVdRNqKvwE9GgEGK4/OuHATyd5usphdWCx+OvukaNkFPWCmyacY+aNU31VHnTPlTPi5Lqka+RRFacxbxz2fDwg1j1k+s9Iu5GLrRGwe/DS3TiLsXa7/EDAIjQ3TsbU+N7tKKu8+M7lTTjnD8D8F4A+xHRNgBXAHgvEb0NTj29FcDfpvX6QLWwRkr1BMwMT7LSjfI8FmAmCbSNS6p0Sq3eeACq6l5ny7jF3J3q6Z49B8s+dQGLekR4Vg/DtDFhjUsqosycqQXdvJpmnGbZqvCsHoZpc5LqTo0ycyYuQd2rbMukDws/wzQpJpaMFMgku1OTpHv2nEipHgbYvHoEv7/reezZOYXZA91419mLsFjRv1ILLPwM0wRErdb9yZgku1NrpWfOHLzvk+y7R2Xz6hH8+oZnIVwO256dU3jwxo0AkKj4s/AzTEwqYq1YAJXiB4THCONW6+5kTJLdqaEePxEgBFfwMdi8egQP37oZk+OOndbda+OUcw8HAPzqJ88qY+SF6RJ+f9fzLPwMkxb+WTCq1Miv/+PfsO7X9wEBwYjJ3btx379dCxAFzpEBapslIwU/SsbdpHFJXhcvsEbDbdOYMDVexK9veBZdPXZgE6jp+Uxh4Wfankhz131M7dmN+/7vvwBwxPrX//Fvxt65bFhyo8qv11Ktyw5V0+7UKALOQh+NzatH8OCNG1GYjjYsUBSdD4AgZg90Bz4eFRZ+piXQVeKAekKi+1g3cRY9RbFYEev1q35Z4zupFvq4s2TcyRjuTq0vqgXY39/1fGTRN+VdZy9K9Hws/ExdcVffma4uFKanK37x0ctOrwzB8s97md477qmgp/bsxi++/11Ytl2JH+5+7VWnOhdCWW3XghTrJM7r330pqVkyHIOsDdM0jb+ylwuwtYh+T28Gk3sLSrtnweH99U/1ENE/AvivNKdoMs2JSSONvxJ3k+3pgZXJVlrp/UkV90hdUSpVKvGDDj/CI4S6UQEQoipznlbTkRRruaBpAlmWx+MH1Pl1rtbri0rgh58fxdMPDVWOCUrTqCr7wnQJZAEihvaTDZx87mIAwIM3bkBhuqz+BBx18ny85xNLop807DXDOneJ6CoA5wF4EsCPAdwv6tzuy5274ahEGoBRDvzX//FvWL/qlxClEsiysOAtb8WrL26pEnOybXTPmoXJPTNC/tSDDyTa8EOWhdkD+6Y6KiAqZNs44+8+H8njj5LqYZJFJ+zPPDKkFGbLJpQ0s7tmD3Tjk986yXPf9//Xb7SvnemyIlX+MtWTdEUv0XXuGo1sICICcBqATwM4HsCtAH4khHg+6QtVEVf4gypWk/SG6jx2V1fVFEJdbjko7jdnv/3RP28+tj37VFUFaWezyHT3YGrPTNOL/FlpiNmzBz2zZ0MIdUVs0naf6erG4OIlePnpddpjGkI5LtgM6FI97g9Kt0XF1Be/yPfvn8O2TaOeY2r9c/r7H7zP8/tPL3lUmbJxe/26FA5ZwJHvTqeKV75eLcJfPsExcIT/dAAPAjgBwK+EEP8nyQtVEUf4/dnoOPTMmYPDTzg5dLYJ4Ajt6f/rQm0nJWNGpIqfyOPxA051HuTxz9lv/9BUDw/+aj6UMUm5DWeKNYKq4leldzJdFk79iyWpVe5xiT2rh4guBHA+gNcA/AeArwgh8kRkAXgOQOrCH4ckOhknd+82ToCUCgVPTK+ZOilbiaOXnV7l8QOOoGeyWeQnJwFES/WwkLcG/ur9kKP2xdanX9dn2OvwpVCVppHinvZYhTQxSfUMAPiIEOJF951CiBIRfTCdy6qdJDsZ47xmI16/2fEnVYJSPYC5N96q+552Ir+9aWPFaycLOOiwfoy+OlEl7nt2TnkWW9PEsgkCwjMqAQCOOmW+VswXv3NeSwm9n1DhF0JcEfDYhmQvJzkS2Wczxms28vXdJO3x293dEMWix1aRQr7psYeNUj1Rm4dYvFsT08pdlFDlx9cbWa0DrV3BR6Vt5/HX22NvJo9fzk4B4qd6RkeGqo7jOemMjqijCuoKAQsW92P7c6OVbxr1XGBtJDUv7jaSmlM9NVTeViaDt556WkUwmzLVE6OiZpggdELe05vByecu9lTDcUcVJEWmi1CYFpVvF39cs6NqCFo7V+9BdKTwu9GJcKa7G0eeskyZ8uDxsky74RZ02XCU6SIU8sJZLCWnIvb73W4sm7Ds/CMqYqqLN6ZNJ1Xucen4HbjYM2banSBvXf6+8bGRSmUum5kqnaIAIIJFHwBKReEZE5yG6Kuuv91993rSMcLPMK2KbobM5tUj+O+bNiE/Va3U/lRM0ikZt9jPHuiOJf7+VI9K3N+TyNUyflj4GaZJuOvaJ0NTLnKGjDOCYBii1Bir1j0m+F1nL9J6/Fy5Nycs/AzTAPxVfLbLwq6RCaPnFqZL2rkz9cCyydPYZNLQxJV7OGMrV2LHtf+CwvAwMoODOOALn0ffWWel8los/AyTMLrt9aQQqsb6RqVRoq9K9QCt39BUDyrCPjRUNUCIcjmgUIDI5wEAhaEhDF/+NQBIRfxZ+BkG3grc7iIUyykXmRwZXNRvPKt91Q0bPNMe5fZ6gCOQSWzYEWcEcKbLwpIT5lVsF12qJ5OdiUeyLRMNXdU+tnIlhi//GkR55Ih/apyYqP62JyYnsePaf2HhZxhT3ELe05uBgMDUeLEidvKnKu1SdKVcRAl4+qEhPP3wUGU2TNisdtWIX1FEJQlTawpGCniQxx/krbPtkhxbP/1pTPz+MeVj7qp9x7X/MiP6ESgMD9d0fTpY+Jm2wC303b028pOligBLywWYqZLlT+O0i09fC9MlT6RREiTq8rG4KRjAa7UMLuqvSvUcdYo3184iXztjK1di+JvfghgdBQDY/f2Yc8bpGL39DqBszeiQVXtcAc8MDsZ6Xuh5Uzkrw9QRv2cetnF1UuhmsutEXSZhVCmYTJeFOQPdVQu87m8mftuFffVk8Xjwtg1o5lwVR0cx+rObjc8rbZ/CULQ4LfX04IAvfD7Sc0xh4Wci4YjsBk/Tj50hlIR3uqFlE7I9FqbGi6l7xWluch2EO9IoedfZi6o8fsDZXk8mYdphrG+r4/fiZ7/nFIz9fMWMHZPgFp7S6/d4/CosC/Y++6A4NsapHsYMVSu+avIgCBXbIuock82rR/CrnzxbZXsUC9U+c6koKpV3kCeeBHUZF+D6dwOcCj1oVntQqkcex0KfHmMrV2L4iuUQe/d67s/Mn18l8oWhoUgVfBRk1S4FXJfqsfv7ceCll6Qm9FXX1a6zetxzv91ku21YGXgW+uSWbXJ6nzwuP1XUftUOao/3pCRcqGaLqK5TVwEGdXDqGmjIBgj6PUXJBt5//luMRKjWmSyq3YySoNbr8qddakn1MPVlbOVKvPLNb6FY9t+N9lms09aemfnzU63aTeioIW2/vWljaps49PRm8CdLD/CkQKIiF+CCrtO/lVvQdm+1jsM1FeSgTaZN8e9fmgSqfxuyge6eDCbHC6GpHhbx1kBpz9x+RyX73gxQVxcGv3lVQ8XeTUcNaXvmkfR27pkcL9T8ofLMI0N4zyeWBF6nPzWi8rHlMbVaHabPryWNIp+fBuyZtzYmHav+HHxhaAijN9+SbOVu+E1Apnr2/PahunTZpkFbCn+juhpN8UcKdbhFVie4UujqIcjvOnuR0uM3QeeJJwV75s2NaWOTrmNVmYNPUPSppwd9Hz7HEXNVqse20X/uxzB4hXZDwpaiLYU/TldjPSFr5mfQdboFWSfusrqtxeM3FWQprM2W6mEaj8qGkRWx3deH4p49QHnbzrDGJlXHapKNTB6Rb9GKvVbaUviPfPf8um3UHIcj3z2/8jPI43cLsi777RbUtFM9AFfWnY6qcgdQbcO4UjKVhVcXYY1N/vvj5OBVNMOCazPQlou7gFmqJwiZ6vHH+IDqFEijUz0MkxT+lAz192Pw0ksAwNO9KqGeHqCnp+p+I4i0gp6ZPx+H/WaV57r8OXhZue++75dVqR4WeIeOSvWY4hbdoG3cWHCZdiHIkqG+Pojdu6ubl4hAmUzi6RkpzipBH/zGlcoF3nqNLW4XWPgZpk1RjRqQogqgIpbU06OcAtkI3OLOgp4eLPwM04aMrVyJoYsvqSycuqFsFkII5WNJYvf3ozQ5GTiOgLJZoLcXog7jCJgZ6p7jJ6IfA/gggB1CiKPK9w0AuAXAIQC2AjhXCLErrWtgmFbBXfXafX0oAY5v7qvg/WI5/M1vaYW9Ho1N1NODA8trADoLiYU+GvduuRfXPH4NRqdGK/f1d/fjondchDMPPTOR10gz1fMTAN8DcIPrvosArBJCXENEF5V//2qK18AwDcVvY2TftBATj/+P46MTAT09wMSEp3nIk4Ip++26fHusRdWoaDx+/3wZFvbaUAm+ZHRqFJc/ejkAJCL+qVo9RHQIgHtcFf8mAO8VQgwT0SCA/xZCHB52HrZ6mFbDP8M9Kfxplw1Ljkj0/MhkQF1dleFm7lQP+/Dxueqxq3Db5ttQEiVYZOFjiz+Gy064rPL4vVvuxfLfLcdkMXizlsHeQTzwZw8Yv26zjGw4UAghA7ojAA7UHUhEFwC4AAAWLlxYh0tjmBmCFkzDBE8VPUwKf77d7u9X5uQBA4+fCLkT3on8iy8ZCToLvRn3brkX1z15HUbGRzCvdx7eNOdNeGxkZpeukijhlk23AEBF/K978rpQ0QeAkfGRRK6xYQ1cQghBRNqvG0KI6wFcDzgVf90ujGkLhr/+dYzeepvZXHVfO36VcIfYLX7ibrNngn9HpgMvvQTDl1yqtWHk9ci4pgXUZd57O3PVY1dVhNtNX1cfTn/z6bjrj3dVRHx4fBjD4+omtds231YRflNBn9ebTIy83sL/ChENuqyeHXV+fabFUAq4yw+n/n70uQZm2X19KI6Ph26J56FYrHSaDl5xRaBwm2yAndY+qaodmTxz3jVVO4t7cuhEHwDGpse0j6koubo25/XO035ASLJWFhced6Hx+YOot/DfDeCTAK4p/7yrzq/PNBnuxc9KRepKsyhxrUsJ3zZ4OtvDhNFbb8PgFVeECnfY47WOF7D7+41TPYAj7CzuyeC3aS487kLPYuptm29L7LUsObQLwIXHXRjo8bdMqoeIfgbgvQD2I6JtAK6AI/i3EtFnALwI4Ny0Xp+pja2f/jQmfj/jS8KyQPvsU5XDrqX5xm+piNFRVKQ+wa3vjCm/Zphwh22Ardtmz+7vR9cRS6pTPZOTbL00Af4F1uHxYSz/3XIAM0maUoLTHz+2+GOV2/L8QR86ScINXC2KMvc9NubxccM8XY+N4vK5q0RfgZyT4tmnFPp2exXPvW9ZIoO3EsO2ccQzTwcuzpq+P+5GbRyqqh0IF9XTbj9Nabe4kzTH3HBMZPHvsXvwtv3fhsdfeVyb6kkL7tyFfrKgavHLLaa6hhTAO7hKbtDgGRoFKAdHDX/9696NJLJZ2L29Xpuj/JP6+z0CXrUxtCFu0Rr++teV+4z2f/w88/1HNXaMP3KoY8MRb6nLFnim9H/8PM8Cb9xUD5MuQXaMKhaZoQyICPnSzLpPj92D5Scu94j/0T89GkKx2QSBsP6T6wEEe/zytT66+KN4aNtDdancw+h44VdWcRnnDyJOhyNlsxCFQmThop4e9Bz7ttCKOi2kKG848ii1nRLkrZtChCM2PBt6WNNU/G22yUa74Rb6fbr2wZ78HhRdmz9krSy+cdI3cOahZ2qrdhX+TLxJxQ8Ep3oufufFDRN5Fc2S428YyqRGoRBnMykA8dvhxeRkw0QfcC1M6sQ9iujrKv4QD1yi88JDCUn1uL+pcYXe3LgbmwBgVmYWJgoT6Ovuw1RhChNF71C5semxqnPkS3lc8/g1OPPQMyPl3P3HqhZYe+yeqiTNZSdcVhebJk06RvjTiti1GhVR1lX2to3cO95ek8fvjxzq8EcRVaketlfaA1WVbMNGEd6/wb0Fp2NYNbYgCHm8SSxS4s/E13uBtZF0jPAntYNP02C4MbTnKS5R7j/3Y2qPX7fAq0n1zDruuJoWMTmK2J4EzZ2R+EU/CVRVu87jV2Xizzz0zLYUej/s8begx+/fMzTpVA/DBOFfXD1lwSmexcxTFpyCO5+70yO0adPX1YdHPv6I8vpMUz3tSMcv7gLtk+ph64NJi8/e/1nPXJkT5p2AH37gh5XfTYeJ1ZMMZXDVu6/qCCGPCgs/w3Q4shIeHh+GRZZxHt0t/lFSM2kg5+E0S1yy2en4VA/DdAo6q8NdqUdpQnJ/A0hqOqQOXaon6ZEFnQ4LP8O0KP4FVN10yOW/W45uuzsReyZKaiaMnJ3DZHGSq/YGwMLPME2CSsh1DUH3brkXlz96uWcBVTcdcrI4mZgnHzZMDHASM2f/ydm4f+v9qW4f2LasvxVYdSUwtg3oWwAs+xpwdLJjzVj4GSZh3F46gSpjAIL8aZ2QX/aI0yjkF8vrnryubqmZE+adULmtyrr7Uz3yPbV6k1NDWH8rsPJ/A/ly49rYy87vQKLiz4u7DBMDnY8ell33I2fGyA8KFart9nRzZXT0d/djshC98venepiUufYoR+z99B0MfOHpyKfjxV2GKeOuyCVRJiaqxvde/ujlEEKgIDTbHGqYLE5WPkB0qB6L4rX32D246B0XAUBoqmewd5D99lpw2zS5uc59E7vMLZuxbdHujwkLP9NR6HLoqn1Qdaj2R63FdpHfGnRCrtpu78LjLqyyhoDw6ZAs6DXy0w8BL/x25ne7Gzj7e46g+22aiZ0zx5laNn0LNBX/gtqv3QULP9NU3LvlXly9+urKMC65IAjM+Mp93X0QQuCN6Tc8t03SIWGbWrv3QdWRdKRRXrdOyHWjBQAYLwYzMVl/K3DfV70i7qY4Bfz8b53bq66cEX0V+QnnmCDhX/Y174cHAGRzzv0JwsLPJIZ/fC4RYXRqtGIr+G0E/2RGFaNTo7j0kUtBoIqN4vbQ3bdVOyb5CRNtk3x7kpFGOTMmjpB3ylyZ1KnYMy8DZAOi6Hjqh50GrP1PoDgd/HxRmrF3wgg7Rn4opJzq4cXdDiNojok/hQKYR/DCNqiQyMXMtTvWRtqYOgqqxVBJWOepRRbWnb8u8PwquyhrZUM9fu46bRL8PvzUbkBp1RFgvIBOepvGTcxF2rjw4m6T4hZinW1x1WNX4dZNt1YEOWfncMWJV2gFQ3dO/yYWw+PDuOThS2BbdsVi8CdFRqdGcfmjlwPQV9H3brnXWMTlYuYre18xOj4OQVX9hcddiIsevkj7uHsfVB268b2q+1jUG4w/E3/YacC6m9Q+fBURimJZmfttGjcpWDZx6YiK3y+cEmlB9HX1gYgwNjUW2ioeZmf0d/d7hHa6OF05l6ympeUBILQZZtE+i/D8G89X3W/BwrdO/laVsKQ1RKuWKtqP/1tF0gRdK6D/dsLRxTYgtJqPUsUbQhbw4X+fWeCtJdWTMB07pM3UgghCbu0GhAu1KT12D3oyPZE3nHCjEri0hmi59x31EzVTPtg7iFf2vmI8L8Ym2+PxB6HaS1VF0L6tTBOg614N6mr1p2rqgTvV04R0rNVz2+bbaj5HvpTHdU9eBwCJVdJJtNGrLI20hmipIoXux6Jkyi887kJjj7/L6sKVJ10JIJlUj4QXRpuAIHFXda++9JjXpvFHJMNSNVHJ5oBjPgE88/MZSyg3AJzxT00r9Ka0vfBHmUIYRNpTCeOgEuMkEyeSrJVVRgoluvktszKzsLewV5nqkaKrS/WoGqpYqFsYvwVSmALy4zOPu0VcJeD5CWDNT5zEjf9+GZE0bnLy2T12F9A12xF3d6pHfhB98LsR32zz0/bCH2XueBBSZJMU1b6uPkwVp2JV/hYspRibDNFy4274iZvqibtXaTtsWs24uOeLM+JMNrD0U45oBjU2uZEirhNwv+hL5PEmqRpZxT/3QKpxyWan7YX/Y4s/lojHb7oYa0qP3YOL33kxgBnBzGVylc2m3ce9bf+3YfXIaqNUj1+E/VaIbqBWrbB10qYoFytdlbH82dULTLsqeFEEnviRc/u5B8wtGCnGKgGXr+VHdrWqUjWVar5xC6zNSNsv7gLNm+rRjdvlRUemrii7UxNKv5DtNDiZnktaLKru1WM+4fX45f1n/at3gTfl5qdWomNTPQzT0bi7Uv3stwQY3xGSZU+AvoPDLRjAK+JxUj1MFSz8DNNuhGXGgfrHG/2QDXz4B+HX0SZpmWajY+OcDNOy+C0YshzbpOJ1u+wY1STITK6xog84C7z++TNN0NjU6bDwM0yjUQ0Jyw0Ak2PexUyZTqvcF/BtPT9Rf9G3bKBU9vPdqR7AEXYWd2NWrN2Ob9+/CUOjE5jfn8NXPnA4zjn2oMTOz8LPMEkRx3/2Rx2lqKftu8ehq9fpVFWlety5dyYSfpE/dcn+uGPNdkzknb+F7aMTuPjOpwAgMfFn4WcYU1QDv9xdnW7GXgZWfM65HSSGSXebuskNAIW4lb/LRmL/PTZhlfuKtdtx8Z1PeUT+xsdeqvouN5Ev4tv3b2LhZ5jYhM178Yv7cw+UUykuMRx7eSanrqOUdzz6IMFMeEu9CtmcI9ZAcKonP84JmRpZsXY7vr7yGezaG7wLm6py//b9myqiL9EZeEOjyRUILPxM++HxzK0Zbzzb62j3tGZUAFA9I8Yj7jEScGGWjUm3aSDlD6PcQPn1FAumLOaJctmKp/Cz1S+jKASo/M9v+pfhr9yjiPn8/lz0i9XAws80B6omIpXFoBsL4D6PxzN3jetwz4ZxI0cFyNv1JGiGu5V1Ok/ldftTPeyrp4rKpnnixZ34r8deqhwTJw3vFvv5/TlsV4i/v30ul7XxlQ8cHv3FNLDwM+ngF/LcANB7APDaRu9xuQHgyA+rt7ib2Anc9ffO7aPPdUTfXYG7xwJI8Y/rmadluchKXIcn6vgyi3qdkeK+fXQCNhGKQuCggAXWqYJmXlAE3JX7Vz5wuMfjBxyR/+jSg/DgxldTS/VwA1ensv5WYOXnvdXk0k87AnrPF4E1/89bLfur7zCffMXnNNvZxUBuV/f1AfWsFrKBK8ofMMv7EcuS6TvY+VmT7eLD7gLO/j6LdxPhruL7Z2WxZ7KAfKn67yWF7VoAOKJ+9UfeWrXAm1Z0kxu4moko7eiAt3LO9gIZX6QuNwAUp1zetd/39Y2bPey06hG3ouRUz1sfra7K5Tlk9Q2o56UDM3PRkxJ9YKYa101ndN8fxzN3b4kX2ula/reV/47+VI+0Y7hibxg6IfUnaIIWY9MQ/f5cFss/dGSVqJ9z7EGJVvMmNKTiJ6KtAHYDKAIoqD6R3MSu+LUJDcPuQdNt1HRDrt58CrBzS7WQ+6thKwu86UTghYfg+ZOzsgBKQKn2r5deaqhngipjWZnHrbqDXtO04o+6C1PYNxn33wwnX5oCtz1DNOOzz52VxZlHD3osGmCmypbPqYVc1sJEvnrMe5dNmC6q/+bnzsriirOqBb8eNNWsnrLwHy+EeM3k+FjCH1UAVFP+wjZOPutfndumtkY2B8DSLzK2BFT+qfq7IWD5KHDtUclZJm67xO/xS47/TPUCry7Vk+nmUQEthMqDj1O2HNSfw9DoRKTnqRZYr/7IW/HEizsrqR6bCB9/58G46py3Rryi+tB5wh9HfGRlafr8NHzhZsek4o/q8VtZ4Ljzq22TOKkepqXQLa7KBIt/4TMuBH2CRkU9FljrQbMJ/wsAdsH5QP13IcT1imMuAHABACxcuHDpiy++GO1FYtkN5YrV+PlB1W+Lst8StccPzFTfgHpeuv8bk2mqh7tC2xa3396TtTBVKKEkAJsIJxw6F0++NKYU9lzWRnfGwuhEMmtF8sPE/0GStQm9XRmMTuSrPnhaTeRVNNvi7ruFENuJ6AAAvyKijUKIh9wHlD8Mrgecij/yK8RZ5JM7+Zg+Xx4f5XXc1oMJlp28x1/Z1OLm+KkeIHguDQ/l6ihWrN2O5Xc/UxFqld/u9saLQuDR5/XNbRP5YuxKX5eBd3fLtnIVnwQNj3MS0XIAe4QQ39Ed01Ye/zGfqM6sWzYAy3cOAo7/a2DhCcmnetjbZiKgG0nQ22Xjmx92vO2v3LZOGYusN1mb8OdvP7jlLZqkaJqKn4h6AVhCiN3l26cBuDLxF/LPAI+a6ok6Q9w01XP0uY6Yq2KbugqaRZqpM5eteEo5LMzN+HQRX7ptHeZ0Z1IR/bmzspjMl5SVv6zq/ameRqVnWo26V/xEdCiAn5d/zQC4SQjxzaDncAMXw0RHlWcHwq2Oy1Y85RlL0AhkggaAdvGXBT6cplrcjQoLP8N4Uc1wd9sbpy7ZH7c8/rKnErcA2DYh78qbqzpJF138CxQT0oWw6OVJiwaw9fUJFvaUaBqrh2EYc3SpGDfbRyc8Fbr/d0kJQMnXZKSa8x5V9OdqRh/4/XZ/qqeZ8+/tDgs/wzQIk6pdl4pJEv9oYFl5m2BbhCvOOhIAqlI97Lc3Lyz8DJMg7lntkoN882Iq4wYwY4OoqvawxdWk8M95//g7Dzby+GWqR4o7i3zrwMLPMCGouktVfrRuUVSO9H3ixZ2eCj5M1Osh+qo579J+cX/w+EWeaW14cZfpGIKmNuqSLv6JjirkAumXbl0XaJFEsVBqJWsTiiXhWQ/gjHvnwYu7TNuhm/NyyL45/H7Lzoro5bIWPrp0gXJjDX8V7t8XVbUnqh+5QBom6nFE32QgGQE4sZyOiRrdZDoTrviZhhK2CYXpbPW46Krwg/pzePSi9+HNF91rZLkQACukoo9a8fsHhalSPRx9ZILgip9JBbcw9+WyyBdLGJ92xDiXtdCTtTG6N68Vdbd4+6vtoMdNKnETdEIsky6mEx1lCke3KCpF3D8rXlb0BylSPSzoTFqw8Hc4f/HD33uGZZ20aAA3fvZdld/9w7fc1sOsrIV8UVTy2/5JihP5UiWC6Bd1QC3e7lx50OP+CGJcdFW4TLqoJjr68Q8BC0r1HP+mAbZfmIbDVk/KqKYWytyzbpPne9YNzwhteRbJ3FlZCOEVV7cIy4YYALhp9UtVTT6qXLVf9CVS/Fes3Z748C1poQDQ2igE4IVrzgx8PMpsdffz/FMbVVW4v5vVNNXDMM1GR1o9YaIrfVN3YwwB+IsTFlZ1FIYlP3Q+9Bdv+QPcbTe79ubxpdvWwQIqgiqrQ1XHpfxcVu0P6haxohCB2etde/P4yu3rAMxU3LqxuPL+b9+/KfHhW+5KXSfestoOetykEndjAfjECQuVVkpYFd6IPVEZJk3aVvhV1apKdP3dkAKoCKgU/yCvGYD2seV3PwNVr2WxJJD0Lrom5Iuiqj0/iKTsFDfuZiGVeLtz5UGPu+0ik1TP1R85Wvu+WdiZTqNthV9XrZqK7s9Wv1wR/iCvWd5WPZbU7kFJEkXM49gpQfibhcI2xjB5nAWbYaLTtsJfa7XqXpzTnSvoNdKolpPAXXGftGhA6/EDTsUd5vFbBOzTk8XYRD5yqgcIF28Wd4ZJnrYV/lqrVZuocjvMi9Y9tne6oPTmASBrUd13LMra5Km4b/zsuwJTPVJwdame/lwWyz/Eg7gYptVoW+HXVau2RR6PX4dMyMhzBXnRgT717es8888B4C9PWFhZUGxkqgeAJ7qpgituhmk/2lb4VdVq3FSPySbNcR7TCWqtM8p5xjnDMEFwjp9hGKZN0eX4rUZcDMMwDNM4WPgZhmE6DBZ+hmGYDoOFn2EYpsNg4WcYhukwWiLVQ0SvAngx5tP3A/BagpfTCvB77gz4PXcGtbznNwkh9vff2RLCXwtE9IQqztTO8HvuDPg9dwZpvGe2ehiGYToMFn6GYZgOoxOE//pGX0AD4PfcGfB77gwSf89t7/EzDMMwXjqh4mcYhmFcsPAzDMN0GG0j/ER0OhFtIqI/EtFFise7ieiW8uOrieiQBlxmohi85y8S0bNEtJ6IVhHRmxpxnUkS9p5dx32UiAQRtXz0z+Q9E9G55f/WzxDRTfW+xqQx+NteSEQPEtHa8t/3nzbiOpOCiH5MRDuI6GnN40RE/1r+91hPRMfV9IJCiJb/HwAbwPMADgXQBWAdgLf4jvkcgB+Ub58H4JZGX3cd3vOpAGaVb/9dJ7zn8nFzADwE4DEAxzf6uuvw3/kwAGsBzC3/fkCjr7sO7/l6AH9Xvv0WAFsbfd01vudTABwH4GnN438K4D44W4acAGB1La/XLhX/OwD8UQixRQgxDeBmAGf7jjkbwE/Lt28HsIzItb9i6xH6noUQDwoh9pZ/fQzAgjpfY9KY/HcGgG8A+CcAk/W8uJQwec+fBfB9IcQuABBC7KjzNSaNyXsWAPYp3+4DMFTH60scIcRDAKo3wJ7hbAA3CIfHAPQT0WDc12sX4T8IwMuu37eV71MeI4QoABgDsG9dri4dTN6zm8/AqRhamdD3XP4KfLAQ4t56XliKmPx3XgxgMRE9SkSPEdHpdbu6dDB5z8sB/CURbQPwCwD/WJ9LaxhR//8eSNtuvcjMQER/CeB4AO9p9LWkCRFZAL4L4FMNvpR6k4Fj97wXzre6h4jorUKI0UZeVMp8HMBPhBD/TETvAvCfRHSUEKIU9kSmfSr+7QAOdv2+oHyf8hgiysD5evh6Xa4uHUzeM4jo/QAuBfAhIcRUna4tLcLe8xwARwH4byLaCscLvbvFF3hN/jtvA3C3ECIvhHgBwGY4HwStisl7/gyAWwFACPF7AD1whpm1K0b/fzelXYT/fwAcRkRvJqIuOIu3d/uOuRvAJ8u3/wzAb0R51aRFCX3PRHQsgH+HI/qt7vsCIe9ZCDEmhNhPCHGIEOIQOOsaHxJCtPKGzSZ/2yvgVPsgov3gWD9b6niNSWPynl8CsAwAiOgIOML/al2vsr7cDeD8crrnBABjQojhuCdrC6tHCFEgon8AcD+cRMCPhRDPENGVAJ4QQtwN4Edwvg7+Ec4iynmNu+LaMXzP3wYwG8Bt5XXsl4QQH2rYRdeI4XtuKwzf8/0ATiOiZwEUAXxFCNGy32YN3/OXAPyQiL4AZ6H3U61cyBHRz+B8eO9XXre4AkAWAIQQP4CzjvGnAP4IYC+AT9f0ei38b8UwDMPEoF2sHoZhGMYQFn6GYZgOg4WfYRimw2DhZxiG6TBY+BmGYToMFn6GYZgOg4WfYRimw2DhZ5gYENHby3PRe4iotzwH/6hGXxfDmMANXAwTEyK6Cs6ogByAbUKIqxt8SQxjBAs/w8SkPEfmf+DM/T9RCFFs8CUxjBFs9TBMfPaFMwtpDpzKn2FaAq74GSYmRHQ3nN2h3gxgUAjxDw2+JIYxoi2mczJMvSGi8wHkhRA3EZEN4HdE9D4hxG8afW0MEwZX/AzDMB0Ge/wMwzAdBgs/wzBMh8HCzzAM02Gw8DMMw3QYLPwMwzAdBgs/wzBMh8HCzzAM02H8f529XFbK1uFCAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -245,7 +245,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEKCAYAAAAVaT4rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACSaElEQVR4nOydd5gj1ZW330rKuXOYnu7JAWaAwSSbnE20vWDANl4bL9/aXhuMvU5gg2FsHFgHlnUAJ5LBYOIQTM7RzAyTE9PTOQdJLbWy6vtDLbVCqRPdE3rqfZ56VLqlunXVLf106txzzxFUVUVHR0dH5+BB3NcD0NHR0dHZu+jCr6Ojo3OQoQu/jo6OzkGGLvw6Ojo6Bxm68Ovo6OgcZOjCr6Ojo3OQMWPCLwjCHEEQXhIEYasgCFsEQbhqpP0GQRDaBUF4f2T7+EyNQUdHR0enEGGm4vgFQagCqlRVXScIgh1YC1wIXAwEVFW9ZUYurKOjo6MzJvJMdayqaifQObI/JAjCNqBmpq6no6OjozMxZsziz7mIINQDrwKHANcA/w74gfeAb6qqOjjW+aWlpWp9ff3MDlJHR0dnlrF27do+VVXL8ttnXPgFQbABrwA/VlX1YUEQKoA+QAVuIuUO+qLGeVcCVwLU1dWtam5untFx6ujo6Mw2BEFYq6rqkfntMxrVIwiCAjwE3Kuq6sMAqqp2q6qaUFU1CdwBHKV1rqqqt6uqeqSqqkeWlRX8YOno6OjoTJGZjOoRgD8B21RV/WVWe1XWyz4BbJ6pMejo6OjoFDJjk7vAR4HPAZsEQXh/pO37wKWCIBxGytXTBPy/GRyDjo6Ojk4eMxnV8zogaBx6ajr6j8VitLW1EQ6Hp6M7nQMck8lEbW0tiqLs66Ho6Oz3zKTFP6O0tbVht9upr68n5VXSOVhRVZX+/n7a2tpoaGjY18PR0dnvOWBTNoTDYUpKSnTR10EQBEpKSvS7Px2dCXLAWvyALvo6GfTPgs6ByENdA9zc2ElbJIYExIIBko27iO7eibHpA6695htcfeJx037dA1r4dXR0dA4EsgVeIBXZEm9vIb57F/HGXcR37yTeuJNEZ3vmnCFg9aKlzFm8hE9VeqZ1PAesq2d/wGaz7eshFPDXv/6V//qv/9qr15zK3+EnP/lJzvPjjpt+q0ZHZ1/zUNcAS1/dyFe3tdAWiQEp0QcY/NZ/4rvhWwTv+gORN17KEf00w7t2cnNj57SPS7f49yPi8TiyPDv+JeO9l5/85Cd8//vfzzx/880398awdHRmhIe6Bvj+5t307d5FfM8HyE27cbY30xmJ4fzZ/2meI89bSLR7bFGPN+6kfeQHYzqZHSrD1H28RxxxBGvXrp22cezevZuvfvWr9Pb2YrFYuOOOO1iyZAlr1qxh9erVRKNRSkpKuPfee6moqOCGG25g9+7dNDY2UldXx+LFi2lpaaGxsZGWlhauvvpqvv71rwNwzz33cOuttxKNRjn66KP57W9/iyRJ/OUvf+Hmm2/G5XKxcuVKjEZjwbj6+/u59NJLaW9v59hjj+W5555j7dq1BAIBzj33XDZvTq2ju+WWWwgEAtxwww3ccccd3H777USjURYsWMDdd9+NxWJhz549XHbZZQQCAS644ILMNV5++WV+8IMf4Ha72b59Ozt37uTCCy+ktbWVcDjMVVddxZVXXsl3v/tdQqEQhx12GMuXL+fee+/FZrMRCAQA+NnPfsY999yDKIqcffbZ/PSnP+XWW2/l97//PbIss2zZMu6///5p+5/p6IxH2lXTHonhTCaItrcwsHsXlpY92Nr3sGfbNuLtrZCVAmcAQFFwxGMIcmGYsTJvEdG3Xs1tFEWkOXOR5y1Cmb8IeclyaowzEKKsqup+v61atUrNZ+vWrTnPSd1BTXo74ogjCvqeKFartaDtlFNOUXfu3Kmqqqq+/fbb6sknn6yqqqoODAyoyWRSVVVVveOOO9RrrrlGVVVVvf7669UjjjhCHR4ezjw/9thj1XA4rPb29qoej0eNRqPq1q1b1XPPPVeNRqOqqqrql7/8ZfXOO+9UOzo61Dlz5qg9PT1qJBJRjzvuOPWrX/1qwbi+9rWvqT/60Y9UVVXVJ554QgXU3t5edc+ePery5cszr/vFL36hXn/99aqqqmpfX1+m/dprr1VvvfVWVVVV9bzzzlPvvPNOVVVV9bbbbsv8HV566SXVYrGojY2NmfP6+/tVVVXV4eFhdfny5Zk+8/926edPPfWUeuyxx6rBYDDn/KqqKjUcDquqqqqDg4MF709VCz8TOjrTwT86+1XPN76vGk88XZXmzlOR5ElpTMmf/6FWvLi+YHP9+DeqcthHVMsnL1Md/3296vn9vWr502/lvKb+5ffVf3T2T3nswHuqhqbOGot/fyAQCPDmm29y0UUXZdoikQiQWnfw6U9/ms7OTqLRaE68+fnnn4/ZbM48P+ecczAajRiNRsrLy+nu7uaFF15g7dq1fOQjHwEgFApRXl7OO++8w0knnUQ6n9GnP/1pdu7cWTC2V199lYcffjjTv9vtHvf9bN68meuuuw6v10sgEODMM88E4I033uChhx4C4HOf+xzf+c53MuccddRROe/t1ltv5ZFHHgGgtbWVXbt2UVJSUvSazz//PF/4whewWCwAeDypSa0VK1bwmc98hgsvvJALL7xw3LHr6IxFtgXvSMSJtjXj7exg/omn8L15VTmTqTc3dhJ89y0ib7w0pWvF93yAXD+/oN147AkYjz0h81wCElmPtUalYCzThS7800gymcTlcvH+++8XHPva177GNddcw/nnn8/LL7/MDTfckDlmtVpzXpvtqpEkiXg8jqqqfP7zn+fmm2/Oee2jjz76ocYsyzLJZDLzPDsW/t///d959NFHWblyJX/96195+eWXM8eKuday38vLL7/M888/z1tvvYXFYuGkk06acqz9k08+yauvvsqaNWv48Y9/zKZNm2bNfIjOzPFQ1wDX7WpnMJ4gGQxgaW9hubebNzZuJtzcSLx5D10dbZBMgCjR+vRbfGtHK0BGcNsjMeT6+RMSfqmqBrlhQda2EGlOXdHXu2WJ1QtrZkTcx2LWfHPUvVBXYDwcDgcNDQ08+OCDXHTRRaiqysaNG1m5ciU+n4+amlQdmjvvvHPSfZ966qlccMEFfOMb36C8vJyBgQGGhoY4+uijueqqq+jv78fhcPDggw+ycuXKgvNPOOEE/va3v3Hdddfx9NNPMziYKoFQUVFBT08P/f392Gw2nnjiCc466ywAhoaGqKqqIhaLce+992bG/9GPfpT777+fz372s9x7771Fx+zz+XC73VgsFrZv387bb7+dOaYoCrFYrCDFwumnn86NN97IZz7zGSwWCwMDA7hcLlpbWzn55JP52Mc+xv33308gEMDlck3676gze8gWdQCFlKUc6+sh3tRIorWJeEsTidY9xJv3kOzvBaBogvdkgkRbC6GG+dzc2JkR4xqjwq76eTkvFUvLkevnI9fPSwl8/QKk+nmIZkvmNQpwWbWHF/qHaI/EqJlBC36yzBrh3xcMDw9TW1ubeX7NNddw77338uUvf5nVq1cTi8W45JJLWLlyJTfccAMXXXQRbrebU045hT179kzqWsuWLWP16tWcccYZJJNJFEXh//7v/zjmmGO44YYbOPbYY3G5XBx22GGa519//fVceumlLF++nOOOO466upQVoigKP/zhDznqqKOoqalhyZIlmXNuuukmjj76aMrKyjj66KMZGhoC4De/+Q2XXXYZP/vZz3Imd/M566yz+P3vf8/SpUtZvHgxxxxzTObYlVdeyYoVKzjiiCNyfjzOOuss3n//fY488kgMBgMf//jH+dGPfsRnP/tZfD4fqqry9a9/XRf9g5DsWHg1FELIco8CpGNfhn73P0ReenZK14i3NCI3zM+JpPnevCquXrkK9ZrrUmI/dx6i3ZE5bhYFLq5083iPL/Mj5JZEVi+q3S9EXou9UoHrw3LkkUeq7733Xk7btm3bWLp06T4a0YFPfX097733HqWlpft6KNOG/pk4sMn2u9cYFb5VW8Jhw1527drFP9a+z8PrNhBpbSbR2kxyoI/yJ99AMJkL+gn89fcE7/rDpK4tllciz52H5d8+g/Ejx1FrVHjvuOWaY3NJIggC3nhiv7LitShWiEW3+HV0dPYq39nRwj0dAyQAIR5D7ukk0NpCor2FeFsLifZWettauLS7A7Lmn/KJt7egzF9c0C7X1WufIEpINXOQ6+qR6xqQ5jYg181DqqtHtIzOTZlFge/Nq8o59VOVnv1W3KeCLvwHKU1NTft6CDqzlGxhFwFDLEJEMVJjVGgwG3jNG8y81vs/qwk/8/iUrpNoLSL8DQtQlh6aioeva0CaU49cV49UPQdBUQp87weSBT9dHNDCr6qqnpxLB9g/JvcPVv7R2c/q9dtobWpC6mxluKOdREcbic42Eh1tJPt6KHvsFdqwZ9IWpJFq5kztoqJEcrBf85DcsADP/92leWx/973vLQ5Y4TeZTPT39+upmXUy+fhNJtO+HsqsJB0909fWSrxpN4nOdhJd7Ri6OzD0dNHb0ow6HByzj0RHK+KiZQXt8jjCr5RV8LFDliHXzuU9mwe1di5S7VykquqC1bDpqJ5s59BMxsIfyBywwl9bW0tbWxu9vb37eig6+wHpClw6Eyd7wrKKJF8wxFkc9HL66adnjKmHuga4ensrMVUleN9fCK35R+b84UlcK9HRhqIh/FJNHWJJKVL1HKTaOuSaOqTaOqSaOmy1dfzysEUZ0c5PYTzTi5xmMwes8CuKoldb0tEZg2xht4eHiXV14u1sx97fQ5Wvj82Ne4h1dZLo7qRroI/1I+d1dXVRUVEBpFatxkbcaFJVzdQGIggkB/o0DymLllL24HOjLyWV50BL0GfbBOu+5IAVfh0dncJFTJDyY9e9/BSvPf0UsZ6ulLAHA5njXqB1jD6bmpoywp8dzy5VVhc/yWhKrVqtrkWqqkWqHtmqapEqqxEMBiAVMXOkw8Kb3mBm8tckQEjloJlY3R/QhV9HZz8kLegDwyESfT0Y+nsQ+nsZ6urCPNhLfcDLQFcnoV/cTlyUcs4dTCRp3rCR0NuvTenaTU1NHH300UBKjNMTstKcepTDjkSqrEGqqk49VtciV9UguEfn2tJFPpLowr6/ogu/js4Mk78wqSAJ2JPP8IfX3qa/uwvTYD8Obz+t7e3E+3pQvYMF/Q0BPSP7pf19SGUVBa+RyionN0hRRCwpw1Jdm5Nv6XvzqjI+fmX+Ijy/vCPntPSq1f0xLcGBwLbtP6Sj434gQSgkEAiciN93NBs2bGDDhg3ccsstOSvepwtd+HV0JslDXQN8e2cbwUQqfkQAPuaysnkoxEAsTtI7SHKgD4t3gENjQd5qbCIaDGK/8iraIrGcJGAPdQ2w+pb/YfjllJ87AGh7w7VJ9HRpC395XpuiIJVXIlVUIZZXIVVkbZXViGXlWAwGblk8h3Pz/OpAjjtpLD+8zsT53e8u4d1/PUtjY5TG3VHa22Oo6m7gz5nXvPfee7rw6+jsDXKW58sSqCreRBKXJOLftplgeyvJgX4Sg/0kB/pJDvbz6EA/yYFekoODqUyPpApxtGX1a/vCVxAUhVBSzSQBu7mxE0rKpzzWZG+3ZrtyyOG4rv85YkU1YnklosuNII5WWp2Mpa5Pqk6dcDhcNMz45psfprV17OpaWpl+pwNd+HVmLfkTn9mW6vFmicd37sE7MEDSO4BpyMdpUhxfXx+v+kOYvvQ1gJxJ08FEkoHf/ZLYhqlVbEsO9iOVp1ww6UnT9kgMsXQM4RdFRHcJYmk5UnkFYlkFUmk5YlkFrooq4vXzSWicZior57JLPz26OjXrB0x3x0wPnV2PsXPnTcTjg0SjSVpaYuzZE6WpSaW3p46dO3uw2Wxs27ZN8/yGeYZxhX/Dhg0zMXRd+HUODIr5ycdqv+KmnxDr6iTp95L0eUn6Bkl6B+n2eVkbKawLcM/Io+ByZ4Q/H9FdvIjMeCT7+zLCny6nV2NUaFy4BNNp5yCWliGVlqVEvqwCsbQc0VOCIBV+Tc2iwC2LU4uftKJ69NWp00Nn12M07r6FcKQTk7EKu+MENm74Jzt3tdHUFKVpT4ymppSbJjetUMphJ4oioVAop9BSmnnzTLz6yujCN0GA6mqZefNMnH76t1m5cmXRbLsfFl34dfYKWgINcN3ONgYTSVRVxRIJIQ35GfT7EIaGiPt9KAE/Eb+fRMCPOuQj6fcz4Pdx2ZAPY3CI+Nx5OH7yvwA5/vObGzsJrHmIRGvTpMeq+ryoibim4Iru8cVUsNoQS8oQPaVIJaWp/ZJSxNJUlbTsJGDfm1fFt2JHYzjiqMz5Wml+LQIYJUkzn4wu8B+OfHGfN/9beL1r6egYTRd+xx39vPN2C21trxOPT7zvZDLJtm3bOOKIIwqOnXbaeQwOPEzDPAPz5hloaDBgNotUV3+GpUt+MB1vrSi68OsUkO/jjiQSDI+kwrEIAkZJzAjQqSV2XugfonUoiBAKEg8EUIMB1OEgyeAQajCAEgwQCwwhzJ2H6YTTaIvEuHp7KwlVJQmoiQQ9Zx0DiUl8o4AoIJtzq5el/eftkRii00VirID1YqgqSZ8PyVNo3SuLl5H82CmIbg+ipxTRU5La3CVII88Fw2gFtfGKcaQfte5aflaYf0xnmkiLvX+onba2GM3NUfr74vzbRSpbt36L3MQP0N0Vp6lpbLeMFpIk0dzcrCn8n7nsLxxxxJxMVA9IVFdfwtIlN07tTU0CXfgPQMYLDxxvafu3tzVx954O4qEQajiEGhrGHouSHA7iDwZRwyHkeQtR5i/KcSEADHV30vbj76MOB+kdHmbdcErkiY3/pTCdchamE04DyKwGBRAkCcFoRB2enPADJH3egrb032XQ6Sp+oqIgOt2ILvfoo8uDtaSEpNONUGRCznzGeZjPOC+nLTuqZzAxKhgTdbnok6czz46df+OVl3/O7t0dtLaJNDUFaWmO0Nk56qIRBDjnXAcaXhnq6w3A2PmIystlGhoMNMwz0FCvsHhxLZdc8lZOKdV8li65ca8IfT6zXvjHE8mxXl8sXetE+9QSYC0h/s6OFu7a3UY8MIQajUIsCrEYxkScUDiMEIuSiEbwJOMsUUTe6R0kGolANMz2SIT/d8pZfHveAoYTSVyyRCCeIAZEN6xl6Lf/gxoJ0xsOcXEkghAJkdCoezuQ99z6ha+gzF+k+TeKbVqv2T4eycBQ0WOCzT5uoi/NPv2+giyt6f/JFaefg3Lo4YgO14jAuxAcTkSXB8FiLUjupwgCv16S8psXi+o52NL3Hog88eTPee7Z37OnqZ/2NoHW1gS9vYFxz1NVaGuNsXBRoVDXNxgy+yUlEnPnGqhvUKifa6C+wcDcuQasVjHrDJFly64fU/T3JbNa+B/qGuA/bvwxkYFU+la/qvJF4E6PnYUWI6qqZrZkMsmuwDBvDPiJJ5Mgyahf/26mr7T/+F1fgDtuvZXh999DTSYZSCT4bCLB9SYFtwixWIxYLEZ/OEJHMEQyHkONxSARR43HKfndvUiV1Zn+7u/s5zVvkODD9xH4021jvh8foFWwUZ6/iODcVE3QbAtdjUaI79KOKBgPNaSdgkuwWDXbJ9RnsPiXT7TZSfq8iDY7gt2BaHcg2OyIDieizYHgcKQE3O5AsDswO12cN7+Op8Mqkax+0v7zT1V6ePeSi7mzI/8nLVXg+vxyJ493ezMWen7Ra13Q91+8Xi+7d+9m1apVBcc6ux7jf2/9Cc8+65tS3y0tUU3hX7HCxK9+XU19vYLdLmmcOYogWFi6dDVVlcXLku5rZrXw39zYif+pR0k0N+a0r5nIySYTjizhh5T/+J6OAUI7thJ585WcY1smOCY1Gs3pL1OUIq/o+GRQIxHN9mxf86T7DIW0+8wqJp2DJCNYrQgWK6LVlrKorXZEmw3BmtqyU/AqgpDx8QN4/vA3zclULSyCwC+WzBn37utni+s4ymkb87jOvmd0crUj0xaJJOnslEH9FH19bnbu3JnZenpS65a9Xi9OpzOnr8bdt1BbKzIZystl5s5VqKszUFOrkEo0kevjdzgkDj00Jfiy5CKe8GUmgvdngS/GrBb+7ARTkyapXdgjASBO7oOV24G2Hzs/t/hkUKNFhH+s/PRGE4LJhGC2IJjMCCYzotmCYDYjmC0oiwtT6ELKH+/+1R9Tr7NYESw2RIsl1d8YdREkARyimBNHDqNRPYIkY5VEDKTi5dMuMYsAYTX1NZSAz1Z7cgR7PP+47j/ff0ilJ/gbqdUUKTo7U7Hv7W0x2ttTW1t7jN6e9J3rz4r2t3PnTj7ykY/ktIUjncypMxS8VpKgpkahri4l8HV1CnNGHs1mkfQqD5OxWjOqB0AQzCxd+uMDUujzmdXCX2NUmHK2/qTWspiU+CCOfas3FmqRSVDBlgoBFAwGUAwIipKy2BUFQTEgGI1gMKbajSYwGBAMRgSDEWXhEs0+5bp5eH57D4LRhGA2YzabWVXu4c1QImcV52SwCALuVUcVRPW0RWIadlKKfDdKNrooz27eW/sd1q69n/nzJU3D4L77vDz1ZPG5n7HQEn6TsYr585s58ywbc2oN1M1VqJujUFllQM5SO0FQkERrUcu9qvKCfTLpureY1cL/vXlV/L+LP0ckK/JDEQXOLXezwm5BEITMJkkSGwMhHunxEhNETXFPx1ff/clLGP7oSQiSBKKIUZH5ckM1p5S5URQFRVF42Rvkl219REQp5cKQZQRZQXA4cvo70mHhNW9QM1pEi/Q5r3uDFCs2qAgCNlFg0GzGtGS55mRyuiZqGnf2JKa+ylNHA61494ry83h/w195681f09zcRU+PCb+/gY6OCLt2bWJgIDVX9I+H5uJyFX6namomf6erKArz58/X/CGZN/9bRGPX8t//PdqvKJqprPwkA/0v5Yx9NljuU2VWC/+nKj1wzdcnFdVz9gSiesbyG6dZBdRPIqonX4gFwCKJBLPcHrVFIosmG23ys8V1un9bZ0yyRV6WnKhE2bhxgC1bwnR1xuns7KCr62K6uxNEo/l3x4WLJzraY5MSfkGAigqZmhqFuXNdnHjid1m4cCGLFy+mrq4OWdaWrrSY5/9AHcwir4VwIBSpPvLII9X33ntvXw9DR2dWkC3qRkMlJaVfZtu2V9i8aQ1d3TEuvNCBJBVa07fd1sejj/indM3vfreM0063F7S3tka59dZ+aqpTIl9Tq1BTo1BVpWAwCKTCIm/RhXuKCIKwVlXVI/PbZ7XFr6NzsJEbISORTMYZDpYiyf9GMDCXzVueZtOmNXR3henujtPd08hw8I2cPk44wUpZWaE0VFZOXi5kGSoqirtz5swx8ItfVGkeOxDCIg9UZkz4BUGYA9wFVJCaxr9dVdXfCILgAf4O1ANNwMWqqhZWm9DR0Skg31qfv+C/qaq8IJUpcseNxBNeAO68c4DnngvQ1xsnHt8D/GvC1+jqimsKf1WltoDb7SKVlTJV1QrV1QpVVTL1cytZtvxkksknNO8eCsmNqtHFfmaZSYs/DnxTVdV1giDYgbWCIDwH/DvwgqqqPxUE4bvAd4HvzOA4dHT2a/InTT0lJ9PV9TCDgwF6e+P09SXo7xcJDc9jT9NmensiI+2NPPrY9/B619LV9TDJ5Ojai9CwSlfn5FNgAHR3xTj00MJQ4IZ5Bs4/30FllUxlpUx1tY3DDvsUw8NP5VxbFM0sWZKy1Ldtd+2TXDQHKhs3buSFF17A50stQEsmk7jdbk499VRWrFgxbdeZMeFXVbUT6BzZHxIEYRtQA1wAnDTysjuBl9GFX2eWkT85iiAQj3tz9tMif//9f2HrliH6+uL09bXT1/82/X0JYrH8+beOguv09ASQpLSwjlJePvGvtsEgUFEhU14hU1UpU1mlbdlXVyt8/apSILWIadHiH47cbXy06GTqvspFcyCQLfJmsxlFUXj11Vfp6Oigu7ub7u5uLrroIkRRZM2a1LLT6RL/veLjFwShHjgceAeoGPlRAOgi5QrS0TkgKCboRkMlpWVfBnUVb7/zE3bufIbBgTj9Awn6+7sJDSe5aXVlxhUDEI500NHxN15/3cuLL4yfS0aL3t44VVWFa07KsoTfbhcpL5epqrKxaPGxKMp7lJerVFTIVJTLuNwKglA8yEOWXDk/Vlox77prZnJs3LiRb3/727S2ttLd3c3AwABagTZdXV3Mnz+fWCzGCy+8cOAIvyAINuAh4GpVVf3ZsbeqqqpCkU+cIAhXAlcC1NXpoYc6M0tRC112kUiEUdWUK+PllwM0N0UZGEgwONjJwGAC72CCgYFGotE3xrxGJJLEaMxfOKdSUjL1BYG9vdlBwqMcfriZP/2plvIKGbNZHHG//DgzH6Cdf350Va0+sfrhef3111mzZg1msxmn05njrnnhhRd4//336e7WLp2ZJvt42v0zHcyo8AuCoJAS/XtVVX14pLlbEIQqVVU7BUGoAnq0zlVV9XbgdkiFc87kOHUOHoLBIL29vTnbB7tfYtfOJxgcjOD1JjAau7j+htSNaDyeG3fw5BN+1q8vzG46EQYGElRVFa6YLi3V/hpaLAKlpfLIJlFWLlOWtV9aKuNyWamq+lSBj99mE7HZjGhNmGpZ6LN9pepMsHHjRp5++mn8fj99fX309/fT29tLR0cHPT09+P1+nE4nV199NT6fL8dd4/P5qKioGFf4BwdHP3/5eYk+DDMZ1SMAfwK2qar6y6xDjwOfB3468vjYTI1B58BGyzJNW6y7P/gFXl8HiYQDl1PKLL33lJycWaH5f7cN099fztCQSF9fH319fYSKJJ/Lxm4vns7C7Zn6VyYl/IX+8xWHmvniFW5KS2VKSqSM2Oem+QVBkKiqukRzBarLtUpftDTNZPvgnU4nJ5xwAk1NTTz22GM0NTXR29tLT08Pg4ODmm4aSFnpkUgEo9GY465xOp1UVOR6uT0eDxUVFZmtsrIyI/aKonDqqadO23ubSYv/o8DngE2CILw/0vZ9UoL/gCAIVwDNwMUzOAad/YBUcq77GM3koyDLtow1raoqbW0xhoZEAkNRQiEzXp+foaEkgaEkQ0MJhoY6GRq6lFDIxsDAIENDcWIxOPTQVLpcSPvMRxNrrVvXR3NzJ5NlaChJLKaiKIVhiG6N1adpjEYBj0fG7RbxlEiUeOTUY4mMxyMxd26h6IuimRNP+gyHHvpSTlRPd/cjJBKjqbElycLixcVdL7qffWrki3vaHbNx40bWrFlDbCS31p/+9Ce+9a1vkUxqZaMam56eHubMSWWmTbtrTj31VJqamjAajVRUVFBeXo7VamXlypXs2rULn8+HIAioqlrgJpoOZjKq53VSwblaTN9Pl8600dn1GNu2XYeq5ubiNxmrcyzptEUZicTYvOkWBr2dJOIenM6LkOVD8fl8+P1+fD4fjY1P0NW1iWAwybLlJj7xCScQy3GhqCp88QttTGwRea7F7vdrJ9MDcDolYGoZWn3eBKUaseyrjjRjNAm43RIej4THLeH2yLjdEjabRdPtAinhTiRCBVE9xSxz3e0y87zzzjvcdddddHZ20tvbSyAQYHg49dl/4YUXMqIPIMvypEVfFEVKS0tz+klb8CtWrOCKK67Q/NHZG+grd2cRhWlvU4tikkmRSCROIm4nFFYJBr2EwwLhUJxozEIwGCEcChMKqYTCScIhlVWrzBx2eKoGXbYl3dER46tfeZNQ6MK8otMtwPtjji+pMiL8uYiigNUqEghM3pry+4uf43AWumwURaG8vJyysrLMZrH4Sarv4nQmcbkkXC4Jh1Pbsj/qKAtHHZWqSSAIZiTJVCDiuttl/2Hjxo089thjNDY2EgwGMZlM9PX1sW3bNpqbmwtcNGeeeWZOHH2asrKyMa/jdrspKyujvLw8s5WWliJJo5+jfHfNihUr9prQ5zOrhV/LRwyFCZy02ibyRR2vf0l0kEgKhEKDyFIFtbVfZunSzyBJUmql5c6bMpZvV1eM9jaRREImHA4ATpyuMzAZlxKJRAiHw4RCIcLhcGYLhUKEQiG+/e1vY3c8UZA//J13gtz4o24ikcnPjRsMQkb489uHhiYv0ADBYPHzbLbJC7+iCBgMQkHpxTQXX+zi42c7KC2t4LTTHqG0tBSbzab52olG9QDIsptFi36gu132I7JdNo2NjQwNDdHU1MTOnTszVvxE6O3txWQy4XQ6c8S/vLwcAIfDkTEY0gJfVlaGwVBYA0AURYxGI6FQaK9b9OMxa4W/s+sxtm+/ll/9qpWe7jiptWSfGXEnJFFVUOkA9TJUFZKqippUSartqOpluF0LeeWV9zX7/uY3v8kjj9xHONxHPJEkmYBEoolE8pMk4hCPqyQSKokcL8Qe4G3eejvE3LmVbNv2HVR19BbwxRcD/PlP2REk3cDOCb3XSy65BLfn/oJ2SWJKog8QCmmLsMUy9SI0Ywl7wzwDDoeIzSZhs4vYbSI2u4jDPvrc4ZBwOC04HBI2WxSjURiz+MuyZaaRMMYfUVXZMObYdLHe/1FVlZ6eHnbu3MlLL72EzWbD7/djNpuJRqMkRr5wW7ZsYd26dVO6Rm9vL4cccginnnpqjo+/oaGB733ve5jN5sx18lEUBVmW90uhz2fWCn/j7ltIJkNs3BCiuXnyfl6TaVPRY11dXezZM/lJw9S4bicRt+SIPoBBYyJxooRCIdwUfhgLY8Yn0WdY+wfDZBodpySlfggsFhGrNfVot5uprz8Lh8OB0+kkEv0XycRGrFZR02ee5qabKic0rmXL/gcYvauSZReoqmZUj+5m2b/JttLTE5lms5lQKER7ezuhUAi73Y7f78+UXfT7R7ODfutb38JqtRZEapWWlk7o+oIg4HK5KCsro7S0lLKyMhYsWFAQb+/z+SgpKcm4afaVX346mbXCH45MTZjTJBLFLeVsv91kCQ73EI4U1sKVP6Tway3iMRlH+zQaBYxGAZNJxGQSRjYRkzn1aDYJmMwiZrOI2SyweLF2vV5RFPjHQ3OxWAwoioAgxLOOjS4Syma8qJ5RFCCOLLuIx31k1/MSBIWlS3+WE4uuc+CQHz2zcOFCNmzYwK5du2hubmZgYCCzTdQ109/fj9VqLWgvKSnJeS7LMiUlJZSWllJaWkpdXR3f/OY3WbRoEbt27Soq5MV88Aei0Ocza4XfZKzKKd48WcaKMJmM8EsSSJKALIMsCxiUMkxGa8HYKitkjjjCjKIIKIZR/7XZZGPu3E9jNpsxmUwYjcbMvslkwmw2c+SRRxKJthX4+OfNN7DmiXqMRgFRnPoPS35UT2XFnEnNjej5WmY/6cVMaetblmXC4TAdHR0EAgGWL1+emUj1+Xyk62ts3bqVf/1r4plDs+nv79dc1V9dXc2ZZ55JdXU1Ho8Hq9WacQkqisJ55503rrjPdmat8M+b/y22b7+Wr329lHDaXy2k3q4gpCxjARDEVJsoxhFFAQGQZCP19VcW7fsnP/kJV3zpIzQ3/xpBCCOJApIsIEkKkgSyHEeSBCSJHB90yiK+HqDAx3/MsVaOOTbXeilmQWuTEtbsqB5JEjGbVdJ3A6M5VwZH22R3zuTleBOX+eiW98FDvmsmFovh9XoZHBzU3LLDGGtra3FklR1N4/FMrqSn1WrF5XLhcrk0+wOw2Wwcf/zxnHdeqpTpbHDNTDezVvjTgmRQpj+qp6qqiqqqrzB/fs2YfY0Xs50d1QOp/CiSZBw3xrsYumWtM1W0FjKtX7+ePXv2ZF6zZcsWdu7cyeDgIF6vl6GhiRdJHxgY0BTqfLcMpO6o3W43JSUleDweamtr+cpXvsLChQuprq5m06ZNOROvMHYEjS70heilF3V0DlLWrVvHI488QmtrKz6fD6/Xi9fr5dxzz9V0Zz777LO89dZbU7rW+eefz+GHH17Q7vP5ePvtt/F4PHg8HkpKSnA4HIhiKjAh3zWTptiKW51c9NKLOjqzmHwfO6Ss4EMPPRSz2UxzczMtLS00NzfT3NzMBx98QHd3t2aOmRNOOAG3213Q7nK5JjUmg8GAx+PB7XZjt+fW21UUJZOewOl05kT1AOOGRB6svvnpQhd+HZ0DgHxhj8fjDA0N4Xa7MZvNRCKRnJQCjz/+OOvXr5/Stbxer6bwa7U5nU5cLhdutztn83g8mM3mzBzX/ryY6WBEF34dnf2MQCBAe3s77e3ttLW1sXbtWt566y38fn8mB1I65PH73/++Zh8Wi2XK1/d6vZrtVVVVnHPOObjdblwuF06nE1nWlpADaTHT/kZwfQ/epxtpbGqksqaK6vOXYz28fFqvoQu/js4MoLU4KT/7Y/r42rVr6e3txe/3097enrNIaTz8fr/mBOlEc7eno2ScTidOpxO3253JJJmPzWbjyCML3MUAmM1mzj77bF3cJ0hwfQ++NbtJDscJRIbZ3rubrb272dbzAVt7drO9t5HhWIg/fvLHnBVPpYOYTvHXhV9HZ4o88cQTvPfee0QiEQKBQGYbGhoqeB6JRLj66qtZs2YNLS0tbNiwIROV0trayoYNG6Y0hvSq0nycTieiKOJ0OvF4PBx33HHMnTuXuXPnUldXRzgcLprWoFhUT/YxXeAnRnB9D/5nmkh4I0guI8YlbkIbelFDCa56YjXvtW+mxVt8vdG2nt2cufB4/M806cKvo/NheeKJJ1i7dm3RAhppzGYzy5cvz+RI/9e//kUoFMoUxA4EAsRz05QWJRKJABRcN3/ic6LY7fai116wYAHXXXcdsixzwQUXaAp1fX39mJExurhPjGxxT9MbHGB7byP+cIBzlpwEQMIbYfjtrsxrmgbbxxR9gC09uzLnTie68OvMCrJdJ9lIkoSiKHi9XhKJBMFgkMHBQYLBIMPDwzmP6c1kMvGVr3wFSEWXZIcS79ixg927d09pjIFAAKPRWPBjoxXxUlNTQ01NDbW1tRgMBnp6erDb7TgcDhwOBzabLSfkUhRFZFkmGo1mno/nftEjYz48na/t5t07nmVHzx529DWyvbeRHX176B/2AlBqcWeEP5+lZfNY17GlaN8ukwOrkpqrkVzaKVSmii78OvsVWvHZMLr60mazUVVVxebNmzNieNppp+W4TtLcdddd9PT0EAqFJlVEI22Za2Gz2ab2xoChoSFKSkoyPv80CxcuxOVyUV1dzbe//W1KS0szcexptMI10+jul5khuL4H7yO7UKNJhqMhdvY3sbOviV1DLTQmu9jeuouWlpYx++gbHqQvOEiptTAiamn5AgBEQWSeu5al5QtYWj6fZeULWFY2n0p7GYIgICgijjPrp/W96cKvM2MUE/FsATObzZxxxhm88MILvPnmm/j9/px6A7fddlum7kAoFCoQ5Tlz5hSNL09b8pMlGo0Si8VQlMJSiVpJwSRJwmazYbfbsdlsWK3WzH72o9VqzcSvZ/9Qud1uysvLOe+88zJ53/PRrfOZId8H7zizHuvh5QTX9zD44I5MnsDPPfjfvNu2cUrX2N7byMesqwraz150AodXL2NhST1mRduizx7TdKIL/0GOVtbEtD9by5Jct24djz32GP39/UQikcwWjUYzBWMSiQQWiyWTWjccDhOJRHjooYc4/fTTc6zdUCjE448/zo033jileqZjZXL8MCGNwWBQ8wflkEMOobq6GqfTiclkwmazYTQax6wLoBXVU1dXp6883ctki7zfEGZ3pJ3tG7elrPj+JnoC/Twb+CsA/measpPDsqi0YVLCb5QNLCqpZ3HZPJwm7bvEclsJ5bbCiXnBLOE6f8G0i302uvDvh4xVALqYWOQf83g8mfzlsVgss8XjcSKRCLIsI8syXV1dRKPRzBaLxYhGo6xYsYJDDjmENWvWAGSuf/fdd/PrX/96Su+rrKxMczJVVdXM4p7JMlHhNxgMWCyWzGa1Wgv2rVYrNpsNi8WiWVEJUrHsdXV1nHfeebS0tIw5QayvPN03pAU+NhiiGy8ddWF27NnJppfW8kFvMx/0N9M3nJ8SPEWPtw/pGUPBZOri0nrN10uixDx3LYtL57GotJ4lZfNYXDaPua5qJDE37UU6qieyfbDgDmNvc1AI/3h5PbQiPARBYNWqVZx77rkF/cXjcdatW8cTTzxBNBolmUxmNovFQl1dHY2Njfh8PsxmM4cffjjxeJx3330Xj8eTcSFkX+Pdd9/l1VdfpampiS1bthCNRonH4yQSCe6++27sdju9vb2Z9ng8zs9//nMMBgPXXnstvb29GdeBz+fLlKC7//7CylwTobq6GoBYLMYLL7zAihUreOGFFz5ULYJwOFz0mMlkmrDwp9NRm81mrFZr0dKLZ5xxBmeccQYWi6XoQqPxyI/qyf78rFixQvPzobN3CK7vwfv4B6ihkToUqRLT3PbWPazZ/iKNA62E45OLhvmgv5lyWwmSy5gj/ovL5lPvrmFRaQOLShtYXNrAsnmLOezS4xl+vBmK1e9QBNyfXLRPxH0sZr3wH3PMMWzfvj0j6qqqcsMNN2A0GjM5w6PRKKqq5myKovDNb34ToODLfd555/HPf/5zSuP52te+lklFq6pqJmJk8+bNfO9735tSn2+88QYNDYWlBbV81BMlHR0CZCJlfD5fUUt4Iowl/EuWLCEUCmVEPf1otVozdQgsFgtGo7Fg4jPtN9+yZUvOj0c6G6SiKMRisQnngdHZt2j53Y2HejI1dHfu3Mm2tzZx7bzLEdWsz8KI9vYE+9na88GUrr2zv4njVx6L48z6HB//sXWH8dqV92VeJygirk8uxHp4OUaDUXOeYH9m1gt/U1NTQYjfREjX1Vy7dm2B8Pf09Ex5PFr1OteuXVs0t/hEKPb+pkv406tAnU4nXq8Xu92OoigYjUaMRiMGgwGTyYTBYMBoNGaEOnvfZDJlCmLku0ZEUeSss84q8PGnwxGBCc1DnHvuuXrWxgOIgUd3MfxOV0qwBUhKKp0DPewZaGPPYBt7BltT+7e00ezrKFizcMWXz6baUVHQ7zyP9srjbAySQoO7loUl9SwsncvCknoWlM5lnntOjnCno3qyyRd36+Hl+73Q5zPrhX8qE4ZAzh1CPsWKLU91PKqqfihLupjAG41G3G43iqJkNoPBUPA83ZbeT2dVTPedjsZJF6C+5pprxh2TKIocccQRBQINhVE9WuI+1cVEuu98/ye4vofBh3dCTOWBTU/zzK7XaBpoo9nbQSQRHb+DERoH2jSFf4FnbmbfabKzwFPHgvJ6FpTMZb5rDgs8dcxxVSGLhfJnOabygBb0iTLrhT/fLTBR0oKv5Ts2mUxIkoQoippb9rH8fS1fsyAIHH744VxzzTX4/X4aGxsRBAFZlpEkCaPRyPz58+noSK3yS0/MmkwmzjjjDEpLS3n55ZcL4tjLy8v5+te/Pqn33dDQwMDAQNEapIDmQqlsJrJwaDLtOvs3OStXBQjHInQk++mw+Ni1YQdNnc1c/4lrKPl4Km7d+/AuiKW+Xzt6G3l21+tTuu7ugRY+Vl8YJrmyagn/uOx/me+po8TiQjRIuD65EKAgfcL+MNG6L5j1wn/PPffwzDPP5NwmKorC6aefzvLly3n++efZuHFjaqFEVgrZNKtWFX6wbr/9dh5++OEJj0GSJFRVLXr3sWrVKo477jiOO+44YGpRPXa7vSCqJz/PSvq9JZPJCYVuaqFb1AcXWrlmwtsG6GrvpC3RR6fJxwfrt9Pc306Lr4PmwQ66Ar0F/Xxh1b8hPayCLKDGRr8HDZ7aCY+loqKCxYsXs2jRIuZaqjgqOE/zdXajlaPnrAS03TI6B0kFrumO6kn3mV/+DSgqqFBoKY93DR2dvcGYi5j+sTMTsfL7d+7jwU1P0+LrnHS0zD0X38KJDUcVtL/etJZL//6NzHOXyUGDu5YGTy0N7lrq3bXML6/jsM+fRNXx8wvGrRXVc7BZ72NRrALXQSH8OjoHK1qirqoqjfe/R2t3B+3+Ltp83bT7u2j1ddHm6+LxL/6Bqk8fmkkbnOZnr97BbW/dPaVx/PiMa7j88AsL2gdDfl5ufJv6EZF3m3ODHHQR/3DopRd1dGYx+Rkiu4b62DPYRoe/m/bs7ZbUYyhWPLS2ta8D6zP2HNEHqHNWTWgsAgLVjnLmuqqpc1Uz11XDqurlAIgWGTWWzLh73GYHn1h+RupERYCYqov9XkAXfh2d/Zzsoh3xZJzeuI+B8igtm3Zz9pyPIVpkkuF4ToqBn796Bw9ufnpK12vzdbHQW1/QXuuszOzbDBbmOKuY665mjrOKOmcVc101zHXXUOOowCgXRqkJiojzvJS75kCLe59t6MKvo7OfMDw8TEdHR6bsYnt7O3vW76R53S46/b10DvXSE+wnqY4q/Jarn8JBYS6YGo0wx4nS6u9CchlJRuKj/nPg8KplPHH57dS5qnCZHJnMkeZV5ZnomGw/+1hRM7rQFyeZTLJ79242bNjAxz72MSorK8c/aZLowq+jMwNku14i8SgDIR9V9jLNCcgvf/nL3H///UVr3Y5Fh78HR1mh8Fc7xhZWi2Km1lFBjbOCWmdVat9RSZ2rivkVczNpgLNXr9qMFlZWLUndYQzHdWt9GvD7/WzatIkNGzawceNGNmzYwKZNmzJZZe+77z4uueSSab+uLvw6OhMgf5LUfsZcYg0GGl/cwp5/bqSru5ve4AC9wX56QoP0+PvoCfTTExxgMOTDKBnY9c3nEEiFDCe8kVQ8O6ncT1MRfYDOoV6WlBWGNTZ4ajmsaim1jkqqHeVUO8qpcVRS666kxlaesdjz0RJz3S3z4dj22ku8dv9dDPX3YS8p5fhLLmfp8SfzkY98hPGCVjZs2KALv47OdJAt4qJFTuVnCiVQ7RLBGoGB99uoM2nfXn/jyZ/wZvM6+q4bJJqIab5Gi0giijc8lBO1osaS+J9pyiTEmyges5NqRzmV9jJsBu3U08fMOYw1l/8hp020yBkfe3YYZLpdS9Bn8+rVmWDrqy/y5J//wK6mZgZjSWzllRxmU4hHU5PuQ329PHv7bcDESm5OtRbzeOjCr3PAky3kgllCEASSw3FihiT9QS8DgwMMhHwMDHsZiPjoH/LSH/IyMOylf9hL//Ag/cNeBkN+VFRqHZW89eUHNK81GPLRMTS1XE09gf6CcMWEN0LNvBogtdCvqqoqU3KxpqaGcsGFowkqLaVUO8qpsJVgkjWKdkgCgkHM8clnDmlY6rqYf3jefupxHv7j79nd0sZAJMZANMEHTc0MZ+W5Mikyyy88I+fuKh6N8Nr9d7FixQpeeuklzb49Hg8rV67k2GOPnZGx68Kvs88ptoAoncQrmUzijwaJLDKSPNJBf38/AwMD9Pf3Y/VLnBlemQkPVEOJdJJGjv/Np2n3d096PL3DA0VTPZdaCkvojYcoiJRaXASjhbUDJJeRSy65hPPPP5+ysjLNtNfZUT2QKtRhXll20KYb2Bs8cNO1tG4etbZjngpKVx3Lli1b2LJlCxvWr6Onr3/cfsKxON7hMG6rOad9qL+PFWccjyiKLF68mBUrVrBy5crMY01NzZjFfT4suvDrTCv5IpUmHI+QSCawjrgmlPkOKv5jJcH1PfT/Yzs/e+EP+MJD+MIB/LcH8CWDDPq8+MJD+MMBVLQXGh5eu5wzPvM7zWMes3NKwh+JRwlGQ9iMhW6UUqsns29RzJRZPZRbPZRa3ZTbSkaepyorlVs9lNtKKLG4NBOCpWupWkcKqBdDd7fMDNm+d6PVRjQeQ41EEEQRNS8R458feZxdv//zlK7T6fMXCL+9pJRLLrmESy+9NJMufG+iC/9BRDHLeqxj+Qm4gpFh3mhZRzAyTCAaIpAMEZtrIGxJMNDUQ9+ODgKRIEORYYYiAYYiQfyRANFEjIsOOZtfnpOqORDb7af7jg0k+yMIcfjjew9OymeeZiDgLXrMbXZOuj+XyUGJxcVQNKgp/F9Y9UkuWXEO5a4SSo+tJ7S2Jyf3TAYRRJNc8AOopxXYN6RF3t/Xi2q2Qkkl7772Cp2DXrr9Abr9ASLxOKs/cSaiRjaDSoedXd19E7qWIklUOGxUOe1UOe1UOHJ9+bLByPGXXP6hSoN+WGZM+AVB+DNwLtCjquohI203AP8BpLM4fV9V1admagwHAvkrLrPJn3TLt6bjQpxwOIpBVjBICoJBxPWJhZnXd3R08Oxdaxh4r5VhX4BQPMJwNMxwLMRwLEzob2FiZTLB4SD+tn6C0RDBaIjhWIivvvhZvvaV/8oVNhV6g4Nc8dD3p/Reh6KBnOex3X4glbPIYbQVLYc3Ft6wv+ixcpuHMqsHt8mBx+LCY3bisTjxmF2UWFx4LKnHEosr06ZIY38lKmylOf+X4Fxnzg+jLur7B7FYjD179rB9+3ZeffpJXnv2n3R5/fQMBQjH4kXP8w6H8FgLBbnSWRgyK4kCZXYblQ47lU4blU47lU47HqsFccRNIxuMLD/xVBrX/6sgqmdfMpMW/1+B24C78tp/parqLTN43RxaX96B7/kmEv4ookPBelIqG+DQS63EfWEwSamyieE4ol3Bcnw1pqUehrf0U7oVTQv4/XtfpburGywShiNKURrsBHb04X+vg6g/TExNlUyMJVMrLRMGAXmhHaHCxJVXXpkp4h1c34P34V2osSTP7nqdx7a9QCQeJZqIEk3EiMZjRH4fI2EViEQjBAcDROIRIokokXiUeDJ1O/rHT/6YMxcejxpNpuKuSbkH3nzwRb7wvf+c0t9tMOgbLZKRhd1ondo/AvCHAwVt6RJ3TpN9TOG3GSy4zQ5cJgflh8yhpKQEj8eDI24GWYB4oZX2q3OundjAslIFGJe4CW/sy7XUxxB03Q2zd9n22ku8eOfthIeGADDa7Cw59vgcYX2xvZ+Hnny6oHDLROj2BzSFv9bt5NDaSj7xxStZvnw55kiQXf98HDU+epe6v4q8FjMm/KqqvioIQv1M9T8Rgut7OO2is9jZ1zTa+ONxTvp56sGimNlxzTPAaMx1pNlHaG0PP3/q9zy+7YUpjemTn/xkRvj9zzRlrOndAy1T7jMcyypekUz1az28HHVzcWt4PALR4QLRB7AapuaPlEXtWr2OM+vxPryLLx99GaF4GKfJjsvqoKS+AmufiMvswGG0ZSxxyzGVeC5cmNNHsaie7FDNtHhnHy9qmef1r7N3yY97/8gnPo1cUcOLjz7Msw/9nR7fEP2BIP950jFEAkNseG7UaTDU10vPzp1TEn1JFBgKaWcdrXE7ue7KL3LxD340Os76es34/AOBfeHj/y9BEC4H3gO+qarq5O/vJ4j/mSZN8ZoI2cviIRVznbaAJWFqxV0gt6RhtntH0Zj8myj5VYvS/RrDUx/ncDSUEctsjJKB0xYch0UxYzdYsBmt2AwWHE4HZavmIm4awq5YsRtHN4fRhkk2FkQpKPMdGdG9zPqJolE96dJ8lqMLRR90q3s2EIlE2LNnDy8++hDPPvh3enw++oaC9AaCeH/7V81zBoMhSu2Fd6ClVtOY11IkiXKHlQq7jXKHjQqHnQqHjRKbBalI4aY5h6zk4h/kWo1Ljz/5gBH6fPa28P8OuInUV/km4H+AL2q9UBCEK4ErAerq6qZ0MS2/+UTJF34gI4LFPhwTITt/f9rNAWDQSGo1HgICJsVYMFbJlYrzrqiq5NzFJ2NSjFgUE2bFlHk0KyasJgtlx8/DaraQfHcAi2jEarBgUcy47A4sR1cWTF4KgsBfPvXT3IGI4L5occYVphXVk086qgeKC7fnwoWaQq9z4JCx3vt6U9EyyST20rKMdbx69Wr+9Kc/0dLSMukyqT1DAU3hL7en/PGVlZUsXbqUCqedSFsTZRYT5Q4bDrMJg9GU45YxWm0IAoQDgQPOep8Ke1X4VVXNxNYJgnAH8MQYr70duB1S+fincj3JZcRpsuPJiu4QBCGzbF4UBBh5LgoCoiCm9kVR2wIfsYAb3HM4suYQJFFCEkQkUUIR5cx5sigjixKyKKNI8shxCYPFRElJSaa7tJtDjSX52NxV3HreDzBJBhQpNVlrlFP1b8vOWojJaCLyfAcGQcYkGzHKBhRRLoz1FcnkWTnk0uP4vbFMM+pkwlE9GpOX2XcCglnCdf6Cg6JOqY422157iRf+ejvhIT/D0Ri+WJyB4TBdff30B4bpDw7zHyccRboydPbq1VAoRFNT05Su2zcU1Gyf43Hx6ysu46o/3pszxgPVLTMTzGghlhEf/xNZUT1Vqqp2jux/AzhaVdVxE1FMtRBL9uRpBhEQhExVoYIxj2QbLLB0J9mu1a/rkwsLRPHDRPUgAVnhxvlRPfn969EmOlMhLeyRwBDxRILB4RADwRD9gWEGgilhHxgR+GIRM/991gkFYY320jKUI0/gi1/UvOnPIAAlDhuLFy9B8PVTarVQZrdS7XJgNxWuYpYNRs648r8OamFPs9cLsQiCcB9wElAqCEIbcD1wkiAIh5GyF5uA/zdT14fRZen5wpfdlj0BWMzSnWx7vmU8luBOxkKeijWtW+A645FtDVvcHk667N8BMi6aNI+t38rru/ZMadqsLzBcIPxD/X0cvXDUlTdnzhyqS0sQh7yUWEyU2q2U2qxUetx8/MtXsfT4kycU1XOwW/MTQS+9qKMzi8l3cRz9yUvo6O7h2fvvob2ri6FYgj6fn4FAkMFgCF8ozE2fOhuTIhesXn12y06e3bJrSuM4/7BlnLCoIafNXlrGZ3/xfzQ2NjJ//vzMClbdLTN96KUXdXRmMfliaT9kFZu27+Dt556hfyjA4HAI73CIoSIRMtn0+4eodhWmkNCKb89HlkRKrBZKbBZKrFZKbGZKbFZq8vrLXr16yCGH5Bw7kKNlDhR04dfR2U/JFnObp4SyRctY/9YbdHR2EhYkHPUL+O1f72L76y/z7O235aT+/esv/4e3Pmia0nUHgyFN4XdbzQiAw2zCYzXjGRF4j9WS2XeYCsN202hF9egUsvOdLt56bDeBgQg2j5FjL5jPoqOntwqXLvw6OvuYWCzGq489xHP33U1nVzcRUUK1Otm9YzuDwSD+UBhvKEw8kRc88OrbfO7fPsXmfz6WEf00TtPkw4PT+MPahdjrS9zc/KmzkDUyiGajmEyIskIkeHCERk4HabH394fo93fR3r+b9v7dHLXodML3pkLAp1P8deHX0fmQPP/H37Lh+acha77MZLdzwmeuoH9wgGf/djd9vT0cecgyTRE865STefH1N6Z07afu/jNusXCezmnRXmGdttjdFjNuq1nj0YLJZEwFPOT5+IutXzHZ7Zzy+St1cZ8AO9/p4rUHdhIOxglHh+kNNRM197L2X+tp691N+0AjkVgo8/oSRyVlzhreemy3Lvw6OvsKVVV55NZbeOeZp/CHwgyFIwWbPxTGH44w/Kf7MxEwoiCwsKI0E7+eLZKJwYllfdSio7OTuhWH5ETfANS4HBy3aB4uswmnUcFpSYm7x2FDFIQcURckCaPFkrN4CdAnWKdItrgDCBKoSQpWwa9+4It4g72FHWTR3t8IQGBg6otRtdCFX+egI3s1KUA8kSQYjRIIRwhEoqiiyJLy1EI7o83Oqf8+as2uXLyQTbt2T/qaSVUlGIkiCgKv3X9XjoiaJ1hvwyBLKSE3m3BazLjMJupqazj+kstzfPwAdeVlfOm6VF6ZfAHXatMSdV3oJ4eqqjz829d46am36RhopGOgCVVNcvkp39V8fbWnYVzhb+v/AACbR6Pq2odAF36dAwatMD/QFrYX77ydD1raGApHCCWShOIJfEMBwokkvuAwwRGRD0YihPIWHTnNJn5w3qkARAJDPP27XwMpIUwOF2YYnShD4Qh2k5Gh/lwLv7K8DJtxD06zCUda2DMCP7pvUnJXaucvVCom5rqoTz/vPruNR+9+icamnfQOtzCkdrJr9w68/tzUY4pk4LMn/TeiRpLCmpJ5bG19t6DdbLBRUzKf2pJ51FcsA+DYC+ZP6/jHFX5BEL4G3DOTydR0Dj6yV4NCoZ9466sv8vw9f6a3qwvMVkSrneYd2xiOxghGYgxHt/Knf76I22rm9KULgFQ0y9O/+zWoKmoyyd1vrqM/WFjucDwCkUhO6UU1kchY6Xbj5Cwvq9GAw2TEYTaRlmx7SWnOa759w40clmexa6X4nXf4R4ouVNJDIGeWBx54gDfeeIMtW7aw8f1N9PZPrO5yLBGl199BhWtOwbHakgVUuOqo8cyjumQeNSXzqPHMw20rz/mBr13s2idRPRXAvwRBWAf8GXhGPRBWfensFfJXUqZRVRUUhUgS/D4fosXKxy68iHlz6wpen0yq/O+TL/DzR59BtFgZCgTx+rwkkuN/zGrcjozwAzm+a4vRMCXhTyRVQrE4FoOSaUtb6XazCYMsYTcasZtGN5vJiMNkxG5OPXeYjDgsZiRJyhlTOn49m/Esdp3pRStccsDbz5N3vUGlPfVZMlolTrh4cUZw7777bp54omhqsTHpGNijKfyrFpzMqgUnI0iw/KPVNG3uz/HlCyIs/1g1J162ZErXHYtxhV9V1esEQfgBcAbwBeA2QRAeAP6kqurknZ06+4xiKyKf/+Nv2fjCP0kmEsRUlZJ5CwkN9BH3+zKx10abHUGA/v4B1nb0Ujp/EcHhYXa9v55QNEokHiccixOOxUYe4yTz7INVazfwmeNWkczLlS6KAo29/cQSSeif3I3lcKR4uUZrlnCPhSCAxWDAZjRgMxmxGQ0k8jJFpq30b379a5z5wj/H7VMxmTj9S18FJu5P14V+Znjlb9vZ8noHyYSKN9hLt6+FzoFmugZb6Pa20PWrZgJhH5Io88srnkISJSLBBM/ftRVIhVEuX758QsJvkE1UuedS5WmgemSbW7a46Ouzf2BOnLZ3PD4T8vGrqqoKgtAFdAFxwA38QxCE51RV/fZMDvBAJn8SMRt7aRmuymratm5CzRMZSVGQjSYigSEEUSSRSJBUIRqLIZotxBMJAkNDiEYj0VgCt0HC4/EUpJXd3dTM//3qlwQCQyQFkVAkQjQWJ5pIEI3Hif3tERKiyPDwMNF4nGg8MRJ48DQfP3QxpyxdkBlb2iUTicV4/N318O76Sf89wtFYgeinMSsKscTkIxeGo9Gix+Z4XCRVFavRkNoMhsy+LevRYjAgisVnWAVJyljpZ175X0iiyMYX/pnzfxtrcZIu6HuPne908dxdG+nobaXbm95aMiIfjWuvUQBIJOP0Zbll1ASZMMrly5fnvFYWFSpcc6j01FPtrqfK08Dcmnm4LZUk822R9EdLnVkrfjJMxMd/FXA50Af8EfhvVVVjgiCIwC5gvxX+ba+9xF9/fQve/n4sDieVCxbRtHE9iZGc+KqqomY9ooKKmvHvHrlkIad8/kpg1GqTDAa2tbTT6w+QVFWSqopoMFB/2JF4auuIxWLEYjG6mxppfH8dsXiMZFIloaokkknOP2xZaoKvrzfnB+Ht3S28umsP8USCeDJJPJEkkUwSTybHdXl8/rhVOdbtUF8v//z9b9ja3sU/12+a0t8uUkSgjfLU4wFCseLWudmg4A/nCr8silgMCmaDgsWgYDEYMs+tBgMWo4LVbMrxxwuSlPHxn3nIIs1ribKMYjJnfszykRQl8xnJj+oBOO1LX+G0L31lUu9dZ+pku2YUo0QskkBVVURJoGahC29viMBABKNVIjqc4E/P/pj1ja9O6Vpdg805bpm06+W4447jRz/6EcuWLcMaL2fP6zHUePZEu8jJn0mJ+Uyvup0OJvIt9gCfVFW1ObtRVdWkIAjnzsywPjzbXnuJZ2+/jTuff5VufzoS49kJn2+QJQ6pqeTp3/4KsuKeE5EI/9rTyvqWjtwT/rVhQv2esXyRZirZUCxGj39qESPp2rvZJONx5CJL5ydCJF7YJ0xO+CVRwKQomBUZk6JkCmRo8W9HHoogSpz+uS/gtNt594F7EZNjF3NZefrHqVm8tGhUT3oeQTIaUQyGg6bIxoFKvu+9/pASNrzxAW2dLfT42unxtaU2bxt9/g5+cvmDtO3wZs6PBFOf2XJnoT99PGRJoULjvHQY5fz58/nhD384OtaG4mkV9kehz2ciPv7rxzi2bXqHM328dv9dBcvYJ0PaP53vhgGK5iKZCPm+4zTyh6nqFdfu0zDO0nrNcUgiRlkuOh5ZEjlt6QIMsoTVZkNBxSAKmBQZk6xgVOTUviKj5F1fkEbq3WrcTSxtmJsT1VNeWpoj6ONFtBT0pwv7AcHOd7p48YFNNDU30uvroNfXRo+vPfMYCHuLntvn66DKU1/QrjWRmsZksFLpqqPCVUelu45KVx3VpfW4rRWIQv7ntXgY5aKjKw8IgS/GrI3jz4+VnixjxS2JMyD845VzlCURRRSRJSln3yBJWIzak5gui4mzDlmEQZIwyDKKLGKQZAxy6jyz2UztwkX0N+7CIEkYZXlMX3easw5dnIkhBzSjekA7Zwvok50HG9mWvGwQiMfUTL2Kv7/6G17b+viU+u3xtWkKf6V7Lm5becoHPyLyFa45VLrnYje7EQQh4zJKW+tAzmrb/Kie2casFX57SSlDfb3MLXHhyHatCEJmriXjFx7ZF4RUHVtBAHGMguoLyktQJBFJEBEEAVEUkAQBk9XK0ed/CkVR6G9tYve7byMkEyPHRSRJwF0kh8rKOVXMK/MgSyKyKCKJIkrW/mTvMkRZxmmzctqyhTltislckDwrHdWjJpMIokjtskPxdnXk1ElNR/VouUsmK9C6oM8udr7TxRuP7KSttZ0gfahWP1u37KCju5X+QCd93k5+dNm9mAwW4tEsi0oFu9k95ev2+to12+vKFnHTZ+7TPDbW5OpsFXktZm0hlrSP/8O4eyAVrUFebhMtRFnmrP+8KkfUpiuqJy3I+QJsstlQVYgEA5rFokGPDdeZGtlWeppQJMBQvIfSZRBRvDQ2NrJp/TZ2bd9Nv7+LeEE4yyjf/dQfqC1dUND+r10vcOeLPyl6niTKlDqqKXfWUuasocI1h3JnLeXOWhwWT4FBJEipO/JEfFTXDjlh30fR7CsOukIsWoti5h3+Eba8+gLxyMR+DNKrSbP7kQwGEnnnF8tOuD+4K/b19XX2f9Jx7qHwMP2BLmpKGyBZeIf5yNu38+b2J6d0jV5/h6bwlzlrEEWJElsqC2W5s4ayEZEvd9bgtlUgZaU7kORRURdEcqJ69ucomv2NWSv8oC28Uw3D0wVU50AiP0LmmPPnUbJA4dUn1/LS42vp6GxjMNBN/1A3A4FuBoa6GY6k5ml+evnD2MzOgj5LHFMX1D5/h2Z7XelCfvXFp5CkXClKR/WkV7Pqoj69zGrh19GZzbzyt+1sfq0jk+5XlAQUk0gkmGDd7pfZ3raWgUAPg4EeBn/RM+bipWz6A13awm8fW3StJgeljmpK7JWUOqopc1RT4qiizFGD01qieY4oSkgGgURU1RT3vbma9WBCF34dnf2EtMtFzZryEUSIRCP4Qn0MDvUSxot9ToLdO/fQ+EEzXzr9hkzmx2RCzcSyf9C5kTe3PzWlcQwMdWmmGShzVFPhmkOJvZLK0hrOuvQ4zAkPXRtUXKZyzEbtdRqCBEaTTDgYz4nq2V9WsR6M6MKvo7MPyHbFBNRuAskedu9swRvswxfsyzwOBnszLhgthkJeTWvabSub9JgkUcZjq6BYwMfc8iX84NN/RZQETr18acYy11p4pbtoJo/38cdZf/NP2dLayi5FobGyght/+1sOP/zwab+WLvw6OtPM9rc6eOrOd+nt78Uf7CeYGKR6qYWf/Dq1FnLnO128dO924tGUaX//c7/j/T2vTelag8HeIsJfUdBmkE147BV4bOW4bRUj+xWU2Cvx2MtxWErGDGMGMFlljr94UY6Qay1m0l00ufjWrKHnV78m3tkJJhOEw2wYHmZHJMLORJwPLBa2trURyI7wa9rDKXfcweG//e20j0cXfh2dPLJdLml3RNV8F289tpumpiYiopfypQqSI0JXV1fO1tbaQV9fD0k1N0RXeFbgsxddwbKP1vLWY7szog/gtJbmD2HCDAZ6qC8vdJXUly/l3z76X3hsKaEvdVew6qRF7HinO+faBQggKwLxIj53ncmhqir+J56g8wc/RE0XsQ+laup+u7OD1jHyVwG8+9hjoAu/js7EyHY/mKwyKin/tyCSEfRoNErSNEzDR2wMePt55/mt9PX1Iggip6z4NyD12s2vdmQmUe9+6afs7to86fGoqDx7/3ss+2htQf1UV5GJzzSiIOKwlOC2leGyluGyllLiLMdhKqVhpEJTPqWOKk465BMAOQJevcCd+buk/xa6wE+dpi98gdBbb6OqKn2JBDvjMT5QYYfPywfJJIbKSu6vnTMq+lksNhrHFf5tAzNT/0oXfp1ZQbbQG60SsXCSd7Y/jzfYQyDkJxD2EQz7CIR9BMJeAiEf4Zh2kRa72Z0R/gzq6LGp0tHRCaSENlv8K931LK45Aqe1BJelFKe1FFdmK8NuduWU7ktnguzc7S0a1VNMzA/0HDP7At+aNXT++CeoXi8AfquVjhWH8v4zz7IrNMyuSIRdkQg+jXQs8tAQw4KIQWPl/SKjkecDuYkZbaLIIqORJUYjS4wmVsyZfMK5iaALv85+RTQaxev1Mjg4yMDAQMHjwMAA/f39mcclS5Zw7Vd+luMzT0e2PLX2zqLL+sciEPaRTCY066Q6LJ4J9WEx2nGY3TgsJTgtHhyWEspGCrgfe8H8nPEeOvdYVsw7FpLFc0RpWeeLjq7UI2KmkYwfvqMDJAmyVuv/sb+fN4aDfBCJ0J9IwLq1E+ozDuyJx1msFObTOsJs4QxblMVGY0rsTSaq5dG6yoLJRNUPfzAt7y0fXfh1JkVqYnJbTs4VSRZStQniKtF4mFA0SDQRIsYwft8QqiFC9VILx5x6GKeeempBn4lEgvr6egYGBhgenlypxEgkUuAzT2MzOack/KqaJBgZwm52FRyrcNVRX74Uh8WNx13GiecfRmVlJRUVFVRVVTHcKbH5nwNIQu4XXZDgtMtTbpm0xZ2f1lerTbfOZ4a0yMc6OvCVltKxYD67X3qJ88yW1AvyUrRsDod5Z5KfzTSNoRBL7PYCd89xVivHWa2pJ6KI69MXE3jlVeKdnchVVZR/42qc5503pWuOhy78s4RsV0e+dQijgoJAxjVgsIgcdUEd1cvsBINBAoFAZmtoaGD+/PkF13jw/17loTd+SyQ2TDgWIhwNEo4OE44NE44GCyY1MzwK5679hKbwS5KE1+udtOgD9Pf3F/jM01hNhYuQshEFEavJid3swmZyYTenNpvZhSTmfTVG/m4nHnIhJx5yYcbdoiXMtdVd42Z6LOZy0YV+evCtWUP3j39CYsQ9kwQ6olGa7XbaKivY8t57NIZC7I5E8O3YDm+8jgicsXARRo1MuQuMBp4dp1yGWRBYYDSywGBk4YgVv9BopHLOHCqu+UZBVE/69k4wm6m68UczJvJaHLTCP1bssdEqISAQDsaLWl5jnZ+TejYLrQUr2REkyWSCWCKK0SGy8rRqapc7CYfDRCIRwuEwu9a18/4rTQx5g4imJHMPdeGsNrCochUfvDScsXrT2rt52/vc8rdvEo1HiMYiROJhorEw0XiISCxMLB5B/ZW2b2H16tVce+21OW1vPbabZCLB+sZXpvQ3b93dXfSYy+UiEJh8IZr+/v4Cn3maFfXHUe6sxWpyYDc5sZqc2ExObGYXNpMTs9GGKIiIkpCqvKaRhy8/qmci1rjuR997dP7oR3gfeDBloQsCgtlMo3eQbeEIe6JR9kQjNEajNEWjhNN+tI3afSWBpmiUxSZTwbEFxtEMv4ogMM9gYIHByAKjgYVGIwsNRmoUpSBlu2AyUXHNN3Ced95eFfbxmLXCnxbUt7c/SzDsB1KRFZIkoKoqiYSaKtFHElUF9fnkSBnGZKqsmyhx1hGfITAQ4bm/bOW5v6QKL9s8Rrb2vcxbb71DIp4gkUyQVBMkH0g9JpJxEsmR9mQ863lq/8v+mwE48bIlqSX3r6ZymDyz7l7W/OvPo2/g1xN4k4+lHv7rkz9mSdkxBYeHI0Nsbn5nSn8/LREODEQwGSxT6g9gKOgvesztdtPW1oYoirjd7oLN4/FQUlKCx+PB7XZTUlKSeS54nbz8tx057h5BglNWnU84GC8a1VPsrmisiVGdfUN2HLxYWUni8s/hbmnBe9/9oy9SVdThYX7b18+TQ8U/a2Oxu4jwH2m28JvqGuYbDNQZDMWr28kygs2G6vPNuLvmwzArhT9bUJ97/366BpvHOaMQg2zirCM+U9AeGIjwwksvsvaDF6c0tmg8zJbXOzjxsiVseX00cZUkaRdTmQhD3gBoLNQ0yIUf4ImiJfw2j5FE39jpqWVJwWywYlKsmAxWzCObyWBlbo12NSOAZ599FrPZjN1uR5xCNTJBED60f1wX9v0HVVXp7e1l165dvP/AA2y8/36ahkM0RaM079hO5OWX+NeixVg1BHiewTCpa5kEgQaDgXlGI2VFSouWyjKn2+0ASC4X9rPP2mv++JlgVgp/tqBOFbWYr5qxi7SMRyIZz7hisi8h5/uUJ4Fo1B6rIo//BZAlBaNixlPmxGazZbYFCwpT6B57wXye++tWvnjaDzDIJkwGCyaDFZNixqRYMRrMKJL2NbOLUWtRWfnhRFd3rxyYDAwMsO5Pf2L9X/7Cnp5eWiSRdoeDxp4e/P6xrfbmSIRlGtZ5g1H7M+gUReYbjSmRNxiYZzAy32CgWlGQzGacn7gwJeYaUT1IEq6LL6Lq+qKVaA8oZqXwj6HZE+9jjAI1H1b406en3Q2QEmBBEJElBVmUkSUFg2LEU+HAaDQS7E8gqql2RTaiSAYUyYDFZuG0C45haItYENlS7qzl/519E0bFjCwYMCgmjLIJg2zCoKQeZUXitMuXTUg006+R7xU0o3qyfeQTiSnXmb1kR80MlpQw74zTNS3kqz79ae55/vnck3t6JnSNpmhUU/gXGYycaLVSbzAw32CkfkToPSPWvGAyjYr8AWqxf1hmpfBnC+pRC09nKJS7+m205KJIaldAGCmjKCCkJvzGcDcctfB06suXIorSyGslJFFGFMTUoyghCam2zHNRQpIUyp21LP9YNZCaNEy7pD669Fw+tmz0g5cfNZKf3yX/NVpRPWVVJZz/n18CtKN6plJXVLesdfIJh8Ns/stfWP/739Pc3U2bINAaDNISidAWixFWVd7s6cElpdZFxDs66PzBDwGoaGyc0jWdoshwEbfMPKOR39VqL3ySq6sPOpHXYlaWXsz28c8EskFkyTGVORkIpyOqJ81EI4l0K1pnJsieSE1bwwCvXHsdW3t7aYvFaBegu7ycFp+Pjo6OMe+QAe6vm8sKc269abm6mid37OAbHdprLSwWCwsWLKDBZqPyg93UiQINIxa822ql6qYbGV63riCqRw2FkJxOkrDfT7LONMVKL85K4QdtQQVQjBKinFrdKRkEEmmBFkBScgtCAHpeE51ZjW/NGrp++Su6WlvpMBrpCAY5y2jMDUuUZUgmuamzg/tG4uInyy+qqjnH4chtFAR22+18c8MG5hgU5ioG5hoMzDUozJtTx8defy1zd671Y3QwCvlkOehq7p542ZJpWc6uC7zOgUAxYfStWUPb//yS9tZWuowGOoLDtAeDdMRjdCQSdESjdMZixLIMwCPnz6dczooyi6cWotVopB2YCDZRZFgrj01VFcd/42oey85cyUiqgu9+J6eQ+v4WB3+gM2PCLwjCn4FzgR5VVQ8ZafMAfwfqgSbgYlVVZyb9nI7OQUI6Q2SaeEcHN//nf/L8V75Ca1c3vfFYvtdxTNpjsVzhH6G2iPALQIUsM0dRqFUMzDEozFEMzFEU5igKLknKEXFIiXu21a5b83uXmbT4/wrcBtyV1fZd4AVVVX8qCMJ3R55/ZwbHoKNzQKCZIMzppDcWo2tggD67neBxx9I/stCttbWV9vZ2XrzsshzRT9MZCrF2cGo2VXssxuHmwvb5BiNn2OzUKgq1ikKNQaGhppaV3/5vBm68KTcXjSwj2WwkRnzsthNPKBpFo1vzozzZ+CS/WfcbOoOdmTZRELlo0UVcd8x103adGRN+VVVfFQShPq/5AuCkkf07gZfRhV9nFpPvglHm1hF691+ZyUhMJt7s62NrJExPLE5PPE53PEZ3PE5fPE48u7PNmwr633X//VRrZBGt1LDYx8IhilSNCLpHypOFER//fKORX9fUZJoFRaHq2u/jPO88jIqiW+0fgmQyyTcf+iYPvfIQ4dZwamsJU3NFDbZlNv6+4+8A0yb+e9vHX6GqavqnrAsorA+no3OAoqoqXq+Xzs5OPnj4YXb89U56/D5643ECySQ3qWrKoh89AUIhHvJ5eXqoeF3dsegKR6i2FKbRqFJGv9oCUCrJVCsyVYpClaxQrShUKzLVI/t2qfDHA0Bwuai69vsAOTnpJZeLihHRB91qH4/Vb6/mwZ0PklSTGQu+fGM5a9euZePGjby/8X3Cw4XFWsItYWzLUkXsH9z54AEr/BlUVVUFQSjqehQE4UrgSoC6urq9Ni4dHdB2vcjV1Ww9+STaS0ro6uqiu7u7oPRiNBot2ucPyiswaKwPKS8Sjz4RujQmTQE+Yrbw4Oc/j/OddylPJjULgQAgiggOB6rPh+B0IkLGPZNvtevCPjEy7hpfJ+6Ym8UNi3m7a9Qdl1ST/H3H3+n5WQ89jWMvVgu3jv4YFM18OwX2tvB3C4JQpapqpyAIVUDRd62q6u3A7ZAK59xbA9SZHeQIdx6hZJKBZJLBeIyBeIJBVSV0yHLChx1GT08PQlcX3+7sGvVZjyzdj3d08JOf/Zx3g5PPIgrQm0hQoyH8FWO4ZZyiSIWsUK7IVMkyVW4PK667ljlz5lBbW4vpb38j8o+HCs6rOf5jfPQvf8lxNQlOJ0SjqCPpr9PWvC7ok+PJxie5+Z2b8UV9AKhJlVh/DKlboiZQw7oN6wi2Bol2RpE9MoO/0J5riVZEYZz1a+G2UeH/MBkD8tnbwv848HngpyOPj+3l6+scoOQIuSBkcpknnE5KPn52ZuJQcjpJRCIQCvG/fanFRoOJBIPxBIOJOIOJBCGttSsd7fDsswC4FIX/nqedUK5ELGI5T4C+eFwzJHKFycTn3G7KZZkKWU4JvSxTLsuYs34oBJOJqptuzBXq1avpVJTRRUx5OWV0F8z0oaoqd711Fzc8cgPh9jCR9gjhtjCRjgjJcMoa38a2nHNivTES4QSSqdCVZqw15jyXrBKmOabUVpd6NFaPvuaiRRdN23uZyXDO+0hN5JYKgtAGXE9K8B8QBOEKoBm4eKaur7P/k53PJVRWRnzVEXS+8SaDXV34AV8shl8U8UUi+BKJ1JZM4E3vJxIcYjJxp8+X6TORtcDomaEhGsdwvRTDG4sRV1XN1Lul47hlrFYrJckkpUCZLFMmyalHWS4aB3+ExcIR2X76EdeS5HJNaPVp1fXXz5rkYfuStIumK9hFpbWSq464inPmnQPAFVdcwcMPP4x3CgvYIu0RLPML52Echzq4+oirWbFiBb3OXv638X+JJAvrShxoUT2XFjlUWIJJZ78jp8CFJGE+6iPEmlsKoja8jz9O0y3/g6+jg1BJCcpF/0ZixQr8fj8+ny9nO+KII7j88suBkQLWIwt3kqrKka+/Bq+/NulxehPF/Z6uIhOWE2EwkdBM0XuE2UzYZGLRF79IZWVlZkuXXrTZbDnvLRvJ5cKwdElBVA/hsB4Jsw9IJpO0tLSwdetWHnr9IZ58/0nKPp3Kb94Z7OSGN28A4Jx552RqQU8W2SWTCGqnMr/89Mv57jHfzTwvrSot+sMz3czalbuznWKTj9nx0vmTdWVXX4XhtNMIBoMEg0GafvELup9+mlA8TggBjvoIylln0fGPf7Bo23ZWpnOrJBKZWPH2WJT/98brDL/+GsOiSCASISO9uz+Ad4sXfrnkkksywt/zq19nhFESBGyiSKDIROVYeBPaXyoAdxHhlwG3JOORJdySRIkk45YkPIrCIT9ejaWpCdvjayAWKzj3rLJyvpDvbslDX5S0b8m33L+y/Ct0NHfwh+f+QHdTN0KPgHXQSueezoJyn57zPUjm1OcmnAjzm3W/4Zx557B8+fIxrylaREw1Jky1Jow1xtRjrRHZJmOSTBxWdhjvdr+bE9WTb8GfM++cGRP6fA4q4S+WfCp78istlPlJnrQWoEBhiJv97LMYevqfOS6HtE9aGjnPdf75KYv6/r9nfNUDgkCfLBPy+4kJAtFEgqggEEnEiZktRJNJwsNBYjY7zK3Du3kLkViMiJrkIqeLJSYT8Y6OnIpEb7a384OuTkKqSnjHdkIvjVM8prUFHkpNFH6tpHRU+LOQEKbkPgFyLKZ4Z2fOMccUhT+QTKCqasHKUIBPu1ycYrPhkiQ8koxLSgm9XRQ1X++69BKq/uM/APAdc4zmD+tEBVz3re8bnmx8kqt/ezXeLV4iXRF2dO7gud7nYIIfrUhnBMu8UbdMV7ALICP8olHEWG3EWGvEVDMq8rJLRhAEZEHmU4s+xattr+4Vy32qzHrh/8EPfkBHRwfRlhaG164jmbYQO9pRP3d5StyTI2UX29tIAkkVlPZ2flGdSp+cL6i3btzIm5dcQiKpkkAlrqokVEigElu3NvUciKupYzFVJQ7Ed2znma4uFj7ySMFqy3/09fHrvt7x31B3d8qyzuIoi4UlGnnJE6h0xOMF7RNhuEjomG0K1bHS+LJ88XJVVU7ETaWikAQcooRTEnFI0si+hEMScYoSLmn0uWvkubWIiAN8zGorPpisCWKtIhu6cO8f5Fvvx5Ydy5p319Df3o/jcAdOg5PvHf29jLD+Zt1v6Hu3D+9r3ildL9KeK/yV1lSurpNPPpk9e/ZwV8ddPLjrQc1z88eyPzPrhf/hhx9m69atkz7PXCzuGdgTjbIu7xZxosQiYc0l9srUg0WIJLWjXU0fIvxLK6kWgEVD+E2CgFUUsYkiNlHCbjZTdfJJOJ3OzOZwOGhoaMicU/6Nq3P84PfUzZ3SOAWXC2dWGbzMnZrXOyVLXWfvki3sDoMDQRDwDnsx+o0Mtg4S6g4R6YoQ7Y6yvWs7z/U/l0l3vuS2JfhsPq57PeUyOWfeOXQFuzBWGce4Yi5ut5tly5ZhrbGyVd6Kef7oXa5JMnHVEVcBZCrT/bD+h4iiWLAYazonXvcGs174p8pYlWWlDyHSsSJpsA0fQqQjRfo0a4i0QRSxuVwY/ENYRAGzIGIWBcyiiFUUsUgSFllhlUE7AkUUBB6rb8BqNlN9/nkknv4nUmQ0EkEz5FADLT94xp2W5V4RzObUj4OqzrrydwcTq99enUk7kEYRFPyNfoZ3DxPtjtLU00SkO0K0Nzr2F3CEaFcUeYFMXI1nfPGV1kp8Vb6C1yoeJeWiqTJiqDJgrDJSt6COl694OXPHOFZUTzbXHXPdASf0+ejCX4TkWKUXmbryx4t065EkFhuNGAQBZWQzCgKGkc0oiBjFVFt634CASRQ5TMMXD7DQYOCZhnmYRTG1mc3Urr4J53nnpeYYstxXaVyXXoLliCPo+PZ3Rl0heSxtaBhN+/vRj055ElN3p8xO0gLaPthOtDdKtDeKfaW9wCUXU2MMvjbIwIsDU7pOpDOCZUHKLZP2xV91xFV8v+P7hM4PYaw0Yqw2YqmyIJtlYsnRyXqTZOLbx307Z0x7c3J1XzPrhf/GG2/E6/Uy/P77+B59DOKxjGyLkoSAgJBIIAgpQRcAUYCx7O8veTx8qqQEKZlAVEEWBOSR82VBQBFSk6Cp9tRzmZSYS2YzpsMPK3D3nO1wcHZ+oYoi5NQMHSOqx+jxUI/2Evy01Vxs4Q9A949/kpmkLrbKUxfvg49MSoJAJ564hyUs4c1Nb9LT2gP9MNw9TLgnTHxwdH5p8a8Xo7gK7yINFdqF0YsipKx3Q6UByTYatZX2xZ8z7xw4F35TnWu5A3stVPJAYNZW4NJiX0f1ZPua86N6UBQkqzV1Xjotb9rd4XKNmUNFR2e6+I9n/iMnr8wxlcdwx5l3APDkk09y+z9u55UNrxDuDRPrjZGMTCxcpuF7DVgXWwva/ev9tPympaBddsgYKg0YKgwYK4wYKkceKwyIhlyzTBZkVn9s9UEt5MU46Eov6ujo5JKd611AQEUlEUoQ64sR64sR7Y8S7YtS+W+VCPKoCyQt/tdccw2/+tWvpnTtmitqcB/vLmiP9kbpebRnVOArUmKfjqXP55jKY9g+uB1vxAscWJE0+4KDrvSijs7BSkbgh1KumAtKL6C3vZd73ryH4d5hYv2jQp8cLrTYS04twVA26oJJ3wFkR2VNiLRbptyAZNUWckOZgdr/qC1odxldROIRQolQ5vl3j/quLvDThC78OjoHIKqq8sCGB7ht+2051u9ZDWfx2AePseeuPQy8NIAaV3mVVyfVd7QvmiP8aerr6wvaRJOIocyAUpoSeEOZIfVYnmoT5eKzZWbJTCgRQhREkmqSKmvVQe9731vowq+js5/wZOOT/PTdnzIYHiQxlMAYMHJB2QVUJ6ppa2vL2ZpamggPh1l2+7KMz9sX9WVCJgVFQC0WQjYOsb7CVBUAhx9+OJd/63JeH34dSlLWumQvrKcrCzI2gy3zg5RGt9onyMYH4IUbGehqweypxXz2DbBievNZ6sKvozNDpIU83yLPX87f8kwLf3vib6zftZ7oYJS4N54R7Q1sGPMascEYxorCBUuKZ2KlFwVJQClVUEpSm6HMgGlu7irwYyqPAaC2tpY7f3FnQbz7CbUn7PcpCvZnEokEu3fvZsOGDWx47j42vPokGzpjtPpVnri0iXPiX0+9cBrFX5/c1dGZAtniV2Gu4AvzvsBg7yB/fuvPdHd1k/AliPlixL1xYt4YyXCSBT9aUNCPSTJhf8jOS4++NKVx1H+nHtvSwtQU/nV+Wm5tQbSIGEoMmEvNyB4ZsURM+d1LDSglCrJTRhijxkB2VI/O9HLVVVfx9ttvs3nz5oJkcWlWn2zk2hOM4JwD39g86Wvok7s6OiNkR7dM1r9822238firj/PuzneJ+CLEfXE2+TfxfOL5ca+bjCQRjbk+73AiTJ/aN6X3IShC0ZS/tkNsLP3dUiSzhEkyccNxNwAURPVk+hp5rvvZPyQjbppIfyvbh2z0DSc4tSYMzlo49Yc5Vvubb77JeAbthu6R/6+vbVqHqQu/zkFBMpnE6/Xy4LoH+dUrvyLkCxEfihP3x0kMJWgdauUS/yWUJkqpLqnmjTfe0Ozn8ccf57nnnpvSGGJebbdMxKZRfMMsorgVZLeMs8zJFz76hUy5xZqaGrYltvHzLT8nruYm4RsvO6Qu6B+SJ66B9/5MOmFQQraw57DvsTlex+bn72PTK4+xuTvGjr4kCdVPtV2g/Ro7+FphTa7LZuXKlWMKvyxCJP277iyMfPow6MKvs9+hlTMFRldeOmQHsUCMwYFBBEHAUGXQtFQ/9alPsW3bNvr6+ujv7yc5gbTPAQIMOIqnEKioqJjy+4p745rC3/CRBi49/FIe73scwSkgu+VMqb5ii5MO4zAcbkfBHIIe0z7NbHwAnv4OyeF+WnwqW3oSbOlNpraeBFt7/YTiVxU9vWNIZSCk4jELEAvBCzdmhH/FihWZ15WUlLBy5UpWVJtYOfw6h5UlWFoqYpQFUMypu4VpRBd+nRlhIu6U1W+v5sGdD5JIJAhuD5IIJlLb8MgWSNA83MylwUuJB+PEg3ESgQTJ0KiAWxZamHftvIKKSQC7du1i27ZtBWMbD7/fTzgcxqSR6rqY8IsmEdklIztTm+JUUs9do/uG8sIQSZNk4vvnfZ9z5p3DKY2nTErID6bcMjPKiHsGXysIEqiJlE994Rmw/m5IRDntrmFeappA5jgNNnUnOLF+RGqzXDYXXHABixYtYsWKFVRVVY1GR2XG06bpIpoOdOE/yBgrA+GTjU9y8zs344uOZjfMD8FTVZVwOMzQ0BBDQ0P4/X6e2f4Mf9/wd/oG+0iGkynRDqUEOjE88hhK0LO8hxvCNwCwvmd9TrbGpl80wRTiDBKB0S9jdsUkSFlRU6W3t5c5c+YUtH/yk58k5ArxTN8zqHY1JfQOGaPZiKqqBa6XbIpF9WS7YXQhn2FGRDU+2MruWDnbxKVsffcltvVE6BxK8vzlI2klfK05Lp35bnHSwl/nFDi0XELJXruW5bKZO3cuc+dqpCNfcfG0C30+uvAfAKx+ezUP7HggMxlnlsxcf9z1RUUiY237O7EmrCQiCfwBP+akmUAwQDwcJxlJMhAd4D+f+E+W25ezrXMbw8FhkpEkiXAC50ecOI5w4I14+cEbPwBSwrRr1y4WL148pfchO+WMOHcPd2faBVFAskhFJyrHIh7IFdp0lkaA0tLSnGMOhwOLy4JP9iHbZSSHhGyXc/bdpW4e/+zjVI8U4cnnuOOO47jjjhvTHTWVSWOdmSHw9l3sfPBHbNvTyTavge3dIbb1xtnVnySW9AO5RY16g0nKrOkJ+FFLZHl58YVoJWaBQ6vNLD/yeA4NvcmhpQmWl0k4TXnRUjPgspkqB4Xw5wtnmvSX02lwIggCvogPp9E55lJxrcIRg6FBBFUgGU/ikB0kY0n8YT82yUYkGiEcDaOmSnRhqDZQ46rJiEG6vz3b90ArxCIxItEIakzFqBpxS27afG2oMZVkLIkaU1FjKpf+/FLqLfVYsPCzn/2ME088MTO+G968gXAijH+jn82/GT8ErI3CiAFjhRHHEalsobFkLGNJ2+32Kf8fEsMpYe8KdhX+LyzixIVfAMkiIdlSYp1dejGdpRFg9erV/PCHP6SkpITS0lIMhpSrRSs3PIAkSKz+2GpNSz+fYta5LvD7mI0PcNsNV/HYhj529Ku0+rI/U6FxT9/Wly38oywvk3AaYXm5xPIykUPKRQ4Z2S+3ywif+EPKSs9205hHchOFBmfMZTNVZr3wLz95OY27GzPPc9YtqKObqqo5+6IisvAnC3MsXoAb3ryBD/7wAb53fJAENalOykWx8OcL6VRS/uj1Pet57IPHCCfCDG0Yovsf3QWvb6Ewc2GaTWwCoKenJ9P2m3W/IZxIVbUSlakXd0mGcydC05b0hxH+tG++0lpJ93A3yazyjrZlNuL+OJJVGt0so/sGmwGsZNq1Ys+zKyYBRe9MrjvmOg4vPzzHraWvKt3/8b7+F3Y9tJodzZ18ELRx/c//F2Hlp0dfsPEBWPN1trYO8Hzj1EqObu1NcoKG9+XUeRKD3ymsKYBkhAtuGxX0veCmmQ5mvfDv3rmbSEdhuNx4CIbRf3Da4oWUH1mNp6zuKTHyeQwnwpnybUBONsTJEgqNWjLZrg7BOPU+E+Fc6zttSVutVkwmE1arFYfDQW+yl6QxiWgSkcwSojnv0TL6XHbKGXHO9/HXfKGm6Fg+vfjTHF5+eOZOy2l0oqoqvqhvyi4V3Z++H6AxiRmcfw4ffPABu56/k10v3suujkF2+hR2DUKPN3uRU4grD/svqgVhVGhfuBFiIZaUTszgqbQJLC0VWVYmsaxMZGmpyGGVWQ55xQwrL4MtjyCG0pFeAqCmJn/3Iwt+ssx64Z8yeZF/OYI6xkrH8VAToz8Y2RbvdAl/pbWSzmAnAKJRRLSIqUfDyGYUEYxCqi17M4iIppF9k4ixejTsUBGVjCUtCELO9bJdS8XQEue06Gb/+OVjkS388Ngf6jHos4F8F0g8ArEgD22N8c8P4uwa2M6u6y+lY0jrs6CdO2hn9zDVWeGR6YiZJaWj4i0JMM8tsqQ0JexLRralZRIukzAq7rueLYzqSQv7ub+c7r/GPkcX/mLkGfRpi7cz2KlZnkuQUmW7BElI7Uuj+9kbWQZFWhABjDVGXMe7EGURQRZSm5J6FBUxta+M7kuKxJeO+BKnLDiF+fPnZ/q86oirMkJsrjOz7LfLxnybAgKymFuWLpvxXCDp9qlMas6G2qU6WTxxDaz9K2oyTn9IZHfF2eyuOo/GNx/jexUvI6WNg9DoOonXWxL8cb32Z288dvQlOSl7RauzFnytfKRa4uGLzSwuFVngETFkF8mWDGCw7Zd+973JrM/V8/X7v85TO58abRAY9dMJIxsjbSOCLogCCGRS0yqiwk0fvQlI+fiHQ8OpHwZp9LUFvr9xMEkmLlhwQcbHXwxFVFhVvop3ut6ZdFRPtlvEH/UXTagFelk6nQmQFe8eTYg0e2M0egX2DMZp9Evs7ovQOJikcTCJP8+7uucqG/WuQovpt/+K8tWnin/+s1FEWOARWVSS2j61VObo5Q2jOWxGfPzEsiZxD3KhP2hz9dx6ya2Uv10+bVE9QEFUjzfizfTlMroyQuswOIgmopm+tPKh5Puup6P4xFT817rQH8SMrE7NtsQzvmwAQQQ1ye/+FeX+LTH2DCZp8+d/m8Zm90BSU/gXeHLbRAHqPQqL3EkWeiQWjgj9whKROqdITnr//PDIbF//DC5+mg3MeotfR0eHlLg/9lVIRAGIJ1XagwrNA2GavEmavWrq0ZfkicssmDTmnL77fJifvRGd0uV/f46J/3dk4crlnmCS+zbFWOARWVhhof6zt2JQ5ELLPccXr4v6RDloLX4dnVlLsVQDp/6QwLyP09zcTMsr99Dy/B209A7R7FNp8aXEvd2vkihi87X4kiwqKSyV2KBhsRfDLMN8j8g8t8SCo87gUPObQOE6jXKryFXHGMHsgbN/livkuuU+Y+jCr6Ozv5LvghlxuYTjIm3+OO1+lRPrRwRaTafvTWWB/Oo7/8ddayZXcjFNk1dlkUa2iwZ3rvBX2wXmu0Ua3CINrtT+vJGt0iak5r2OvCIVFTPZhU0HSDz8gYou/Do6+5oRgVeH+/FHoD1qp919DO3rnqHNF6fdn6RtSKXNn/Kt9w2Pmur+79qx56/XiIWYE9o65eE0ebXDaz9SLfHUZWbmuUXmusRCd5AoQTIJqKk7kFX/PhoKqQv5pLjvjZ3cfM8zeI3lzKks47/PXMyFhxdf6zJZdOHX0ZkuxsiqWCzbJxsf4Dtf+TyPbIvSMZQkGAMYAh6e0CXb/EmWlhW6ZepMwXHPLbcKzHUKzHWJzHWmtga3wKqqwv4A3GaBsxcayAi7mtCOe9eZMI+sa2P131+l7YNtGP1t1Ko9NO3cSmdrM6BSeuH3aDd9lO89nFqlP13irwu/js5EyRP25PzTGXj7Prq8AboCKl2BJF0Blc4hlc7ADrr+9zN08g06+gPEYjGCwWBh2O8LN9IXTLBrYPxaAVq0+lWWlhW2N9SU0+DpYK4jyVynyBxHSuDrnCJ1ToE6p4hFGSsEuTCqRxf3yfPo+nZ+8cwOOrwhql3mHMv9yONPZf2/3iYZGV2R3Jp3fqxnDyz+KKFYgl88s0MXfh2daWfjA8Sf/RH+3lY8lXWjoYLpCVQErv5niNda4nQFttIT3EJ8XL3uyOz5/X6cTmfuYV8b1fbJrQERhZR/vdaRF96YRjFz+ld+TuNXKIyOyUYypqJ89MnTD8Wj69v50ZotDA6nFqKpiTixgXZifc0koyHsK88EoN0byrHcd7b15Ii+FtGePZn9Du/4SeYmii78OrOLvEnESCRMvy9Ab1ClL2qkNyzSOxigdxh6gwl6Y2Z6lRp6B/30dHUwMKxS7xJovKoVHv0KCEImBBJUdvYnWdc5Neu8o6OjUPidtdQ4dmeemmSosQvUOERqRsQ9/XyOI/W8wiYgZ9KGjFjmY7lc9OiYaSNb5FU1iRzsI9jdRKSniWhfM7HeZmL9bZBMJeUSzQ5sK87I3OnlWO7uudBULHuugOypRnaWZ1qqXeZpex+68OvsH2gtIsoK8VNVFb/fz8CD1zDwrwfpH04wEBKwLTuNc298dLSPLAt32S0tbOvLFmktv3cM8Oe0dAdHXBwaaSwqbFPLqSTLMv39/YUHTv0hn+r6Tz5WJ1FjF3GZRlaBSwY4/HOw5ZGCqJ5J+dX1SdUpk+2mKRECLJD7ef7NtYR7Woj1NxPra0WNjb3qOBnykwgOIts8mba05V42dyFD60EwWDCU12Mob0Apa6CkbiGCu46IoGTOMSsS/33m1OpgaKELv87MkC/kZg+qpQyhf0fu68weEksu4Ne/u4PB4TiDIZXB8MgWCjLwi0sZTH6JQf8wiURhHPjRbz/BuUddk4oeGcnOmMY4xU/3cAyCURWroVDkK6y5bQ4jVNpEKqwCVXaBSmsqlLHKLlBlE6kqdVF17fuUlJQgihp+mRUXUwaU5f2tMjHtszBB2P5EWtzbvSFEUrkZa1xmTl5SxkNr2wnFUp+5zX/7MWtbNk3pGrHephzhT1vuN1x1BT+qPYyYpSRzR2BWJG7+5KEARecGpgNd+A9WNj4Aa66G2IgVLIiw6gspoXniGlj7l5R1mWZEjEILz+P999/H//4aht65G/9gP37ByVDNCfgtdfh8PnzNm/E3vocvnMQXUfGFVXwRPxcva+dPF+TdroYGENf9me8+NzyGv3yo6NvoD6mw9q+pcWcn7AJKLVOzzj1mgcGwtvD/xxEGLlwiUzEi8OaxJkglA1zwKyjTmH3NRrfK9woZkR8I4EkMMt/g5ZV33me4p5lYfyuJwAA1X7mTdm+Ie99uyUlJYSitIzIJ4ZdsHpTSuRjK6pFso4sisi33z510CHanu6jAT6fQ57NPhF8QhCZS3+YEENdaUjyrKRb2p9UOuZazYgXZmHqevuU3eyARgWjalZHy+/YlnWzojBIM+BmOiQzHEgQlF0H7fIJNawlGkwSjKsEYBGMqgbtuJfC12wkMh/jaUQauXJW1xD40AI99lfbDuzjuvKvIJQQ8MO7b9ka0l4oKgoDbJNA7PPn0If3DydHFSyPZGdOUWgREIVUar8wqUGpJbWXpzSpQZhEptwqUeVyUm6KUGiKj/nNRyfPxw3yPxHyPOFqMe8P9oz+eAAYrRId1f/o+Its9U2GGixaIVDLAoy+9yz/fWEukt5XYYAfNyTjrNc5PBPqR7aUFeYiUUo3qLIBosqGUzkUpm4uhtA6lrB6ltA7J7Ch4rcuscMP5y3ME/cLDa2ZU4IuxLy3+k1VV7Zvxq2SJqWpyoapAeBDV5EZVIRkaRHXUkDzx+6iHfJJkMpnZXC3Paq427BIq8B3+ZRILziAejxPf9hTx124lHvIRS0AsCfEkxEqXE/N1ERvqI2b0EFt8Hv92+jHYn/vmqP/Yl5pEfO7uX/H4K+uIJFQiCYjEdxC5/bOE4yqRuEo4DuG4SjgeIBxXCY08D8XggYtinL9YyXrTqY/tW7v6OP/+/EiArpGtGCkRa/drmN+JKPZ1v53CPyGFN1xc2F0TEH6rkrLG3WaBErNAiUWg1CygIqaSrJ76wxwf/5/PN3PvJ0EcL3OqYobzfpXa1/rhHWtyVHfF7HXyo2jSgacus0IwGqfnxb8S3PwiTYF+3plk37G+VmR7aUG7oXwexuolKKV1I1tK7CWrG0kQMBskglHt0qFui8L15y3fJwJfjNnt6tn4AMtPv4ytPel/iC/roD9v/3MjWwqr2UjgWteozzhr0vEb/2jk/hu+MYEB/Ctrvx34Pcd7H8LuyJs0TMZYt349t/1ragmwQkXSmY8dpz02Q0WG4oh0TrlP3xjC/+UjFXwRFbdJyIi72yTgsRlwX/gz3B/9PMbnvgfv/anw5CO/kHrMy85oduTdCWndLeVPkGpZ6LrVvs9IW/AtnT0kBzuIDLQRG+ggPthB6XnfQhCljHXuHfkiqPEoiYDGRPoEiA+2Q8PhQM5KBow1S2j44q/41KoantzYmfnR0bLiDwT2lfCrwLOCIKjAH1RVvX1GrvLCjTDF7KPJeLRo/LM0ydz72cQiw+RUYxlhqhORAKG49nu0KJrNEyIQ1e7TVFLLsfV7sAhRHEYBh1HAbgCnScDhdOM45wacvm04Nv0FpyGB0yikjhkFHEbNLkFU+MbXrsiNYIHCxF1p63rtX0dXjWanBQDdX36AkT25KkRDhAfacUT7WOUK09myh7ff30y0v4NkuHCeJ3HSvyM7KwralZLaca8rWd3IJXMwlMxBKZ2DXDIHpWQOkjV1Z29WJD61qoaXtvcW+N9XX3joh3/j+5h9JfwfU1W1XRCEcuA5QRC2q6qak1FKEIQrgSsB6urqpnaVvMm+yZBMFv/BkKZew5wid4O5VYImSbhIXelSi8BJ9RJWRcBqSN0BWJX0Y6ot+9FuFLCVzcU63EKlVtiiZEA47XrePA3ttLnn3Toquhs/WhDVg7Uc+rbn9jnZCJZzf6m7Vw4gcoRdGLXDXGaFc1dW8cff/w7v5leIDXaQHPYCKUfkzgn0HRto1xZ+z4j1LYjI7irsFXM56aiVvDVgBmc1ckktksmWI+7t3hCSIJBQVWpmIIpmf2OfCL+qqu0jjz2CIDwCHAW8mvea24HbIZWPf0oXctYC2wqa05ImCqm5O2FkXxQFBMWMJEkYk8VX1FXZBBaViMiygiSCrMaQRZBEAUUERQJZBEUUUCQybQZJwGXWzoNyfJ3Eb84yYpQEDBIYZQGTDEZFwigmMctgGmkzKyPHpJSIF7tbWFgi8dLnrYUH0rnNsycmJxjVM+GFQbrlfVDx6Pp2bnh8C4PDERKBQczhXpZYQ7y1fiuhgQ5KP341SKO3oN5QjHvebiHk7SHSPrWEcrGBdswNRxS0G6oWUX3F75DdlVhMJm7+5KFceHjNmOkTDjb2eiEWQRCsgKiq6tDI/nPAjaqq/rPYOVMuxLLxAdTHv4YQn0BptwKLVaOMm9brIbXCs0jN2oJzVl4G6+/OiRRBlAAxrw8Bjvwi1B0z5agezCOxw2P5tHV0xiF/MjUZDRH3dSMHejl9jkB3Rwsv/WszscFO4r5u1HjhBFH1f/xh1BLPYuj9fzLwzG3jD0JSUNxVKJ5aZE81irsG45xDUNxVOS9TRAGbScY7HDvoxR32r0IsFcAjIwsWZOBvY4n+h2LFxSnrXisP+Hg5wfPLuI33eq3SdQ0nwEBjoVVcd8zkokd0kdbZy1z36KaCWHbva/cy9P5TJIdHgyT+PMH+4oOdmsKveKpHn4gSsqsSxV2N7K7GWTEHwVlF0lGF5ChFELR9rOlJ2IPBRTNd6KUXdXRmKVquDYCfrtlAa0sLzoSXE6sF3KqP5uZmmpqaaGpq4jO3PMwDGwojrb2v3o3vrb9PaSzu0/4fjlXnFbSrkWHCHduR3dXIjjIEMeUKzV/BerD54KeL/cni19HR+ZDki/rJS8pyIlBW2AM8+sI7RHw9xP29dPt7+PRveon7ekiGUqHMHWjNgMF9L6xDKi0MqJBdhROpWghGK4qrEtlVheyqRHZXYZpzSMHrFFHg0ycu4aXtJWMKuy7w048u/Do6+zHZAm+UBUJDXmL+fuJDvSSG+rEddjbt3hD3vN2SOafdG2LD324juOm5KV0z4uvGoiX8zsrUjighO8qQnRXIrirsZdUkrWUIzpTISyYbAIok8OmPzMlEzeRH9RyI8e+zBV34dXT2AfkW+zdOmYe3v5db17xDV2cHtrifSmWYLTv3EPH3kRjqJz7UB4ncIALL0hMyQpuN7BgnP9AYJH09mu2G6sXU/OefkOylGZeMJAr8z0UrAbjh8S2ZRVT742pVnVF04dfRmUaue3QT973TSmLEtFWTCcrlMJ89zMNVF59WECEDsOHum7joe69A1lRqL7CH8Un4e4sIf2HagQyCiGQvRXaWIzvKcFfUcMNlJzF37lwaGhr44zof960tXKEtKkbErLh5q0Hix584VHfJHIDowq+jMw7Zi5AkQSCeTCLGwkQDA3iEYc6ab6bOHOX+VzayYWczieAAicAgyeAgiWEfLWqS90SZHmUtD6/ryKT6TSMoJihICzYx4kN9GMobCtqVkjrM845EGhH3UaEvR7J5CiZRs0X75vkgKblRPfkir3Ngowu/zkHPo+vb+fnTW2nr6qVECvOZIyv51mc+njn2vYc3ZcS686GbCO9ZjxqPAKkJ0mI1lHJIxrn35S2gkbVRspdonKCNYDAj2UpGxLwEyeLSfJ2tbinm2hvIXoCe7XMfbxHT6gsPnRWpCXS00YVf54Al322SnjB8r3mAv73TQtTfTzLkQ44GuOgQJ/+/vTuPcaM84zj+fWZ87nq9RxIIZ6ApSRsuBXEEkMp9KEhcpQgEoiCK1FDa0qJURagtKqWUovYPJCoOFaUHUApFNKXQiLO0QKJQQiihAYUjJ5Cw2YRd767Xx9M/xvbau96197Jlz/ORVhrbM973tXd/fv3OO+/b27ObZ15/j7093YRSfcwND/F5z252fPIpmYFe0Cxbgbfjc/jionVcuPgA7lr1bmkLXbOF0J+oob7dhMoFf26RDqelg0DbLNxYlxfqsVkE2mYPb8fn4IRbRh0vwEnzu/ioe2DU0E27UtWUY8Fv6qrSZfR/WbuZO1e+wY5Pd9EVSHHBojgLO4SX3vqAJ17biEQ7aDvmPMCbBuDGR98sHPvJQz8gs/dTAMrN7jPW/I3pxB5++Y+NXLj4gFELXI/Vwh6PE43jtnbiZMtPqhQ7/DQ6jzoDCQRJZYab6CMnCosEHZLpbEkrvtKYdgt6U44Fv5mS4uBujwZJZbKFecmjQYdwwKFnz+fMiWT51ukLuOasxSXH3vzEf+lPDrF71T3sHOzjinsTzI1myA72sfOzbvr7hmdl3A6MXAMpNPewQvCP5EbjheCfkEyK7Tu9j4X9O6JsLwp/Jzd7I27Qm4u9tRM31km8cxYLDj2IDT1O7r4u3FgnbksnEggWQrx4Ob+8zrZWbj3/cMBa6KY2LPh97ooHXuOV94enmjh5fhd//MYSVBXHcQqTbxXmOk8mSLz7CtmhAQLpQVKD/aSTCbLJAT4d6iebTJBN9pNN9qPJBNmhAdAsW4Abnz6TzhUrCmGW70YRx6Vvw4uFoYofTKD8+YuRynGibRN6LZxwK05rB260nX2i3lR+y89ZWNLH337CxbSfcDESahm1TuqFiw8YNaoHSlvlx87rGjfcLehNLVjwz7CRwZkf3wzlL0U/7UtzeGr9x4X98xe9dLYEUYWe/iHIpNF0Ek2nyKaTuC3tBMMtXH7CQQA8vGYLWYXUnk8YeH8tmkoSJsWSg2PsH3NIJBIkEgle3bid3Xt70dQg2VQSHRrgkdQgj3xzkDt+fjsLz76S5Y+tJ1XUt5Ae6KX7mbsn9VqkBvq4a9W7hXAr7kZxIq1kE3sm/JyZgbHX4w127kem92CvqyUax2mJ40TbcVviuC3tONF2OrpmkQnHSQVbkdzskdGgyy256QKKP6S27xkgGImRUR3zKtNKJ0XrtdSeMcWaOvifXLedm1c8x+cJL2DiEZdlp84H4MF/f8iu3kFCLiRTWTQ3BbFolnMO34dlpx7G8ccfX/Jc+ZZaPLGVpYcGOXZeB+l0mtWbdvLUm9vo6RukPeJw+oIuFs2N8eZHn/G3dVvJZtNoNgOZNJklX+Omx9bjQCFQM6ok3vknb7z1LP/JDKGZFJpOoZm0N9NhJsXWdP7+0TMfzrnoFpwFJ5ZcvQmQ6t5Kz3P3FW7/dQKvXV+fF9KpEesSOKHoGEdUlk0mSsK+uBvFCcfGCH7BCbfgRGI40ThOJEZrvJ3jFs5jzY4kRNpQ1ULru1jXWctKbgddGdWHXjwfzHitcAtr00yaNvifXLed5Y+tZ/NDPybV7QXiDuC791Q+dgXwUCTK0EB/4bmKv+5vev4RfvG/l8se2834XRWxo88hE21j5Hos6d5dDG5+s3Lhyij3YQDgBMZa8qqy3t5edpSZktoJjR5VUokEwoXw3r9j+IOjuBul85Sr0EyaaGuc75y3mIuWLOTVrQPc/uxmBoterOJulUqjevKfWdGgwx0XHwWMHfAW7MZPmjb4y7VWJyKdHk6bkUP6xpoethqaLb8El7iTXydxrOCX4OSDv7+/n/3nlp7YBJBAkNYjz8QJRpBwC06oBScUHd4OR3HCrUioxQv7cCvien9m0aBbGGYIpd0oOxacNCqM58+HtvbOccO6XGCPtzyeBbwxTRz8I4fhTZQWrT416rmcKay9mCk/pG9Cwe8EkEAQCYSQQBgJlD/WjXURW7zUC+lAGAmG6Yy38aOLFtPa2spv/rWFjd0pJBhBghGcUAQJRjl54X7cf/0phW9NIz9AZy+9cbgoAvFIkL0DqbKjeiJBd9xFMSp1o1g3izHTr2mDP99/HOjYtyTEvb5gyd/wfgDE8R4T8bbdwKjnygvtO5/sYIJoOIQ4DgNpENf1jnMCiOsSi4RJ45DMind5vOMiuSGA4E1JWxyo0fnHsc+lt3mBng92NwSBIOIGCgEvbrBwuX0lgfgcZp19feF20BXuuuToQpBeemn5UT0PXXciMNw6Lj45nV/0AmyGRWMaVdMuxDJWa9V1pOTE6liuXHJwobtgZB8/lJ4YHO+x5Y+vLzmhmH/u/LC+iY7qyd8PpSHsiowa1VPMZks0xn98txBLudbqyKGU+ashB1JF3wiAK4pCv/i5xhv5MZnHxgrhqc6RYnOsGGPG07QtfmOM8buxWvxTOEtpjDGmEVnwG2OMz1jwG2OMz1jwG2OMz1jwG2OMzzTEqB4R2QVsnuThs4HPprE4jcDq7A9WZ3+YSp3nqeqckXc2RPBPhYi8Xm44UzOzOvuD1dkfZqLO1tVjjDE+Y8FvjDE+44fgv7/eBagDq7M/WJ39Ydrr3PR9/MYYY0r5ocVvjDGmSNMEv4icKyLvisgmEflhmcfDIvJo7vE1InJIHYo5raqo8/dF5B0ReUtEnheRefUo53SqVOei/b4qIioiDT0CpJr6isilufd5g4g8XOsyTrcq/q4PFpEXRWRd7m97aT3KOZ1E5EER2Skib4/xuIjI3bnX5C0ROWZKv1BVG/4HcIH3gS8AIWA9sGjEPtcD9+a2LwMerXe5a1Dn04CW3PYyP9Q5t18b8DKwGji23uWe4ff4MGAd0Jm7vU+9y12DOt8PLMttLwI+qne5p6HeXwGOAd4e4/GlwDN4M8cvAdZM5fc1S4v/eGCTqn6gqkPAn4ALRuxzAfC73PbjwBki+eW3GlLFOqvqi6ran7u5GjiwxmWcbtW8zwC3AXcCg7Us3Ayopr7XAfeoag+Aqu6scRmnWzV1ViCe224HdtSwfDNCVV8Gdo+zywXA79WzGugQkf0m+/uaJfgPALYW3d6Wu6/sPqqaBvYCs2pSuplRTZ2LXYvXYmhkFeuc+wp8kKr+vZYFmyHVvMcLgAUi8oqIrBaRc2tWuplRTZ1vBa4UkW3A08C3a1O0upro//u4mnYFLjNMRK4EjgVOqXdZZpKIOMCvgavrXJRaCuB195yK943uZRE5UlX31LNQM+xyYIWq/kpETgT+ICJHaPHi2mZczdLi3w4cVHT7wNx9ZfcRkQDeV8TumpRuZlRTZ0TkTOAW4HxVTdaobDOlUp3bgCOAl0TkI7y+0JUNfIK3mvd4G7BSVVOq+iHwHt4HQaOqps7XAn8GUNXXgAjefDbNrKr/92o1S/CvBQ4TkUNFJIR38nbliH1WAl/PbV8CvKC5syYNqmKdRWQxcB9e6Dd63y9UqLOq7lXV2ap6iKoegnde43xVbdR1O6v5u34Sr7WPiMzG6/r5oIZlnG7V1HkLcAaAiHwZL/h31bSUtbcSuCo3umcJsFdVP57skzVFV4+qpkXkBmAV3qiAB1V1g4j8FHhdVVcCv8X7SrgJ7yTKZfUr8dRVWee7gBjwWO489hZVPb9uhZ6iKuvcNKqs7yrgbBF5B8gAy1W1Yb/JVlnnm4AHROR7eCd6r27wRhwi8gjeB/js3LmLnwBBAFW9F+9cxlJgE9APXDOl39fgr5cxxpgJapauHmOMMVWy4DfGGJ+x4DfGGJ+x4DfGGJ+x4DfGGJ+x4DfGGJ+x4DfGGJ+x4DdmEkTkuNy86BERac3NhX9EvctlTDXsAi5jJklEfoY3XUAU2Kaqd9S5SMZUxYLfmEnKzSWzFm/e/5NUNVPnIhlTFevqMWbyZuHNhdSG1/I3piFYi9+YSRKRlXgrRB0K7KeqN9S5SMZUpSlm5zSm1kTkKiClqg+LiAu8KiKnq+oL9S6bMZVYi98YY3zG+viNMcZnLPiNMcZnLPiNMcZnLPiNMcZnLPiNMcZnLPiNMcZnLPiNMcZnLPiNMcZn/g/bUvd3ih8s9gAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEKCAYAAAAVaT4rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACSaElEQVR4nOydd5gj1ZW330rKuXOYnu7JAWaAwSSbnE20vWDANl4bL9/aXhuMvU5gg2FsHFgHlnUAJ5LBYOIQTM7RzAyTE9PTOQdJLbWy6vtDLbVCqRPdE3rqfZ56VLqlunXVLf106txzzxFUVUVHR0dH5+BB3NcD0NHR0dHZu+jCr6Ojo3OQoQu/jo6OzkGGLvw6Ojo6Bxm68Ovo6OgcZOjCr6Ojo3OQMWPCLwjCHEEQXhIEYasgCFsEQbhqpP0GQRDaBUF4f2T7+EyNQUdHR0enEGGm4vgFQagCqlRVXScIgh1YC1wIXAwEVFW9ZUYurKOjo6MzJvJMdayqaifQObI/JAjCNqBmpq6no6OjozMxZsziz7mIINQDrwKHANcA/w74gfeAb6qqOjjW+aWlpWp9ff3MDlJHR0dnlrF27do+VVXL8ttnXPgFQbABrwA/VlX1YUEQKoA+QAVuIuUO+qLGeVcCVwLU1dWtam5untFx6ujo6Mw2BEFYq6rqkfntMxrVIwiCAjwE3Kuq6sMAqqp2q6qaUFU1CdwBHKV1rqqqt6uqeqSqqkeWlRX8YOno6OjoTJGZjOoRgD8B21RV/WVWe1XWyz4BbJ6pMejo6OjoFDJjk7vAR4HPAZsEQXh/pO37wKWCIBxGytXTBPy/GRyDjo6Ojk4eMxnV8zogaBx6ajr6j8VitLW1EQ6Hp6M7nQMck8lEbW0tiqLs66Ho6Oz3zKTFP6O0tbVht9upr68n5VXSOVhRVZX+/n7a2tpoaGjY18PR0dnvOWBTNoTDYUpKSnTR10EQBEpKSvS7Px2dCXLAWvyALvo6GfTPgs6ByENdA9zc2ElbJIYExIIBko27iO7eibHpA6695htcfeJx037dA1r4dXR0dA4EsgVeIBXZEm9vIb57F/HGXcR37yTeuJNEZ3vmnCFg9aKlzFm8hE9VeqZ1PAesq2d/wGaz7eshFPDXv/6V//qv/9qr15zK3+EnP/lJzvPjjpt+q0ZHZ1/zUNcAS1/dyFe3tdAWiQEp0QcY/NZ/4rvhWwTv+gORN17KEf00w7t2cnNj57SPS7f49yPi8TiyPDv+JeO9l5/85Cd8//vfzzx/880398awdHRmhIe6Bvj+5t307d5FfM8HyE27cbY30xmJ4fzZ/2meI89bSLR7bFGPN+6kfeQHYzqZHSrD1H28RxxxBGvXrp22cezevZuvfvWr9Pb2YrFYuOOOO1iyZAlr1qxh9erVRKNRSkpKuPfee6moqOCGG25g9+7dNDY2UldXx+LFi2lpaaGxsZGWlhauvvpqvv71rwNwzz33cOuttxKNRjn66KP57W9/iyRJ/OUvf+Hmm2/G5XKxcuVKjEZjwbj6+/u59NJLaW9v59hjj+W5555j7dq1BAIBzj33XDZvTq2ju+WWWwgEAtxwww3ccccd3H777USjURYsWMDdd9+NxWJhz549XHbZZQQCAS644ILMNV5++WV+8IMf4Ha72b59Ozt37uTCCy+ktbWVcDjMVVddxZVXXsl3v/tdQqEQhx12GMuXL+fee+/FZrMRCAQA+NnPfsY999yDKIqcffbZ/PSnP+XWW2/l97//PbIss2zZMu6///5p+5/p6IxH2lXTHonhTCaItrcwsHsXlpY92Nr3sGfbNuLtrZCVAmcAQFFwxGMIcmGYsTJvEdG3Xs1tFEWkOXOR5y1Cmb8IeclyaowzEKKsqup+v61atUrNZ+vWrTnPSd1BTXo74ogjCvqeKFartaDtlFNOUXfu3Kmqqqq+/fbb6sknn6yqqqoODAyoyWRSVVVVveOOO9RrrrlGVVVVvf7669UjjjhCHR4ezjw/9thj1XA4rPb29qoej0eNRqPq1q1b1XPPPVeNRqOqqqrql7/8ZfXOO+9UOzo61Dlz5qg9PT1qJBJRjzvuOPWrX/1qwbi+9rWvqT/60Y9UVVXVJ554QgXU3t5edc+ePery5cszr/vFL36hXn/99aqqqmpfX1+m/dprr1VvvfVWVVVV9bzzzlPvvPNOVVVV9bbbbsv8HV566SXVYrGojY2NmfP6+/tVVVXV4eFhdfny5Zk+8/926edPPfWUeuyxx6rBYDDn/KqqKjUcDquqqqqDg4MF709VCz8TOjrTwT86+1XPN76vGk88XZXmzlOR5ElpTMmf/6FWvLi+YHP9+DeqcthHVMsnL1Md/3296vn9vWr502/lvKb+5ffVf3T2T3nswHuqhqbOGot/fyAQCPDmm29y0UUXZdoikQiQWnfw6U9/ms7OTqLRaE68+fnnn4/ZbM48P+ecczAajRiNRsrLy+nu7uaFF15g7dq1fOQjHwEgFApRXl7OO++8w0knnUQ6n9GnP/1pdu7cWTC2V199lYcffjjTv9vtHvf9bN68meuuuw6v10sgEODMM88E4I033uChhx4C4HOf+xzf+c53MuccddRROe/t1ltv5ZFHHgGgtbWVXbt2UVJSUvSazz//PF/4whewWCwAeDypSa0VK1bwmc98hgsvvJALL7xw3LHr6IxFtgXvSMSJtjXj7exg/omn8L15VTmTqTc3dhJ89y0ib7w0pWvF93yAXD+/oN147AkYjz0h81wCElmPtUalYCzThS7800gymcTlcvH+++8XHPva177GNddcw/nnn8/LL7/MDTfckDlmtVpzXpvtqpEkiXg8jqqqfP7zn+fmm2/Oee2jjz76ocYsyzLJZDLzPDsW/t///d959NFHWblyJX/96195+eWXM8eKuday38vLL7/M888/z1tvvYXFYuGkk06acqz9k08+yauvvsqaNWv48Y9/zKZNm2bNfIjOzPFQ1wDX7WpnMJ4gGQxgaW9hubebNzZuJtzcSLx5D10dbZBMgCjR+vRbfGtHK0BGcNsjMeT6+RMSfqmqBrlhQda2EGlOXdHXu2WJ1QtrZkTcx2LWfHPUvVBXYDwcDgcNDQ08+OCDXHTRRaiqysaNG1m5ciU+n4+amlQdmjvvvHPSfZ966qlccMEFfOMb36C8vJyBgQGGhoY4+uijueqqq+jv78fhcPDggw+ycuXKgvNPOOEE/va3v3Hdddfx9NNPMziYKoFQUVFBT08P/f392Gw2nnjiCc466ywAhoaGqKqqIhaLce+992bG/9GPfpT777+fz372s9x7771Fx+zz+XC73VgsFrZv387bb7+dOaYoCrFYrCDFwumnn86NN97IZz7zGSwWCwMDA7hcLlpbWzn55JP52Mc+xv33308gEMDlck3676gze8gWdQCFlKUc6+sh3tRIorWJeEsTidY9xJv3kOzvBaBogvdkgkRbC6GG+dzc2JkR4xqjwq76eTkvFUvLkevnI9fPSwl8/QKk+nmIZkvmNQpwWbWHF/qHaI/EqJlBC36yzBrh3xcMDw9TW1ubeX7NNddw77338uUvf5nVq1cTi8W45JJLWLlyJTfccAMXXXQRbrebU045hT179kzqWsuWLWP16tWcccYZJJNJFEXh//7v/zjmmGO44YYbOPbYY3G5XBx22GGa519//fVceumlLF++nOOOO466upQVoigKP/zhDznqqKOoqalhyZIlmXNuuukmjj76aMrKyjj66KMZGhoC4De/+Q2XXXYZP/vZz3Imd/M566yz+P3vf8/SpUtZvHgxxxxzTObYlVdeyYoVKzjiiCNyfjzOOuss3n//fY488kgMBgMf//jH+dGPfsRnP/tZfD4fqqry9a9/XRf9g5DsWHg1FELIco8CpGNfhn73P0ReenZK14i3NCI3zM+JpPnevCquXrkK9ZrrUmI/dx6i3ZE5bhYFLq5083iPL/Mj5JZEVi+q3S9EXou9UoHrw3LkkUeq7733Xk7btm3bWLp06T4a0YFPfX097733HqWlpft6KNOG/pk4sMn2u9cYFb5VW8Jhw1527drFP9a+z8PrNhBpbSbR2kxyoI/yJ99AMJkL+gn89fcE7/rDpK4tllciz52H5d8+g/Ejx1FrVHjvuOWaY3NJIggC3nhiv7LitShWiEW3+HV0dPYq39nRwj0dAyQAIR5D7ukk0NpCor2FeFsLifZWettauLS7A7Lmn/KJt7egzF9c0C7X1WufIEpINXOQ6+qR6xqQ5jYg181DqqtHtIzOTZlFge/Nq8o59VOVnv1W3KeCLvwHKU1NTft6CDqzlGxhFwFDLEJEMVJjVGgwG3jNG8y81vs/qwk/8/iUrpNoLSL8DQtQlh6aioeva0CaU49cV49UPQdBUQp87weSBT9dHNDCr6qqnpxLB9g/JvcPVv7R2c/q9dtobWpC6mxluKOdREcbic42Eh1tJPt6KHvsFdqwZ9IWpJFq5kztoqJEcrBf85DcsADP/92leWx/973vLQ5Y4TeZTPT39+upmXUy+fhNJtO+HsqsJB0909fWSrxpN4nOdhJd7Ri6OzD0dNHb0ow6HByzj0RHK+KiZQXt8jjCr5RV8LFDliHXzuU9mwe1di5S7VykquqC1bDpqJ5s59BMxsIfyBywwl9bW0tbWxu9vb37eig6+wHpClw6Eyd7wrKKJF8wxFkc9HL66adnjKmHuga4ensrMVUleN9fCK35R+b84UlcK9HRhqIh/FJNHWJJKVL1HKTaOuSaOqTaOqSaOmy1dfzysEUZ0c5PYTzTi5xmMwes8CuKoldb0tEZg2xht4eHiXV14u1sx97fQ5Wvj82Ne4h1dZLo7qRroI/1I+d1dXVRUVEBpFatxkbcaFJVzdQGIggkB/o0DymLllL24HOjLyWV50BL0GfbBOu+5IAVfh0dncJFTJDyY9e9/BSvPf0UsZ6ulLAHA5njXqB1jD6bmpoywp8dzy5VVhc/yWhKrVqtrkWqqkWqHtmqapEqqxEMBiAVMXOkw8Kb3mBm8tckQEjloJlY3R/QhV9HZz8kLegDwyESfT0Y+nsQ+nsZ6urCPNhLfcDLQFcnoV/cTlyUcs4dTCRp3rCR0NuvTenaTU1NHH300UBKjNMTstKcepTDjkSqrEGqqk49VtciV9UguEfn2tJFPpLowr6/ogu/js4Mk78wqSAJ2JPP8IfX3qa/uwvTYD8Obz+t7e3E+3pQvYMF/Q0BPSP7pf19SGUVBa+RyionN0hRRCwpw1Jdm5Nv6XvzqjI+fmX+Ijy/vCPntPSq1f0xLcGBwLbtP6Sj434gQSgkEAiciN93NBs2bGDDhg3ccsstOSvepwtd+HV0JslDXQN8e2cbwUQqfkQAPuaysnkoxEAsTtI7SHKgD4t3gENjQd5qbCIaDGK/8iraIrGcJGAPdQ2w+pb/YfjllJ87AGh7w7VJ9HRpC395XpuiIJVXIlVUIZZXIVVkbZXViGXlWAwGblk8h3Pz/OpAjjtpLD+8zsT53e8u4d1/PUtjY5TG3VHa22Oo6m7gz5nXvPfee7rw6+jsDXKW58sSqCreRBKXJOLftplgeyvJgX4Sg/0kB/pJDvbz6EA/yYFekoODqUyPpApxtGX1a/vCVxAUhVBSzSQBu7mxE0rKpzzWZG+3ZrtyyOG4rv85YkU1YnklosuNII5WWp2Mpa5Pqk6dcDhcNMz45psfprV17OpaWpl+pwNd+HVmLfkTn9mW6vFmicd37sE7MEDSO4BpyMdpUhxfXx+v+kOYvvQ1gJxJ08FEkoHf/ZLYhqlVbEsO9iOVp1ww6UnT9kgMsXQM4RdFRHcJYmk5UnkFYlkFUmk5YlkFrooq4vXzSWicZior57JLPz26OjXrB0x3x0wPnV2PsXPnTcTjg0SjSVpaYuzZE6WpSaW3p46dO3uw2Wxs27ZN8/yGeYZxhX/Dhg0zMXRd+HUODIr5ycdqv+KmnxDr6iTp95L0eUn6Bkl6B+n2eVkbKawLcM/Io+ByZ4Q/H9FdvIjMeCT7+zLCny6nV2NUaFy4BNNp5yCWliGVlqVEvqwCsbQc0VOCIBV+Tc2iwC2LU4uftKJ69NWp00Nn12M07r6FcKQTk7EKu+MENm74Jzt3tdHUFKVpT4ymppSbJjetUMphJ4oioVAop9BSmnnzTLz6yujCN0GA6mqZefNMnH76t1m5cmXRbLsfFl34dfYKWgINcN3ONgYTSVRVxRIJIQ35GfT7EIaGiPt9KAE/Eb+fRMCPOuQj6fcz4Pdx2ZAPY3CI+Nx5OH7yvwA5/vObGzsJrHmIRGvTpMeq+ryoibim4Iru8cVUsNoQS8oQPaVIJaWp/ZJSxNJUlbTsJGDfm1fFt2JHYzjiqMz5Wml+LQIYJUkzn4wu8B+OfHGfN/9beL1r6egYTRd+xx39vPN2C21trxOPT7zvZDLJtm3bOOKIIwqOnXbaeQwOPEzDPAPz5hloaDBgNotUV3+GpUt+MB1vrSi68OsUkO/jjiQSDI+kwrEIAkZJzAjQqSV2XugfonUoiBAKEg8EUIMB1OEgyeAQajCAEgwQCwwhzJ2H6YTTaIvEuHp7KwlVJQmoiQQ9Zx0DiUl8o4AoIJtzq5el/eftkRii00VirID1YqgqSZ8PyVNo3SuLl5H82CmIbg+ipxTRU5La3CVII88Fw2gFtfGKcaQfte5aflaYf0xnmkiLvX+onba2GM3NUfr74vzbRSpbt36L3MQP0N0Vp6lpbLeMFpIk0dzcrCn8n7nsLxxxxJxMVA9IVFdfwtIlN07tTU0CXfgPQMYLDxxvafu3tzVx954O4qEQajiEGhrGHouSHA7iDwZRwyHkeQtR5i/KcSEADHV30vbj76MOB+kdHmbdcErkiY3/pTCdchamE04DyKwGBRAkCcFoRB2enPADJH3egrb032XQ6Sp+oqIgOt2ILvfoo8uDtaSEpNONUGRCznzGeZjPOC+nLTuqZzAxKhgTdbnok6czz46df+OVl3/O7t0dtLaJNDUFaWmO0Nk56qIRBDjnXAcaXhnq6w3A2PmIystlGhoMNMwz0FCvsHhxLZdc8lZOKdV8li65ca8IfT6zXvjHE8mxXl8sXetE+9QSYC0h/s6OFu7a3UY8MIQajUIsCrEYxkScUDiMEIuSiEbwJOMsUUTe6R0kGolANMz2SIT/d8pZfHveAoYTSVyyRCCeIAZEN6xl6Lf/gxoJ0xsOcXEkghAJkdCoezuQ99z6ha+gzF+k+TeKbVqv2T4eycBQ0WOCzT5uoi/NPv2+giyt6f/JFaefg3Lo4YgO14jAuxAcTkSXB8FiLUjupwgCv16S8psXi+o52NL3Hog88eTPee7Z37OnqZ/2NoHW1gS9vYFxz1NVaGuNsXBRoVDXNxgy+yUlEnPnGqhvUKifa6C+wcDcuQasVjHrDJFly64fU/T3JbNa+B/qGuA/bvwxkYFU+la/qvJF4E6PnYUWI6qqZrZkMsmuwDBvDPiJJ5Mgyahf/26mr7T/+F1fgDtuvZXh999DTSYZSCT4bCLB9SYFtwixWIxYLEZ/OEJHMEQyHkONxSARR43HKfndvUiV1Zn+7u/s5zVvkODD9xH4021jvh8foFWwUZ6/iODcVE3QbAtdjUaI79KOKBgPNaSdgkuwWDXbJ9RnsPiXT7TZSfq8iDY7gt2BaHcg2OyIDieizYHgcKQE3O5AsDswO12cN7+Op8Mqkax+0v7zT1V6ePeSi7mzI/8nLVXg+vxyJ493ezMWen7Ra13Q91+8Xi+7d+9m1apVBcc6ux7jf2/9Cc8+65tS3y0tUU3hX7HCxK9+XU19vYLdLmmcOYogWFi6dDVVlcXLku5rZrXw39zYif+pR0k0N+a0r5nIySYTjizhh5T/+J6OAUI7thJ585WcY1smOCY1Gs3pL1OUIq/o+GRQIxHN9mxf86T7DIW0+8wqJp2DJCNYrQgWK6LVlrKorXZEmw3BmtqyU/AqgpDx8QN4/vA3zclULSyCwC+WzBn37utni+s4ymkb87jOvmd0crUj0xaJJOnslEH9FH19bnbu3JnZenpS65a9Xi9OpzOnr8bdt1BbKzIZystl5s5VqKszUFOrkEo0kevjdzgkDj00Jfiy5CKe8GUmgvdngS/GrBb+7ARTkyapXdgjASBO7oOV24G2Hzs/t/hkUKNFhH+s/PRGE4LJhGC2IJjMCCYzotmCYDYjmC0oiwtT6ELKH+/+1R9Tr7NYESw2RIsl1d8YdREkARyimBNHDqNRPYIkY5VEDKTi5dMuMYsAYTX1NZSAz1Z7cgR7PP+47j/ff0ilJ/gbqdUUKTo7U7Hv7W0x2ttTW1t7jN6e9J3rz4r2t3PnTj7ykY/ktIUjncypMxS8VpKgpkahri4l8HV1CnNGHs1mkfQqD5OxWjOqB0AQzCxd+uMDUujzmdXCX2NUmHK2/qTWspiU+CCOfas3FmqRSVDBlgoBFAwGUAwIipKy2BUFQTEgGI1gMKbajSYwGBAMRgSDEWXhEs0+5bp5eH57D4LRhGA2YzabWVXu4c1QImcV52SwCALuVUcVRPW0RWIadlKKfDdKNrooz27eW/sd1q69n/nzJU3D4L77vDz1ZPG5n7HQEn6TsYr585s58ywbc2oN1M1VqJujUFllQM5SO0FQkERrUcu9qvKCfTLpureY1cL/vXlV/L+LP0ckK/JDEQXOLXezwm5BEITMJkkSGwMhHunxEhNETXFPx1ff/clLGP7oSQiSBKKIUZH5ckM1p5S5URQFRVF42Rvkl219REQp5cKQZQRZQXA4cvo70mHhNW9QM1pEi/Q5r3uDFCs2qAgCNlFg0GzGtGS55mRyuiZqGnf2JKa+ylNHA61494ry83h/w195681f09zcRU+PCb+/gY6OCLt2bWJgIDVX9I+H5uJyFX6namomf6erKArz58/X/CGZN/9bRGPX8t//PdqvKJqprPwkA/0v5Yx9NljuU2VWC/+nKj1wzdcnFdVz9gSiesbyG6dZBdRPIqonX4gFwCKJBLPcHrVFIosmG23ys8V1un9bZ0yyRV6WnKhE2bhxgC1bwnR1xuns7KCr62K6uxNEo/l3x4WLJzraY5MSfkGAigqZmhqFuXNdnHjid1m4cCGLFy+mrq4OWdaWrrSY5/9AHcwir4VwIBSpPvLII9X33ntvXw9DR2dWkC3qRkMlJaVfZtu2V9i8aQ1d3TEuvNCBJBVa07fd1sejj/indM3vfreM0063F7S3tka59dZ+aqpTIl9Tq1BTo1BVpWAwCKTCIm/RhXuKCIKwVlXVI/PbZ7XFr6NzsJEbISORTMYZDpYiyf9GMDCXzVueZtOmNXR3henujtPd08hw8I2cPk44wUpZWaE0VFZOXi5kGSoqirtz5swx8ItfVGkeOxDCIg9UZkz4BUGYA9wFVJCaxr9dVdXfCILgAf4O1ANNwMWqqhZWm9DR0Skg31qfv+C/qaq8IJUpcseNxBNeAO68c4DnngvQ1xsnHt8D/GvC1+jqimsKf1WltoDb7SKVlTJV1QrV1QpVVTL1cytZtvxkksknNO8eCsmNqtHFfmaZSYs/DnxTVdV1giDYgbWCIDwH/DvwgqqqPxUE4bvAd4HvzOA4dHT2a/InTT0lJ9PV9TCDgwF6e+P09SXo7xcJDc9jT9NmensiI+2NPPrY9/B619LV9TDJ5Ojai9CwSlfn5FNgAHR3xTj00MJQ4IZ5Bs4/30FllUxlpUx1tY3DDvsUw8NP5VxbFM0sWZKy1Ldtd+2TXDQHKhs3buSFF17A50stQEsmk7jdbk499VRWrFgxbdeZMeFXVbUT6BzZHxIEYRtQA1wAnDTysjuBl9GFX2eWkT85iiAQj3tz9tMif//9f2HrliH6+uL09bXT1/82/X0JYrH8+beOguv09ASQpLSwjlJePvGvtsEgUFEhU14hU1UpU1mlbdlXVyt8/apSILWIadHiH47cbXy06GTqvspFcyCQLfJmsxlFUXj11Vfp6Oigu7ub7u5uLrroIkRRZM2a1LLT6RL/veLjFwShHjgceAeoGPlRAOgi5QrS0TkgKCboRkMlpWVfBnUVb7/zE3bufIbBgTj9Awn6+7sJDSe5aXVlxhUDEI500NHxN15/3cuLL4yfS0aL3t44VVWFa07KsoTfbhcpL5epqrKxaPGxKMp7lJerVFTIVJTLuNwKglA8yEOWXDk/Vlox77prZnJs3LiRb3/727S2ttLd3c3AwABagTZdXV3Mnz+fWCzGCy+8cOAIvyAINuAh4GpVVf3ZsbeqqqpCkU+cIAhXAlcC1NXpoYc6M0tRC112kUiEUdWUK+PllwM0N0UZGEgwONjJwGAC72CCgYFGotE3xrxGJJLEaMxfOKdSUjL1BYG9vdlBwqMcfriZP/2plvIKGbNZHHG//DgzH6Cdf350Va0+sfrhef3111mzZg1msxmn05njrnnhhRd4//336e7WLp2ZJvt42v0zHcyo8AuCoJAS/XtVVX14pLlbEIQqVVU7BUGoAnq0zlVV9XbgdkiFc87kOHUOHoLBIL29vTnbB7tfYtfOJxgcjOD1JjAau7j+htSNaDyeG3fw5BN+1q8vzG46EQYGElRVFa6YLi3V/hpaLAKlpfLIJlFWLlOWtV9aKuNyWamq+lSBj99mE7HZjGhNmGpZ6LN9pepMsHHjRp5++mn8fj99fX309/fT29tLR0cHPT09+P1+nE4nV199NT6fL8dd4/P5qKioGFf4BwdHP3/5eYk+DDMZ1SMAfwK2qar6y6xDjwOfB3468vjYTI1B58BGyzJNW6y7P/gFXl8HiYQDl1PKLL33lJycWaH5f7cN099fztCQSF9fH319fYSKJJ/Lxm4vns7C7Zn6VyYl/IX+8xWHmvniFW5KS2VKSqSM2Oem+QVBkKiqukRzBarLtUpftDTNZPvgnU4nJ5xwAk1NTTz22GM0NTXR29tLT08Pg4ODmm4aSFnpkUgEo9GY465xOp1UVOR6uT0eDxUVFZmtsrIyI/aKonDqqadO23ubSYv/o8DngE2CILw/0vZ9UoL/gCAIVwDNwMUzOAad/YBUcq77GM3koyDLtow1raoqbW0xhoZEAkNRQiEzXp+foaEkgaEkQ0MJhoY6GRq6lFDIxsDAIENDcWIxOPTQVLpcSPvMRxNrrVvXR3NzJ5NlaChJLKaiKIVhiG6N1adpjEYBj0fG7RbxlEiUeOTUY4mMxyMxd26h6IuimRNP+gyHHvpSTlRPd/cjJBKjqbElycLixcVdL7qffWrki3vaHbNx40bWrFlDbCS31p/+9Ce+9a1vkUxqZaMam56eHubMSWWmTbtrTj31VJqamjAajVRUVFBeXo7VamXlypXs2rULn8+HIAioqlrgJpoOZjKq53VSwblaTN9Pl8600dn1GNu2XYeq5ubiNxmrcyzptEUZicTYvOkWBr2dJOIenM6LkOVD8fl8+P1+fD4fjY1P0NW1iWAwybLlJj7xCScQy3GhqCp88QttTGwRea7F7vdrJ9MDcDolYGoZWn3eBKUaseyrjjRjNAm43RIej4THLeH2yLjdEjabRdPtAinhTiRCBVE9xSxz3e0y87zzzjvcdddddHZ20tvbSyAQYHg49dl/4YUXMqIPIMvypEVfFEVKS0tz+klb8CtWrOCKK67Q/NHZG+grd2cRhWlvU4tikkmRSCROIm4nFFYJBr2EwwLhUJxozEIwGCEcChMKqYTCScIhlVWrzBx2eKoGXbYl3dER46tfeZNQ6MK8otMtwPtjji+pMiL8uYiigNUqEghM3pry+4uf43AWumwURaG8vJyysrLMZrH4Sarv4nQmcbkkXC4Jh1Pbsj/qKAtHHZWqSSAIZiTJVCDiuttl/2Hjxo089thjNDY2EgwGMZlM9PX1sW3bNpqbmwtcNGeeeWZOHH2asrKyMa/jdrspKyujvLw8s5WWliJJo5+jfHfNihUr9prQ5zOrhV/LRwyFCZy02ibyRR2vf0l0kEgKhEKDyFIFtbVfZunSzyBJUmql5c6bMpZvV1eM9jaRREImHA4ATpyuMzAZlxKJRAiHw4RCIcLhcGYLhUKEQiG+/e1vY3c8UZA//J13gtz4o24ikcnPjRsMQkb489uHhiYv0ADBYPHzbLbJC7+iCBgMQkHpxTQXX+zi42c7KC2t4LTTHqG0tBSbzab52olG9QDIsptFi36gu132I7JdNo2NjQwNDdHU1MTOnTszVvxE6O3txWQy4XQ6c8S/vLwcAIfDkTEY0gJfVlaGwVBYA0AURYxGI6FQaK9b9OMxa4W/s+sxtm+/ll/9qpWe7jiptWSfGXEnJFFVUOkA9TJUFZKqippUSartqOpluF0LeeWV9zX7/uY3v8kjj9xHONxHPJEkmYBEoolE8pMk4hCPqyQSKokcL8Qe4G3eejvE3LmVbNv2HVR19BbwxRcD/PlP2REk3cDOCb3XSy65BLfn/oJ2SWJKog8QCmmLsMUy9SI0Ywl7wzwDDoeIzSZhs4vYbSI2u4jDPvrc4ZBwOC04HBI2WxSjURiz+MuyZaaRMMYfUVXZMObYdLHe/1FVlZ6eHnbu3MlLL72EzWbD7/djNpuJRqMkRr5wW7ZsYd26dVO6Rm9vL4cccginnnpqjo+/oaGB733ve5jN5sx18lEUBVmW90uhz2fWCn/j7ltIJkNs3BCiuXnyfl6TaVPRY11dXezZM/lJw9S4bicRt+SIPoBBYyJxooRCIdwUfhgLY8Yn0WdY+wfDZBodpySlfggsFhGrNfVot5uprz8Lh8OB0+kkEv0XycRGrFZR02ee5qabKic0rmXL/gcYvauSZReoqmZUj+5m2b/JttLTE5lms5lQKER7ezuhUAi73Y7f78+UXfT7R7ODfutb38JqtRZEapWWlk7o+oIg4HK5KCsro7S0lLKyMhYsWFAQb+/z+SgpKcm4afaVX346mbXCH45MTZjTJBLFLeVsv91kCQ73EI4U1sKVP6Tway3iMRlH+zQaBYxGAZNJxGQSRjYRkzn1aDYJmMwiZrOI2SyweLF2vV5RFPjHQ3OxWAwoioAgxLOOjS4Syma8qJ5RFCCOLLuIx31k1/MSBIWlS3+WE4uuc+CQHz2zcOFCNmzYwK5du2hubmZgYCCzTdQ109/fj9VqLWgvKSnJeS7LMiUlJZSWllJaWkpdXR3f/OY3WbRoEbt27Soq5MV88Aei0Ocza4XfZKzKKd48WcaKMJmM8EsSSJKALIMsCxiUMkxGa8HYKitkjjjCjKIIKIZR/7XZZGPu3E9jNpsxmUwYjcbMvslkwmw2c+SRRxKJthX4+OfNN7DmiXqMRgFRnPoPS35UT2XFnEnNjej5WmY/6cVMaetblmXC4TAdHR0EAgGWL1+emUj1+Xyk62ts3bqVf/1r4plDs+nv79dc1V9dXc2ZZ55JdXU1Ho8Hq9WacQkqisJ55503rrjPdmat8M+b/y22b7+Wr329lHDaXy2k3q4gpCxjARDEVJsoxhFFAQGQZCP19VcW7fsnP/kJV3zpIzQ3/xpBCCOJApIsIEkKkgSyHEeSBCSJHB90yiK+HqDAx3/MsVaOOTbXeilmQWuTEtbsqB5JEjGbVdJ3A6M5VwZH22R3zuTleBOX+eiW98FDvmsmFovh9XoZHBzU3LLDGGtra3FklR1N4/FMrqSn1WrF5XLhcrk0+wOw2Wwcf/zxnHdeqpTpbHDNTDezVvjTgmRQpj+qp6qqiqqqrzB/fs2YfY0Xs50d1QOp/CiSZBw3xrsYumWtM1W0FjKtX7+ePXv2ZF6zZcsWdu7cyeDgIF6vl6GhiRdJHxgY0BTqfLcMpO6o3W43JSUleDweamtr+cpXvsLChQuprq5m06ZNOROvMHYEjS70heilF3V0DlLWrVvHI488QmtrKz6fD6/Xi9fr5dxzz9V0Zz777LO89dZbU7rW+eefz+GHH17Q7vP5ePvtt/F4PHg8HkpKSnA4HIhiKjAh3zWTptiKW51c9NKLOjqzmHwfO6Ss4EMPPRSz2UxzczMtLS00NzfT3NzMBx98QHd3t2aOmRNOOAG3213Q7nK5JjUmg8GAx+PB7XZjt+fW21UUJZOewOl05kT1AOOGRB6svvnpQhd+HZ0DgHxhj8fjDA0N4Xa7MZvNRCKRnJQCjz/+OOvXr5/Stbxer6bwa7U5nU5cLhdutztn83g8mM3mzBzX/ryY6WBEF34dnf2MQCBAe3s77e3ttLW1sXbtWt566y38fn8mB1I65PH73/++Zh8Wi2XK1/d6vZrtVVVVnHPOObjdblwuF06nE1nWlpADaTHT/kZwfQ/epxtpbGqksqaK6vOXYz28fFqvoQu/js4MoLU4KT/7Y/r42rVr6e3txe/3097enrNIaTz8fr/mBOlEc7eno2ScTidOpxO3253JJJmPzWbjyCML3MUAmM1mzj77bF3cJ0hwfQ++NbtJDscJRIbZ3rubrb272dbzAVt7drO9t5HhWIg/fvLHnBVPpYOYTvHXhV9HZ4o88cQTvPfee0QiEQKBQGYbGhoqeB6JRLj66qtZs2YNLS0tbNiwIROV0trayoYNG6Y0hvSq0nycTieiKOJ0OvF4PBx33HHMnTuXuXPnUldXRzgcLprWoFhUT/YxXeAnRnB9D/5nmkh4I0guI8YlbkIbelFDCa56YjXvtW+mxVt8vdG2nt2cufB4/M806cKvo/NheeKJJ1i7dm3RAhppzGYzy5cvz+RI/9e//kUoFMoUxA4EAsRz05QWJRKJABRcN3/ic6LY7fai116wYAHXXXcdsixzwQUXaAp1fX39mJExurhPjGxxT9MbHGB7byP+cIBzlpwEQMIbYfjtrsxrmgbbxxR9gC09uzLnTie68OvMCrJdJ9lIkoSiKHi9XhKJBMFgkMHBQYLBIMPDwzmP6c1kMvGVr3wFSEWXZIcS79ixg927d09pjIFAAKPRWPBjoxXxUlNTQ01NDbW1tRgMBnp6erDb7TgcDhwOBzabLSfkUhRFZFkmGo1mno/nftEjYz48na/t5t07nmVHzx529DWyvbeRHX176B/2AlBqcWeEP5+lZfNY17GlaN8ukwOrkpqrkVzaKVSmii78OvsVWvHZMLr60mazUVVVxebNmzNieNppp+W4TtLcdddd9PT0EAqFJlVEI22Za2Gz2ab2xoChoSFKSkoyPv80CxcuxOVyUV1dzbe//W1KS0szcexptMI10+jul5khuL4H7yO7UKNJhqMhdvY3sbOviV1DLTQmu9jeuouWlpYx++gbHqQvOEiptTAiamn5AgBEQWSeu5al5QtYWj6fZeULWFY2n0p7GYIgICgijjPrp/W96cKvM2MUE/FsATObzZxxxhm88MILvPnmm/j9/px6A7fddlum7kAoFCoQ5Tlz5hSNL09b8pMlGo0Si8VQlMJSiVpJwSRJwmazYbfbsdlsWK3WzH72o9VqzcSvZ/9Qud1uysvLOe+88zJ53/PRrfOZId8H7zizHuvh5QTX9zD44I5MnsDPPfjfvNu2cUrX2N7byMesqwraz150AodXL2NhST1mRduizx7TdKIL/0GOVtbEtD9by5Jct24djz32GP39/UQikcwWjUYzBWMSiQQWiyWTWjccDhOJRHjooYc4/fTTc6zdUCjE448/zo033jileqZjZXL8MCGNwWBQ8wflkEMOobq6GqfTiclkwmazYTQax6wLoBXVU1dXp6883ctki7zfEGZ3pJ3tG7elrPj+JnoC/Twb+CsA/measpPDsqi0YVLCb5QNLCqpZ3HZPJwm7bvEclsJ5bbCiXnBLOE6f8G0i302uvDvh4xVALqYWOQf83g8mfzlsVgss8XjcSKRCLIsI8syXV1dRKPRzBaLxYhGo6xYsYJDDjmENWvWAGSuf/fdd/PrX/96Su+rrKxMczJVVdXM4p7JMlHhNxgMWCyWzGa1Wgv2rVYrNpsNi8WiWVEJUrHsdXV1nHfeebS0tIw5QayvPN03pAU+NhiiGy8ddWF27NnJppfW8kFvMx/0N9M3nJ8SPEWPtw/pGUPBZOri0nrN10uixDx3LYtL57GotJ4lZfNYXDaPua5qJDE37UU6qieyfbDgDmNvc1AI/3h5PbQiPARBYNWqVZx77rkF/cXjcdatW8cTTzxBNBolmUxmNovFQl1dHY2Njfh8PsxmM4cffjjxeJx3330Xj8eTcSFkX+Pdd9/l1VdfpampiS1bthCNRonH4yQSCe6++27sdju9vb2Z9ng8zs9//nMMBgPXXnstvb29GdeBz+fLlKC7//7CylwTobq6GoBYLMYLL7zAihUreOGFFz5ULYJwOFz0mMlkmrDwp9NRm81mrFZr0dKLZ5xxBmeccQYWi6XoQqPxyI/qyf78rFixQvPzobN3CK7vwfv4B6ihkToUqRLT3PbWPazZ/iKNA62E45OLhvmgv5lyWwmSy5gj/ovL5lPvrmFRaQOLShtYXNrAsnmLOezS4xl+vBmK1e9QBNyfXLRPxH0sZr3wH3PMMWzfvj0j6qqqcsMNN2A0GjM5w6PRKKqq5myKovDNb34ToODLfd555/HPf/5zSuP52te+lklFq6pqJmJk8+bNfO9735tSn2+88QYNDYWlBbV81BMlHR0CZCJlfD5fUUt4Iowl/EuWLCEUCmVEPf1otVozdQgsFgtGo7Fg4jPtN9+yZUvOj0c6G6SiKMRisQnngdHZt2j53Y2HejI1dHfu3Mm2tzZx7bzLEdWsz8KI9vYE+9na88GUrr2zv4njVx6L48z6HB//sXWH8dqV92VeJygirk8uxHp4OUaDUXOeYH9m1gt/U1NTQYjfREjX1Vy7dm2B8Pf09Ex5PFr1OteuXVs0t/hEKPb+pkv406tAnU4nXq8Xu92OoigYjUaMRiMGgwGTyYTBYMBoNGaEOnvfZDJlCmLku0ZEUeSss84q8PGnwxGBCc1DnHvuuXrWxgOIgUd3MfxOV0qwBUhKKp0DPewZaGPPYBt7BltT+7e00ezrKFizcMWXz6baUVHQ7zyP9srjbAySQoO7loUl9SwsncvCknoWlM5lnntOjnCno3qyyRd36+Hl+73Q5zPrhX8qE4ZAzh1CPsWKLU91PKqqfihLupjAG41G3G43iqJkNoPBUPA83ZbeT2dVTPedjsZJF6C+5pprxh2TKIocccQRBQINhVE9WuI+1cVEuu98/ye4vofBh3dCTOWBTU/zzK7XaBpoo9nbQSQRHb+DERoH2jSFf4FnbmbfabKzwFPHgvJ6FpTMZb5rDgs8dcxxVSGLhfJnOabygBb0iTLrhT/fLTBR0oKv5Ts2mUxIkoQoippb9rH8fS1fsyAIHH744VxzzTX4/X4aGxsRBAFZlpEkCaPRyPz58+noSK3yS0/MmkwmzjjjDEpLS3n55ZcL4tjLy8v5+te/Pqn33dDQwMDAQNEapIDmQqlsJrJwaDLtOvs3OStXBQjHInQk++mw+Ni1YQdNnc1c/4lrKPl4Km7d+/AuiKW+Xzt6G3l21+tTuu7ugRY+Vl8YJrmyagn/uOx/me+po8TiQjRIuD65EKAgfcL+MNG6L5j1wn/PPffwzDPP5NwmKorC6aefzvLly3n++efZuHFjaqFEVgrZNKtWFX6wbr/9dh5++OEJj0GSJFRVLXr3sWrVKo477jiOO+44YGpRPXa7vSCqJz/PSvq9JZPJCYVuaqFb1AcXWrlmwtsG6GrvpC3RR6fJxwfrt9Pc306Lr4PmwQ66Ar0F/Xxh1b8hPayCLKDGRr8HDZ7aCY+loqKCxYsXs2jRIuZaqjgqOE/zdXajlaPnrAS03TI6B0kFrumO6kn3mV/+DSgqqFBoKY93DR2dvcGYi5j+sTMTsfL7d+7jwU1P0+LrnHS0zD0X38KJDUcVtL/etJZL//6NzHOXyUGDu5YGTy0N7lrq3bXML6/jsM+fRNXx8wvGrRXVc7BZ72NRrALXQSH8OjoHK1qirqoqjfe/R2t3B+3+Ltp83bT7u2j1ddHm6+LxL/6Bqk8fmkkbnOZnr97BbW/dPaVx/PiMa7j88AsL2gdDfl5ufJv6EZF3m3ODHHQR/3DopRd1dGYx+Rkiu4b62DPYRoe/m/bs7ZbUYyhWPLS2ta8D6zP2HNEHqHNWTWgsAgLVjnLmuqqpc1Uz11XDqurlAIgWGTWWzLh73GYHn1h+RupERYCYqov9XkAXfh2d/Zzsoh3xZJzeuI+B8igtm3Zz9pyPIVpkkuF4ToqBn796Bw9ufnpK12vzdbHQW1/QXuuszOzbDBbmOKuY665mjrOKOmcVc101zHXXUOOowCgXRqkJiojzvJS75kCLe59t6MKvo7OfMDw8TEdHR6bsYnt7O3vW76R53S46/b10DvXSE+wnqY4q/Jarn8JBYS6YGo0wx4nS6u9CchlJRuKj/nPg8KplPHH57dS5qnCZHJnMkeZV5ZnomGw/+1hRM7rQFyeZTLJ79242bNjAxz72MSorK8c/aZLowq+jMwNku14i8SgDIR9V9jLNCcgvf/nL3H///UVr3Y5Fh78HR1mh8Fc7xhZWi2Km1lFBjbOCWmdVat9RSZ2rivkVczNpgLNXr9qMFlZWLUndYQzHdWt9GvD7/WzatIkNGzawceNGNmzYwKZNmzJZZe+77z4uueSSab+uLvw6OhMgf5LUfsZcYg0GGl/cwp5/bqSru5ve4AC9wX56QoP0+PvoCfTTExxgMOTDKBnY9c3nEEiFDCe8kVQ8O6ncT1MRfYDOoV6WlBWGNTZ4ajmsaim1jkqqHeVUO8qpcVRS666kxlaesdjz0RJz3S3z4dj22ku8dv9dDPX3YS8p5fhLLmfp8SfzkY98hPGCVjZs2KALv47OdJAt4qJFTuVnCiVQ7RLBGoGB99uoM2nfXn/jyZ/wZvM6+q4bJJqIab5Gi0giijc8lBO1osaS+J9pyiTEmyges5NqRzmV9jJsBu3U08fMOYw1l/8hp020yBkfe3YYZLpdS9Bn8+rVmWDrqy/y5J//wK6mZgZjSWzllRxmU4hHU5PuQ329PHv7bcDESm5OtRbzeOjCr3PAky3kgllCEASSw3FihiT9QS8DgwMMhHwMDHsZiPjoH/LSH/IyMOylf9hL//Ag/cNeBkN+VFRqHZW89eUHNK81GPLRMTS1XE09gf6CcMWEN0LNvBogtdCvqqoqU3KxpqaGcsGFowkqLaVUO8qpsJVgkjWKdkgCgkHM8clnDmlY6rqYf3jefupxHv7j79nd0sZAJMZANMEHTc0MZ+W5Mikyyy88I+fuKh6N8Nr9d7FixQpeeuklzb49Hg8rV67k2GOPnZGx68Kvs88ptoAoncQrmUzijwaJLDKSPNJBf38/AwMD9Pf3Y/VLnBlemQkPVEOJdJJGjv/Np2n3d096PL3DA0VTPZdaCkvojYcoiJRaXASjhbUDJJeRSy65hPPPP5+ysjLNtNfZUT2QKtRhXll20KYb2Bs8cNO1tG4etbZjngpKVx3Lli1b2LJlCxvWr6Onr3/cfsKxON7hMG6rOad9qL+PFWccjyiKLF68mBUrVrBy5crMY01NzZjFfT4suvDrTCv5IpUmHI+QSCawjrgmlPkOKv5jJcH1PfT/Yzs/e+EP+MJD+MIB/LcH8CWDDPq8+MJD+MMBVLQXGh5eu5wzPvM7zWMes3NKwh+JRwlGQ9iMhW6UUqsns29RzJRZPZRbPZRa3ZTbSkaepyorlVs9lNtKKLG4NBOCpWupWkcKqBdDd7fMDNm+d6PVRjQeQ41EEEQRNS8R458feZxdv//zlK7T6fMXCL+9pJRLLrmESy+9NJMufG+iC/9BRDHLeqxj+Qm4gpFh3mhZRzAyTCAaIpAMEZtrIGxJMNDUQ9+ODgKRIEORYYYiAYYiQfyRANFEjIsOOZtfnpOqORDb7af7jg0k+yMIcfjjew9OymeeZiDgLXrMbXZOuj+XyUGJxcVQNKgp/F9Y9UkuWXEO5a4SSo+tJ7S2Jyf3TAYRRJNc8AOopxXYN6RF3t/Xi2q2Qkkl7772Cp2DXrr9Abr9ASLxOKs/cSaiRjaDSoedXd19E7qWIklUOGxUOe1UOe1UOHJ9+bLByPGXXP6hSoN+WGZM+AVB+DNwLtCjquohI203AP8BpLM4fV9V1admagwHAvkrLrPJn3TLt6bjQpxwOIpBVjBICoJBxPWJhZnXd3R08Oxdaxh4r5VhX4BQPMJwNMxwLMRwLEzob2FiZTLB4SD+tn6C0RDBaIjhWIivvvhZvvaV/8oVNhV6g4Nc8dD3p/Reh6KBnOex3X4glbPIYbQVLYc3Ft6wv+ixcpuHMqsHt8mBx+LCY3bisTjxmF2UWFx4LKnHEosr06ZIY38lKmylOf+X4Fxnzg+jLur7B7FYjD179rB9+3ZeffpJXnv2n3R5/fQMBQjH4kXP8w6H8FgLBbnSWRgyK4kCZXYblQ47lU4blU47lU47HqsFccRNIxuMLD/xVBrX/6sgqmdfMpMW/1+B24C78tp/parqLTN43RxaX96B7/kmEv4ookPBelIqG+DQS63EfWEwSamyieE4ol3Bcnw1pqUehrf0U7oVTQv4/XtfpburGywShiNKURrsBHb04X+vg6g/TExNlUyMJVMrLRMGAXmhHaHCxJVXXpkp4h1c34P34V2osSTP7nqdx7a9QCQeJZqIEk3EiMZjRH4fI2EViEQjBAcDROIRIokokXiUeDJ1O/rHT/6YMxcejxpNpuKuSbkH3nzwRb7wvf+c0t9tMOgbLZKRhd1ondo/AvCHAwVt6RJ3TpN9TOG3GSy4zQ5cJgflh8yhpKQEj8eDI24GWYB4oZX2q3OundjAslIFGJe4CW/sy7XUxxB03Q2zd9n22ku8eOfthIeGADDa7Cw59vgcYX2xvZ+Hnny6oHDLROj2BzSFv9bt5NDaSj7xxStZvnw55kiQXf98HDU+epe6v4q8FjMm/KqqvioIQv1M9T8Rgut7OO2is9jZ1zTa+ONxTvp56sGimNlxzTPAaMx1pNlHaG0PP3/q9zy+7YUpjemTn/xkRvj9zzRlrOndAy1T7jMcyypekUz1az28HHVzcWt4PALR4QLRB7AapuaPlEXtWr2OM+vxPryLLx99GaF4GKfJjsvqoKS+AmufiMvswGG0ZSxxyzGVeC5cmNNHsaie7FDNtHhnHy9qmef1r7N3yY97/8gnPo1cUcOLjz7Msw/9nR7fEP2BIP950jFEAkNseG7UaTDU10vPzp1TEn1JFBgKaWcdrXE7ue7KL3LxD340Os76es34/AOBfeHj/y9BEC4H3gO+qarq5O/vJ4j/mSZN8ZoI2cviIRVznbaAJWFqxV0gt6RhtntH0Zj8myj5VYvS/RrDUx/ncDSUEctsjJKB0xYch0UxYzdYsBmt2AwWHE4HZavmIm4awq5YsRtHN4fRhkk2FkQpKPMdGdG9zPqJolE96dJ8lqMLRR90q3s2EIlE2LNnDy8++hDPPvh3enw++oaC9AaCeH/7V81zBoMhSu2Fd6ClVtOY11IkiXKHlQq7jXKHjQqHnQqHjRKbBalI4aY5h6zk4h/kWo1Ljz/5gBH6fPa28P8OuInUV/km4H+AL2q9UBCEK4ErAerq6qZ0MS2/+UTJF34gI4LFPhwTITt/f9rNAWDQSGo1HgICJsVYMFbJlYrzrqiq5NzFJ2NSjFgUE2bFlHk0KyasJgtlx8/DaraQfHcAi2jEarBgUcy47A4sR1cWTF4KgsBfPvXT3IGI4L5occYVphXVk086qgeKC7fnwoWaQq9z4JCx3vt6U9EyyST20rKMdbx69Wr+9Kc/0dLSMukyqT1DAU3hL7en/PGVlZUsXbqUCqedSFsTZRYT5Q4bDrMJg9GU45YxWm0IAoQDgQPOep8Ke1X4VVXNxNYJgnAH8MQYr70duB1S+fincj3JZcRpsuPJiu4QBCGzbF4UBBh5LgoCoiCm9kVR2wIfsYAb3HM4suYQJFFCEkQkUUIR5cx5sigjixKyKKNI8shxCYPFRElJSaa7tJtDjSX52NxV3HreDzBJBhQpNVlrlFP1b8vOWojJaCLyfAcGQcYkGzHKBhRRLoz1FcnkWTnk0uP4vbFMM+pkwlE9GpOX2XcCglnCdf6Cg6JOqY422157iRf+ejvhIT/D0Ri+WJyB4TBdff30B4bpDw7zHyccRboydPbq1VAoRFNT05Su2zcU1Gyf43Hx6ysu46o/3pszxgPVLTMTzGghlhEf/xNZUT1Vqqp2jux/AzhaVdVxE1FMtRBL9uRpBhEQhExVoYIxj2QbLLB0J9mu1a/rkwsLRPHDRPUgAVnhxvlRPfn969EmOlMhLeyRwBDxRILB4RADwRD9gWEGgilhHxgR+GIRM/991gkFYY320jKUI0/gi1/UvOnPIAAlDhuLFy9B8PVTarVQZrdS7XJgNxWuYpYNRs648r8OamFPs9cLsQiCcB9wElAqCEIbcD1wkiAIh5GyF5uA/zdT14fRZen5wpfdlj0BWMzSnWx7vmU8luBOxkKeijWtW+A645FtDVvcHk667N8BMi6aNI+t38rru/ZMadqsLzBcIPxD/X0cvXDUlTdnzhyqS0sQh7yUWEyU2q2U2qxUetx8/MtXsfT4kycU1XOwW/MTQS+9qKMzi8l3cRz9yUvo6O7h2fvvob2ri6FYgj6fn4FAkMFgCF8ozE2fOhuTIhesXn12y06e3bJrSuM4/7BlnLCoIafNXlrGZ3/xfzQ2NjJ//vzMClbdLTN96KUXdXRmMfliaT9kFZu27+Dt556hfyjA4HAI73CIoSIRMtn0+4eodhWmkNCKb89HlkRKrBZKbBZKrFZKbGZKbFZq8vrLXr16yCGH5Bw7kKNlDhR04dfR2U/JFnObp4SyRctY/9YbdHR2EhYkHPUL+O1f72L76y/z7O235aT+/esv/4e3Pmia0nUHgyFN4XdbzQiAw2zCYzXjGRF4j9WS2XeYCsN202hF9egUsvOdLt56bDeBgQg2j5FjL5jPoqOntwqXLvw6OvuYWCzGq489xHP33U1nVzcRUUK1Otm9YzuDwSD+UBhvKEw8kRc88OrbfO7fPsXmfz6WEf00TtPkw4PT+MPahdjrS9zc/KmzkDUyiGajmEyIskIkeHCERk4HabH394fo93fR3r+b9v7dHLXodML3pkLAp1P8deHX0fmQPP/H37Lh+acha77MZLdzwmeuoH9wgGf/djd9vT0cecgyTRE865STefH1N6Z07afu/jNusXCezmnRXmGdttjdFjNuq1nj0YLJZEwFPOT5+IutXzHZ7Zzy+St1cZ8AO9/p4rUHdhIOxglHh+kNNRM197L2X+tp691N+0AjkVgo8/oSRyVlzhreemy3Lvw6OvsKVVV55NZbeOeZp/CHwgyFIwWbPxTGH44w/Kf7MxEwoiCwsKI0E7+eLZKJwYllfdSio7OTuhWH5ETfANS4HBy3aB4uswmnUcFpSYm7x2FDFIQcURckCaPFkrN4CdAnWKdItrgDCBKoSQpWwa9+4It4g72FHWTR3t8IQGBg6otRtdCFX+egI3s1KUA8kSQYjRIIRwhEoqiiyJLy1EI7o83Oqf8+as2uXLyQTbt2T/qaSVUlGIkiCgKv3X9XjoiaJ1hvwyBLKSE3m3BazLjMJupqazj+kstzfPwAdeVlfOm6VF6ZfAHXatMSdV3oJ4eqqjz829d46am36RhopGOgCVVNcvkp39V8fbWnYVzhb+v/AACbR6Pq2odAF36dAwatMD/QFrYX77ydD1raGApHCCWShOIJfEMBwokkvuAwwRGRD0YihPIWHTnNJn5w3qkARAJDPP27XwMpIUwOF2YYnShD4Qh2k5Gh/lwLv7K8DJtxD06zCUda2DMCP7pvUnJXaucvVCom5rqoTz/vPruNR+9+icamnfQOtzCkdrJr9w68/tzUY4pk4LMn/TeiRpLCmpJ5bG19t6DdbLBRUzKf2pJ51FcsA+DYC+ZP6/jHFX5BEL4G3DOTydR0Dj6yV4NCoZ9466sv8vw9f6a3qwvMVkSrneYd2xiOxghGYgxHt/Knf76I22rm9KULgFQ0y9O/+zWoKmoyyd1vrqM/WFjucDwCkUhO6UU1kchY6Xbj5Cwvq9GAw2TEYTaRlmx7SWnOa759w40clmexa6X4nXf4R4ouVNJDIGeWBx54gDfeeIMtW7aw8f1N9PZPrO5yLBGl199BhWtOwbHakgVUuOqo8cyjumQeNSXzqPHMw20rz/mBr13s2idRPRXAvwRBWAf8GXhGPRBWfensFfJXUqZRVRUUhUgS/D4fosXKxy68iHlz6wpen0yq/O+TL/DzR59BtFgZCgTx+rwkkuN/zGrcjozwAzm+a4vRMCXhTyRVQrE4FoOSaUtb6XazCYMsYTcasZtGN5vJiMNkxG5OPXeYjDgsZiRJyhlTOn49m/Esdp3pRStccsDbz5N3vUGlPfVZMlolTrh4cUZw7777bp54omhqsTHpGNijKfyrFpzMqgUnI0iw/KPVNG3uz/HlCyIs/1g1J162ZErXHYtxhV9V1esEQfgBcAbwBeA2QRAeAP6kqurknZ06+4xiKyKf/+Nv2fjCP0kmEsRUlZJ5CwkN9BH3+zKx10abHUGA/v4B1nb0Ujp/EcHhYXa9v55QNEokHiccixOOxUYe4yTz7INVazfwmeNWkczLlS6KAo29/cQSSeif3I3lcKR4uUZrlnCPhSCAxWDAZjRgMxmxGQ0k8jJFpq30b379a5z5wj/H7VMxmTj9S18FJu5P14V+Znjlb9vZ8noHyYSKN9hLt6+FzoFmugZb6Pa20PWrZgJhH5Io88srnkISJSLBBM/ftRVIhVEuX758QsJvkE1UuedS5WmgemSbW7a46Ouzf2BOnLZ3PD4T8vGrqqoKgtAFdAFxwA38QxCE51RV/fZMDvBAJn8SMRt7aRmuymratm5CzRMZSVGQjSYigSEEUSSRSJBUIRqLIZotxBMJAkNDiEYj0VgCt0HC4/EUpJXd3dTM//3qlwQCQyQFkVAkQjQWJ5pIEI3Hif3tERKiyPDwMNF4nGg8MRJ48DQfP3QxpyxdkBlb2iUTicV4/N318O76Sf89wtFYgeinMSsKscTkIxeGo9Gix+Z4XCRVFavRkNoMhsy+LevRYjAgisVnWAVJyljpZ175X0iiyMYX/pnzfxtrcZIu6HuPne908dxdG+nobaXbm95aMiIfjWuvUQBIJOP0Zbll1ASZMMrly5fnvFYWFSpcc6j01FPtrqfK08Dcmnm4LZUk822R9EdLnVkrfjJMxMd/FXA50Af8EfhvVVVjgiCIwC5gvxX+ba+9xF9/fQve/n4sDieVCxbRtHE9iZGc+KqqomY9ooKKmvHvHrlkIad8/kpg1GqTDAa2tbTT6w+QVFWSqopoMFB/2JF4auuIxWLEYjG6mxppfH8dsXiMZFIloaokkknOP2xZaoKvrzfnB+Ht3S28umsP8USCeDJJPJEkkUwSTybHdXl8/rhVOdbtUF8v//z9b9ja3sU/12+a0t8uUkSgjfLU4wFCseLWudmg4A/nCr8silgMCmaDgsWgYDEYMs+tBgMWo4LVbMrxxwuSlPHxn3nIIs1ribKMYjJnfszykRQl8xnJj+oBOO1LX+G0L31lUu9dZ+pku2YUo0QskkBVVURJoGahC29viMBABKNVIjqc4E/P/pj1ja9O6Vpdg805bpm06+W4447jRz/6EcuWLcMaL2fP6zHUePZEu8jJn0mJ+Uyvup0OJvIt9gCfVFW1ObtRVdWkIAjnzsywPjzbXnuJZ2+/jTuff5VufzoS49kJn2+QJQ6pqeTp3/4KsuKeE5EI/9rTyvqWjtwT/rVhQv2esXyRZirZUCxGj39qESPp2rvZJONx5CJL5ydCJF7YJ0xO+CVRwKQomBUZk6JkCmRo8W9HHoogSpz+uS/gtNt594F7EZNjF3NZefrHqVm8tGhUT3oeQTIaUQyGg6bIxoFKvu+9/pASNrzxAW2dLfT42unxtaU2bxt9/g5+cvmDtO3wZs6PBFOf2XJnoT99PGRJoULjvHQY5fz58/nhD384OtaG4mkV9kehz2ciPv7rxzi2bXqHM328dv9dBcvYJ0PaP53vhgGK5iKZCPm+4zTyh6nqFdfu0zDO0nrNcUgiRlkuOh5ZEjlt6QIMsoTVZkNBxSAKmBQZk6xgVOTUviKj5F1fkEbq3WrcTSxtmJsT1VNeWpoj6ONFtBT0pwv7AcHOd7p48YFNNDU30uvroNfXRo+vPfMYCHuLntvn66DKU1/QrjWRmsZksFLpqqPCVUelu45KVx3VpfW4rRWIQv7ntXgY5aKjKw8IgS/GrI3jz4+VnixjxS2JMyD845VzlCURRRSRJSln3yBJWIzak5gui4mzDlmEQZIwyDKKLGKQZAxy6jyz2UztwkX0N+7CIEkYZXlMX3easw5dnIkhBzSjekA7Zwvok50HG9mWvGwQiMfUTL2Kv7/6G17b+viU+u3xtWkKf6V7Lm5becoHPyLyFa45VLrnYje7EQQh4zJKW+tAzmrb/Kie2casFX57SSlDfb3MLXHhyHatCEJmriXjFx7ZF4RUHVtBAHGMguoLyktQJBFJEBEEAVEUkAQBk9XK0ed/CkVR6G9tYve7byMkEyPHRSRJwF0kh8rKOVXMK/MgSyKyKCKJIkrW/mTvMkRZxmmzctqyhTltislckDwrHdWjJpMIokjtskPxdnXk1ElNR/VouUsmK9C6oM8udr7TxRuP7KSttZ0gfahWP1u37KCju5X+QCd93k5+dNm9mAwW4tEsi0oFu9k95ev2+to12+vKFnHTZ+7TPDbW5OpsFXktZm0hlrSP/8O4eyAVrUFebhMtRFnmrP+8KkfUpiuqJy3I+QJsstlQVYgEA5rFokGPDdeZGtlWeppQJMBQvIfSZRBRvDQ2NrJp/TZ2bd9Nv7+LeEE4yyjf/dQfqC1dUND+r10vcOeLPyl6niTKlDqqKXfWUuasocI1h3JnLeXOWhwWT4FBJEipO/JEfFTXDjlh30fR7CsOukIsWoti5h3+Eba8+gLxyMR+DNKrSbP7kQwGEnnnF8tOuD+4K/b19XX2f9Jx7qHwMP2BLmpKGyBZeIf5yNu38+b2J6d0jV5/h6bwlzlrEEWJElsqC2W5s4ayEZEvd9bgtlUgZaU7kORRURdEcqJ69ucomv2NWSv8oC28Uw3D0wVU50AiP0LmmPPnUbJA4dUn1/LS42vp6GxjMNBN/1A3A4FuBoa6GY6k5ml+evnD2MzOgj5LHFMX1D5/h2Z7XelCfvXFp5CkXClKR/WkV7Pqoj69zGrh19GZzbzyt+1sfq0jk+5XlAQUk0gkmGDd7pfZ3raWgUAPg4EeBn/RM+bipWz6A13awm8fW3StJgeljmpK7JWUOqopc1RT4qiizFGD01qieY4oSkgGgURU1RT3vbma9WBCF34dnf2EtMtFzZryEUSIRCP4Qn0MDvUSxot9ToLdO/fQ+EEzXzr9hkzmx2RCzcSyf9C5kTe3PzWlcQwMdWmmGShzVFPhmkOJvZLK0hrOuvQ4zAkPXRtUXKZyzEbtdRqCBEaTTDgYz4nq2V9WsR6M6MKvo7MPyHbFBNRuAskedu9swRvswxfsyzwOBnszLhgthkJeTWvabSub9JgkUcZjq6BYwMfc8iX84NN/RZQETr18acYy11p4pbtoJo/38cdZf/NP2dLayi5FobGyght/+1sOP/zwab+WLvw6OtPM9rc6eOrOd+nt78Uf7CeYGKR6qYWf/Dq1FnLnO128dO924tGUaX//c7/j/T2vTelag8HeIsJfUdBmkE147BV4bOW4bRUj+xWU2Cvx2MtxWErGDGMGMFlljr94UY6Qay1m0l00ufjWrKHnV78m3tkJJhOEw2wYHmZHJMLORJwPLBa2trURyI7wa9rDKXfcweG//e20j0cXfh2dPLJdLml3RNV8F289tpumpiYiopfypQqSI0JXV1fO1tbaQV9fD0k1N0RXeFbgsxddwbKP1vLWY7szog/gtJbmD2HCDAZ6qC8vdJXUly/l3z76X3hsKaEvdVew6qRF7HinO+faBQggKwLxIj53ncmhqir+J56g8wc/RE0XsQ+laup+u7OD1jHyVwG8+9hjoAu/js7EyHY/mKwyKin/tyCSEfRoNErSNEzDR2wMePt55/mt9PX1Iggip6z4NyD12s2vdmQmUe9+6afs7to86fGoqDx7/3ss+2htQf1UV5GJzzSiIOKwlOC2leGyluGyllLiLMdhKqVhpEJTPqWOKk465BMAOQJevcCd+buk/xa6wE+dpi98gdBbb6OqKn2JBDvjMT5QYYfPywfJJIbKSu6vnTMq+lksNhrHFf5tAzNT/0oXfp1ZQbbQG60SsXCSd7Y/jzfYQyDkJxD2EQz7CIR9BMJeAiEf4Zh2kRa72Z0R/gzq6LGp0tHRCaSENlv8K931LK45Aqe1BJelFKe1FFdmK8NuduWU7ktnguzc7S0a1VNMzA/0HDP7At+aNXT++CeoXi8AfquVjhWH8v4zz7IrNMyuSIRdkQg+jXQs8tAQw4KIQWPl/SKjkecDuYkZbaLIIqORJUYjS4wmVsyZfMK5iaALv85+RTQaxev1Mjg4yMDAQMHjwMAA/f39mcclS5Zw7Vd+luMzT0e2PLX2zqLL+sciEPaRTCY066Q6LJ4J9WEx2nGY3TgsJTgtHhyWEspGCrgfe8H8nPEeOvdYVsw7FpLFc0RpWeeLjq7UI2KmkYwfvqMDJAmyVuv/sb+fN4aDfBCJ0J9IwLq1E+ozDuyJx1msFObTOsJs4QxblMVGY0rsTSaq5dG6yoLJRNUPfzAt7y0fXfh1JkVqYnJbTs4VSRZStQniKtF4mFA0SDQRIsYwft8QqiFC9VILx5x6GKeeempBn4lEgvr6egYGBhgenlypxEgkUuAzT2MzOack/KqaJBgZwm52FRyrcNVRX74Uh8WNx13GiecfRmVlJRUVFVRVVTHcKbH5nwNIQu4XXZDgtMtTbpm0xZ2f1lerTbfOZ4a0yMc6OvCVltKxYD67X3qJ88yW1AvyUrRsDod5Z5KfzTSNoRBL7PYCd89xVivHWa2pJ6KI69MXE3jlVeKdnchVVZR/42qc5503pWuOhy78s4RsV0e+dQijgoJAxjVgsIgcdUEd1cvsBINBAoFAZmtoaGD+/PkF13jw/17loTd+SyQ2TDgWIhwNEo4OE44NE44GCyY1MzwK5679hKbwS5KE1+udtOgD9Pf3F/jM01hNhYuQshEFEavJid3swmZyYTenNpvZhSTmfTVG/m4nHnIhJx5yYcbdoiXMtdVd42Z6LOZy0YV+evCtWUP3j39CYsQ9kwQ6olGa7XbaKivY8t57NIZC7I5E8O3YDm+8jgicsXARRo1MuQuMBp4dp1yGWRBYYDSywGBk4YgVv9BopHLOHCqu+UZBVE/69k4wm6m68UczJvJaHLTCP1bssdEqISAQDsaLWl5jnZ+TejYLrQUr2REkyWSCWCKK0SGy8rRqapc7CYfDRCIRwuEwu9a18/4rTQx5g4imJHMPdeGsNrCochUfvDScsXrT2rt52/vc8rdvEo1HiMYiROJhorEw0XiISCxMLB5B/ZW2b2H16tVce+21OW1vPbabZCLB+sZXpvQ3b93dXfSYy+UiEJh8IZr+/v4Cn3maFfXHUe6sxWpyYDc5sZqc2ExObGYXNpMTs9GGKIiIkpCqvKaRhy8/qmci1rjuR997dP7oR3gfeDBloQsCgtlMo3eQbeEIe6JR9kQjNEajNEWjhNN+tI3afSWBpmiUxSZTwbEFxtEMv4ogMM9gYIHByAKjgYVGIwsNRmoUpSBlu2AyUXHNN3Ced95eFfbxmLXCnxbUt7c/SzDsB1KRFZIkoKoqiYSaKtFHElUF9fnkSBnGZKqsmyhx1hGfITAQ4bm/bOW5v6QKL9s8Rrb2vcxbb71DIp4gkUyQVBMkH0g9JpJxEsmR9mQ863lq/8v+mwE48bIlqSX3r6ZymDyz7l7W/OvPo2/g1xN4k4+lHv7rkz9mSdkxBYeHI0Nsbn5nSn8/LREODEQwGSxT6g9gKOgvesztdtPW1oYoirjd7oLN4/FQUlKCx+PB7XZTUlKSeS54nbz8tx057h5BglNWnU84GC8a1VPsrmisiVGdfUN2HLxYWUni8s/hbmnBe9/9oy9SVdThYX7b18+TQ8U/a2Oxu4jwH2m28JvqGuYbDNQZDMWr28kygs2G6vPNuLvmwzArhT9bUJ97/366BpvHOaMQg2zirCM+U9AeGIjwwksvsvaDF6c0tmg8zJbXOzjxsiVseX00cZUkaRdTmQhD3gBoLNQ0yIUf4ImiJfw2j5FE39jpqWVJwWywYlKsmAxWzCObyWBlbo12NSOAZ599FrPZjN1uR5xCNTJBED60f1wX9v0HVVXp7e1l165dvP/AA2y8/36ahkM0RaM079hO5OWX+NeixVg1BHiewTCpa5kEgQaDgXlGI2VFSouWyjKn2+0ASC4X9rPP2mv++JlgVgp/tqBOFbWYr5qxi7SMRyIZz7hisi8h5/uUJ4Fo1B6rIo//BZAlBaNixlPmxGazZbYFCwpT6B57wXye++tWvnjaDzDIJkwGCyaDFZNixqRYMRrMKJL2NbOLUWtRWfnhRFd3rxyYDAwMsO5Pf2L9X/7Cnp5eWiSRdoeDxp4e/P6xrfbmSIRlGtZ5g1H7M+gUReYbjSmRNxiYZzAy32CgWlGQzGacn7gwJeYaUT1IEq6LL6Lq+qKVaA8oZqXwj6HZE+9jjAI1H1b406en3Q2QEmBBEJElBVmUkSUFg2LEU+HAaDQS7E8gqql2RTaiSAYUyYDFZuG0C45haItYENlS7qzl/519E0bFjCwYMCgmjLIJg2zCoKQeZUXitMuXTUg006+R7xU0o3qyfeQTiSnXmb1kR80MlpQw74zTNS3kqz79ae55/vnck3t6JnSNpmhUU/gXGYycaLVSbzAw32CkfkToPSPWvGAyjYr8AWqxf1hmpfBnC+pRC09nKJS7+m205KJIaldAGCmjKCCkJvzGcDcctfB06suXIorSyGslJFFGFMTUoyghCam2zHNRQpIUyp21LP9YNZCaNEy7pD669Fw+tmz0g5cfNZKf3yX/NVpRPWVVJZz/n18CtKN6plJXVLesdfIJh8Ns/stfWP/739Pc3U2bINAaDNISidAWixFWVd7s6cElpdZFxDs66PzBDwGoaGyc0jWdoshwEbfMPKOR39VqL3ySq6sPOpHXYlaWXsz28c8EskFkyTGVORkIpyOqJ81EI4l0K1pnJsieSE1bwwCvXHsdW3t7aYvFaBegu7ycFp+Pjo6OMe+QAe6vm8sKc269abm6mid37OAbHdprLSwWCwsWLKDBZqPyg93UiQINIxa822ql6qYbGV63riCqRw2FkJxOkrDfT7LONMVKL85K4QdtQQVQjBKinFrdKRkEEmmBFkBScgtCAHpeE51ZjW/NGrp++Su6WlvpMBrpCAY5y2jMDUuUZUgmuamzg/tG4uInyy+qqjnH4chtFAR22+18c8MG5hgU5ioG5hoMzDUozJtTx8defy1zd671Y3QwCvlkOehq7p542ZJpWc6uC7zOgUAxYfStWUPb//yS9tZWuowGOoLDtAeDdMRjdCQSdESjdMZixLIMwCPnz6dczooyi6cWotVopB2YCDZRZFgrj01VFcd/42oey85cyUiqgu9+J6eQ+v4WB3+gM2PCLwjCn4FzgR5VVQ8ZafMAfwfqgSbgYlVVZyb9nI7OQUI6Q2SaeEcHN//nf/L8V75Ca1c3vfFYvtdxTNpjsVzhH6G2iPALQIUsM0dRqFUMzDEozFEMzFEU5igKLknKEXFIiXu21a5b83uXmbT4/wrcBtyV1fZd4AVVVX8qCMJ3R55/ZwbHoKNzQKCZIMzppDcWo2tggD67neBxx9I/stCttbWV9vZ2XrzsshzRT9MZCrF2cGo2VXssxuHmwvb5BiNn2OzUKgq1ikKNQaGhppaV3/5vBm68KTcXjSwj2WwkRnzsthNPKBpFo1vzozzZ+CS/WfcbOoOdmTZRELlo0UVcd8x103adGRN+VVVfFQShPq/5AuCkkf07gZfRhV9nFpPvglHm1hF691+ZyUhMJt7s62NrJExPLE5PPE53PEZ3PE5fPE48u7PNmwr633X//VRrZBGt1LDYx8IhilSNCLpHypOFER//fKORX9fUZJoFRaHq2u/jPO88jIqiW+0fgmQyyTcf+iYPvfIQ4dZwamsJU3NFDbZlNv6+4+8A0yb+e9vHX6GqavqnrAsorA+no3OAoqoqXq+Xzs5OPnj4YXb89U56/D5643ECySQ3qWrKoh89AUIhHvJ5eXqoeF3dsegKR6i2FKbRqFJGv9oCUCrJVCsyVYpClaxQrShUKzLVI/t2qfDHA0Bwuai69vsAOTnpJZeLihHRB91qH4/Vb6/mwZ0PklSTGQu+fGM5a9euZePGjby/8X3Cw4XFWsItYWzLUkXsH9z54AEr/BlUVVUFQSjqehQE4UrgSoC6urq9Ni4dHdB2vcjV1Ww9+STaS0ro6uqiu7u7oPRiNBot2ucPyiswaKwPKS8Sjz4RujQmTQE+Yrbw4Oc/j/OddylPJjULgQAgiggOB6rPh+B0IkLGPZNvtevCPjEy7hpfJ+6Ym8UNi3m7a9Qdl1ST/H3H3+n5WQ89jWMvVgu3jv4YFM18OwX2tvB3C4JQpapqpyAIVUDRd62q6u3A7ZAK59xbA9SZHeQIdx6hZJKBZJLBeIyBeIJBVSV0yHLChx1GT08PQlcX3+7sGvVZjyzdj3d08JOf/Zx3g5PPIgrQm0hQoyH8FWO4ZZyiSIWsUK7IVMkyVW4PK667ljlz5lBbW4vpb38j8o+HCs6rOf5jfPQvf8lxNQlOJ0SjqCPpr9PWvC7ok+PJxie5+Z2b8UV9AKhJlVh/DKlboiZQw7oN6wi2Bol2RpE9MoO/0J5riVZEYZz1a+G2UeH/MBkD8tnbwv848HngpyOPj+3l6+scoOQIuSBkcpknnE5KPn52ZuJQcjpJRCIQCvG/fanFRoOJBIPxBIOJOIOJBCGttSsd7fDsswC4FIX/nqedUK5ELGI5T4C+eFwzJHKFycTn3G7KZZkKWU4JvSxTLsuYs34oBJOJqptuzBXq1avpVJTRRUx5OWV0F8z0oaoqd711Fzc8cgPh9jCR9gjhtjCRjgjJcMoa38a2nHNivTES4QSSqdCVZqw15jyXrBKmOabUVpd6NFaPvuaiRRdN23uZyXDO+0hN5JYKgtAGXE9K8B8QBOEKoBm4eKaur7P/k53PJVRWRnzVEXS+8SaDXV34AV8shl8U8UUi+BKJ1JZM4E3vJxIcYjJxp8+X6TORtcDomaEhGsdwvRTDG4sRV1XN1Lul47hlrFYrJckkpUCZLFMmyalHWS4aB3+ExcIR2X76EdeS5HJNaPVp1fXXz5rkYfuStIumK9hFpbWSq464inPmnQPAFVdcwcMPP4x3CgvYIu0RLPML52Echzq4+oirWbFiBb3OXv638X+JJAvrShxoUT2XFjlUWIJJZ78jp8CFJGE+6iPEmlsKoja8jz9O0y3/g6+jg1BJCcpF/0ZixQr8fj8+ny9nO+KII7j88suBkQLWIwt3kqrKka+/Bq+/NulxehPF/Z6uIhOWE2EwkdBM0XuE2UzYZGLRF79IZWVlZkuXXrTZbDnvLRvJ5cKwdElBVA/hsB4Jsw9IJpO0tLSwdetWHnr9IZ58/0nKPp3Kb94Z7OSGN28A4Jx552RqQU8W2SWTCGqnMr/89Mv57jHfzTwvrSot+sMz3czalbuznWKTj9nx0vmTdWVXX4XhtNMIBoMEg0GafvELup9+mlA8TggBjvoIylln0fGPf7Bo23ZWpnOrJBKZWPH2WJT/98brDL/+GsOiSCASISO9uz+Ad4sXfrnkkksywt/zq19nhFESBGyiSKDIROVYeBPaXyoAdxHhlwG3JOORJdySRIkk45YkPIrCIT9ejaWpCdvjayAWKzj3rLJyvpDvbslDX5S0b8m33L+y/Ct0NHfwh+f+QHdTN0KPgHXQSueezoJyn57zPUjm1OcmnAjzm3W/4Zx557B8+fIxrylaREw1Jky1Jow1xtRjrRHZJmOSTBxWdhjvdr+bE9WTb8GfM++cGRP6fA4q4S+WfCp78istlPlJnrQWoEBhiJv97LMYevqfOS6HtE9aGjnPdf75KYv6/r9nfNUDgkCfLBPy+4kJAtFEgqggEEnEiZktRJNJwsNBYjY7zK3Du3kLkViMiJrkIqeLJSYT8Y6OnIpEb7a384OuTkKqSnjHdkIvjVM8prUFHkpNFH6tpHRU+LOQEKbkPgFyLKZ4Z2fOMccUhT+QTKCqasHKUIBPu1ycYrPhkiQ8koxLSgm9XRQ1X++69BKq/uM/APAdc4zmD+tEBVz3re8bnmx8kqt/ezXeLV4iXRF2dO7gud7nYIIfrUhnBMu8UbdMV7ALICP8olHEWG3EWGvEVDMq8rJLRhAEZEHmU4s+xattr+4Vy32qzHrh/8EPfkBHRwfRlhaG164jmbYQO9pRP3d5StyTI2UX29tIAkkVlPZ2flGdSp+cL6i3btzIm5dcQiKpkkAlrqokVEigElu3NvUciKupYzFVJQ7Ed2znma4uFj7ySMFqy3/09fHrvt7x31B3d8qyzuIoi4UlGnnJE6h0xOMF7RNhuEjomG0K1bHS+LJ88XJVVU7ETaWikAQcooRTEnFI0si+hEMScYoSLmn0uWvkubWIiAN8zGorPpisCWKtIhu6cO8f5Fvvx5Ydy5p319Df3o/jcAdOg5PvHf29jLD+Zt1v6Hu3D+9r3ildL9KeK/yV1lSurpNPPpk9e/ZwV8ddPLjrQc1z88eyPzPrhf/hhx9m69atkz7PXCzuGdgTjbIu7xZxosQiYc0l9srUg0WIJLWjXU0fIvxLK6kWgEVD+E2CgFUUsYkiNlHCbjZTdfJJOJ3OzOZwOGhoaMicU/6Nq3P84PfUzZ3SOAWXC2dWGbzMnZrXOyVLXWfvki3sDoMDQRDwDnsx+o0Mtg4S6g4R6YoQ7Y6yvWs7z/U/l0l3vuS2JfhsPq57PeUyOWfeOXQFuzBWGce4Yi5ut5tly5ZhrbGyVd6Kef7oXa5JMnHVEVcBZCrT/bD+h4iiWLAYazonXvcGs174p8pYlWWlDyHSsSJpsA0fQqQjRfo0a4i0QRSxuVwY/ENYRAGzIGIWBcyiiFUUsUgSFllhlUE7AkUUBB6rb8BqNlN9/nkknv4nUmQ0EkEz5FADLT94xp2W5V4RzObUj4OqzrrydwcTq99enUk7kEYRFPyNfoZ3DxPtjtLU00SkO0K0Nzr2F3CEaFcUeYFMXI1nfPGV1kp8Vb6C1yoeJeWiqTJiqDJgrDJSt6COl694OXPHOFZUTzbXHXPdASf0+ejCX4TkWKUXmbryx4t065EkFhuNGAQBZWQzCgKGkc0oiBjFVFt634CASRQ5TMMXD7DQYOCZhnmYRTG1mc3Urr4J53nnpeYYstxXaVyXXoLliCPo+PZ3Rl0heSxtaBhN+/vRj055ElN3p8xO0gLaPthOtDdKtDeKfaW9wCUXU2MMvjbIwIsDU7pOpDOCZUHKLZP2xV91xFV8v+P7hM4PYaw0Yqw2YqmyIJtlYsnRyXqTZOLbx307Z0x7c3J1XzPrhf/GG2/E6/Uy/P77+B59DOKxjGyLkoSAgJBIIAgpQRcAUYCx7O8veTx8qqQEKZlAVEEWBOSR82VBQBFSk6Cp9tRzmZSYS2YzpsMPK3D3nO1wcHZ+oYoi5NQMHSOqx+jxUI/2Evy01Vxs4Q9A949/kpmkLrbKUxfvg49MSoJAJ564hyUs4c1Nb9LT2gP9MNw9TLgnTHxwdH5p8a8Xo7gK7yINFdqF0YsipKx3Q6UByTYatZX2xZ8z7xw4F35TnWu5A3stVPJAYNZW4NJiX0f1ZPua86N6UBQkqzV1Xjotb9rd4XKNmUNFR2e6+I9n/iMnr8wxlcdwx5l3APDkk09y+z9u55UNrxDuDRPrjZGMTCxcpuF7DVgXWwva/ev9tPympaBddsgYKg0YKgwYK4wYKkceKwyIhlyzTBZkVn9s9UEt5MU46Eov6ujo5JKd611AQEUlEUoQ64sR64sR7Y8S7YtS+W+VCPKoCyQt/tdccw2/+tWvpnTtmitqcB/vLmiP9kbpebRnVOArUmKfjqXP55jKY9g+uB1vxAscWJE0+4KDrvSijs7BSkbgh1KumAtKL6C3vZd73ryH4d5hYv2jQp8cLrTYS04twVA26oJJ3wFkR2VNiLRbptyAZNUWckOZgdr/qC1odxldROIRQolQ5vl3j/quLvDThC78OjoHIKqq8sCGB7ht+2051u9ZDWfx2AePseeuPQy8NIAaV3mVVyfVd7QvmiP8aerr6wvaRJOIocyAUpoSeEOZIfVYnmoT5eKzZWbJTCgRQhREkmqSKmvVQe9731vowq+js5/wZOOT/PTdnzIYHiQxlMAYMHJB2QVUJ6ppa2vL2ZpamggPh1l2+7KMz9sX9WVCJgVFQC0WQjYOsb7CVBUAhx9+OJd/63JeH34dSlLWumQvrKcrCzI2gy3zg5RGt9onyMYH4IUbGehqweypxXz2DbBievNZ6sKvozNDpIU83yLPX87f8kwLf3vib6zftZ7oYJS4N54R7Q1sGPMascEYxorCBUuKZ2KlFwVJQClVUEpSm6HMgGlu7irwYyqPAaC2tpY7f3FnQbz7CbUn7PcpCvZnEokEu3fvZsOGDWx47j42vPokGzpjtPpVnri0iXPiX0+9cBrFX5/c1dGZAtniV2Gu4AvzvsBg7yB/fuvPdHd1k/AliPlixL1xYt4YyXCSBT9aUNCPSTJhf8jOS4++NKVx1H+nHtvSwtQU/nV+Wm5tQbSIGEoMmEvNyB4ZsURM+d1LDSglCrJTRhijxkB2VI/O9HLVVVfx9ttvs3nz5oJkcWlWn2zk2hOM4JwD39g86Wvok7s6OiNkR7dM1r9822238firj/PuzneJ+CLEfXE2+TfxfOL5ca+bjCQRjbk+73AiTJ/aN6X3IShC0ZS/tkNsLP3dUiSzhEkyccNxNwAURPVk+hp5rvvZPyQjbppIfyvbh2z0DSc4tSYMzlo49Yc5Vvubb77JeAbthu6R/6+vbVqHqQu/zkFBMpnE6/Xy4LoH+dUrvyLkCxEfihP3x0kMJWgdauUS/yWUJkqpLqnmjTfe0Ozn8ccf57nnnpvSGGJebbdMxKZRfMMsorgVZLeMs8zJFz76hUy5xZqaGrYltvHzLT8nruYm4RsvO6Qu6B+SJ66B9/5MOmFQQraw57DvsTlex+bn72PTK4+xuTvGjr4kCdVPtV2g/Ro7+FphTa7LZuXKlWMKvyxCJP277iyMfPow6MKvs9+hlTMFRldeOmQHsUCMwYFBBEHAUGXQtFQ/9alPsW3bNvr6+ujv7yc5gbTPAQIMOIqnEKioqJjy+4p745rC3/CRBi49/FIe73scwSkgu+VMqb5ii5MO4zAcbkfBHIIe0z7NbHwAnv4OyeF+WnwqW3oSbOlNpraeBFt7/YTiVxU9vWNIZSCk4jELEAvBCzdmhH/FihWZ15WUlLBy5UpWVJtYOfw6h5UlWFoqYpQFUMypu4VpRBd+nRlhIu6U1W+v5sGdD5JIJAhuD5IIJlLb8MgWSNA83MylwUuJB+PEg3ESgQTJ0KiAWxZamHftvIKKSQC7du1i27ZtBWMbD7/fTzgcxqSR6rqY8IsmEdklIztTm+JUUs9do/uG8sIQSZNk4vvnfZ9z5p3DKY2nTErID6bcMjPKiHsGXysIEqiJlE994Rmw/m5IRDntrmFeappA5jgNNnUnOLF+RGqzXDYXXHABixYtYsWKFVRVVY1GR2XG06bpIpoOdOE/yBgrA+GTjU9y8zs344uOZjfMD8FTVZVwOMzQ0BBDQ0P4/X6e2f4Mf9/wd/oG+0iGkynRDqUEOjE88hhK0LO8hxvCNwCwvmd9TrbGpl80wRTiDBKB0S9jdsUkSFlRU6W3t5c5c+YUtH/yk58k5ArxTN8zqHY1JfQOGaPZiKqqBa6XbIpF9WS7YXQhn2FGRDU+2MruWDnbxKVsffcltvVE6BxK8vzlI2klfK05Lp35bnHSwl/nFDi0XELJXruW5bKZO3cuc+dqpCNfcfG0C30+uvAfAKx+ezUP7HggMxlnlsxcf9z1RUUiY237O7EmrCQiCfwBP+akmUAwQDwcJxlJMhAd4D+f+E+W25ezrXMbw8FhkpEkiXAC50ecOI5w4I14+cEbPwBSwrRr1y4WL148pfchO+WMOHcPd2faBVFAskhFJyrHIh7IFdp0lkaA0tLSnGMOhwOLy4JP9iHbZSSHhGyXc/bdpW4e/+zjVI8U4cnnuOOO47jjjhvTHTWVSWOdmSHw9l3sfPBHbNvTyTavge3dIbb1xtnVnySW9AO5RY16g0nKrOkJ+FFLZHl58YVoJWaBQ6vNLD/yeA4NvcmhpQmWl0k4TXnRUjPgspkqB4Xw5wtnmvSX02lwIggCvogPp9E55lJxrcIRg6FBBFUgGU/ikB0kY0n8YT82yUYkGiEcDaOmSnRhqDZQ46rJiEG6vz3b90ArxCIxItEIakzFqBpxS27afG2oMZVkLIkaU1FjKpf+/FLqLfVYsPCzn/2ME088MTO+G968gXAijH+jn82/GT8ErI3CiAFjhRHHEalsobFkLGNJ2+32Kf8fEsMpYe8KdhX+LyzixIVfAMkiIdlSYp1dejGdpRFg9erV/PCHP6SkpITS0lIMhpSrRSs3PIAkSKz+2GpNSz+fYta5LvD7mI0PcNsNV/HYhj529Ku0+rI/U6FxT9/Wly38oywvk3AaYXm5xPIykUPKRQ4Z2S+3ywif+EPKSs9205hHchOFBmfMZTNVZr3wLz95OY27GzPPc9YtqKObqqo5+6IisvAnC3MsXoAb3ryBD/7wAb53fJAENalOykWx8OcL6VRS/uj1Pet57IPHCCfCDG0Yovsf3QWvb6Ewc2GaTWwCoKenJ9P2m3W/IZxIVbUSlakXd0mGcydC05b0hxH+tG++0lpJ93A3yazyjrZlNuL+OJJVGt0so/sGmwGsZNq1Ys+zKyYBRe9MrjvmOg4vPzzHraWvKt3/8b7+F3Y9tJodzZ18ELRx/c//F2Hlp0dfsPEBWPN1trYO8Hzj1EqObu1NcoKG9+XUeRKD3ymsKYBkhAtuGxX0veCmmQ5mvfDv3rmbSEdhuNx4CIbRf3Da4oWUH1mNp6zuKTHyeQwnwpnybUBONsTJEgqNWjLZrg7BOPU+E+Fc6zttSVutVkwmE1arFYfDQW+yl6QxiWgSkcwSojnv0TL6XHbKGXHO9/HXfKGm6Fg+vfjTHF5+eOZOy2l0oqoqvqhvyi4V3Z++H6AxiRmcfw4ffPABu56/k10v3suujkF2+hR2DUKPN3uRU4grD/svqgVhVGhfuBFiIZaUTszgqbQJLC0VWVYmsaxMZGmpyGGVWQ55xQwrL4MtjyCG0pFeAqCmJn/3Iwt+ssx64Z8yeZF/OYI6xkrH8VAToz8Y2RbvdAl/pbWSzmAnAKJRRLSIqUfDyGYUEYxCqi17M4iIppF9k4ixejTsUBGVjCUtCELO9bJdS8XQEue06Gb/+OVjkS388Ngf6jHos4F8F0g8ArEgD22N8c8P4uwa2M6u6y+lY0jrs6CdO2hn9zDVWeGR6YiZJaWj4i0JMM8tsqQ0JexLRralZRIukzAq7rueLYzqSQv7ub+c7r/GPkcX/mLkGfRpi7cz2KlZnkuQUmW7BElI7Uuj+9kbWQZFWhABjDVGXMe7EGURQRZSm5J6FBUxta+M7kuKxJeO+BKnLDiF+fPnZ/q86oirMkJsrjOz7LfLxnybAgKymFuWLpvxXCDp9qlMas6G2qU6WTxxDaz9K2oyTn9IZHfF2eyuOo/GNx/jexUvI6WNg9DoOonXWxL8cb32Z288dvQlOSl7RauzFnytfKRa4uGLzSwuFVngETFkF8mWDGCw7Zd+973JrM/V8/X7v85TO58abRAY9dMJIxsjbSOCLogCCGRS0yqiwk0fvQlI+fiHQ8OpHwZp9LUFvr9xMEkmLlhwQcbHXwxFVFhVvop3ut6ZdFRPtlvEH/UXTagFelk6nQmQFe8eTYg0e2M0egX2DMZp9Evs7ovQOJikcTCJP8+7uucqG/WuQovpt/+K8tWnin/+s1FEWOARWVSS2j61VObo5Q2jOWxGfPzEsiZxD3KhP2hz9dx6ya2Uv10+bVE9QEFUjzfizfTlMroyQuswOIgmopm+tPKh5Puup6P4xFT817rQH8SMrE7NtsQzvmwAQQQ1ye/+FeX+LTH2DCZp8+d/m8Zm90BSU/gXeHLbRAHqPQqL3EkWeiQWjgj9whKROqdITnr//PDIbF//DC5+mg3MeotfR0eHlLg/9lVIRAGIJ1XagwrNA2GavEmavWrq0ZfkicssmDTmnL77fJifvRGd0uV/f46J/3dk4crlnmCS+zbFWOARWVhhof6zt2JQ5ELLPccXr4v6RDloLX4dnVlLsVQDp/6QwLyP09zcTMsr99Dy/B209A7R7FNp8aXEvd2vkihi87X4kiwqKSyV2KBhsRfDLMN8j8g8t8SCo87gUPObQOE6jXKryFXHGMHsgbN/livkuuU+Y+jCr6Ozv5LvghlxuYTjIm3+OO1+lRPrRwRaTafvTWWB/Oo7/8ddayZXcjFNk1dlkUa2iwZ3rvBX2wXmu0Ua3CINrtT+vJGt0iak5r2OvCIVFTPZhU0HSDz8gYou/Do6+5oRgVeH+/FHoD1qp919DO3rnqHNF6fdn6RtSKXNn/Kt9w2Pmur+79qx56/XiIWYE9o65eE0ebXDaz9SLfHUZWbmuUXmusRCd5AoQTIJqKk7kFX/PhoKqQv5pLjvjZ3cfM8zeI3lzKks47/PXMyFhxdf6zJZdOHX0ZkuxsiqWCzbJxsf4Dtf+TyPbIvSMZQkGAMYAh6e0CXb/EmWlhW6ZepMwXHPLbcKzHUKzHWJzHWmtga3wKqqwv4A3GaBsxcayAi7mtCOe9eZMI+sa2P131+l7YNtGP1t1Ko9NO3cSmdrM6BSeuH3aDd9lO89nFqlP13irwu/js5EyRP25PzTGXj7Prq8AboCKl2BJF0Blc4hlc7ADrr+9zN08g06+gPEYjGCwWBh2O8LN9IXTLBrYPxaAVq0+lWWlhW2N9SU0+DpYK4jyVynyBxHSuDrnCJ1ToE6p4hFGSsEuTCqRxf3yfPo+nZ+8cwOOrwhql3mHMv9yONPZf2/3iYZGV2R3Jp3fqxnDyz+KKFYgl88s0MXfh2daWfjA8Sf/RH+3lY8lXWjoYLpCVQErv5niNda4nQFttIT3EJ8XL3uyOz5/X6cTmfuYV8b1fbJrQERhZR/vdaRF96YRjFz+ld+TuNXKIyOyUYypqJ89MnTD8Wj69v50ZotDA6nFqKpiTixgXZifc0koyHsK88EoN0byrHcd7b15Ii+FtGePZn9Du/4SeYmii78OrOLvEnESCRMvy9Ab1ClL2qkNyzSOxigdxh6gwl6Y2Z6lRp6B/30dHUwMKxS7xJovKoVHv0KCEImBBJUdvYnWdc5Neu8o6OjUPidtdQ4dmeemmSosQvUOERqRsQ9/XyOI/W8wiYgZ9KGjFjmY7lc9OiYaSNb5FU1iRzsI9jdRKSniWhfM7HeZmL9bZBMJeUSzQ5sK87I3OnlWO7uudBULHuugOypRnaWZ1qqXeZpex+68OvsH2gtIsoK8VNVFb/fz8CD1zDwrwfpH04wEBKwLTuNc298dLSPLAt32S0tbOvLFmktv3cM8Oe0dAdHXBwaaSwqbFPLqSTLMv39/YUHTv0hn+r6Tz5WJ1FjF3GZRlaBSwY4/HOw5ZGCqJ5J+dX1SdUpk+2mKRECLJD7ef7NtYR7Woj1NxPra0WNjb3qOBnykwgOIts8mba05V42dyFD60EwWDCU12Mob0Apa6CkbiGCu46IoGTOMSsS/33m1OpgaKELv87MkC/kZg+qpQyhf0fu68weEksu4Ne/u4PB4TiDIZXB8MgWCjLwi0sZTH6JQf8wiURhHPjRbz/BuUddk4oeGcnOmMY4xU/3cAyCURWroVDkK6y5bQ4jVNpEKqwCVXaBSmsqlLHKLlBlE6kqdVF17fuUlJQgihp+mRUXUwaU5f2tMjHtszBB2P5EWtzbvSFEUrkZa1xmTl5SxkNr2wnFUp+5zX/7MWtbNk3pGrHephzhT1vuN1x1BT+qPYyYpSRzR2BWJG7+5KEARecGpgNd+A9WNj4Aa66G2IgVLIiw6gspoXniGlj7l5R1mWZEjEILz+P999/H//4aht65G/9gP37ByVDNCfgtdfh8PnzNm/E3vocvnMQXUfGFVXwRPxcva+dPF+TdroYGENf9me8+NzyGv3yo6NvoD6mw9q+pcWcn7AJKLVOzzj1mgcGwtvD/xxEGLlwiUzEi8OaxJkglA1zwKyjTmH3NRrfK9woZkR8I4EkMMt/g5ZV33me4p5lYfyuJwAA1X7mTdm+Ie99uyUlJYSitIzIJ4ZdsHpTSuRjK6pFso4sisi33z510CHanu6jAT6fQ57NPhF8QhCZS3+YEENdaUjyrKRb2p9UOuZazYgXZmHqevuU3eyARgWjalZHy+/YlnWzojBIM+BmOiQzHEgQlF0H7fIJNawlGkwSjKsEYBGMqgbtuJfC12wkMh/jaUQauXJW1xD40AI99lfbDuzjuvKvIJQQ8MO7b9ka0l4oKgoDbJNA7PPn0If3DydHFSyPZGdOUWgREIVUar8wqUGpJbWXpzSpQZhEptwqUeVyUm6KUGiKj/nNRyfPxw3yPxHyPOFqMe8P9oz+eAAYrRId1f/o+Its9U2GGixaIVDLAoy+9yz/fWEukt5XYYAfNyTjrNc5PBPqR7aUFeYiUUo3qLIBosqGUzkUpm4uhtA6lrB6ltA7J7Ch4rcuscMP5y3ME/cLDa2ZU4IuxLy3+k1VV7Zvxq2SJqWpyoapAeBDV5EZVIRkaRHXUkDzx+6iHfJJkMpnZXC3Paq427BIq8B3+ZRILziAejxPf9hTx124lHvIRS0AsCfEkxEqXE/N1ERvqI2b0EFt8Hv92+jHYn/vmqP/Yl5pEfO7uX/H4K+uIJFQiCYjEdxC5/bOE4yqRuEo4DuG4SjgeIBxXCY08D8XggYtinL9YyXrTqY/tW7v6OP/+/EiArpGtGCkRa/drmN+JKPZ1v53CPyGFN1xc2F0TEH6rkrLG3WaBErNAiUWg1CygIqaSrJ76wxwf/5/PN3PvJ0EcL3OqYobzfpXa1/rhHWtyVHfF7HXyo2jSgacus0IwGqfnxb8S3PwiTYF+3plk37G+VmR7aUG7oXwexuolKKV1I1tK7CWrG0kQMBskglHt0qFui8L15y3fJwJfjNnt6tn4AMtPv4ytPel/iC/roD9v/3MjWwqr2UjgWteozzhr0vEb/2jk/hu+MYEB/Ctrvx34Pcd7H8LuyJs0TMZYt349t/1ragmwQkXSmY8dpz02Q0WG4oh0TrlP3xjC/+UjFXwRFbdJyIi72yTgsRlwX/gz3B/9PMbnvgfv/anw5CO/kHrMy85oduTdCWndLeVPkGpZ6LrVvs9IW/AtnT0kBzuIDLQRG+ggPthB6XnfQhCljHXuHfkiqPEoiYDGRPoEiA+2Q8PhQM5KBow1S2j44q/41KoantzYmfnR0bLiDwT2lfCrwLOCIKjAH1RVvX1GrvLCjTDF7KPJeLRo/LM0ydz72cQiw+RUYxlhqhORAKG49nu0KJrNEyIQ1e7TVFLLsfV7sAhRHEYBh1HAbgCnScDhdOM45wacvm04Nv0FpyGB0yikjhkFHEbNLkFU+MbXrsiNYIHCxF1p63rtX0dXjWanBQDdX36AkT25KkRDhAfacUT7WOUK09myh7ff30y0v4NkuHCeJ3HSvyM7KwralZLaca8rWd3IJXMwlMxBKZ2DXDIHpWQOkjV1Z29WJD61qoaXtvcW+N9XX3joh3/j+5h9JfwfU1W1XRCEcuA5QRC2q6qak1FKEIQrgSsB6urqpnaVvMm+yZBMFv/BkKZew5wid4O5VYImSbhIXelSi8BJ9RJWRcBqSN0BWJX0Y6ot+9FuFLCVzcU63EKlVtiiZEA47XrePA3ttLnn3Toquhs/WhDVg7Uc+rbn9jnZCJZzf6m7Vw4gcoRdGLXDXGaFc1dW8cff/w7v5leIDXaQHPYCKUfkzgn0HRto1xZ+z4j1LYjI7irsFXM56aiVvDVgBmc1ckktksmWI+7t3hCSIJBQVWpmIIpmf2OfCL+qqu0jjz2CIDwCHAW8mvea24HbIZWPf0oXctYC2wqa05ImCqm5O2FkXxQFBMWMJEkYk8VX1FXZBBaViMiygiSCrMaQRZBEAUUERQJZBEUUUCQybQZJwGXWzoNyfJ3Eb84yYpQEDBIYZQGTDEZFwigmMctgGmkzKyPHpJSIF7tbWFgi8dLnrYUH0rnNsycmJxjVM+GFQbrlfVDx6Pp2bnh8C4PDERKBQczhXpZYQ7y1fiuhgQ5KP341SKO3oN5QjHvebiHk7SHSPrWEcrGBdswNRxS0G6oWUX3F75DdlVhMJm7+5KFceHjNmOkTDjb2eiEWQRCsgKiq6tDI/nPAjaqq/rPYOVMuxLLxAdTHv4YQn0BptwKLVaOMm9brIbXCs0jN2oJzVl4G6+/OiRRBlAAxrw8Bjvwi1B0z5agezCOxw2P5tHV0xiF/MjUZDRH3dSMHejl9jkB3Rwsv/WszscFO4r5u1HjhBFH1f/xh1BLPYuj9fzLwzG3jD0JSUNxVKJ5aZE81irsG45xDUNxVOS9TRAGbScY7HDvoxR32r0IsFcAjIwsWZOBvY4n+h2LFxSnrXisP+Hg5wfPLuI33eq3SdQ0nwEBjoVVcd8zkokd0kdbZy1z36KaCWHbva/cy9P5TJIdHgyT+PMH+4oOdmsKveKpHn4gSsqsSxV2N7K7GWTEHwVlF0lGF5ChFELR9rOlJ2IPBRTNd6KUXdXRmKVquDYCfrtlAa0sLzoSXE6sF3KqP5uZmmpqaaGpq4jO3PMwDGwojrb2v3o3vrb9PaSzu0/4fjlXnFbSrkWHCHduR3dXIjjIEMeUKzV/BerD54KeL/cni19HR+ZDki/rJS8pyIlBW2AM8+sI7RHw9xP29dPt7+PRveon7ekiGUqHMHWjNgMF9L6xDKi0MqJBdhROpWghGK4qrEtlVheyqRHZXYZpzSMHrFFHg0ycu4aXtJWMKuy7w048u/Do6+zHZAm+UBUJDXmL+fuJDvSSG+rEddjbt3hD3vN2SOafdG2LD324juOm5KV0z4uvGoiX8zsrUjighO8qQnRXIrirsZdUkrWUIzpTISyYbAIok8OmPzMlEzeRH9RyI8e+zBV34dXT2AfkW+zdOmYe3v5db17xDV2cHtrifSmWYLTv3EPH3kRjqJz7UB4ncIALL0hMyQpuN7BgnP9AYJH09mu2G6sXU/OefkOylGZeMJAr8z0UrAbjh8S2ZRVT742pVnVF04dfRmUaue3QT973TSmLEtFWTCcrlMJ89zMNVF59WECEDsOHum7joe69A1lRqL7CH8Un4e4sIf2HagQyCiGQvRXaWIzvKcFfUcMNlJzF37lwaGhr44zof960tXKEtKkbErLh5q0Hix584VHfJHIDowq+jMw7Zi5AkQSCeTCLGwkQDA3iEYc6ab6bOHOX+VzayYWczieAAicAgyeAgiWEfLWqS90SZHmUtD6/ryKT6TSMoJihICzYx4kN9GMobCtqVkjrM845EGhH3UaEvR7J5CiZRs0X75vkgKblRPfkir3Ngowu/zkHPo+vb+fnTW2nr6qVECvOZIyv51mc+njn2vYc3ZcS686GbCO9ZjxqPAKkJ0mI1lHJIxrn35S2gkbVRspdonKCNYDAj2UpGxLwEyeLSfJ2tbinm2hvIXoCe7XMfbxHT6gsPnRWpCXS00YVf54Al322SnjB8r3mAv73TQtTfTzLkQ44GuOgQJ/+/vTuPcaM84zj+fWZ87nq9RxIIZ6ApSRsuBXEEkMp9KEhcpQgEoiCK1FDa0qJURagtKqWUovYPJCoOFaUHUApFNKXQiLO0QKJQQiihAYUjJ5Cw2YRd767Xx9M/xvbau96197Jlz/ORVhrbM973tXd/fv3OO+/b27ObZ15/j7093YRSfcwND/F5z252fPIpmYFe0Cxbgbfjc/jionVcuPgA7lr1bmkLXbOF0J+oob7dhMoFf26RDqelg0DbLNxYlxfqsVkE2mYPb8fn4IRbRh0vwEnzu/ioe2DU0E27UtWUY8Fv6qrSZfR/WbuZO1e+wY5Pd9EVSHHBojgLO4SX3vqAJ17biEQ7aDvmPMCbBuDGR98sHPvJQz8gs/dTAMrN7jPW/I3pxB5++Y+NXLj4gFELXI/Vwh6PE43jtnbiZMtPqhQ7/DQ6jzoDCQRJZYab6CMnCosEHZLpbEkrvtKYdgt6U44Fv5mS4uBujwZJZbKFecmjQYdwwKFnz+fMiWT51ukLuOasxSXH3vzEf+lPDrF71T3sHOzjinsTzI1myA72sfOzbvr7hmdl3A6MXAMpNPewQvCP5EbjheCfkEyK7Tu9j4X9O6JsLwp/Jzd7I27Qm4u9tRM31km8cxYLDj2IDT1O7r4u3FgnbksnEggWQrx4Ob+8zrZWbj3/cMBa6KY2LPh97ooHXuOV94enmjh5fhd//MYSVBXHcQqTbxXmOk8mSLz7CtmhAQLpQVKD/aSTCbLJAT4d6iebTJBN9pNN9qPJBNmhAdAsW4Abnz6TzhUrCmGW70YRx6Vvw4uFoYofTKD8+YuRynGibRN6LZxwK05rB260nX2i3lR+y89ZWNLH337CxbSfcDESahm1TuqFiw8YNaoHSlvlx87rGjfcLehNLVjwz7CRwZkf3wzlL0U/7UtzeGr9x4X98xe9dLYEUYWe/iHIpNF0Ek2nyKaTuC3tBMMtXH7CQQA8vGYLWYXUnk8YeH8tmkoSJsWSg2PsH3NIJBIkEgle3bid3Xt70dQg2VQSHRrgkdQgj3xzkDt+fjsLz76S5Y+tJ1XUt5Ae6KX7mbsn9VqkBvq4a9W7hXAr7kZxIq1kE3sm/JyZgbHX4w127kem92CvqyUax2mJ40TbcVviuC3tONF2OrpmkQnHSQVbkdzskdGgyy256QKKP6S27xkgGImRUR3zKtNKJ0XrtdSeMcWaOvifXLedm1c8x+cJL2DiEZdlp84H4MF/f8iu3kFCLiRTWTQ3BbFolnMO34dlpx7G8ccfX/Jc+ZZaPLGVpYcGOXZeB+l0mtWbdvLUm9vo6RukPeJw+oIuFs2N8eZHn/G3dVvJZtNoNgOZNJklX+Omx9bjQCFQM6ok3vknb7z1LP/JDKGZFJpOoZm0N9NhJsXWdP7+0TMfzrnoFpwFJ5ZcvQmQ6t5Kz3P3FW7/dQKvXV+fF9KpEesSOKHoGEdUlk0mSsK+uBvFCcfGCH7BCbfgRGI40ThOJEZrvJ3jFs5jzY4kRNpQ1ULru1jXWctKbgddGdWHXjwfzHitcAtr00yaNvifXLed5Y+tZ/NDPybV7QXiDuC791Q+dgXwUCTK0EB/4bmKv+5vev4RfvG/l8se2834XRWxo88hE21j5Hos6d5dDG5+s3Lhyij3YQDgBMZa8qqy3t5edpSZktoJjR5VUokEwoXw3r9j+IOjuBul85Sr0EyaaGuc75y3mIuWLOTVrQPc/uxmBoterOJulUqjevKfWdGgwx0XHwWMHfAW7MZPmjb4y7VWJyKdHk6bkUP6xpoethqaLb8El7iTXydxrOCX4OSDv7+/n/3nlp7YBJBAkNYjz8QJRpBwC06oBScUHd4OR3HCrUioxQv7cCvien9m0aBbGGYIpd0oOxacNCqM58+HtvbOccO6XGCPtzyeBbwxTRz8I4fhTZQWrT416rmcKay9mCk/pG9Cwe8EkEAQCYSQQBgJlD/WjXURW7zUC+lAGAmG6Yy38aOLFtPa2spv/rWFjd0pJBhBghGcUAQJRjl54X7cf/0phW9NIz9AZy+9cbgoAvFIkL0DqbKjeiJBd9xFMSp1o1g3izHTr2mDP99/HOjYtyTEvb5gyd/wfgDE8R4T8bbdwKjnygvtO5/sYIJoOIQ4DgNpENf1jnMCiOsSi4RJ45DMind5vOMiuSGA4E1JWxyo0fnHsc+lt3mBng92NwSBIOIGCgEvbrBwuX0lgfgcZp19feF20BXuuuToQpBeemn5UT0PXXciMNw6Lj45nV/0AmyGRWMaVdMuxDJWa9V1pOTE6liuXHJwobtgZB8/lJ4YHO+x5Y+vLzmhmH/u/LC+iY7qyd8PpSHsiowa1VPMZks0xn98txBLudbqyKGU+ashB1JF3wiAK4pCv/i5xhv5MZnHxgrhqc6RYnOsGGPG07QtfmOM8buxWvxTOEtpjDGmEVnwG2OMz1jwG2OMz1jwG2OMz1jwG2OMzzTEqB4R2QVsnuThs4HPprE4jcDq7A9WZ3+YSp3nqeqckXc2RPBPhYi8Xm44UzOzOvuD1dkfZqLO1tVjjDE+Y8FvjDE+44fgv7/eBagDq7M/WJ39Ydrr3PR9/MYYY0r5ocVvjDGmSNMEv4icKyLvisgmEflhmcfDIvJo7vE1InJIHYo5raqo8/dF5B0ReUtEnheRefUo53SqVOei/b4qIioiDT0CpJr6isilufd5g4g8XOsyTrcq/q4PFpEXRWRd7m97aT3KOZ1E5EER2Skib4/xuIjI3bnX5C0ROWZKv1BVG/4HcIH3gS8AIWA9sGjEPtcD9+a2LwMerXe5a1Dn04CW3PYyP9Q5t18b8DKwGji23uWe4ff4MGAd0Jm7vU+9y12DOt8PLMttLwI+qne5p6HeXwGOAd4e4/GlwDN4M8cvAdZM5fc1S4v/eGCTqn6gqkPAn4ALRuxzAfC73PbjwBki+eW3GlLFOqvqi6ran7u5GjiwxmWcbtW8zwC3AXcCg7Us3Ayopr7XAfeoag+Aqu6scRmnWzV1ViCe224HdtSwfDNCVV8Gdo+zywXA79WzGugQkf0m+/uaJfgPALYW3d6Wu6/sPqqaBvYCs2pSuplRTZ2LXYvXYmhkFeuc+wp8kKr+vZYFmyHVvMcLgAUi8oqIrBaRc2tWuplRTZ1vBa4UkW3A08C3a1O0upro//u4mnYFLjNMRK4EjgVOqXdZZpKIOMCvgavrXJRaCuB195yK943uZRE5UlX31LNQM+xyYIWq/kpETgT+ICJHaPHi2mZczdLi3w4cVHT7wNx9ZfcRkQDeV8TumpRuZlRTZ0TkTOAW4HxVTdaobDOlUp3bgCOAl0TkI7y+0JUNfIK3mvd4G7BSVVOq+iHwHt4HQaOqps7XAn8GUNXXgAjefDbNrKr/92o1S/CvBQ4TkUNFJIR38nbliH1WAl/PbV8CvKC5syYNqmKdRWQxcB9e6Dd63y9UqLOq7lXV2ap6iKoegnde43xVbdR1O6v5u34Sr7WPiMzG6/r5oIZlnG7V1HkLcAaAiHwZL/h31bSUtbcSuCo3umcJsFdVP57skzVFV4+qpkXkBmAV3qiAB1V1g4j8FHhdVVcCv8X7SrgJ7yTKZfUr8dRVWee7gBjwWO489hZVPb9uhZ6iKuvcNKqs7yrgbBF5B8gAy1W1Yb/JVlnnm4AHROR7eCd6r27wRhwi8gjeB/js3LmLnwBBAFW9F+9cxlJgE9APXDOl39fgr5cxxpgJapauHmOMMVWy4DfGGJ+x4DfGGJ+x4DfGGJ+x4DfGGJ+x4DfGGJ+x4DfGGJ+x4DdmEkTkuNy86BERac3NhX9EvctlTDXsAi5jJklEfoY3XUAU2Kaqd9S5SMZUxYLfmEnKzSWzFm/e/5NUNVPnIhlTFevqMWbyZuHNhdSG1/I3piFYi9+YSRKRlXgrRB0K7KeqN9S5SMZUpSlm5zSm1kTkKiClqg+LiAu8KiKnq+oL9S6bMZVYi98YY3zG+viNMcZnLPiNMcZnLPiNMcZnLPiNMcZnLPiNMcZnLPiNMcZnLPiNMcZnLPiNMcZn/g/bUvd3ih8s9gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -352,7 +352,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -366,32 +366,7 @@ "Epoch: 3 Loss: 370.3395690917969\n", "Epoch: 4 Loss: 319.0608215332031\n", "Epoch: 5 Loss: 271.9399108886719\n", - "Epoch: 6 Loss: 228.9813232421875\n", - "Epoch: 7 Loss: 190.1656951904297\n", - "Epoch: 8 Loss: 155.44735717773438\n", - "Epoch: 9 Loss: 124.75199890136719\n", - " ---------------- Solutions at Epoch 09 -------------- \n", - " a value: 1.9375165700912476\n", - " b values: [3.388939619064331, 5.365548133850098, 7.41563081741333, 9.417536735534668, 11.4259614944458, 13.298116683959961, 15.449816703796387, 17.354942321777344, 19.413862228393555, 21.403715133666992]\n", - " ----------------------------------------------------- \n", - "Epoch: 10 Loss: 97.9747314453125\n", - "Epoch: 11 Loss: 74.97842407226562\n", - "Epoch: 12 Loss: 55.59276580810547\n", - "Epoch: 13 Loss: 39.614349365234375\n", - "Epoch: 14 Loss: 26.807687759399414\n", - "Epoch: 15 Loss: 16.907485961914062\n", - "Epoch: 16 Loss: 9.62230396270752\n", - "Epoch: 17 Loss: 4.639813423156738\n", - "Epoch: 18 Loss: 1.6331729888916016\n", - "Epoch: 19 Loss: 0.2687584459781647\n", - " ---------------- Solutions at Epoch 19 -------------- \n", - " a value: 3.0359597206115723\n", - " b values: [3.0146169662475586, 5.015951633453369, 7.017027378082275, 9.015321731567383, 11.016518592834473, 13.012236595153809, 15.01756763458252, 17.01212501525879, 19.014381408691406, 21.015764236450195]\n", - " ----------------------------------------------------- \n", - " ---------------- Final Solutions -------------- \n", - " a value: 3.0359597206115723\n", - " b values: [3.0146169662475586, 5.015951633453369, 7.017027378082275, 9.015321731567383, 11.016518592834473, 13.012236595153809, 15.01756763458252, 17.01212501525879, 19.014381408691406, 21.015764236450195]\n", - " ----------------------------------------------- \n" + "Epoch: 6 Loss: 228.9813232421875\n" ] } ], @@ -455,22 +430,9 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEJCAYAAACT/UyFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACT2klEQVR4nOydd5hjZdn/P6elt0mm9+2VXXpHmihKVV5BsSKKvfHqz4aAiGJBQV9RXnhVUBGkCSwrgq70ssjCNrbM7s5On0zLJJNk0nN+f2SSSSYn09hh2/lc17ly8pxznnMyk3zPfe7nfu5bUFUVHR0dHZ3DB3F/X4COjo6OztuLLvw6Ojo6hxm68Ovo6OgcZujCr6Ojo3OYoQu/jo6OzmGGLvw6Ojo6hxlzJvyCIDQIgvC0IAjbBEF4UxCEr4y1Xy8IQrcgCBvHlvfO1TXo6Ojo6BQjzFUcvyAINUCNqqqvC4JgBzYAFwOXAiFVVW+ekxPr6Ojo6EyKPFcdq6raC/SOrQcFQdgO1M2mr/LycrW5uXkfXp2Ojo7Ooc+GDRsGVVWtmNg+Z8KfjyAIzcBRwHrgFOCLgiB8DHgN+G9VVYc1jrkKuAqgsbGR11577e24VB0dHZ1DBkEQ2rXa53xwVxAEG/AQ8FVVVUeA3wILgCPJPBH8XOs4VVXvUFX1WFVVj62oKLph6ejo6OjMkjkVfkEQFDKif4+qqg8DqKrap6pqSlXVNHAncPxcXoOOjo6OTiFzGdUjAL8Dtquq+ou89pq83d4HbJ2ra9DR0dHRKWYuffynAB8FtgiCsHGs7TvAhwRBOBJQgTbgM7PpPJFI0NXVRTQafetXqnPQYzKZqK+vR1GU/X0pOjoHPHMZ1fMCIGhs+vu+6L+rqwu73U5zczOZhwudwxVVVRkaGqKrq4t58+bt78vR0TngOWhn7kajUTwejy76OgiCgMfj0Z/+dHSmydsSzjlX6KKvk0X/LugczDzk9XFTay8dw37U1l3E9rRg3LuL7179Nb56+sn7/HwHtfDr6OjoHIyoqkp7ezu/feYFfv/CKwR37SC5u4VUT2dunyBw4+LlNCxZyiXV7n16fl343wI2m41QKLS/L6OAu+66i9dee41f//rXb9s5Z/N3+NGPfsR3vvOd3PuTTz6Zl156aV9fmo7OfiVryXfFEkhAiszApwoMXHI26WHfpMeP7trJTa29uvAfyiSTSWT50PiXTPVZJgq/Lvo6BzMPeX18d3s7g22tJNv2ILftpqyrjZ6Uiv26nwEZ0YeM6API8xcR37B+0n6Te3bSHUvs8+s9NFSG2ft4jz76aDZs2LDPrmPPnj184QtfYGBgAIvFwp133snSpUtZs2YNN954I/F4HI/Hwz333ENVVRXXX389e/bsobW1lcbGRpYsWUJHRwetra10dHTw1a9+lS9/+csA/PnPf+ZXv/oV8XicE044gd/85jdIksQf/vAHbrrpJlwuF6tXr8ZoNBZd19DQEB/60Ifo7u7mpJNO4p///CcbNmwgFApx/vnns3VrZjrFzTffTCgU4vrrr+fOO+/kjjvuIB6Ps3DhQv70pz9hsVjYu3cvl19+OaFQiIsuuih3jmeeeYbvfe97lJWVsWPHDlpaWrj44ovp7OwkGo3yla98hauuuopvfetbRCIRjjzySFasWME999xT8NTwk5/8hD//+c+Iosh73vMefvzjH/OrX/2K22+/HVmWWb58Offdd98++5/p6MyEB3uH+P7Lr9O1cwfWjlac3W3s2raNRMdeSIyL9BAgmC3Y0mkEsTiORp6/uFj4RRGpvgl5wSKUBUuQl66gzjgHIcqqqh7wyzHHHKNOZNu2bQXvydxIZ7wcffTRRX1PF6vVWtR21llnqS0tLaqqquorr7yinnnmmaqqqqrP51PT6bSqqqp65513qldffbWqqqp63XXXqUcffbQ6Ojqae3/SSSep0WhUHRgYUN1utxqPx9Vt27ap559/vhqPx1VVVdXPfe5z6t1336329PSoDQ0Nan9/vxqLxdSTTz5Z/cIXvlB0XV/60pfU73//+6qqqurjjz+uAurAwIC6d+9edcWKFbn9fvazn6nXXXedqqqqOjg4mGv/7ne/q/7qV79SVVVVL7jgAvXuu+9WVVVVf/3rX+f+Dk8//bRqsVjU1tbW3HFDQ0Oqqqrq6OioumLFilyfE/922fd///vf1ZNOOkkNh8MFx9fU1KjRaFRVVVUdHh4u+nyqWvyd0NHZV3zuF79SPee/T1WWHaEKFuuMNKb8nsfVqn+/UbQ4r/upqhxxlGq+6DLVfvX3VPdtf1Ir//5SwT7Nz2xUH+wdmvV1A6+pGpp6yFj8BwKhUIiXXnqJD3zgA7m2WCwGZOYdXHbZZfT29hKPxwvizS+88ELMZnPu/XnnnYfRaMRoNFJZWUlfXx/r1q1jw4YNHHfccQBEIhEqKytZv349Z5xxBtl8RpdddhktLS1F1/bcc8/x8MMP5/ovKyub8vNs3bqVa665Br/fTygU4t3vfjcAL774Ig899BAAH/3oR/nmN7+ZO+b4448v+Gy/+tWv+Nvf/gZAZ2cnu3btwuPxlDznv/71L6644gosFgsAbnfGt7lq1So+/OEPc/HFF3PxxRdPee06OtPlwd4hbli/ke6uLuYdfSzfnl9T4FN/yOvjD/feR/Q/s3NHJlpbkGqKExObTj8H0+nnFLWLQBqoNypF17Kv0IV/H5JOp3G5XGzcuLFo25e+9CWuvvpqLrzwQp555hmuv/763Dar1Vqwb76rRpIkkskkqqry8Y9/nJtuuqlg30ceeeQtXbMsy6TT6dz7/Fj4T3ziEzzyyCOsXr2au+66i2eeeSa3rZRrLf+zPPPMM/zrX//i5ZdfxmKxcMYZZ8w61n7t2rU899xzrFmzhh/+8Ids2bLlkBkP0Zk7soOr3bEEtbLIJ5UETYO9/HX9azzx+iZG9u4h2d6KOhoGowl57Yt8fWcmsiYruDe19iI2L4BpCL/oLkeetxB5/kLkeYtQ5i9Eal4wrWudS6GfyCHzy1HnqKDMTHA4HMybN48HHniAD3zgA6iqyubNm1m9ejWBQIC6usxd/+67755x32effTYXXXQRX/va16isrMTn8xEMBjnhhBP4yle+wtDQEA6HgwceeIDVq1cXHf+Od7yDv/zlL1xzzTU88cQTDA9nMmFXVVXR39/P0NAQNpuNxx9/nHPPPReAYDBITU0NiUSCe+65J3f9p5xyCvfddx8f+chHuOeee0pecyAQoKysDIvFwo4dO3jllVdy2xRFIZFIFKVYOOecc7jhhhv48Ic/jMViwefz4XK56Ozs5Mwzz+TUU0/lvvvuIxQK4XK5Zvx31Dn0+cvebm587hV6du8i2dFGsnMvqfa9eDvbeT0RL31gLErK20Oktr4gkqY7lkCeIN6C1ZYR+OYF40LfvADROf4krQCX17pZNxTUjOoBKJMlblxU97aIfT6HjPDvD0ZHR6mvr8+9v/rqq7nnnnv43Oc+x4033kgikeCDH/wgq1ev5vrrr+cDH/gAZWVlnHXWWezdu3dG51q+fDk33ngj73rXu0in0yiKwm233caJJ57I9ddfz0knnYTL5eLII4/UPP66667jQx/6ECtWrODkk0+msbERyAjwtddey/HHH09dXR1Lly7NHfODH/yAE044gYqKCk444QSCwSAAv/zlL7n88sv5yU9+UjC4O5Fzzz2X22+/nWXLlrFkyRJOPPHE3LarrrqKVatWcfTRRxfcPM4991w2btzIsccei8Fg4L3vfS/f//73+chHPkIgEEBVVb785S/ron8Y85DXx4/29NAdT+bcIpAR2iQw/L2vEXvxmVn1nWpvRa6tL4ikqTMqtK06Gttnv5YTe7G8MvfUaxYFLq0u47H+AMPJTOxOmSRy4+L6t13Qp8uclV7clxx77LHqxEIs27dvZ9myZfvpig5+mpubee211ygvL9/fl7LP0L8Thx4jIyPs2rWLlpYW/rZhI09u3MJoRxupvh4qHvwnglwc8RK845eM3nfXjM4jWKxIjfOwfewqjCeeRr1R4bWTVwCZG83Xd3YSSY9rZdZqfzvdM7NBEIQNqqoeO7Fdt/h1dHT2Gw95ffxw+146Wlsx9XYS7+ok1NmG1N2J3NuFv7+v5LGp3h7khqaidrmxdKI+wVWG3NCM3DwfuXE+UuM85Ob5RRb8t+ePZ4/P9/V3xxLUHeBiPx104T9MaWtr29+XoHOY8s2dHfy5x0cKGLn1R0Qee2BW/aQ627SFv2keUk09UkNTZr1hHnLTPOTGeYhOF1DoZ89/X8qCv6TafVAL/UQOauFXVVVPzqUDHBiD+4crWZ9718AA7gEvjoFetu/eTaKni1RPF+meTsr/vIZ6h515ZgPP+8O5Y0WHc9bnTXZ3UjxVEZRlR1B+z5qSx2V98uuGgoeMBT9TDlrhN5lMDA0N6amZdXL5+E0m0/6+lEOSh7w+rtnVjW80Qqqvl3RvF8nebiz9vTgHvbTt3Uuitxs1HKK/RB/Jnm66jAvompB+QKprmPzkksyShQvwlteQqK1HamhGbmhCqm9CdE89PmUR4AM17sNa5LU4aIW/vr6erq4uBgYG9vel6BwAZCtw6cyeZDJJd3c3TU3j7pOHvD6+uqOThKoycssPiT75WG5bECjtgZ/Qd08n8rzieHaprjGTpqCqBqmuEamuEbm+EamuAamhiabGRja840jNAVYodNkoZMIl04AEfKTWzU+WNE7/D3AYcdAKv6IoerUlHZ1JyJ+85JIl1HicIW8vbt8A70yFGOjq4t/bWwj2dEFfL8l+L+lUiuHh4Vy47E2tvSTG3GhSTe2sryU/3XA+yrKVVP79ZQSDoWibWRT4zuLME8GhOMC6PzlohV9HR2fcDZONH4dMDPnybRv417PPEuvrJd3npb+vl7RvEFSVQaA4qcc4bW1tufkg+fHsUnVx2oECTCbkmnqk2uzSML5eVaN5iCDJGfN87LoRBPzJlKawH2oDrPsTXfh1dA5Q8i12e3SU5EAffm8vDt8AxyfC+LxednzqapITjhtOpXni72uJrHloVufNF/46o5Lzy0u19YjllUg1dRkxr868yjV1iDV1iO7yKcfbzKLAsQ4LL/nDpNBdMvsLXfh1dPYzv9/aws9e3Yi3pwdHYIhj42FaOjpp6ewkNdBPerAf7+h4JMww0D62XvFfn0B0FVvBUqW2hT0VYpmb0dHR3Ptvz6/J+fgNK4+k4v4nC/bXipCZZzbkhF0ETAJEVHT3zBQMDQ2xadMmNm3axMaNG9m4cSO33XYbp5566j4/ly78Ojr7gIe8Pq5p6WI4lUkgoKbTOEIBPmuTGO7r4y+724icdk6R+D3k9fHFz36GyFiKAT/QMYPzpvr7NIVfrKjS3F/0lCNV1SBW1WYGVKtqkKprM0tVDQ1OB5ePzViFcd96vjvpYJm1eiCjqioPPPAA/1r3KzZveoPW1hgDA6mi/V5//XVd+HV03m4KBkglkXQsylB/P+rwECnfEGnfIOnhIdK+IVJDA6Szbb4h+lNJvp7tSJKpfPJsumKJguyPN7X2gqdi1teXGvCiLC5OU6EsXYHt459FHBN3sbIaqaIqN4iqAAhCbuAWimesZtF967MnHA4XZd+FTHbbq6/+DN3d/kmP18r0uy/QhV/nsCRrofsSSdTgCLbQCFdYRZalorzsG+HZlSfQFUsUhAsOp9L4vvopEtu2zPyEqSRqwI9Q5iaSVnPZH7tjCcTyyqmPVwxIFVWIlVVI5ZlXe2U1woIlaE1dMzfO48pvfzvngnHJEqgq/lQ699QBepTMvmD7jmtpbf0z7e1x9u6N09aWpr+vnp07vVRVVbFp0ybN4xqbEnR3T973G2+8MQdXrAu/ziHMDx5Zy683biPiHybtHyYdyCxSwE982DfW5od0igHg2rHjpPIKyu9/CqBIVMWy2Se1Sw0NIJaNp/qFjN97d10DUvMCpPLKzOBpxdhreeWY0FciOFwFA6dmUeDmJZlQR62onulmhtSFfmZ0dD7Ec8/+iJ0t3XS0C+zZE6StLUZPT5LCyeNDAPh8Ps304wAL5iu8nJfiX5ahqcnA/PkG3vOeGzjyyCM1U6zvC3Th19lv5LtR6owKZ3vsudzlYipJMjiCMRQkMhIgNRIgHRxBDQawhYMcKSRxRcJEy6vo+OCniqzWh7w+vv+Fz5Lq6ZrxdaWGh1FL1EkV3dMXSsFqQ/RUILrLkTzlBbHq2Tqq355fw9fPPhfTme/ObVMEAVSViSW2LYJARFWLrHNdvPc923dcS0/PeLrw2387xGuvjdLVlSA5MYxqEhKJBC0tLaxYsaJo2zHH2IjFVOYvMLBgvoGGRgOKIgASZ5/1tX3wKUqjC7/OPmFiPLmaSqFGRlFDQWzRUU5SVDah4Ktrzon8/d5hImkVNZVi8xc+zabgSEbcQ8FMRaQSBIHesXXD4mWUve/jAAX+85taexEcLpiF8JNKooaCCBp5ZMSKasSKKsQyN6K7AsntQXR7EMs8iJ5yRHdmkdweBJMZkUzIYr6I5/vSS01M0mrTBX7fk0gkePnl/+X552+jr2+Qyy5bisncjN9fWG3L603Q1jbxVjw1RqORjo4OTeF/97lXcMSq4kJGtbUfnPF5Zoou/IcwEy3qrHjkZ0fMUiZLqIkEw+EwxmiEuMkMNnuRcBlH/IT/dh+RUAhzLEJ5MkaXb5h4KEg6HEYdDaOGQwXCPQi0AaZ3nY/zWz+gK5bgjz2+nBtFkCQS27dCbOZlGZMBf8H7rP+8O5bIZWKcCsFqQ3SWIbrKkMrcCM4yUNOa+9o+8ilsH/mU5jaDAPG8x/2sywUmF/FSg6e60O879rTez3PP3sSu3T30dBvp6bGya1c7nZ0RUmM/BEmC957XTTTWU3R8U7OBF14YLWrPIghQXS0zb56BefMNzJtnYOmSei67bH3JEqHLlt4AQE/PfTA2q6G29oO59rlEF/45JCu8+WXXtELgtIRYACySSDiVRkylSMXj1AhpPl/tJBGL8fMdbQQiUdRYFPu8BVjcntyMx7M9dh7rDzCwu4XIU4+jRiL4Y1E+FovwxUScoVAINRJBjY4tkQh90QjEY7nz2z71RayXX0ma8QpHAKPhMEN3/29mnawnc3qooeD4+oRtos1OehbCr44EitqyAhs64kgEgwHR4UJ0lSE4XIhOV8ZaHxN60VWGYMjkeFQEgctrynJPIlmyA7zZmaXDyVTBoK8AfGyKSUi6iL99PPnUL1j3r9+yp3WA7i6Rri6Vnh4/UyVwTaWguztBc3Nx+ojmpvE2j0eieZ6B5iYDzfMU5s0z0NRkwGzOdw2KLF9+7ZR1oZctveFtEfqJHPLCf9PaJ/nDni4GE0nKZYkPVpdxmtuBqqqoqko6nS54fWEowIO9Q/hSaarfcbbmFPLr7n+YP6x/HX88jlOAM5wWlpkNJJNJEokEiUSCbYEQzwz4SCaSkEyipjKv6c9/nS/EElzT0sWNi+t5NRDi7h4fo48/zOiDf0aNxyARR00kIB5Hjcchnbkl9AOf0fiM6Rt+QezUM4GMu+PuHh8AKW9PUSWi0jZLIWokotkuWIpD06ZLOk/4i/q12WEoL+GeICDY7Ih2J4I98yo6nAh2J6LdjuBwITuc4HAWpefO/q++/OErSZX4sStkhH50TA3ya58e77TpbpYDmFgsRltbG0uWLCna1ut9lJ/8+Ps8/fTIrPpub49rCv/Rx5i55dZampsV7HZp0j4EQWHZsp9QU126LOn+5pAW/oe8Pq774udJtLUCmRmPP5jmsYLJjPGUM3Pvs/7jVwMhbrvjTsLr/gFk/M1/nsE1WT/+GcQyN8OpNF/f2UlszLJUQ0FSHTOrw5tFLWEpCybzrPoDSEe0bxEzEX7BYkWw2jKuFKsNef6ikvs6v3kDCCDYHBmBt1gRpNI/sOyM0YnWedZ/nhXq/9fSRThV6LaZauKRHre+/0mn03R1ddHS0pJbdu7cSUtLC21tbaiqSjgcxmwu/I637rmZ+obiQfnJ8HgkmpoMNDYpVFcXR98AOJ0SRxyR+T4KghlVjSJLTlTipFKZ34osuVi85NoDWvCzHNLCf1NrL+kpHu9KoaaLfbyRtJpxyQiT3/EnJTEeElDgTtAI95o2eS6afATjDPPTCwKCyYxgtpQ8VlAUrJ/4bGY/iw3Ras3sb7MjWKyIFmtm3WyZUriPdVh4wR9GJTPhCMbdKlnXmEWAqFrobsoX7smsc13AD1x6vY/SsvMGBgaH6OiI092VoLs7s3R1J+jpThKPT/7j3bVrF6tWrSpoi8Z6aWwottgFAWpqZBoaMgLf1GSgsVGhsVHBZiv8noqiGYfjqKIBXoDa2g/vF9fMvuaQFv7u2MxH4XOUGNxLAUgzsygKuk2ViAWbTPgFAQxGBINhbDGBwYBgMCIYjZrRJwBiVQ22T30xI9ImMwazmcVuF9tSQq5NNFty65hM0ypqY/uYlsOpNGWyxIWVTs1iGKUGoKeLLu4HNm9u+x5btvyZigrt38yddwzx1FOhWfW9c+fOIuE3GWtYsDDGmWdaaWgcE/cGhfoGAwbDZN/tjMlhMtYyf8HXDwqr/a1wSAt/nVHBv+wIpPxKPQIYRZETXDZEUUQQBARBQBRFXgyEiaRVBFHKzKbQQAIMRx2XsYglKbOvJOEwGvhUUzWKoqAoCtsjcR73hUhKMshyJv2soiBVVhf0ZxFgVAXT6edgWHU0KGPirigZsVcMmePHBFkRBFKqivZtacK1uj1YL78SKJzUUyqqJzuz0ywIRMfOMTGqxyIIGCWxYCD5rVQ30oX74Gdv2wO89OKPaWvvYaDfQii0HK9XZfv2V+js9JFIqDzyaDM2W7H419bN7km3oaGBWKz4SXf+gq8TT3yX714zbvWLopnq6vfjG3qaaKwXk7EGt+fMgveHg9jnc0gL/7fn1/D1b32/yAd885IGTbEpVeUn/9hLq8u4/9wLibzrgin7zI/qEaFIrM2iwM+WNPBqIMSfgVRe+GF+VM/EiCCgICHYTMX4J0sa9TS4OtOm1/sorXtuZvuONnbvTtDbG2egX8HnK6ejo4/e3omxXa3FffQkWLS4uEJu3STCb7eL1NUrNNQrnH76t1i0aBFLlixh0aJFWCwWzWOy4t265+bDVtSng3AwFKk+9thj1ddee21Wx87UlTAxKZdWVM9s3RNv1a2hozMXqKrKiy99nU2b/orXm+D0062IogFJtJJM+cm6QW69ZYDHHy8dmTUZ13yvkjPOsBW179kT4+c3D1BXp2SWeiW37nRmfO8mYy2nnPL87D/gYYwgCBtUVT12YvshbfHDzF0J09l/tu4J3a2h83aRtdKjsV4UuRqr7Qpi0WW0t7ezZesTbHvzn/T0BBgYgN7eOLHYuONv9eomysoSY6IP2RkLpSJepsJuF4lEtJ2TCxYY+c1vJ6uVLDJ/wdcn2a4zGw554dfRORwYF/oeQOThh4Z54YUw/f1JBgb2kEq9OO2+vN4EZWXFEVnVNdpyIQhQXiFRW6NQW6tQUyvT1FjJ8hWnoSj/LIqamS6CYGHZsht1N80cMGfCLwhCA/BHoIqMyXCHqqq/FATBDfwVaCYzk/9SVVWH5+o6dHQORjJJwv5COJxicCCJb1hGFM+nt3eInTv+Ta93hGGfwDPP/glJktix47uk09lJd2l6ehNs3jzzmdAAXm+SZcUp/mluNnDqaRZqahRqahSqq2UaGz1UVKSRpPGBVlE0s3TpD6mpvmjsc2RTEhSiC3tpNm/ezBNPPEEoFMLtdnP22WcXRTC9FebS4k8C/62q6uuCINiBDYIg/BP4BLBOVdUfC4LwLeBbwDfn8Dp0dA4Y8l0w2YHH9a+8yfPP/x6vd4jhYQMDA0n6+4MMDiYZHc0fg/t1UX8vvfRtqipteaKfobJyZj9ts1mgqkqmulrBYdcOvWxuNnD99eNRaVmBh9KDqfsrJcHBhtfrZePGjfzjH//gmWeeobu7m6GhIS6//HIkSWLNmjUA+0z850z4VVXtZSyJoqqqQUEQtgN1wEXAGWO73Q08gy78OocIyWSSLVv/xH/+81MG+ocZ8qXw+QQiEZGrrrJCXpafaKyHbdu+yS23dPPcc7OLZe/rC+HxFM8NmSj8DodIdbWZqiojFRVJqqoVqqpkqiplqqpl7HZxijkchVPrJsa761b7zFBVlSuvvJIXX3yR7u5uwmHtbLRer5eFCxeSSCRYt27dgS/8+QiC0AwcBawHqsZuCgBeMq4grWOuAq4CaGzUQw919g/ZGabZgc7t26P09iYZHk7hH5bxDScZGhrFPyzi98sMDY2gFSknCPDJT87TmB6SoLx89hMCBwa0JwSuXmXiRzdVU1UlU1kpY7Vac9Z5oVsof6bqy2RvSoKgjEX1BPSQyFmgqir//Oc/efLJJ7Hb7TidzgJ3zZYtW3j88ccZGBiYtB+v15tbDwSKExLOljkXfkEQbMBDwFdVVR3JtypUVVUFQdCMJ1VV9Q7gDsiEc871deocXkQiEQYGBhgYGKC/v5+WXf+gZedjDAwOYzSY+NSn60kmi4ee7vhfH1u2zCKLqArDwykqKop/cp7y0j9DRREoL5coL5epqJSpKJcor5CprMi8r69XkOUy0ulogZiXuWWOPz7Tr1YOGT3O/a2T9cMPDw/T39/P0NAQ/f399PT00N/fTzQaxe1286UvfYlAIFDgrlm3bh1VVVVTCn8kL1mi06k9Q382zKnwC4KgkBH9e1RVfXisuU8QhBpVVXsFQaghk3RSR2fa5PvJZdkFqpqzTPNnZD6+RiUSWUkk4mJgYIDBwcGc2Jd6tAZwuYJ84grtZHRl7tnnaRoaSmoK/5IlRs49154T+PIKObfudOa7YAQEQUZVx1ORiKKZxYu/B5AX1aPtjslSU32RLvSzIBwO89hjj7FmzRra2tpyRsPISOlMoPmlF/PdNYFAgMrK8VrLsixTWVlJVVUV1dXVVFdXU1VVhdE4ljJcUTj77LP32WeZy6geAfgdsF1V1V/kbXoM+Djw47HXR+fqGnQOTApDD7OIJBIKweAokVEr/kCA4EiSYChNcCRNMJgilV5EZNRMV9frjIwkGBlJMW9eLzf8IDPgGI31FJTLe/DBTrq6imeRTkUgkCaVUpGkYp+3exrC73CIuD0SHreM2y3hKZfxuDNCXozCUUcpHHnk5JlUs6l+obS1rov5vmXz5s2sW7eOQCDAAw88wPbt2zXdeFMxMDBAbW0tMO6ucTqdLFu2jLKyMqqrq3G73YgapT4BzGYz73nPew6aqJ5TgI8CWwRB2DjW9h0ygn+/IAhXAu3ApXN4DTpzSL7lbTRUU1P7Jcym0wgEAgXLjh1/pLvnFRrqZU46udiSTqVULrpwD9HoVD+q/xS1FBa/KMTpFOmaReVFVYWRQIoyt7Z1ftppVsrKJNxuiTK3hLts7NUtU1HhQRRHC6zyYgoTgkGhmE+VR0YX+H1DOBxmzZo1rFmzhvb2dpLJJHfccQerVq1i8+bNrFmzhkQi838URXHGom8wGKisrCSZV6Q36645++yzGR0dpbx8PI+YoiisXr2aXbt2EQgEisYF9iVzGdXzAplvuBb77plFp4BCazqb5SfzKksuEASSyWFUVSQaTZJMOgiFIkQiEaKRNJFImkhUpaEhk7oWMlPms2LU2dXJLb8IEI/bCAQGCIdTjI6mGR3dQzo9+SShs862aQq/JAmUMHamZGSkOD48i8NZ2jqXZZmKigoqKiowGDqwOxKUuSRcZRIup4TRpH1B55xj55xz7JrbMuGN1wHQ0vKD3BiBIJiRJBPJpL+kT10X87lh8+bNPProo7S2thIOhzEajQwODrJt2zY6OjqK9n/ooYcAWLduXU70gQK3zEREUcTj8VBZWZlz11RWVuJyuQoipfLdNVkxzz5RzKXIa3HYzdzViqOG2Q12TdWXLDnHhLb4B9/rfbRAHJJJlXjcRDqtEIkEEIVyKqs+jsN+CtFotGiJRCK55X3vex8LFy5kw+sfLcgh/uabYX73Ox/RqEosmiYW6yAaTRONqlNa11d8siwn/PkulHRa5dVX/YB/Jn92AMKh0jlFrTaR0dHSIl6KkZF0UQWuLO98p42VK0x4PG5OOunnlJeXU15eTmVlJU6nM3dMr/fRokiXyclY7OM30uL/ry7kby/5bpmsyO/du5edO3cyOjrdunPQ29ub6yefiooKAMrKyqisrKSioiIn9OXl5UgatSdEUcRoNBKJRDSFfdWqVW+b0E/kkBb+Xu+j3PKLrzM05EOW7ZjM8wgGt2Uew1VQVR+qeiWqCmk1haqCmh5C5VNUVd7Drbfer9nv7bffzrp1f2V4+A2SqSSplEo61Usq/WGSSZVUMk0yCclUF6mkSjIJqVQHyeSlPPrYbdTVVbB9+zcL3AH3/9XP73+fH0XSDmyY1udcsGABieQfiwpHhMNpNm+a3ezNSET7xmC1Tp2vvxShcGlht9skhgZT2GwidruE3S5is4vY7SJ2m4TdIeJwSNjtEk6nCbsticMhYneUtupPP92WN4v0wpL7TczoONkNW2f/4vP52LlzJ88++yxGo5FAIIDZbCYej5Maq5q+ZcsWNm7cOKv+s/54p9NZIP4LFy7kO9/5DsokdTMURUGW5ZJCfyBxyAp/1oq7//522tsTgI+MmE4Pk+khbr1Ve9tzzz3Hgw8+M6vr2tVyO7GoucgHLCuzF9RIJDI2Lb4Qk+kt9DmqbZ1P5lM3GgWsVpny8nk4HA6cTiex+CtYrQJWq0iDRmWkLL/6n1qMRmHKQjC1tR/G5TpmWlE9MxFtPdLlwCAbItnW1pYT0JGRkVzpxaGh8RTQ3/zmNzGZTAUhjwAej2da5xIEgbKyspzLr7y8nObm5pxo5/v4ZVl+W33wc80hK/yte26ewaN7MelJajZqPdZNl/BoH9FYcV5y5S0Kv1YuFKNxcse5wSBgNguYTCImk4DZImI2i5hNAvPmaYu0JAn86KZqzCYBi1XCYhGwWESsVhGDwZLL0ZIlk6vlHs2+8jHl+dRluYxkMsDECgb5Ze90kT742bx5M//3f//Hjh078Pl8DA0N4fP5Jg2PzGdoaIi6urqi9vwBU8j8XrNuvvLychobG/nGN75BNBrlqaeeKvDlZ/3w+9sHP9ccssIfjfVOvdMkTDaA/1aEXxLLMRltE0IZwTgmwooythgEDIqA0WjA7V6J2WzGZDJhMpmK1leuXEl4NDuQO05Dg8LPbq7BZMqIu9EoYDYJGMfWtcIVp8Pxx1s0qxppWddZoe7puZeskAuCmWXLJs/xonNws3nzZv7+97/T1tZGLBbj/e9/P7t3786J6KJFi9i0aRMvvfQSGzZMz6U5kcHBQU3hr6ur413vehe1tbW43W6sVmsuVFJRFC644AKOOOIIAIxGY0lx358++LnmkBV+k7GGaKyH957nwD88LoiCQC7WSBTIlE4ERCGNkKm7giQp1NS8t2Tfn/rUpzjqaCf9fQ8hCAkkCSRZQJJkJElAllNIEsiSMNYOsixgNJo49dTvYjQqRT7+957n4L3nOQrOk5/lcCq27/hgkWVtsYgcdZQZraieXJtcRioVRVVLPx3lR/XMRqQnS9SlC/3BR9YdMzo6SigUYnh4mGAwyNDQUM5qHx4eLpgkV15ejtWaiegKBAJkCyu53TOrT2E0GikrK8PlcmGzFRd2AbDb7bzjHe/gggsyVfIms9oPZXGfjENW+Ocv+Do7dnyXSy4ZbytlpcLMLM9TTz2VU089lV7vWbOO6oHCkD/IpKmVJOOsBhXHLetsClyJ2toP6pkRdWbN3Xffzd69e3Pvd+7cyd69exkeHs4t+THqk+Hz+XLCn08p4Xe5XHg8HtxuN/X19Xz2s59l0aJFNDY28uabbxb432HyCJrDUdin4pAuvagVbqlbmDo6GbLumI6ODiKRCMPDwwwMDPD+978/F++ezxNPPMGrr746q3NdfPHFrF69uqh9eHiYF198EbfbnRP6srIy5LFsdlnXzETxzg/fPNT87/uSw7L0oh6poXM4o6oqQ0NDdHR00N7ennttb29n+/bttLe3a8a4H3/88ZoJwcrKymZ0flEUcTqduN1uzGbtlBRlZWWcf/75mtsmE/TD1UWzrzikhV9H51Aj39JNJpPIspwbLH3zzTdzoY3/+Mc/eP311wvcIdPF7/drCr/L5Spqy/rcJy5utxun01ky/8zE0EhBEFBVVbfe3yZ04dfROQAJh8N0d3fT1dVFV1cXr732GuvXr8fv9xMIBBgZGSESifDd7363YLA0iyiKsxJ9yAh/U1NTUXtNTQ1nn312TtxdLhdms3nKuRfZG9OhEP/+dhB6vY8d97/Klt1vcuzSI5l/ydFYjyqdMmI26MKvozOHlPJF57fv2LEjl4YjK/bTLboRDAY1XTDTzd2edcc4nU5cLhcul4uqKs3aSDidTk499VTNbQaDAVVVczebucgoeagRfqOf/r9tp6VzD9v6d/Nm/2629+9mW/8e/NHMXIbfXHg9biGTG2pfir8u/Do6s+Txxx9nw4YNqKpKKpUiFAoRCoUIBoMFr6FQiFgsxic+8QnWrFlDR0cHmzZtyonktm3b2LJly6yuYWRkZFLhVxQFl8vF0UcfTVNTE01NTTQ2NpJMJtm2bRsmk0nTHaMoCk6ns2iAV3fJvDXCb/Qz8mQbyeEoF/3pc2zp20kyXTqVybaBPVyQOIuRJ9t04dfRmQvyhTyL2WxmxYoVOTfFzp07URSFjo4OOjo6csI+MW2AFlmhn3iOUvHoUyEIQskEZAsWLOAb3/gGZrMZl8vF1772taJ98p86soOvB0OemQOV8Bv9+B/bTTgQYufgXnYOtBIjyRUn/Rfp0SSiRSYdTUJ67AaKOqnoA2zr2wVAyh/bp9eqC7/OIU2+uGXjvIeGhojFYgSDQcLhcG4ZHR0lHA6jKAqXX345kBHCfP/5+vXrC2LbZ0IoFKKsrKwor7vD4SjaV1EUamtrqa+vJxwOYzKZcDqdOByO3GKz2SYdPFUUBUmSSlZu0iNj3hqJRIKWlhZe+cM/2fzyG+wYaGXHQCud/l7UsdrFlVY3H199MQDp0cI5D8srF7Kxd7tm3xbFzPLKBaysWgyA5CpO8/JW0IVf54Bnop980aJF7Ny5k/7+fiwWC+973/sAitLpPvbYY/h8vpyoRyKRaRXTMJlMJbfN1jqHceHPukuyzJ8/n/POO4/q6mo+//nPU1dXR0VFRU7UN2/ezCOPPEI6rZ04TyuqB3Q/+77A98guRtd76RjuYfvAHnYO7GXXSAe7wp20tO+ecgC9P+zDN+rHbXEVbVtWMR+AOkcVyyoXsLxiIcsrF7K8cgFNZXWIQub/Lygijnc379PPpQu/zpyhNbAJmYlAWYEym828+93vprW1laeffprBwUFisRiRSIR0Oo3BYKCzszMn3JFIhNHRUaLRKKqq0tjYmKuONFEYu7q6pixmrUU0GiWVSmnmZNKafZq/zWazYbfbsdlsufXs+6qqqlwYY76Pv7Kykrq6Os2JSjA+83Ti322iqJeKh9eZHhPrOvTduYnEnswg61cev5HXurfOqt8dA62c3HR0Ufv7V76bi1e8C5dJu7APZCx9x7ub9agenf1LVsz9fj+pVIpYLFawRKNR0uk0brebPXv25EQ6Fovxz3/+kxNOOKHA2o1EIjzyyCPccMMNs6pnGolEcnnYJ2KxWGb9OcPhsKYLZvHixVitVhwOBxaLJSfwFoulpNslS75YNzY2zmjmqe6WeetkB1ajQ2E6UwPsVfrZ9toWWryt7Bpsxx8bYefTm7EeVUn4jf6c6AMsLp83beEXEGguq2NpxXyWVsynxqEt2g6j9tOjYJZwXbhwn4t9PrrwHyJMtK7dbnfOF62qKslkkkQiQTKZJBaL5eqBtrS0EAwGSSQSqKqKy+Wip6eHuro6jjzyyAJB2rx5M3fddRe33347sVispOthMo4//njNdqPRSDQ686Ixk1VX0hJ+o9GI1WrFYrFovmZFvJRlP2/ePBYvXswFF1xAR0dH0UBtPpNFwOhCPndkBX6kf5i2hJfu6jA79u5i64tvsHugjbbhbhJp7RxDu+9ez0JOYOTJtoL2JeXzNPevtHlYWj6fJRXzWFKeEfrF5c2YlRLuQklAMIiokVS2kNucWfWToQs/haKZRRAEjjnmmJKPzxOLMWeZOFnFbrdz+umnk0wmWbduHbFYLGcZ5p+jo6ODXbt2EYvF2LlzJ2+88QYjIyMoisL8+fPxeDy0tbWxc+dOwuEwoihSUVGByWTi4osvprW1NXct2SLnu3bt4oEHHpjVRJ4zzjiDefPmsWbNGiAjVOvWrQOYVgSLFpMJu8lkmrHwGwwGjEZjydKLp556KscddxwWiyW3zDSl9sSonnwRX7Vqle5e2Y9ko2jUyNgT35iQ3vTM7Tyy7V/0BPtn3GdLfxuVT1YVRdEcUb2EExuOZEnFPBaXz2NJ+TyWLVhC9dHNjL7inbxTRYCEul8EvhSHvPB/+ctfZuvWrQwMDJBIJHJFtu12O6qqEggE8Hq9OetVVVVUVUWSpJwlN/HHfcUVV/D444+TTqdzS9bHnEqlcm2pVKrIGvzyl7+ci7tWVTUXMbJlyxa+853vzOozms1mmpubi9rfyuzNeDwOZCIX1q1bx6pVq3KRMbMlFisdklZdXY3VasVsNhfVGyi1ZEU8+7+a+ARSW1tb8D4/ZFFRFJLJZMH/Z6qbvc7+IxgM0tLSkqvEtWvDdn688gsIat4Nf+xfGU5EZiX6AHt9nZzkPxLJZSwQ/+Pqj+CBy3+Vey8oIq73LcqJ+Oh6b+b8AiAfeEI/kUNe+NeuXUtra+uMj8vW1tywYUOREGzevLloYst00fJHb9iwAbu99ADPVJSa5TlZfdCpyAp/fv9OpxO/359rz6bCNRqNmEym3Hr+km3PhiNOjGjJ9vOhD31I03WkVe5Oa/o/FEf1ZPu++OKLdbfKAU74jX76H9/J3vY22sI97B3qpLW/g70j3ewNduMd7Cs65muNH6TaXl7UvtDdOOX5Km0eFnuaWehpYlF5M4s8zSzyNFFuLcsJtv/hXaiJ4u/kREF3X7wI98WLZvGp9x+HvPDnF4OYCflPABOZbg5yLbSEX1VVDIbS9WinopTA57dna4ZmF4PBkHuduG4wGAqs5ews0Gwd0m984xsYDIZc6lwtRFHk6KOP1hRoregUGBfu2c4O1cX94CDrg0/5Y/zpjUd5Yuez7B3uonukLxf/Ph1afR2awr/Ak8kzJAoiTa5aFngaWVjZzCJ3EwtcDSz0NOEsFUkjCQWinr3OA9l6nw2HvPDPZgASxgVfy3c8U3eHKIqIoljgPspHEAQaGxs588wz6e3tRVVVZFlGlmUkSUKSJBRFyb3PrmczM1522WVs3LixyK1TVVXFt771LRRFmTLipBTZGqQwLqxalnU+U8WPz7Rd5+AgK+iBvmE6UwN0m/3s3ryTdm8HN33gW5S9ZwFAgSXd6uvk+faZ19oA2OPr1AyTPLp2Of/65N00l9VhlA0Zt8z7MxZ5vpAbl5YR2TSQGyMQLTLOCxbkxN16VOUhI/QTOeSF/5JLLsHn8+XeZ4XcarVy8cUX89BDDxGPxxEEoWgBOOaYY4r6/OEPf8gjjzyCIAg5Uc9fJEkqeC/LsqYPOkvWr3zhhRdqDhprxX5n27Ox3w0NDZpRPRNvUqIokk6nNSf9TDaQmUWPRjm8Cb/Rj/+JVnq6uulKDdJfG2Nvdzs7X9lCx1AP7f5uhkb9Rcd9/sQPIzycBlkocJ80lxXXzNVCFiXmLZjPkiVLWLJkCU2mao4crNXc12qwsKQiE4Uz0VIvEvKDzEWzrzjkhf9zn/ucppBmBbOpqYlHH31U0wVz7LHHag70nXPOOVRVVU0rqmcyH7TWYOJEqzpffCeL/Z6tIOsDmTqTkZ25igr/8/KfeHDrP+gKeImnZhY00DbcTYOzBiYcli/8AgK1jkrmldXTXFbPfHcD88rqWeBuoKmpmcbvnlxwbKmonkPNLTMXHNKlF7NMVaZNL+OmczgRer2PvfdtoLO/h+6Al65wH50BL52+HrpD/Tz/t3V4TmzMiH5eqOJNz9zOb9b/ZVbnvOnd/81HjiyuhjccGWF95ybmldXT6KrFrBS7UbOuGl3IZ85hWXoxy1TWsO6+0DnYyR8wBegPDbF3uIuekT66g/10B7z0jA7QHRmg09vNaKL0XIxtf3yRo42mjKWfR4OrZlrXIosS9c5qml31NJXV0uSq47i6zO9LtMioiXTO3VNmdnDu4tMKjhfMEoIgkB5N6tb7HHFYCL+OzsFM+I1+Amv2kB5NklbT+NJBfNUJOje3cnbN8QXpfrPc9OztPLj1yVmdr2Ooh4VPtjExwKbBOS78LpODBlcNTa5amly1NDhraHLV0VRWS429AlkslhZBEXFekBngzb9JZTaC5YTqgy4s8mBFF34dnQOEZDKJ1+ulq6uL7u5uuru72buhhbYNLfSO9NM70o83NFjgX9/+1X9gozg1Ra1du4rWdOgM9GZEecxnnuWY2pU88Yn/o8FZMx4OKQmgqgU3HchY9qZV5cR2DGuGQ+oWvDaqqtLb28vGjRvZuHEjH/rQh5g3TztdxFtBF34dnTkg3/WiqiqBWCiThVFjAPLLX/4yDz74IH19fTMOP+4N9rPI2FzUXlsiMVgWi2Km3lFFnbOKemdNZt1RTaOrhgWexly4Y76P32a0ZPLDT0hBAIduvPtcEo/H2b59O5s3b2bTpk1s3LiRTZs2FUwOra+v14VfR+dAIpFIsHfdm7Q+vgmv10t/eIj+kI+BqI++kUH6g0P0h4cYCPuQRImdX3sSgUyYcMofw/9wprpSKBSit7d3VtfQE+xnUXlzUft8dwNHVC/JCXqdo5I6ZzV1jirqHVWUmZ0li6Rn879rpSMo5Y7Rhb40259/mufv+yPBoUHsnnJO++DHWHrqGTQ2NtLXVzwjOZ+NGzfysY99bJ9fky78Ojp5+NZ30vXQZtxiXkrmrMtDgG//42Ze7dnCYDyAz+8r1U0xqQTBeLggFa+aSDPyZBt1ddOLZc9iN1ipcVRSa68smQXypMaj+PvH7yxqFxQR8zGVBROXBIMIkoAaSR0S6Qj2J689+XceuvM37OnoZCiawFVVzTuqy0jGM+MZwcEBnrrj1wAsXbp0WsI/F+jCr3PQk+9WyY8IES0yo/EoPt8QQxE/vtEAvuQIQ8FhhkJ+fKN+hqJ+hkb9DIZ8DI36CcbCNDprePGzfx0/gTr+2j3SR0v/7Eov9oeGinKwp/wx6prHhb+8vJy6ujrq6+upq6ujUirD1SFQbS2n1l5Jjb0Sm1GjzkB+ut+JaMW362L+lkgkEjxx759Y8+e72dvdw2AkRn8oQu9AYQ4v845dnHTxuwqerpLxGM/f90dWrVrFs88+W9S3xWLhiCOO4Mgjj+Tkk08u2r4v0IVf54Alf/KQikrqCBvqyWUMDQ3h8/kYGhpC6U9x0uC8XHigGknldPq0X15Gq69zxucdGB0uua3c4p7NR8FmsBCIBovaJZeRSy+9lHe/+93U1tZqpgPJj+qBTLijeXVFyYFTnbfORPcM85bSF4nz5ptv8uabb7Jjx45p5eyKJJIEIlFcFnNBe3BokNXnnEpDQwOrV69m1apVrF69miOPPJIFCxbMOH34TNGFX2efMlGkcgigpsfz5isLHFR9ejUAI6/18ovrfsLw8DAj6iijZWl8fYMM9Q4SiAXxR0YIREOk1GJr9piGlTxy+W80r8Usl66dOxmRRJTReASLwVy0rdI2LvwCAh6Liwqrm3JrGVU2D5VWDxVWN5U2D5U2D1XWzKvVUGyl53zpbjdud+kbyqGcM+ZAYcvT/2LtH/4XJR7FaLURD4dyebWCgwPc/uDj7O6fXUbe3kCwSPjtnnI++clPcuWVV77la58NuvDrTErBxCABookYOwf3EoqFCcVHCalRUostxJwqQ7t66d/USTAaIhgLMxILE4xl1oOxMOctOYOfvuf/AZDYM0LfnZuwHVvDyCN7+OE/fk0yrV1CcTJ8IX/JbW6zc8b9SYKE2+IkEA1qCv9HjryI85eeSbnFTWV5OVJa1EzdiwiiSda8AeppBd5+shb8cH8fo5IB57LVtLa3s/75Z+keGKI/GEYWRW5837uIhYqfzKodtmkJvwB4bFZqnHaqnXZqXHYa3a6CfWSDkdM++LGSg+tvB7rwH2DkC+1EcSiypiUgTysFQ2FxCJ/Px4ZHXmTwhb2E/EFiYoJwbKxYuZQgVW8gbstElQS6hgh0DBIaDTOaivLZT32Gj1/84cKc5Cr0jvRz/t1XzeqzTXR1JPaMMDIUg6SK02TXTO41Ff7oSMltZRYnsijhNjtxW1yZV7MLj9WFx+zCbXHhsbjwWMrwWFyUW1y4zA5EoXQm03pnNfXO6kwagYsLMz7qon7g4Pf72bFjBzt27ODFfz7JK889i9c/wlA4TMaQf7TomFQ6remWAah2FqdxdppNVDlsGZF3Oah22Khy2DHI424a2WBkxeln0/rGfwqiepaddua+/LgzZs6EXxCE3wPnA/2qqq4ca7se+DQwMLbbd1RV/ftcXQNoCymM/1hFSyZzphpJIToN2N/VhHl1OcHXvUT/3VMkwOE3+mn/2yaCgwGwyZhOqcaw2Elwaz+B5zuJBUZJppMk0ymS6RSJVJKUCZRVbqR6C+effz42m63o+p7f9DJPt64nnooTTyWIJROZ17viqBUGorEooR4/sWSMWDJONBkjmowTTcT4nwuv5ewFJ6HG0ww/sBPIuAfW/XEtl35tdqFgu57egl/cXWTN2ozatWinw0gsVNSWnb3pMNqmFH6LYsZltlMxrwaPx4PH48GJNVPxKFmcc+rn7/0Wv77g2plZViIIsogaz/vceVE9WsKuC/z+ZaI//rGWTtb+a92s+uobCWkKf5PHxSkLm/jo17/NihUrUEaGeeXeu3LROnDgirwWc2nx3wX8GvjjhPZbVFW9eQ7PmyP8Rj8nvfc0dg22A5kBQq4ht66qKmlVRUUlrY790MeqH1oUMzuvzkx5z8Zcx9oDRDb08+2HfsJj28e+WD+b2TXt3r07J/zhN/pzFvXG3u3c/uq92gftnLzP0Xhe3pV05qZmPaoSdWtpa3gqwtGwZoSITcNXPV0CGsKfLXH34SMvJBQbxWmy4TI7cFodOBUbLpMDp8mG02THJBuxnFgcR14qqsfisOZu6lnRFswSajINibF6C5OEMursHyYK+RHvuQg8VezcuZOX1v2TV194jkH/CF9556kYzCZSySTqWHbd4OAA4e72WZ3XZjQQKVGqtMbl4H1Hr+Qzn/lMrs1htxXF5x+IIq/FnAm/qqrPCYLQPFf9T4eRJ9uIJTLW8UzJ3QjGUBPpXISJNIkrYCrySxqOPNmWs6gVafZlEid+vqwVbYzN/jrDce0kXibZyKrqpZgVI3aDFZvRgs1gxel0Ur6yDnlXBLuSaXcYbdiNVuxGGw6jFfuEpwVlgQPbsTX4H97FZ47/YK49m40x1h6Y9uQhXawPbkZGRti9ezfPPPYI6x55iD5/gIFgmIFQmMhv7tI8Zng0gkcsfpor17DY83FZTFQ57FTabVQ5Mkulw4bVOHkVvNXnvLfg/bLTzjxohH4i+8PH/0VBED4GvAb8t6qqmrFzgiBcBVwF0Ng4dQ1NLQqSQM0QzXTVY03SLKtZAQX5+/Ovz/CWhD9e8F5yZUIC3ZXlHFO7AotixmwwYZZNWBQTZsWIWTFjUUzYnXbMBjOmhIzNYMFqMGNRzFTaPEWZFCFTQ2Dtx+8ovAARyj6wJOcK8/9tV6GrRIP8qB7QnvJvPapSnzx0iKA1e3XZaWdyzTXXcOedd9LfP/Pi6APBEB5b8RNopcOGJAosXrKUZcuWUW41M7pnJ+UWExV2K0ZFRpDGngw1QjLt5RW4qmvp2rYFNZ1GEEVWnX0u7/zU52f12Q9E3m7h/y3wAzIS+gPg58AntXZUVfUO4A7I5OOfzcmyAjjj4wRJu1ThmLvAZXKOZSCUEAUJWcwskighizLK2LoiyciiPLZdxmAyFhRVz7o5AI6pW8G3T/8MBknBIBswSApG2YBRUnCfMQ+T0UTipX6MogGTbBzbZsCkGLEqeRaOSG4c4+iPnM6jlv/VjjqBgpJ0EwtLa2ZSnODrhozrxHXhwqJydZMNUk9Et9gPfrY//zTP3Xs3vT09BFMqAyNBvEM+/NE4AyNBPvuOE5ClzG8qf/ZqMpmclegDDATDLNXIFN3kcfE/V32Uz/327oLrm3jjAQ5aV81bZU4LsYy5eh7PDu5Od9tEZluIJfxGP71/3YqayPNViwKCKEBKRRREBAQEgdy6aJAyU9o39BcJ4Uzaiz6vRjGJfB9/KfJ92jON6skeozWQrRUxpCfa0tFi+/NPs+6uO4iFgiRSKYbDEYbCo/hCowyFRxkejTIYDDEUHiWe1A7J/eZ7TqfCXjhr2V5egXjUKXz605+e9PyyJFLldFLpclBmkKlw2KiwWal22jApxU/KssHIu6764mEj4pNxQBRiEQShRlXVbDaq9wFb5/J81qMqqWHltKN6CqJ3mpyaQjid9qmiQPKvL/9a8plY+Dm7/0zFeLrH6Fb34Uu+NWwpc3PG5Z8AxqzhwYHcfg+/vpWXds9u4HQwNFok/MGhQY5dlDFqZFlm/vz51HjcMDyI22Kkwm6j3Gah3OXi3M98CYB/3P7LYveMIGC02oiFQ4ed5T5b5jKc817gDKBcEIQu4DrgDEEQjiQji23AZ0odv68oJWhTidxkx82kfbbXp6OzL5jo4jjhkg/RNzDAk/f+ie5eLyOJFIOBAL5gGN9ohMBolB8ODWGQpVykTBaLYfbjUEOhcFGb3VPO8ccfz+7du2lqakKWZc1rnijk/777DqLBzJwQo83O2Z+4Shf6GXJY1NzV0TnUmSiWjlXHsW1nCy899QS+YIjhcITh0QgjkejEwlpF/Pe730GNxoSlV/d2cv9/Nk96rFGW8NiseKwWPLbsYqXWacdmGh9z090xbw8HhKtHR0dn+kwU85rlq3jjxefp7ukhKsq4Fizh1jv+jx0vPMNTd/y6IPXvH372U17ZMzu3zHB4VFP43VYLAuC0mHFbzbitFsptFtzWzOKxWbAZDVNOmDPZ7Zz1cd1K35/owq+js59RVZVX1j7KE3/6Az1eLzFRRrC72LV9G8OhMCORKP5IlEj8rsIDn36RD158IVv+/kjBDFIAh2l2EW0AIxHtMOh55WXcdMl7ctE5kyEbjSTjcYxWG4IA0ZDuf5+MlvVenn94B7v3tNA1tIfuseX9p36GK66+mMUnVO/T8+nCr6Ozj5hooZ962UcJhcP840+/Z6C/nyOWLNYUvne+4zT+/cKLszrnE3/8PU6hOCqszFI6M6ndZMRtNVNmMeOyZCz3srH3bqsFk8mYCXiY4OMvNX9FMZkQZUUfXJ0mLeu9vPTIbl7b8hKDkQ6G4528uX0rvcPtpCckKtzTvY1/3b0EYJ+Kvy78Ojoz5Mn//R9efmINI6MRRqIxgtklEht7H828/u+fiI+JpySK/NjtysWv5wtjwjegeZ7p0N3bS/0RKwqibwBqXQ5OWDQPl8mI02SgzDIm7A4bkigWiLogSRgtlgKrHA7fGPd9STqd5vn7WnjzhR4mJAPgnmduxh+e/H/fPbQHNa3y8qN7dOHX0Xkr5CzzPLFMpFKEonFCsRhpQaSpLFN6cWLUyLErlvP6tu1TDpBOJJVOMxpPYBUEnr/vjwUiap7mRHBJFHCYTbjMJlwWM06zifraWk774McKfPwATVWVfPp7NwDFAq7VpiXqutBPn3Q6TXt7O/948DmeevR5Orx76PHtxaiY+cb7btM8ps4zf1rCDxDyzT4LgRa68Osc1JSakfnvu++gx9tHKBonoqpEkin8gRFiKgRCYYKRKOFYnHAsI/axvIlHLouJa84/G4BYKMgTv70VyAhhxO+bsehnGYlEsRoNBIcK87pXlZdjkPfgNJuKF8v4us1kRMwbOJ0YGVNKzHVR33eoqkpfXx//eOA5/vnYi+zt2kXfSDtefzujo8Uhq7KkkEqnkMTiilp1ngW82bG+oK3MVkmdez715Qup8yyg3rMQAJt79mM2WujCr3NAkl84Q7TZcc9bzJuvvozfHyAcjxNHxFReSWzAyynzG4BMNMsTv70VVBU1nea3T7/C8Kh2srnJCEbjqOp4tTA1lcpZ6XbT5Im8JiJLIg6TEYfJlLth2D3lBft88/obOPrO20glxnMuaaX4nX/UcSVT/h7MCcMOBm644QbWrVvH1q1b8fl80z4umUowEOimuqw439ii2tWMjPqo88ynzrOAOvd8rCZH0X6CKHDSRQve0vVPZErhFwThS8CfSyVT09GBwmn9WRSTCSSZEb8f2Wbn5PddRkW5p8jNkk6rPLRpO9aqWpKihLeri35vL+FYnERq8qpcDW5nTviBAt+11WiYlfCn0mmiiSTmvAlLWSvdbsoMmloMCg6zCbvJmFmMBuxmE46x9w5zRuzNJiOkx5272epL+aw4/WxEUdR96vsBVVUZGBjgyQdf4PnH32B1Y+ZvbrRKvOPSJTm/+muvvcZzzz03q3P0B7o0hX9Z/bEsq8+E2K98Ry1tW4eKXDqKUeKMy5fsl6ieKuA/giC8DvweeFI9GGZ96Uybf/3fb9i87h+5TIR1y1Yy7O0hPDSIIIqo6TRGmx1BgGHfMLv8IepWHomlspq927ay47VXGY3GiCYTRBPJvCVBLJHMWbrHvbCeD510dNGUe1EU2LCnneSuvTO+9nAsXnLbVGl2C65BELAZDdhMRqxGA4lUCjPjwp+10r/y+c9zzjNPTStD6+pz3kvdkmXT9qfrQj83PPuXHWx5vovhkQG8gXai8iB72lvo8u6lL9BJKBIAQBJlfvHJ05AkmVg4xb/+uA3IRNOsXLmSNWvWTHoes8FKrXsete75mVfPfGrLmjEbbZMet/IdtZx++VJO3zcfd1pMKfyqql4jCML3gHcBVwC/FgThfuB3qqrumesLPJSY6I/OT/2aj6QoyEYTsVAwJ7z5AqyqaYKBEUSTiXgyhZxK4HC6iuKlu3u9/OG2XzESCCAYjJjdFfR3dxIKhVAlGWtFFX6fD99AP/FkklgyNfb6OOeuXMJZyxbkri1ryY/G4vzx6Rfh6ZmHH0bicc00uABmg0IwOvMBrNG4duEMgEq7jVAshtVgwGocWwwGbCYDNqMBq9GYE3uzIpeceCRIUs5KP/8LX8VkNORulKX2f8/nvjqpj11nbmhZ7+Wvv1lHe28Lff5OvMMd9Pk76PN3Ek9GJz02lU4yMNKTs87VFLlomhUrVuT2M8hGqlxN1LqbqSlrHhP5eVRWVJGIpVEne0gVQFIEUnEVm9vISRct2OfW/HSYlo9fVVVVEAQv4AWSQBnwoCAI/1RV9f/N5QW+FbY//zSP3vlbAr5BbK4y6pcfwa5XXyYZjwMqqpqtxDWWZVhVURnPxb+gsZ6zPp6pL5sVbMlgoLNvAP9oBFXNFGyRjCaWnnomVQsXk0gkSCQSJJNJunZuY9eGVxkNBkmlVVLpNGcsmY/FaCA4OFDg7tjY2cN/9naRTKVIptOZJTXxNUUilSY94YHrE6ccw0ppfPAoODjAP27/JW92efnLc4WDRwXsaSu5KV5CoI1y8SDVdIlMItJmRdYUflEQMBsULLnFgNmgYB1btxiVAn+8IEk5H/9FRy3XPJcoyygms2ZRbcjceFNjdRO0csG881OfP6Rysx9MZGPgvT191NRV07zSk3ORGK0S8dEUf3vhTt5ofXZW/XuH2wvcMlnXy1lnncWjjz7KihUriPeZeO6+XSTj+S48kdMvWwrAc/fvJBYeV/+JbqMDgen4+L8CfAwYBP4P+IaqqglBEERgF3BACv/255/mqTt+za2PPUXfSLbk38PTPt4gS/zo/efyxG9uAUHI+Y5TsRj/3r6HjZ09hQc8/dK0+j1+XgMWDRfEcDjCTu/s4rkTqWLLM51Mosy+XgyxEsJvUmYeD2CQJUyKrPm5s7x31VJSaRVPRTmnXngJmx5/GKOgYpQnt8RXnfXuogFPKEzkJRmNKAaDPnv0IOP1f+9mzZ+fo62jlYGRLvqGu+gPZJZYfJRffOrvhJ4bNxayYlvlaijVpSaKbKTa1Ui1qxG7paxgWzaapqamhgsvvDDTuAAkSeLlR/cQ8sWKLPcDSeBLMZ1fsRt4v6qqBYk/VFVNC4Jw/txc1lvn+fv+WDSNfSZkrX6tx3mNam/TJlnCPfCWqnqVGABVpNlb56XyqsuSxHHN9RkxNygYJRmjImFWFIyKjEmWMSkyJkXBrMgYFTn32SarerSyrhpRljn3s19h2WlnsnzxogK32PyjjmPnK89POyujLuwHB5uebWXNn16gvWMvvkgP/f5uvEOdDIx0EQhPHj0zGOihxt1c1F7l0q7YZzbYqC5rpMrVSHVZEzVlTVS5GnHbqxA1yqkKEiWjaRafUH1QCHwppuPjv26Sbdv37eXsOybGSs+U9CTD11MloZq8X+2O5RkIv0BGgBVJRJGkksc6TCZOnN+IQZYwSBLK2KtBljDIMgZZwmw2I6fTY20SRlnGKEvIk9w0Ljt+dS7ccMvTT5X022tN5YfiPO9QnLhLa7BTd68cnGx8ppVNT/US8sWQDQLJhJqrV/HHf/+YV1v+Oat++/ydmsJf55nP0vpjqXY1UFXWRJWrIWPNm8s0f7uyQWTpidXs3tBPNJz5Lh+I7pl9ySEbx2/3lBMcHMBlMZPMd4UIGeGEcQEXxtYFQcitT2aB17ochGNxRFFAFDKLJIoYTCaWn3I6iqKw86XnSMeiiKKINLZdEjORI1osrangytOOQxZFZFFEkkQUUUSWRCQxI/CKJI6VeBSmvPmIsozbYeO/jj2i5D7ZCUDdO7cXRPXULz8Cv7eH4OBAUVTPRHdJ3ZJlM86PrlvjhxY7X+nlyXtfo729jVB6gLgyTEvLLrwDXQwGexgZHebmK9ZgMlhIxvMMHxUqHLWzOqdBNjEa1x6jqXXP44vn/URzmyBC3SIX/oFIkZvm9MuXzupaDkYO2Xz8WR//W3H3AAiiWODjL0W+m2I655eNRmoWLZ1VVE9WgE02G6oKsXBIMwsiUOQuKTUBSEdHi5b13txgpS/Yx+BoJ84FSULpQVpbW9m+tYX2jr3EEpNHzHzrkv+lvnxhUft/dq3j7n//SPMYUZTw2KupcjZQ6aqnwllPlbOeSlc9Tku5pvEjSJmAgFRyXNey4ZKHI4ddPn6taezzjzqON59bRzI2vZtB1v2Q349kMJCacLxWfvGC8+e5NQRRZNXZ575tbgtd2HWm4tm/7GDTs+34Rgbwhbwsbz6alEYA1j9e/zMv7fj7rM4xMNKjKfxVrgY89hoqnLVUOOqodNZT4ayj0lWPx1aNJE0hUQKYLDLRcHK/hkcebByyFr+Ojs44o6OjdHR08OKTb/DCP96gx9uFL9yPL9iHL+glEB5CHZtq9+OPPYzN7Czq48k3/sKaV38343OLgsgHTvkSp624cGbHSQKKSSQWTiGIoKbBZJVRUYmFU7rQT4PDzuLX0TnUefYvO9j6fA/ZqdH5Qvlq6z/Y3PoyQ4E+/OEBghH/tPsdCnk1hd9jLy2wRsVMub2GckctHkcNFY5ayscWt61yUstdMmQmNBmtEgKCbr2/DejCr6NzgNGy3puLEVeFNMGwn0BkEN9IPxHVj6kqTltrO+1tnXzpvJ8hjmV+TKfUXCx7W08LG/e8MKvzD414aapYUtReXdbEotrVlNtrqKlq4JLPnIEScdH+ShyTaJ9kvgUYTRl3TH5UjyDCilMPX//7VKTTaVRVRXoLYdml0IVfR2c/kC/uvkQH9nkxNv9nJ+1tnfhDg/hHBwmEB/GHB0mltcNlAYIRP06rp6i9zFY542tyWDyU26tRZO3Is3rPAr5ywS8QJYGzP7YsZ423rPQWTGbKn02rW+7TIxwO8/JvfsPL//c7tvX3sTOdpiUe52+PPcY555yzz8+nC7+Ozj5my3NtrP3jegYG+wmMDjGaHKZqsZlbbv8xkBH9p+/ZkZvy/9DTv2fT75+f1bmGwwPTEn5REHFZK3DbqyizVeKxV+O2V+G2VeGxV+OyVaBIUye1M1llTrt0cYGQa01mejsTjh1s9H7/+wzfex93Dg2xLRqlJRGnPRbTrPPwyl/+ogu/js7+Imuh796zi6gwTMUSCcEWw+v14vV66e3txev10t3Vw0gwUHS88LTApz/6RZafUs/Lj+4pyPPispYX7T9dhkP9NFcWu0oWVK/k42d9JyfuDosbi91AKqEWnLv4QkFWBJJxNTegqlvts2NkZASv18vixYsJrFlD/y23kuzJpHoRgEdHAuyNl84uC/CfJ56Yk2vThV/nsCHfvYKgEotHSRtHaTrGis8/xKv/3sbg4CCSLHL2qstyfui6RS68e0dIxtPc+9zP2ePdOuNzq6g8dd8Glp9SX5Rz3aVhsedjNthwWcsps1XgsmYWj6sSh6mchvJFmseU2So5btHZufeyQeQdl2b89tm/gS7sb522K64g8NLLtMfjtMRitCTi7E6maAmH6E4kWFxfz6u/+Q2937sWNVo412Gx0Til8HeOjMzJdevCr3NIkC/qWT/zPffeg7evh2gqSCA8TGg0QDASIBT1E4r4SaS0f3R2cxlnH3EZkBHGrp3+gm2zpbenF8gIbb7417kXsKr5FFzWcpzWclzW8jGBz6wbFXNBP7JB5MwPL6V3j79kVM9kYY+6wM+cwJo19P7iFto6OthrsdBeWcGWDRtoiURoi8cpNQqzu6uLth/ciCFaPMFtidHIk2Mz3gWgUVFYYjSx1GRkqdHEUqORukbtvENvFV34dQ4o4vE4fr+f4eFhfD5fbsl/PzQ0lFuWLVvGNV/4aYHPPOSLsfW5Hh55/g8MBLpnfA2haIB0OpWLlsnHYXFPebwoiNjNZTgsHpwWN06rB4fFQ2V1BZBJ/JV/vcsbj2d54/GT9qllnR9uaQbmmgJ3jCRB3mz9/+7p5ulQiOgM5z2lgd39/Swfq9yWz5lWG2WSxFKjiYVGI9axlOJZBJOJqqu/NuvPMxm68OvMmGf/soOtz42npZZkgbSqoqYgkYwTiYeIpyIkGGUkECRtiFG73MKJZ63mrLPOKuovlUrR3NyMz+djdHR0RteSTCaLfOZZbCbnrIRfVdOEY0HsZlfRtlr3PBbVrsZuLqPcXclZlxxNdXU1VVVV1NTUEO4WeWNNH6iFuZ4ECd75sUx9gKzFPTGt7/aXegqeLuqXuLjoa0fP+Pp1pibfgm+zWuiorKR382b+n3vM7aaRomWmoi8CzQYDobR2upclJhNLsjcEUcR12aWEnn2OZG8vck0NlV/7Ks4LLpjROaeLLvyHAYW+bXKuAaNV4qT3z6duhZ1wOEwoFMotTU1NNDc3F/X1h+uf5LZ7fko0HiaWiBCNjxJNhDOv8VGS6RLFVv4GF7z2fk3hlyQJv98/Y9EHGBwcLPKZZ7Gaiich5SNLCjaTC7vZlXu1m8uwmZ1IovZP49TlF3Dq8gty7pYit8lqKPdU8Pz9LZNmetSKhNFdMHND30MP8Z+f/JSW7m7aDAY6bFZ27N7N3liMeL6FDXzJVYZZI0HjQoMR0E4KB1AlyywyGFlkNLLYmHldYDBgFEUkl4t0NFrk48+d12ym5obvz5nIa6EL/yzR8ilrxS5P3G/iINqzf9nBmy/0oI4ZrOl0CqNT5Kh31dFwhItoNEosFiMajbLztS5e/3crweEwkjlN85FluOqMvPOd7yTaaygatOuPtvL0m39lqN9PLB4lnowRT0aJJaLEk1HiiSjJX2gL9Q9/+EO+853vFH3mrl0+Nuz+96z+Zh17vCW3uVwuQqFQye2lGBoaKvKZZ1ndfArVrkasJgc2kwub2YnN5MwJvVExIwgCoiRkKrFNkoevfol2RkctDvZc7QcrWVfNP1ta2JCIsyccpjUepzuRYJI4phwqsDce13TLLDJmCrK4JImFBgOLjEYWGYwsHBN5Z4lJVoLJRNV3M7+j/ltufVus+elwyAp/VlBfa3ma0fiYoKgqoiwgiJCIpcaa0mPlF9XxVzWNoiicseKSnIjm+1hb/C/yysv/IZVMkU6nSKVTpB/OridJpZP84t5MeyqdJJlKkh5rv6r7+/wXp7P4hOoCl8k/N97Hmld/Rzp7B7h5Gh9yrKDYr3/8O+Tu+Tl3R7aLwf5Bnn/tX7P6+wWDxdbNy4/uwWSwzKo/gFCodIRCWVkZXV1diKJIWVlZbnG73blXj8eTe+/xeHLvGXbwzF92Frl7Tlr6ntIXM/bkkxXx7OcL+WKZFAL67NIDkng8zp49e9i7dy/vfe976f3+9/Hf/0CBa+bJ4AiPzTIaZk88pin8J1utPLdgIZ6xYkIlkWUEmw01ECgS+P0p9BM5JIU/X1CfeP1PeIfbpziiGINs4owVl+RENPsa8sV4ct2Ts7Z6o7Eoz92/k8UnVPPmC+N+ckEQx0V/hmx5qZ0japqL2hXZOKv+AE3rO+SLYVQmF35JlDEbrJgMFkwGK+axxWSw0lSrXc0I4KmnnsJsNmO32xFnUY1MEISST2DTTeylW+kHBul0mq6uLnbt2kVLSwstLS1se+EFdrz5Jl2RSM563/mtb5H62yNFx88zTD0RLYtbklhgMLDAaGS+wcgqk1lzP4soYsn7XppPOpFEe8cBY8HPlENS+PMFdbaok4iwVpm26ZJOp3L5VPJPIZfwKU+HYCAMNcXthmkIvyCIGBUTLrcDu92OzWbDarUyb968on2zLpWPn/UdjIoJk5IRd5PBkhF3xYosKSWrHJ354dJWc3X1WxNdffbowcnGjRt5/ne/Y8tjj7HXN0yHmqYjkSA6RXw7wKZ772OlhnU+31D8va+RZRYYjMwzGphvMLDAkPHBl8mZ351gMuF838WZwVWNqJ4scm3tQSfyWhySwj9Lw7mwj0lG8N+K8OcPfmbdR5AZaAQQEJAlBVlSUBQjLo8No9FINJBGREEWFRTZiCIZUCQDFquFhromzXNVOOu58pxrMcgmjLIZRTFilE0YsotiwmAwcM7HV0zL2s2GIeZPDAIQRQFVKPSR58eU6xOEDj+yUTNdnZ302u2cfdGFhJ97vshCvuWb3+SPTz01q3Psjcc0hX+FycTnPB7mGQzMNxhpNhgKrPUCkT9ILfa3yiEp/PmCevT8MwiMDo1vEwSEseKLGctUyLVlyy+KgogolM6Id8yCM6nzLEAURARBRBJlJFHKW8+8F0Wp4L0sKlQ66zFZM3/2FafW5lxSJy19LycteQ+imPEhTowamZjfBQqt6InbACxGG8ctPZOlJ1bn3B4To3pmUle0VBiiLuiHL6Ojo+zdu5fN997L1r/eT9vgIJ2qSmdklO5EgsSYAfViMJizrpM9PfR+71oAqnbvmfE5q2WZJoMBu8Y8C4BaReFL5RWa2ySXi6rvfuewEnktDknhzxfU9x77sX3e/6qFJ3LpiRcXRPHk+5QnQ5QETrt0MUBuwPDNF3qQGP8SawnqdER3sqn4+8rtoUesHPrkJjLlWcMAD/2/b/LaQD+d8QTdapoeRaFveHhafXYkEjnhB1CjUfpvuZX6mHaIo0MUWXbccSxatIjyF1+kIRqjyWCgyWDAOma9CxYLaokQ4KJtZjO1b3PI5IHMIVuBa2KYZBbFKCHK5PzspVCMEolYSjOqZyort+DceUmvdAtZ50Bj+NFH2frTn9HR1UWPotA9GubTdgdi/jiNLEM6zY29PfzF75/VeX5SU8MFjgnzKgSBLqeTW7e9mRF1xZAT9/KGBhb9ex0w5jaakOtGMJmo+cENjL7++nhUjyThuvQD1Fx33ayu8VCkVAWuQ1b4dXR0YODhh9n8s5vp7O7Gqyh0j47SM+aG6U0m6UkkSE7QgKfnL6BKUYr6usvn46cD/TM6v0uSaFQUrnR7OMduL9iWHSgtJer51rnWU4huvU+NXnpRR+cQQ1VVBEHIxLLf99dcnhfBYuHOBfP5y7//TZ/Pp5nnfTK6EwlN4a/XaJOAGpOJOlGkUVFoUAzUGxQaFQMNioJ9kolN+eI9lag7L7hAF/p9yJwJvyAIvwfOB/pVVV051uYG/go0A23ApaqqTs9JqKNzGJC1bOM9PQSsFnrjcbzDfgasFkaOOIIBs5nOzk66urro7e1l29VXM/rAgwV9qKOjDP37abw+36yuoSuRQCtD0FKjkU+53dQrBuoVhXpFoaGxkbr/vro47bAsI9lspMYmMtlOf0fJKBpd1MdZ27qWX77+S7qHu4l1xzBUGlBsCh9Y/AGuOfGafXaeubT47wJ+Dfwxr+1bwDpVVX8sCMK3xt5/cw6vQUdnvzLRRaE0NRJ59T8Zn7QggMnEE/39bEqn6I9G6YvG8CYTDCSTxal+W1qK+t9131+p07Cqa2ZQp9UpitQqCrVjYl40AWrMx19vMHB1xXhlL0FRqPnvq6dtteto09fXx6ZNm/j5Yz9n/Yb1RDujxHpjkIbGLzXiOMbBX3f+FWCfif+cCb+qqs8JgtA8ofki4Iyx9buBZ9CFX+cQQFVVgsFgrhrXnscfp+X+BxgIBhlIJQmn0/xaVXMVmMYOgkiEdcER/q6RImM6eGMx6izFs6lrlOy8EKiQZWpkmVpFoUbOCHzdmNDXyDK2SW4SgstFzViumd4f/gh1bHB3YlikbrVPTtaS94a9VFur+fJRX+aOr93B+vXr6e8vPW4S6YjgOMYBwAMtDxz4wl+CKlVVe8fWvUBVqR0FQbgKuAqgcY6KEejolEIrN7tcW8vLxx9Hm8VCX19fruxidpkqu2g8ncagkY6iUi72nU+X/rT2bMWTLBb+ufpIKtNplMlmwYoigsOBGgggOJ2IkHPPTLTadWGfHo/veZyfPPUTOls6cQgOLr30Uh7e9TCJscmbveFern3pWkZaRyYVfYBox7j7bLYpXbTYb4O7qqqqgiCUHHdSVfUO4A7IRPW8bRemc0gxceAzoar4Uyl8qRS+ZJLhVIqhdJrRxYsYXbqU/v5+lOFhfhAYGfdZj03dT/b08JvbbmP9LLKIAgykUtRpCH+VrP0ztIsiVbJMtaxQqchUyzK15RUcc+stNDQ00NDQQPiWW/Dfe1/RsTaDgcU/uAEYd8EITifE47n49qw1rwv67FjbupYf/PsH9Lf2E+2KovaoGAYMdO/uJjWa+c4oboW/rv5r0bGJdIJg+eRPeUqFglI2bhS8lYwBE3m7hb9PEIQaVVV7BUGoAWYWG6Zz2FJggQsCqCopVSXmcFB7/nm5gUPJ6SQNqH4/P+nvoyOeYDiVwpdK4k+lGClhIdPnheefB8Aly9ywYKHmbp7JMjNOwUAySZ1GZMxxFgtfK6+gSpaplGWqFJlKWclNVMqSC3M899xcm2MsZn1iVE/N968/ILNCHqwEg0G2bdvGm2++yS1rb6GtpY1oV5Skv1TRxQwJX4JUOIVkLXanibWZ/6/JZMJQZ0CqkzA1mjA1ZBbJUnjMBxZ/YJ99nrdb+B8DPg78eOz10bf5/DoHEFkxT/T0MOTxkFy9it5X1jPc38eICoFEghFRJBCLEUilMks6hX9sfSSd5jizmbvz/OOpvAlGz4/lY58p/mSShKqiaIh8eQnrHMBoNFJTU4PL56M8naZClscXSWZ+iayRy00mzVTAgtkMRqNmit98aq67Tp+0tA+Y6If/ytFf4bz55wHwzne+k1dffXVW/Ua7oliXWIvaXSe6ePrap1m0aBH/aP8H1790PdFU8UxmURAPnqgeQRDuJTOQWy4IQhdwHRnBv18QhCuBduDSuTq/zr6l1ASagYcfpvUXtxDo7SXidiO//32kVqwgEAgULccddxyf+tSncv1lQwBVVeX0l15EfenFGV/XsEYGxSxlM4hsKe43qel7P8lixWi3s+yrX6Wmpobq6upc6UWXy4UgCJozTSEzIGpYtrQoqododEr/us6+xe/3s337drZv3862bdt45rVn2NG5g3nXZrLS9oZ7uf6l6wE4b/55rFixYkbCL5pEjPVGTPXFlnsWT4WHpUuX5s4BlLzx7GvmMqrnQyU2nV2iXWcfkC/QE8XE/eUvIZ95JuFwmHA4TNvPf07/k08xmkwQQYBjj0E+5xxCoRALnn2W5Xtai/rvise58oXnCT33LKNALF94W/fAa/8peW0jIyM54e+/5dacMIqCgE0UCZZyw0yCf4bCL5CZTVomSbglCbck45Yz7z2Kwur/+R/Mu3bhuvc+0HhaOKO8nA9NmFU6ET28cf+Stdx7Q72Uxcs413IunXs6WfvyWnwdPhLeBPFh7SfBZCiJbMvIYjQV5Zev/5Lz5p/HypUrNfcXJAFDjQFTvQljXUboTfUmlPLx9OSyIJNW06Tz6oDJgsy3T/h2QV/nzT9vzoR+IofVzN1Syae0fqAT99WagALFIW7295xL8Il/FLgcsj5psaaGqq99FdeFFxYNOg4KMCDLREdGiAsi8VSSuCAQT6aIm80k1DSR8CgJmw35hOOJxuP41q8nEgzyIU85SxUFweWCcBg1kYkeeLG7m+94e4mk00R2bCf59BTFY7o64ZFHAPiSp5zl5eVFu8iCQGeiRF3dKfDn/U2Svb0F2xySNCvhVxmfwTqRj5W5ucDhpGxM6MskCackIZXw07s+9EFq/uu/AAisXKkZ1TNdAdfDG/cPa1vX8plvfwbfaz5ivTHSkTTP8/y0j4/1xpAXjcuiN5wpF7pq1SoWL16M1+7NCbyxzoixyoggj3+fZEHmksWX8FzXcwWWO7x91vx0OOSF/5prrqG7u5t4Zyejr7+OOmYhqj3dqB/9aEY40ippVNTuLtKXfxgVFYMg8rPaWiATzZEfOXHr5k28eNllpFWVpKqSUiFF5jX5+gaSY+1JIKmqJLL77dzBU14vi/72NyIvv1JwnQ8PDnHr4MDUH6i/L2NZ53GK1cpSRcndgLKoQH9y8sGnUoyWCB2zzaI6VpZ84Zdragpi2hsVBYMg4BBFnJKEQ5RwSJl1p5gRbNeYcDslEZco4ZhExAGO1YhvzzF2MwY0k3vpwn1gMNF6X5RcxLOvP0ugN0DVB6pwGV18+4RvF7hKRvtHibRGZnW+WHcM66Jxf3y1NZNQ8Z3vfCc7d+7k009+mle8r2gea5bMXHfydSUFfX8K/UQOeeH/29/+xrZt22Z8nHkSQWmPJ9gUmd0XKxGLFok+gDL7YBGiae1oV+NbiEAJl7C+LROEXwKsoohdkrCJIlZRxGGxUPOud+F0OguW5ubm3HETk3P9rmF2czUElwvne87VjOoZv0g9a+PBwNrWtdz83M107u1EGpQY6R4h4o0Q88aI98VJRwut9/JzywkIAa55ITPoed788/CGvRhrplF5ThIwVBk4/6TzWb58OVFPlLWhtTA+MRmTZMpZ61nufPedReJvEA3ccMoNB5SwT8UhL/yzZbKkzdJbEOlEiWyohrcQoxsr0ad5gkiLgFmSsJWXY/D5MAuZOqJmUcA8JtoWScKCwFFm7dqjoiDwxLz5WM1mai++iPjjayE2XoNAK7OiFlp+8Jw7Lc+9IpjNmZuDquoCfhCztnUt33/p+0RSGYNJQMAkmeh9sZfQ5hCxvoy4p0KTp0vPJ9YbQ3bIJNVkzhdfba1mpGa80LpoEjHWGDNLrTG3bqg0UOus5cH/Gs9zdHrr6dNyx9z57jvfwl/iwEAX/hKkJyu9yOyVP1mi23JZYpnRiEEQxhYRgyjk3pvG2oyCgFEUMOatH11CpBcZjaybvwCzKGIRBAxmM7U3/gDnBRdkxhg0Jv64PvRBYm1tmk8lWRY0N4+PhZx44qwHMXV3yqHJ43se52dP/4yuti5i/THi/XEqL6pEEMd/NyoqkVSE0d2j+F/yz+o8MW8sFyaZ9cV/5eivcM3QNQjfEDDWGJHLZBQxM9CayCt7qmXNv52Dq/ubQ174b7zxRvx+P6MbNxL4298gkciVXhQlMTMomEohIpC1jyVhcnG/yuPh0nIPYiqNRMbdIQkCEpnBT1kQUAQBeey9lG0DRLMZ01FHFgnru+0O3m13TO9DyTKCIOQGcSduy2ZFNLpc1KMdIpi1mksVsWi74orCa1QUan/0Qz1drg5rW9dyy/pb6OzoxBq0Uh+vZ/OOzQz3DJMcSBLtj5KOFroKy95RhsFTPI/BWDW1WyaLaBIxVBswVhsxVhsxN48bPFlf/Hnzz4Nz4JeeXx7Qg6v7m8OqEMukUT15M0JzjL2Xa2v3SVRPflTIxKgeFAXJas0cN+bmyLk7XK6iGO+C655F1ImOjhYT/dcnVp+Yc23cdttt3P6n22nZ3ULcF2cmif6bv9mMbZmtqD24OUj7L9pz7wVZwFBpwFCVEXhDlSHjmqkyIDtlzegtWZC58dQbD2shL4VegWsa6FV+dA4H1rau5aZXbmKwf5DEUIL4YJzE4Phr41cbEeXx8aGs+H/jG9/g5ptvntU5a6+oxX26u6g9GUgS2BDAWJURd8WtFLiEJnJi9YnsGN6BP+YHwGlwFkT16BSiV+CaBrrbQudQIOeK6ezEHrZzmvU0XBEXL775Iq9ue5XIYITEUAK1xIBTwpfAWDnugsk+AcybN2/a1yCaRAwVhoz1XpmZ4KSF7JTxnOUpancZXcSSsdxgsMvo4lvHf0sX+H2ELvw6OgcZqVQKr9fL/f+5n4ejDxdYv+fOO5dHdz/Krt/sIvByAIANbJhR/4nBQuHPMlH4ZZecEfYKQ4HIGyoNSHZJ0y2TjyIoJNTxcaq5yEmjo40u/Do6BwhrW9fyo5d+xGDfIMnhJEpQ4TT7aTijTrq6unIlF3t6ekiOTcxb/r/LEY0Zt0wgHshValI8s8/xHx/QTmdw/PHHc93/XceDQw+ilqmIBu0QZFmQsRlsuRtSFgEBFZUaa81hP7g6GSMv3cXme7/Ppj1eLjy2kYb/+gGs2rdpzXTh19GZI9a2ruXHr/4Yf8yPqqq4jC7OnXdu0XT+9Xet5y8P/4X2rnaSI8mCQdOd7Jz0HInhBMbqYutccU8t/JJVQvEoKOUKhnIDikfBUGHAPK8wPPjE6hMB8Hg8XH/l9RzXelxBhMw76t9R9Jl0UZ8aVVVpa2tj8+bNbNq0iY0bN7LpPy/R2tWX28dl6uTDxi9n3uxD8deFX0dnFuRSCQR6KUuWcUn1JfgGfDyw4QGG+oZIBpIk/AmS/iRJf5J0PM2yXy/LWeQwngHSsdXBnjf3THK20iR82sJvKDcgu+SMqHsMGDwGZI+cEXePAaVcQTJPnb00P6ony+EU7z5XqKpKc3MzHR0dk+630Zviw4kIrLtBF34dnbkklUohlUjpfM011/D404/T0tFCPBAnFczMNJ1OIrBUJFUkttFUlEEGZ3yNil1BKpNKhlTaV9lZemsm5a9JMnHRwot4dPejmvneQXfD7CuSr9/L7vuvZcueHrb4FFTgB6cBzno4+9qceAuCQGNj49TC3zc2kznQtU+vUxd+nUOeRCLB4OAgg4ODDAwM8OTWJ3ng9QcIDYdIBVMkR5Ikg0ksUQupYAqPx8OuXbs0+/rPf/7Dppc2zeo6koGkppUdtxb61GWHnJlxWqaguBXcVW6uefc1uXKLdXV1PO19mu+9+L2C2ahQOjvkefPP46jKo/RJTPuCzfej/uv7dHd1siVUxlbbaWwdktjy6nNs291GLC8voscscMOpNoRAJ6wpdNmsWrWKF154oah7UYAlHpEjq0VOaxyTaGf9Pv0IuvDrHBRkXSs9wz1YEhYSwQT+YT+SImFeaNa0VE899VS2bt1KIBCY1jlGydSiTUySdrq6unrWnyEZSGq6ZRacuoCvXfg17uq6C9WhFsTQl5qclH2fHUOAqWPadRfNLNl8Py/+37fYsKuHrf1p3hxIs7U/xUgMIAjcU/LQoYiKN6RSYxdggstm9erVOBwOVq9ePb5Y+lmx85dYhLwnM8WceVrYh+jCrzMn5Hzg4V5EQSStpovE+cZXbuSBlgdIpVIEXg2QCqcyy2gqty5EBMxxMz6fj2Q4iRov9G1YFlqYf838oopJkKmTOl3RzycUCjE6OopFI61zkfALINkkZKeM7JRRXErhukvO+NpdSi76Jh+TZOKb53yT8+afx7LWZbqQ7w/GLHh/XydlFhnUFDgbMmLb8Qq89nu++1iIZ9unn0Auny39aWrsY//7PJfNFVdcwac//enisNfNCzM3iEBXkYtoX6ELv06Ota1ruWn9TQTi42I5ceJMMpnE6/USDAYJBoOMjIzw9K6neWTrI/j8PtSoSnI0SXo0TSqSIh1JZ4R8NIX3SC/XR68H4I3+N8YHOgXouqMLStRhGWFEewOZiklZ8ismAZRrFJKZDoIgMDg4SGNjcaroj33sY1iWWPhrz19J29LIdhlBFlBEBVVVSaql6x9k4+xLRcDoQj73qJv+StdD17KttYvtIQfboxVs27GDbf1JUmmV4W/aM0Ic6IRHPg9jrrSVleK0hb/KKrCyUmRVlcQRlSIrK/Nu+HkuG0UpEXm16tJ9LvQT0YX/IGCyItCT7d/j68EUMZGKpgiGgjhFJx7Bw46+HaRiKYjDcttyysQyXtj7ApFwhHQsTTqaxnWyC9eJLvwxP9978XtARphaW1tZsmTJrD5HfDCeE+e+0fGQNUEQkCzSjFLyZpl4TDZLI4wLvyAIeDweysvL8eIlbU0j2SVku4zskDPrDhnZLmNwGdj8uc0lB3dXrFjBihUrOLb12KL/CTDlU47O20MikWD37t1sf+L/2LHuz2zvGmb7kMCOgTjh3JDKKOAtOK43pFJrH7PA88ZPVlRIQKEL0GaAlZVj4t7oYeV7P80Re2+nwhBDkzlw2cyWw0L4b3zlRu7feT/qhBCI7I/TaXBmimTHAjiNzkmniq9tXcutG27FO+LFLttBBf+oH0EVSCVTOGQH6USaYCyIVbQSj8eJxCOQAjWlYp5vpq6sLicGWZFu3dJKem+aeDROPB5HTaoYVAP1pnp2D+4mFU+hJlT2JvbyUuIl3JIbj+whEolw2223cfbZZ+eu7/qXrieaihLcFuTNX7456d+mhx7N9vxY7kQ6kbOk7Xb7rP8PqUhGpL1hb9H/QrJOU/ilzL6yTc64WOxyQenFbJZGgP/5n//hN7/5DS6XKyfka1vXcs0L15S0zC9bcllJ0c+nlHWuC/x+ZvP9fOqqz3DXq35Ss0hD9mZ/mlp7sUvuxHqJj61WWFEhsqJC5IgqiQaHMO6mef8vM1b65pXjbhpzWWZbZHjOXDaz5ZAX/kUnLqK9dTz7X05vxl5VVR0r3JpZsu9FRWTJL5YUWLwA1790Pbt+vYvA+pn7jgEW/XQRvYaMP/qN/jdyIXahbSH6Huwr2r+UMIcJ00knAD6fL9f+y9d/mQvZKzWzcjqkY4V+l6wl7XBMM3W0Vp+jmT6rrdX0jfaRzivv6DjGQSqcQrJK2otFQrJJiCaxZCqAiTnWKysri/bJCvNEl5aAwKVLLtXTBRyARKNR9uzZw84nf0/Lv//Mzu5h9gYV/v3g7xCP/OD4jpvvhzVfxs7orETfokB/WPvAo2ok7r5Yu+4F804fF/S3wU2zLzjkhb+zs5PEwMyLg6cN46KUtXgh40dm9noKY4ZmNBXlgZYHcuInvIXai5G8MpD5ro63JPwT8qlnLWmLxUJdXR1WqxWHw0FrtJWEkkCyZERZMkuIlrFXs5gR7Oy6TcqJc4GPH6i+tHS0jCIqvH/R+3O+cafRiaqqBOKBWblUdF/6gUcymaStrY1du3axa9cuWl76O7s2vkBL3yjtAZXiJMIJOv/8JZpEcVxo190AiQhLyyf/3juMsLxCYnm5yLIKMbNeIdLoFBDzjQpRyaRUT2mnsAABjv0knP+L2X7s/cYhL/yzZsJAY76gTpY2dirUPFMk3+IV3kI9x3zhr7ZW0xvuBUA0iyjlmWgS0SgiGjKvglEYf28Sx7cbx98bKseLZiiikrOkBUGgq2s8MiHftVQKLXHOCm/+zU8LPSvjIcLm+zVcID5++HycuzfG2etPkyz9NdBkZ98oTfkzWsciZrLCX2cXWFYhstQjsrRcYlmFyLJykWpbnotGMcPqy2HXU5kBXUEqjOqBOY+w2R/owl+KCRZG1uLtDfdmLH5x7AYgZkRbkArX8xeksXZZKLDss4IIYGoy4TnHg6CM7ScLiIqYey8axtaV8fVKeyW/v+D31NXV5fr8ytFfyQmxqd7EkpunHoiVBImUqu1fn0p4s+2zGdS85sRrdNfKocTjVzP68h9oHU6wZxj2WI9hj3ElrZte4rF39aCkx4yDyLhrMhBNs8s3Q8UfY+dgmnflz2h11kOgk5MaJEa+Zcdu1DCmJAMYbDPzux8CQj+RQ174v3jbF3ls12O59wICuaqKArl1QRQK1/OeFvMt3utfup76K+upv/KtzaSbOI3eusiKdZG1aL9SoqyICt875Xssn7+8oD1fiPPdIiPxEaqt1TTZm3i171XSajqXBvetzujUXSeHCWPx7t7uDlr9Aq2+BK1+aB1OsccPrUNJekP5FtNzYwu0H21jobvYBaPVNhEBaHQKLPKILPGILPaILPZIHF0jFs5oPftaWPNlDEQwZMfnZyP0hwGHvPDffPHNuF5x7bOoHhgXVYfBgSAI+GP+XF8uoysntA6Dg3gqnutLKx9KvuiWOjcUDkZOxwqfqRDrwn0Ys/l+eOKbBZZ4Rm7Hfi+CCGqabzwV5bb/xImUnqpQkt2+tKbIL8prq7JmxH1RtZ3F9giLPSKL3CIL3SJmJWul5f2GJ4ZH5vv6DzHXzL5GL72oo3O4cPeFqK3P4IuotPlV2oMS7b5YZj2Qps2fWbqvtmM1FLtJrvl3lB8+X2qgc3L+5z0mvnh8cbH1UFxl11CaBW4Rh1EY962v+XImxUGWAl+8LurTRS+9qKNzqJEbMC0elNwiLGPTpk10vLqWjteepH1ghI6ASrs/TXiKILf2QJrlFcVzGea5pnbLiELGLbOgTMwsbpmF7/kcx3v/CBTfNGwGgaNqxs6VteB1y33O0YVfR+dAJk/c06pIXyhJ54hA10iSnqDKF45TMhEq2XGgsSyQt/xnGX949JlZnbLNX0L4yzLC7zDCgjKReWPiPr9MZJ5LZIFbpMkpoORHqB17JZz/c9h8gmZUT1EUzUEWD3+wogu/js7+ZvP9xNf8P3oHhugOpumKWumufQ/du9+ka9dmukbSdI2k6Q6qRSGPH1ml4JpYxzwRoTEy+YztyWjza7t/T2mQGPp/dspMaE+iEyVIpwE1I+jHfGI8xl0X8mkxODjIpk2b+PPaZ1n7zCsoR11E86JlfOPdS7j4qLqpO5gmuvDr6MwhqVSK/v5+BgcHOeKII4p32Hw/H/rwR7lva74bZBT447T67wykcZmKrfNGU6jkMRYFmpwiza6Mhd7sEmkaW59XJlJp1Z5TYpQFjPLYAGvWUi9lsetMiqqq7Nixg989+gz3Pfk8vo5dpAb3Eh8ZKtjPXbmE7opmvv3wFoB9Jv668OvoTJe8SUhhUy195Sfi/c9jeP2j9AZVvKE0vSE1swRVemNG+gNR0uk0RqORSCRSbCmvuwGbMvsAi66RNEdUFQv/ynnVvP+IQZqsMZqcAg1OkSanSJNLwGMWSqa9GKc4qkcX95nzyBvd/OzJnfT4I9S6zDnLXRAETj7tdPxDA5MeH+/fC0AkkeJnT+7UhV9HZ1+iqiojL91N/9ofMurzsnpJ04SZm52AwPv/GuafrUlC8QCwfYpeR3NrsViM4eFh3G534S6BLuoc05+1XWaCeodIg1OkwSFQbdMYcFXMHP/JH/PQJymOjslHlCGd0gdP9wGPvNHNtQ+9zkBXK4mBdhIDbcQH2hBkhcpLMt+jbn+k0HJ3N8EUwp/ob82t9/hL/B9ngS78OocWeVa5T3UwMBJlMBBmYFRlMGZgICIwEBilPwwDoykGogr9CQsDwyPEE5kA9UanQPtXx/KxF+RqUUmkITS7iEZ6e3uLhd9ZT519DwJQZROoswvUOUTqs68OgXqHSJ0981ocZjnB9aJllZeI/NGFfuY88kY31z+ymYGeduKDHUjDnRiCXfS27SY53JN5MspDUEyoahpByNyg8y33dFkjMCFMXZJRPI0YKudjqJqHoXpRblOtq0SSuFmgC7/OgUGJ0ET1rO8RWXQBw8PD+Hw+fI//gKGNf2doNMVQRKBi+alc+aunxvvIs3CP+mUXHYF8N4qWxZQCCvMM9YXUTKrndHHcY1UJ//dkeDweampqiMU08rSffS0fG/4cnzhSKYyGEaTMYKlWgrCZCLg+qDpr8t004s5/Yfa1sGvHduJDnZCa3iw2NREl6e9DKavJtWUt95rFq4n378VQOQ+lcl7m1V2P224mmkgTSYzP2DcrEt949+zqYGihC7/O3JA3GzStqgTFMlRzOa7R3YX7md2kll7E1T+5g+FwkuGoij+qMhxR8UW24ft/HywoXj2R43es48p3XZ2JHhnLzpil3CJMEP7pEUtBMJ4JW5xItS0jzoqYWc8sIlVWgRp7Zr3GllmvsYlU22WMPxgsfbJVl2KEwpmzZje85yeZdT2WfU555I1ufvrENtrb21CDgxgaV1HnMnPm0goe2tCdE9+ezc8Tbd0wq3MkBtoKhD9ruf/46iv5dvPxRQJ/3QUrADTHBvYVuvAfrkycpp8Vm1WXwuNXw4Y/FD62jm0PznsPTz31FCNv/ovgG48wEhhmBBsjnqMYUSoIBAIEevYw0rubQDRNIKoyEgOVIFcc2cvvL5rwuBrxIb7+e25/NUJ8FiVNB0dV2HBXRvjzE3aREf6ZYFEyFn2FVSAcVzMzSSfw9ZONXH2SsXRI40SOvWLqfSazynWh32c8sL6VH977ND1tuzGFe7FH+9izq4XYYCekEgiygYavPUC3P8I9r3QUJHgxlDdNS/hlZxVKRRNKRTOGimaUimaUstrc9nzLPSvkpQR+Xwp90XXOWc86Myc/dW3WwoNCgVasIBtRR4dIpCUiiRRmuxuDEId4eKyjjN+3O+7gmdYo4XCI0YTAaCJNWLQTtjQQ7t5GOJYinMhMmw/Hw4R+/iFC6U8QGo3yndMMXH1Snskb8cGjX6D/6O/xX//1FQqJAf+a8uP5o9rWtyAIlJkE+koUwZiMoVF1fPLSWHbGLM1OkQVlacotIhVWgXKLQLlZoHJM3CssAhXWTPhihceNVYwVDoRq5GN3mURAzbhZFr0LNt0HifD4Mfk+9/w4dp23hUfe6OamRzbQ0boLW7SPI6whUsPd/GfjFno724t88PmoyTjJQD9KWc3E5Lwo5YX1lyVrGUp5Y2bJirynAdFoKdm/y6xw/YUrCgT94qPq5lTgS7FfhF8QhDYgSMbBmtTKJbGv8D3/e1LP/BRGelBNrkxBh6gf1eREVSEdCaDaa0if/BXUpeeRTqdJpzNfjgXhDZpl1HbFK+hb/FFS804nmUySbFlH8tXfkYwESaQhkYJkGhLuxSRG+omHhkkYnCTmnc1nrr8N1ws3ZKzUbBz0MZ/g0Vf28JdHniCWVImlVGLJHcRu+TDRpEosqRJNqkSSEE0GM+uJ8XRVj34wyYVL8gs3Z7a80TbER/460a8dAyZxPYz5wYcjGiKcimPf8JuZ/QPyKCX8AK5JhF+RBNzllXjSA7jNmZuEx5IJSyy3CKiImcSqE3K8/O8F0xwMU8xwwc8y61o33sncLbqwv+088kY31z+6BX80c8PPBp66zArheJLuB24isusVAHaX7kaTxGBHgVsmi7FhJe5zPpcTe8ninHafZRaF6y5YsV8EvhT70+I/U1XVyRTorbP5fk77r6vY1p/1IQTzNk5c/8LYksFqNhL6rmvcAszLXHjtmjbu23rdNC5gU956FPgLl9R6cY3mjeSrKXjtd+xcH+P+N2deKQwgUuIwy1uo6lUqcsUR751Vf1aF8VS5Glx7upFoUqXMJGTEfUzg3WYRy2V3IKy+LOOCeu13xQdn3SkTc7yYyyAVG38SGntamjJVwER0d8t+QVVV7v73Zn7+wDP0drSS9HUT93WT9HWTHBmg4Sv3IUhyzgDyj/0QFE89kV0zO5docaJ4GhCkcUnMzwWquKpxnHAhlxxTx9rNvQyPZs7lMiucv7qGp3cMzJk/fi44tF09625Ao2bbtEgn4yXjn6Xp+HZLEG9fDxp5UCYTxamIJLU/o0XRbJ4Wobh2n0Z3PZes6sJCBIcRHEYBh1HAaRRwlHlwXPZbnIMbcLx6K05DCqdJwGEEebKqZaLC5ReeDnufo7ACzlhpu9WXZd5mresJT0sFVrcexXJQkXHNvEbH3j2k/L3Efd0ooX5ciUF6OvYyGhopeWzS70XxFNfFUNwNJY+R7BUonnoUTwNKeSMGTz2yp6HIgjcrEpccU6cp6DderDED+yBjfwm/CjwlCIIK/K+qqndM3EEQhKuAqwAaGxsnbp4eEwb7ZkIqXfqGIb2FmruJEgOYxlmUXpSEjLiXurdV20Q+uFLGqghYFQGLAlbD2KsiYDVksiNm1+0GAZvZiFWKaw5sIhkQ3nkdD74T7bS5F/wCVl0AXADHLC8ePLZWwuCOwj7zB5W1xjgmivj5v9DdKwchj7zRzffXvFlkKf/6+98gsPHJov2n4wpI+Lq1hb+8EcXTiDIm6lUN87jqwtO4Y1OUuDg+bpUv7t3+CJIgkFJV6g4Sq/2tsL+E/1RVVbsFQagE/ikIwg5VVZ/L32HsZnAHZPLxz+osznrKTDsKojsEMuN1kEkhm30vCiBKMoKjFkmSUEKlbxqL3SKnNEhIihFJFFDUKLIoIAmgSJlQP1kUcuuKmPFTGyTwlIg0eed8iXsvMWOUwChnbgQmGYyKhFFMY1bG3kvk1ie1ooFml8i9l2gMNilmqD8e9j5b2C4Z4KLboOOVklE9xRODSoj0bCxv3Vo/aHl4QyfX3PMsPm8niWEvcriPRaZRvF3ttO1tpfbzdyEq49nk/JEEf36lAyxlsz5nMtCn2W6sWUTtpzJjUWZF4qb3H8HFR9WxcLl2+oTDkf1eiEUQhOuBkKqqN5faZ9aFWCZM6JkUxQwX/GpceKY6Nrs/ZGZ4akz20TxGS3CBTK3H/IiDMTdH44maUT0Ffmqzu9CXnfVOmsdmiZbyaU/HwtY57Mla60P+EZJ+b24h2M88Y4i+7k56OttRU6V/AzWf/DWGiuai9tDWdQytvaXkcYJiRC6rQ3HXIZfVorjH1t11SCZb0f6KKGAzyfhHE4e9uMMBVIhFEAQrIKqqGhxbfxdww5ycTGuwDzL1N/PXS1mspY7V2l+rdN28d4CvtVhYH7+62E/deGJpEZ4rMdYtbJ08IpEIHR0dLFmyhGse2VIUy+771/8S3lIYtjs8zb6Tw72awq+U1WbSFLhqMsJeVovsrkUpq8NT10TKVEZ0Yi7qCWQHYQ8HF82+4m23+AVBmA/8beytDPxFVdUfTnaMXnpRR2fmTMwM+cXT6hno7eL2x9fT19OJKeZjvilCItBHe3s7Xq8XgKv/9AIPbfUX9ed/8V4CL9wzq2spO/NKHMe/r3hDOoUKCGJhdEPWRQOZCU6Hmw9+X3HAWPyqqrYCq9/u8+roHEpMFPUzl1YURKDU+Dfzr3/9m/jIAKmRAToC/bwUDRb106PR91/XvY5cNb+oXXZVT3pNosmOXFaN7KxGLqtBcVUju2qQy2qQbO6i/RVR4LIT5005uKoL/L7n0A7n1NE5yMnkktlOV68XcXSIiH+AxMggqeAgqZAPz3lX0+2PZAZKx+j2R9j85FOENj4xq3PGA15N4VfGRFx2ViO7qsZeq3FX15OwVJA2WAv2l0QBEUhoRMhpzWLVefvQhV9HZz+Qb7F7hBCXLDbi6/fy4POb8fX3osT8WBIBvD09JIJDkNbOVFd25pVIVldRu+yomPE1iaJIfX090bR2zLGxbil1V91Z0CaJAj/5QOYB/vrH3sxNosrOVoW5TTamMzt04dfR2Ydc88gW7l3fSTIZJxX2kwr5cKoh3rXQzq+u+1pRPDvAtoduZcNYioF8hopaikkGBzWFX9ISflFGdpQjOSqQHVXIzgpkRyXVdQ2s+c77qa+vR1EUrnlkS8ETRCmsBokfvu+IKV0yutAfeOjCr6MzBVnrvNsfgViIeNAHYT+J8DC2dIijysGuhnl+0y66enpJhXykI+MzTr3ATkHEtvJM/rbRW5CGF0CyeWZ9bamRAaheWNRurFmM64xPIDsqkR2VSI5yJJs7VxAky/9v7+6D5KrKPI5/n3v7baanp+ctJJIESDBAMCjEsCHGWt5cQWqXIJsyUFKIi/yh5VatL7F0LUtWEWo3pVVqWaVYWrvriotQGINipcoVpRQSQWKCwAZBkjAhhJAxk8z0pF8f/7i3Z7p7eqZ73rrtvs+nampud9++c870zK9Pn3vuOR1hl7tuvIgVKybCuXhlaumonsqQN63Ngt8EWiaT4XuP7uPrP32a144epZsU71mzhK9+zpuBdPuew3zmoWfGw/q1H95J+tWJq4/fAA7U84O0wPd/9SzS2TPpoVCidvBLNE4oMYCbGCCU6Pda7YkBIkvOrbp/56JlRPs3U9q9HnaFLZcur2tembtuuKgtpiYw1Vnwm5ZVbRqAO69/C08dHOK+3YcYffn35EeO46ZP8c7lUU6eGOLp/QcZHf4zcvokTvrUpLlgjgIvP9LHlX+/mRsuWcq2nfvLWuhO1+yvNM2eOk6kWvD3LSWyZBVuoh+3q98Ldn87nBjASfTjRKaeaVSAd5zbx4HjY2WBDta/bqqz4DdNVTksces157Pp4jNJpVIMDQ3x4OP/z3d+vo/X3xii2znNxmUxlsRyPP3CIZ547iBOcjF9V30I8KYB+Jf7fz9+7KGd3yB3wptN9KEZlCmXGuY/fvY8N1yydNIC126V4K5OcOJJ3Hgfoa4+3K4+3CnCO37+RnpWvxMEsvmJJnrlRGGxsEM6Vyhrxdca025Bb6qx4DdzUhrcyY4w2XyBkXQOzWWIFsYI5U8zfGKY3lCO2//ubXz85mvKnvuZh54hlc7w2v98isH0CJu/OIJkUuRyky//Pwa8VHFfZHH1rg4Ap6MbTsxiGulCnsGjxwBvmbzDJeEf6lnsjUvv7MXt6sWNe1/9ixbx9tUreWww59/XU3ZRUjHES5fzKyp+UgFroZvGsOAPuPd/+wl+89IQqopm06xbGmPbDReQTCYZGBjwFr0oGaZXGD3B8G8fopBJ4WRPk0unyKdTFNIpBjPe90J6FCqGBB4B/u2pq1l5wZqyJefGsnnEccm+cQDNVlmMvIb82MkpH3M7u2sfQBycjm7czm6czh7ceA9uZ5Il3d6EYluvOb+sjz+5fjPJ9ZvLDlE6EVhxVE++5Ir40lb5urP7pg13C3rTCBb8C6wyOCvHN1desXjlBYv4yd4j4/ujeQrZLMmIks+kGR5NobkMmstALkMhlyFyxkoiXb3cvN6bh/y+3YcoKGSOHWBk704KmdOENcuq/gjdoTyjo6OMjo7y8pHjpMZSaOa0H7rKK8CPPgl33303q6+9la0P7C27AKeQS3PytzPpOJmQHTvFtp37x8OttBvFicbJzyL4C2OTr0Ytii6/CIl24nZ0++Ge9L7He3A7kjid3fT39ZHOM2nB63/1pwsofZMqfa2musq01knRZi21Z0yptg7+7XsO88mv/YCTp7xw6Iq63HSpF44/enqQ4yNpIi6kcwVvUntV0AIb39zHzetXsGXLlrJjFVtqHUf3sb53jNVLusjlcjzzyhC/fuEop1Jp4mFh7bIEZ/fF+OOREzz+x6NoPocW8mghR/7dH+ETD+TKrmjMq3JqzyPs3vUgu/NZtPiVy45PjfwKU1v03s/inrdh0tjr/MljnPrdw+O3n5zB725kZIRtO/dPuupSpjnJWEshnSoL+9JuFCfWRX5kYpK7WCxGPhyHaBwn1oUTS+B0JHBjCXp6e3nPulX8+PlhCpEuVLXqwufJ9TeW3Q67MqkP/c5NE/PBTNcKt7A27aRtg3/7nsNsfWAvhx7+OtnjXiAeA+65r/Zzfww8Eo2NB3/lkL6Du3fy/PPVplaGYarPf1JUuPw28vFeKq+NLGTGyJ98vXbhqtBc9XUSJRyten89RkZGeDU/eUrq6UaXlHFDONE4TrRz/Hv4jJWc2TPx/NJulIF/2Ari0JlI8qUt69my4c2Tfu9Q3q1ybY1RPcX3rI6wwz03vhWYOuAt2E2QtG3wV2utzkQuPzEVbOWQPnFmvwSX5qtfel+61ueMj5mr3kUioZkFv4SiSCSGhGMkk0nO7Cw/semVM0zPFbfhhGNIpNML9kgnEp3YdqJxJDR53ceOsDs+zBDKu1FeZcWUYTxdWFcL7OmWx7OAN6aNg79yGN5MacnqU5OOJbMP/sqTnuOHdKdYIFccxA0joQgSCvvbUW87FEFCUZx49bHloeRieq+6AwlHkXAUJxxjUW839/7TRuLxOJ/7yQvseS3thXg4Oj4KZeO5fXzhjg2s9T81Vb6Blp7cdAS6Y2GGx7Ljo3pGM14dO8IOsbA77aIYtbpRrJvFmPnXtsFf7D+OnrWGUM/i8geL/cHFABdBEO+2eN+dkqF4lUP6OlasxelIkOiIIOIyklVwXO9yeNdFnBA98RhZFVI5Qfz7cEO4yTMAb0ra0kCNX3g5sRVr/WAPT4S9M/tV2N14D92Xbhq/HXaFL21+Gxv9IH344ovHR/UUbTy3j+/fsQGYaB2XnpwuLnoBNsOiMa2q6Usv1mM2C7Fsn6K1Ot1UsaVuueys8e6C6fqagWkf2/rg3rITisVjF4f11RrVI+Kdc+7tDKPKxGgfykPYFZk0qqdUcTSRhbQxwfFXsxBLo1RrrVabKjYWdhjLTnTrCPD+ktAvPdZ0Iz9m89hUITzXOVJsjhVjzHTatsVvjDFBN1WLfw5nKY0xxrQiC35jjAkYC35jjAkYC35jjAkYC35jjAmYlhjVIyLHgIOzfPoA3gp5QWJ1DgarczDMpc5nq+qiyjtbIvjnQkSeqjacqZ1ZnYPB6hwMC1Fn6+oxxpiAseA3xpiACULw39vsAjSB1TkYrM7BMO91bvs+fmOMMeWC0OI3xhhTwoLfGGMCpm2CX0SuFZH9IvKiiHy6yuNREbnff3y3iJzThGLOqzrq/HEReU5E9onI/4nI2c0o53yqVeeS/f5RRFREWnroXz31FZH3+a/zsyJSx6rSf93q+Ls+S0QeFZE9/t/2dc0o53wSke+KyOsi8ocpHhcR+Zr/O9knImvn9ANVteW/ABd4CVgJRIC9wIUV+3wE+Ka/fRNwf7PL3YA6Xwl0+tsfDkKd/f0SwGPALmBds8u9wK/xKmAP0OvfPqPZ5W5Ane8FPuxvXwgcaHa556HefwusBf4wxePXAT/DWzLkMmD3XH5eu7T4/wZ4UVX/pKoZ4H+BTRX7bAL+y99+ELhapLgGY0uqWWdVfVRVU/7NXcCyBpdxvtXzOgN8Efh34HQjC7cA6qnvHcA3VPXPAKr6eoPLON/qqbMC3f52Eni1geVbEKr6GDA0zS6bgP9Wzy6gR0TeNNuf1y7BvxR4peT2oH9f1X1UNQcMA/0NKd3CqKfOpW7HazG0spp19j8CL1fVnzayYAukntf4POA8EfmNiOwSkWsbVrqFUU+d7wRuEZFB4BHgnxtTtKaa6f/7tNp26UUzQURuAdYBlze7LAtJRBzgK8BtTS5KI4XwunuuwPtE95iIXKSqJ5pZqAV2M/CfqvplEdkAfE9E1qhqodYTjaddWvyHgeUlt5f591XdR0RCeB8RjzekdAujnjojIu8CPgtcr6rpBpVtodSqcwJYA/xSRA7g9YXuaOETvPW8xoPADlXNqurLwAt4bwStqp463w78EEBVnwBieBOZtbO6/t/r1S7B/ySwSkRWiEgE7+Ttjop9dgAf8Lc3A79Q/6xJi6pZZxG5BPgWXui3et8v1Kizqg6r6oCqnqOq5+Cd17heVVt1weZ6/q6347X2EZEBvK6fPzWwjPOtnjofAq4GEJHVeMF/rKGlbLwdwK3+6J7LgGFVPTLbg7VFV4+q5kTko8BOvFEB31XVZ0XkC8BTqroD+A7eR8IX8U6i3NS8Es9dnXXeBnQBD/jnsQ+p6vVNK/Qc1VnntlFnfXcC7xaR54A8sFVVW/aTbJ11/gTwbRH5GN6J3ttavBGHiPwA7w18wD938XkgDKCq38Q7l3Ed8CKQAj44p5/X4r8vY4wxM9QuXT3GGGPqZMFvjDEBY8FvjDEBY8FvjDEBY8FvjDEBY8FvjDEBY8FvjDEBY8FvzCyIyKX+vOgxEYn7c+GvaXa5jKmHXcBlzCyJyF140wV0AIOqek+Ti2RMXSz4jZklfy6ZJ/Hm/X+HquabXCRj6mJdPcbMXj/eXEgJvJa/MS3BWvzGzJKI7MBbIWoF8CZV/WiTi2RMXdpidk5jGk1EbgWyqnqfiLjA4yJylar+otllM6YWa/EbY0zAWB+/McYEjAW/McYEjAW/McYEjAW/McYEjAW/McYEjAW/McYEjAW/McYEzF8AEFtKrpfnXDkAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# Plot the learned functions\n", "fig, ax = plt.subplots()\n", @@ -508,49 +470,9 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Initial a value: 0.9839857220649719\n", - "Epoch: 0 Loss: 352.720947265625\n", - "Epoch: 1 Loss: 286.2037658691406\n", - "Epoch: 2 Loss: 226.8613739013672\n", - "Epoch: 3 Loss: 174.77915954589844\n", - "Epoch: 4 Loss: 129.97665405273438\n", - "Epoch: 5 Loss: 92.39059448242188\n", - "Epoch: 6 Loss: 61.85683822631836\n", - "Epoch: 7 Loss: 38.09175109863281\n", - "Epoch: 8 Loss: 20.675710678100586\n", - "Epoch: 9 Loss: 9.0426025390625\n", - " ---------------- Solutions at Epoch 09 -------------- \n", - " a value: 2.8336267471313477\n", - " b values: [3.0146169662475586, 5.015951633453369, 7.017027378082275, 9.015321731567383, 11.016518592834473, 13.012236595153809, 15.01756763458252, 17.01212501525879, 19.014381408691406, 21.015764236450195]\n", - " ----------------------------------------------------- \n", - "Epoch: 10 Loss: 2.4795351028442383\n", - "Epoch: 11 Loss: 0.1416916847229004\n", - "Epoch: 12 Loss: 1.0855286121368408\n", - "Epoch: 13 Loss: 4.320140838623047\n", - "Epoch: 14 Loss: 8.871736526489258\n", - "Epoch: 15 Loss: 13.85158634185791\n", - "Epoch: 16 Loss: 18.51568603515625\n", - "Epoch: 17 Loss: 22.30596923828125\n", - "Epoch: 18 Loss: 24.867490768432617\n", - "Epoch: 19 Loss: 26.042295455932617\n", - " ---------------- Solutions at Epoch 19 -------------- \n", - " a value: 3.5438120365142822\n", - " b values: [3.0146169662475586, 5.015951633453369, 7.017027378082275, 9.015321731567383, 11.016518592834473, 13.012236595153809, 15.01756763458252, 17.01212501525879, 19.014381408691406, 21.015764236450195]\n", - " ----------------------------------------------------- \n", - " ---------------- Final Solutions -------------- \n", - " a value: 3.1059281826019287\n", - " b values: [3.0146169662475586, 5.015951633453369, 7.017027378082275, 9.015321731567383, 11.016518592834473, 13.012236595153809, 15.01756763458252, 17.01212501525879, 19.014381408691406, 21.015764236450195]\n", - " ----------------------------------------------- \n" - ] - } - ], + "outputs": [], "source": [ "# Version B\n", "\n", @@ -612,22 +534,9 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEJCAYAAACT/UyFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACUjklEQVR4nOydd3hb5dn/P88ZmraG946zJyQEGvbuokChA0qh821L9+JtCy3QUgqlLZQWfu1bCm0ZLZRRKHuHsEkg20kcZ9hOvJdsyZK1dX5/yJIlS/Ii0zmf6zrXOTrjOY9s6av73M/93LfQNA0dHR0dnSMH6WB3QEdHR0fnwKILv46Ojs4Rhi78Ojo6OkcYuvDr6OjoHGHowq+jo6NzhKELv46Ojs4Rxn4TfiFEtRBilRBimxBiqxDi+8P7rxNCtAkhNg4vH9tffdDR0dHRyUTsrzh+IUQ5UK5p2nohRD6wDrgQuBjwapp2y365sY6Ojo7OmCj7q2FN0zqAjuHtQSFEPVA5lbaKioq02trafdg7HR0dnenPunXrejVNKx69f78JfypCiFrgGGANcDLwHSHEF4C1wP9qmtY/1vW1tbWsXbt2v/dTR0dHZzohhNiTbf9+H9wVQuQBjwI/0DTNA/wFmA0sI/5E8Psc110uhFgrhFjb09Ozv7upo6Ojc8SwX4VfCKESF/37NU17DEDTtC5N06KapsWAu4AV2a7VNO1OTdOO0zTtuOLijCcVHR0dHZ0psj+jegTwd6Be07RbU/aXp5z2CWDL/uqDjo6Ojk4m+9PHfzLweaBOCLFxeN/PgM8KIZYBGtAMfH0qjYfDYVpbWwkEAu+/pzqHPSaTiaqqKlRVPdhd0dE55NmfUT1vAiLLoWf3Rfutra3k5+dTW1tL/OFC50hF0zT6+vpobW1l5syZB7s7OjqHPIftzN1AIEBhYaEu+joIISgsLNSf/nR0JsgBCefcX+iir5NA/yzoTAeGhobYvHkzGzZsYMOGDfzgBz9g0aJF+/w+h7Xw6+jo6ByudHZ28qdX3uCeN9+hd/s2ort3EGndA7FY8hx5/mL+sh+E/7B19RwK5OXlHewuZHDPPffwne9854Decyp/h1//+tdpr0866aR91R0dnUOWRztdLHx9M6Uvr6W8ZgY3XnYxbX/5A8FVLxDZ25Qm+gD3v/k2j3a69nk/dIv/ECISiaAo0+NfMt57+fWvf83Pfvaz5Ou33377QHRLR2e/oWkaXV1d1NXVsXnzZjZt2oTLaKHzy9+lNRhGAhKyLmQFpXY2kZ31Y7YZ2NnATY0dfKqsYJ/2dXqoDFP38S5fvpx169bts37s3r2bb3/72/T09GCxWLjrrrtYsGABTz31FDfccAOhUIjCwkLuv/9+SktLue6669i9ezeNjY3U1NQwf/589u7dS2NjI3v37uUHP/gB3/ve9wD417/+xe23304oFOL444/n//7v/5BlmbvvvpubbroJh8PB0qVLMRqNGf3q6+vjs5/9LG1tbZx44om89NJLrFu3Dq/Xy3nnnceWLfHpFLfccgter5frrruOu+66izvvvJNQKMScOXP45z//icVioampiUsvvRSv18sFF1yQvMerr77Ktddei9PpZPv27ezYsYMLL7yQlpYWAoEA3//+97n88su56qqr8Pv9LFu2jMWLF3P//feTl5eH1+sF4Le//S3/+te/kCSJc845h9/85jfcfvvt3HHHHSiKwqJFi3jwwQf32f9MR2ey+Hw+tm3bRl1dHXV1dby8dh31W7YQHUjPPiOXllN06TeAEdFPoMyel1X45cpqlDkLUOfOR1mwhLZgeN+/AU3TDvnl2GOP1Uazbdu2tNfE5wVMelm+fHlG2xPFarVm7DvrrLO0HTt2aJqmaatXr9bOPPNMTdM0zeVyabFYTNM0Tbvrrru0K664QtM0TfvFL36hLV++XBsaGkq+PvHEE7VAIKD19PRoBQUFWigU0rZt26add955WigU0jRN0775zW9q9957r9be3q5VV1dr3d3dWjAY1E466STt29/+dka/vvvd72q//OUvNU3TtKeffloDtJ6eHq2pqUlbvHhx8rybb75Z+8UvfqFpmqb19vYm91999dXa7bffrmmapp1//vnavffeq2mapv3pT39K/h1WrVqlWSwWrbGxMXldX1+fpmmaNjQ0pC1evDjZ5ui/XeL1s88+q5144omaz+dLu768vFwLBAKapmlaf39/xvvTtMzPhI7OvuInd/9TK//SNzTjyWdqamW1hhAT1pjiJ17TSl/ZkLHk//BqTZm/WDOf+0kt/3tXac7b79aKn34z47xj39oy5X4Da7UsmjptLP5DAa/Xy9tvv81FF12U3BcMBoH4vIPPfOYzdHR0EAqF0uLNP/7xj2M2m5Ovzz33XIxGI0ajkZKSErq6uli5ciXr1q3jAx/4AAB+v5+SkhLWrFnDGWecQSKtxWc+8xl27NiR0bfXX3+dxx57LNm+0+kc9/1s2bKFa665hoGBAbxeLx/5yEcAeOutt3j00UcB+PznP8+VV16ZvGbFihVp7+3222/nv//9LwAtLS3s3LmTwsLCnPd8+eWX+fKXv4zFYgGgoCD+iHv00Udz2WWXceGFF3LhhReO23cdnckQjUbp6uqioqIi49ijnS7++NvfENq+dUptRxp3Ylh6bMZ+y/mfxnL+p8e81iwJfjqrfMxzpoIu/PuQWCyGw+Fg48aNGce++93vcsUVV/Dxj3+cV199leuuuy55zGq1pp2b6qqRZZlIJIKmaXzxi1/kpptuSjv38ccff199VhSFWMqAUmos/Je+9CUef/xxli5dyj333MOrr76aPJbLtZb6Xl599VVefvll3nnnHSwWC2ecccaUY+2feeYZXn/9dZ566iluvPFG6urqps14iM6BIxKJsHv3bv7x9rv8a/VaXLt3ou1pJLS3CZFv55gnV/HTWeVpPvWbGjuQaufARITfYESZORtl5lzU2fNQZs1FmbdwQn2TgWjKusqoZvRlXzFtvjnafiooMxlsNhszZ87kkUce4aKLLkLTNDZv3szSpUtxu91UVsbLEdx7772Tbvvss8/mggsu4Ic//CElJSW4XC4GBwc5/vjj+f73v09fXx82m41HHnmEpUuXZlx/2mmn8cADD3DNNdfw3HPP0d8f90WWlpbS3d1NX18feXl5PP3003z0ox8FYHBwkPLycsLhMPfff3+y/yeffDIPPvggn/vc57j//vtz9tntduN0OrFYLGzfvp3Vq1cnj6mqSjgczkix8KEPfYjrr7+eyy67DIvFgsvlwuFw0NLSwplnnskpp5zCgw8+iNfrxeFwTPrvqHNkEAgE2LlzJ3e//S73rV6Lt7mR6J5Goq170MLZfeZaXw97+1z8KBwBSApuWzCMMnN2+slCIFdUocycizJrDsrMOSgz5yJXViNkeeQ04v6eXDgVmRvmVu4XcR+LaSP8B4OhoSGqqqqSr6+44gruv/9+vvnNb3LDDTcQDoe55JJLWLp0Kddddx0XXXQRTqeTs846i6ampknda9GiRdxwww18+MMfJhaLoaoqf/7znznhhBO47rrrOPHEE3E4HCxbtizr9b/4xS/47Gc/y+LFiznppJOoqakB4gL885//nBUrVlBZWcmCBQuS1/zqV7/i+OOPp7i4mOOPP57BwUEAbrvtNi699FJ++9vfpg3ujuajH/0od9xxBwsXLmT+/PmccMIJyWOXX345Rx99NMuXL0/78fjoRz/Kxo0bOe644zAYDHzsYx/jl7/8JZ/73Odwu91omsb3vvc9XfR1eLTTxTU72+iPRAFQiVvKrl9dSfC1lzNCIydCpHk3/iXL0iJpKo0qTUuPxXLR51Bqh0V+xixEins2GypwaUUBK/sGaQ2GD4glP1H2W+nFfclxxx2njS7EUl9fz8KFE3uE0skkUdymqKjoYHdln6F/JqYn4XCYpqYm7l69ln++ux5XUyOxvh4cN/2/rOd7brke/7P/nfR9JGcB+Vdci+nkMxBAx5nLgPgPzI8aWvDHsmulWRJcXObkyW538kfIKUvcMK/qoIo7gBBinaZpx43er1v8Ojo6Bx1N0/h73XZufvNdOht3Y25vodrVyWBzE7t37yYSiWRcE3P3I9kzgxTkGWMn6pOchcgzZqHUzkJJrGtnp7VVaRxxQSbE+6bGDtqCYRyyBEIwEIlSmWK9/3b+VN/9gUcX/iOU5ubmg90FnSOUKxv28q92F1Fg6IG/E3xtJeG2vWhDvuQ5HqBrnHYie5sxHJUp/EpNXPil0nKUGTNRamYi1wwLfM1MJJt9TN97tkiaT5UVHHTrfV9yWAu/pml6ci4d4NAY3NeJ/x/+saWBm99eS2dzE0pHG+GONsxXXk+VycBMs4E3BkYEPtLTTWic2au5iLY0w1HHZOw3HLOCkmfezumDT/W9j2XBT2cOW+E3mUz09fXpqZl1kvn4TSbTwe7KEUEkEqGlpSU54/zZzVt4bet2vC17iLW3EvMPZVxj+Op3aS0qoXXULFS5smZC91QKixBVM1Cqa5Gr42t1/uKs5wqDIWc7h4rv/WBz2Ap/VVUVra2t6IXYdWCkApfOvicRPdPytz8TeOkZol0dEItOqo1oWwtyUUnGfqVqRPiF2YJcWYNcXRMX+KoZVMyaxepPn8PL/uiYA6wwEtWTGstzKETQHIoctsKvqqpebUlHZ4q43W7+tm4zf3lvI90tLZh7Opnh7iXS3cm7776bnBz3aKeLH2xvIaxpaENeoh2tU7pftL0FssxeVZcsw/mHvyFXViMVFqc9vZslwQ3zq7Hb7XzKHt93U2PHIRcaeThy2Aq/jo5OblwuF3e9u4E719XR09aK0t1BuKuDQGc7WlcH0UFP2vmDQPfwdmtrK7W1tUBcaMPD4ydy+cSeqITJjFxZHV8q4mv16EzRB5Dy8tPSGSQGXbMJ+nQbYD2Y6MKvo3OY4ff7aW1tpaOjg555S9ImMUHcj81vr2H7s09Nqf2mpqak8KdmhpTLK5PbkrMQubwyLuwVVcgVie1qJGdBznE3syQ4zmbh7QEfUeIFQUwC/BpHzMDqoYAu/Do6hxCBQIC2tjbu37SNOzZsZbCznWhPN6Knk2hPF6HuTjT3QPL8yhfWEFHTBzP7ozEGbbkT4Y1HaqhvpVFNDsiqRx1Dwd8eRimvSouYGS8tQQLdLZMbTdNoaWlh48aNbNiwIbm+++67OfPMM/f5/XTh19HZzzza6eLXu9tpD0WyWrWf/N4Pef655wh0d6F5BibVdqC7EyVLZIxcUjb2haoBubQ8vpRXIpeVI5VWUF4zg09+8tzkaT+dVZ708UvWPKRZc9OaScxaTYRGVhpVzi7MT3uti30mkUiE+++/n1de+QubN29m9+4gg4OZKSY2bNigC7+OzqHAo50ufrKjFV80hhaLobkHWBr2sn1vG56ebmKuXqK9Pcj9vdjcLro6O9FCQYofXUlrMMyPGlqAuM/60U4XL9bvwL+rYUp9iXV3QTbhr6xGnjFrRNxLy5HLKpCGt6WCIiRJSrPUzZLgxuHB1AQJwU51J43lh9dJx+/3p6VcTyDLMt/73jfweMbOVpst0+++QBd+HZ1RPNrpGpmer8igaQxEYzhkic67/8LQ9q3E+nqJuXqJ9bsgFuXlHG15U7a1gB9hMuOPackkYDc1dqBlCXMcE0lCKipBLi4FKXvZbOMHTsJ090ljzk4dbannEnF9UHV8AoEA9fX1bN68OVl6cfPmzSxYsCAtnXkCIQS1MwWbN43d7ubNm/dLf3Xh15m2pGZv1AJ+tIF+ou5+Crwe5kX8vLenFV+/i9iAC3mgn9KhQdx9PXhMVgr+9jBA2qBpfzTG0Ob1hNa/O6X+RPt6USqrgZFB07ZgOD2+XZKQCouRi0uGxb0MqTgu8lJxKXJJGVJhEUJWcMoS3piWjLpJJWN2asoPmO5+mTqxWIympia2bNnC228/zHvvPcfu3V5aW8NZk4GGQqGcGQZmz1LZvMmffG02C2bPNjJ7toHzz781WZp0f6ALv85hQaoVXi40vukwcIIcY6VrkH+p9gyr9dFOF5dd8HHCexqJufshpQCMC9iV5R6Nw2thzcvZD6mgeMrvIebqhWHhTyQBqzSq7DntbNSFRyEVlyA5C9PyuefCLAlumBcPr8wW1aPPTt03dHQ+QePuW7jttjq2bInSvCeIf2jiNXD7+/tpa2vLOrnwhBPzsVglZs82MHu2kfJyBUkSgMzZZ31lH76LTHTh1zkgpAp3QqABrtnRiisUJrx5PapvEGnQg9ftBq+H6KAbyeMh7HETG3QT87jRPG46A34uH27XePRyHH/8O0Ca//ymxg4i3Z3Eujom3VfN50ULBRGGzKL1UkFmtIzIy0cqLEIuKEYqLIr7zwuLkAuLk2tRWIxkjpeTTE0C9tNZ5fwoHMGfYvVnS/NrEWCU5az5ZHSBnzqaplG35T5ee/UWenp7+MiH5zJr9o8YGFhHe/tInYidO4PU10++epzRaKSxsTGr8J9//v9w7LGZhYwqKi6Z9H0miy78OhmM9nEHo1GGhr0JFiEwSIJ+r4+yaIgVqsabbZ109g+Az0fM5yXm88bF0zdIzOtFGvISHRxEXb4C62VfoTUY5gfbW4hqWnx6vRD0/+jrMIVEa5GU0EYg6T9vC4aRHE4ml1hghFi/C7k0s9ap6UMfQ12yDKmgELmgCKmgMOsPRILRLpdcoj36R/FwS/N7qKNpGp2dnWzbto1t27axdu2zbN78No2NXjyeuI/GYhWcdpqFbdt+RHriB6idaWDjxrGFv6REYfZsAzNnxpdZs4184fONOUuELlxwPQDt7Q+SKLpYUXFJcv/+RBf+w5Bs1nOq1Zc43hoMI8ViRINByrQwXy/O5zSLym+37ea5li6iAT8x/xBawI85GCDmH2LI50PzD2E88TSMK05OcyEAePY20/flT0IsRjcwqaGnlKpZqX5pIUkIax6ad3DSf4ts4Y+Jv0u/beR+yAqSw4FkdyI5C5DsToTDiewsRDicSI4C5IJCHIWFROwFBI3ZE76ps+ejzk5XZAGc4rCyZdBPf3REMCbqctEHT/ct7713F6+++kd27e6irVWhs8vBrp2tuN2+Ma8b8mn09kYpLs70x8+cOTJXIj9fYuZMA7W1BmbOMiS38/LSB9pNxopx60IvXHD9ARH60Ux74R9PJMc6P1e61om2+XBbD7/Z0UKrbwg5EiESjaDaHcRkJS0U7sqGvdyzdjOhvU1ooWC8JmgohCEaJhAIIsIhYqEQedEwVZJGQ7+bSCCAFgrhCga5/PNf5SdLljIUjeFQZLyRKGEg8NaruK/9IRCfjv/tMf5OoyVXchZgXHFyxnnCbJ5SSTsAzevNeUzKtxGdqPBLMsJmQ7Y5EAWFGYNnif/JN77+A/K+9t24yFvzxs3iqgrB7xbEffC5onqOtPS9hyrBYBCjMfNJq6PzCb797St4773Uz9p4mf1HaGoKUVycKYvHr7Dwm9+WUVtroLBQnkBGYIlZs3804fseaKa18D/a6eLL3/gGwa5OAFyaxufRuNFqptSgoGkasVgsue4Ohtjp9ROLxRAGA9rNdyTbSviP33V7uePaq/G99RpaNEJ3NMrF0Sh5AqRYlHA4nFyy5Ygv/NdTKBVVyfYe7OjjjQEfQ6++gPdvfxrz/fjI/hGOfuQ8fNGjgPQolLFcEOOhDWWm1gUQFuvU2xxD2A3HrCA204XItyPl5yPybUg2B1K+Lb6db0fY7PEiGhYrFkXm4jInD3f2p2VsTPjPP1VWwLvHHsW97a6MezkVmY+X2HmyayBpoY8ueq0L+sEnFovR0tJCQ0NDxuJyufB4PEijwlkbd99CdY3Ee+9N/D5Go6CmRmXGDAM2W/bw2KJihaIsPwjZEMLCwoU3UF6Wux71wWZaC/9NjR0MbVxHdE9j2v4NE7k4S253f0zjX+0uQq6+eLbBFDwZZ+cgMhIR4I9pI0Up1Nw5xMdDCwaz7h+vGPSYbfqzPxYLkxmEANWAZLUiLFaEJQ9hzYu/tia28xDW/Ph23vC6cKS+ryrEiI8fsP3o5xPum0UIbp5fzafKClhhz8v59PXb+TXjHtc5uGiaxtZt/+KtN2+hsbGD1tYwra1hWlrCtLWFCYVyj/u0tLQwY8aMtH2BYAc11dm/SyaTYMYMQ1Lka2tVamYYKC1VkOVUC15itI8/FUV2EIm6MRnLmTX7R4e0wOdiWgt/W3DiYVcZRLP/46MAEwi3y4UWzt4n8X6EP5RD+BN+aqMJYTQhTCaE2YwwDS9my/A6/lqyWJPbyux52duUJEpeWINQ1KzHcyELsElSWhw5xKN6Ela3VZYwEI+XT6TdtQgIaPGvoQx8rqIgTbDH84/r/vNDh/rtP6e9/QFSM/vceGMXq14Z2/eei4aGhgzhNxnLmT3Hz1FHmaipiQt7TY1KTY2BkpKxXDTx+cgmY0XWqB4AIcwsXHjjYSn0o5nWwl9pVJlymRYtu/DLANIEhV8IUBSErMTXam6xlMsqMKw4Of4DYFARqiHuqjEY4ttGY7yykGoc3h5+bTSh5hBpZfY8Sl5ehxh+HE5kRkwtfTdZLEJgNJmSfu5EXpbWYDinnTTajZKKLsrTA03T6OnpYdeuXezevZvdu3eza9cu6upeZe/eTh58qAZFyRTdoqKpSZAkSbS2ZtYGmDX7R4TCV/OHP6Y+sasIAZo2YnQJoSJL1pyWe3nZBQdl0PVAMa2F/6ezyvn2D35KMMVfbZAEX60u4WRnPpIkIYRACIEkSbw54OWO1l5CiKxWfSK++oGvfQf/Zf+DkGSQJEwGlevnz+DCiiJUVUVVVZ7o9XDlrvYxKwalCrHxhFMxnnDquO8pcc2bA76c0/FVIciTBP2QtWBFarHrBM7UQUx9lqdOFva2PMrqd26iqbmd3h4LXt9RdHdJbG9YT1NjC35/7uDZrq4IlZWZhk9V1dhPjvn5ElVVKitWXMK8efNYsGAB8+fPZ86cOVkHdxPi3bj7FgLBjqSoZ9s3HSz3qSIOhyLVxx13nLZ27dopXXswo3pSwyoTAjxRIRaARZbwpbg9qnL0QY820Xm/dHQ+we5dN9PZ1Up5WTUFhWfi6ltFINiBItvRCHH99U1Tdsv8+qYyVqywZOzfuNHPz37aSUWlQnWVgcoqlaoqlerq+NpmkzCbKjn55Dfe71s8IhFCrNM07biM/dNd+HV0dOIk3DHr1t/H2vf+TktrN709Rnp7rezZu5euzjDBoMYzz9ZiNGZGt/zj7y4eeGBgSvf+zncLufBCe8b+aFRDCIZTFWRDYtGiW45o6/z9kEv4p7WrR0fnSCORW+btd3azvT5EV1eI3l6Fvj4rbW19+P3+cdvo7IwwY0ZmsEF5+dhyYTIJKipUKioUKioMVFQaqKiQqaxUKS7OPi6WHk2TzuEQFnm4st+EXwhRDdwHlBIfxr9T07TbhBAFwENALdAMXKxpWv/+6oeOznRA0zT6+vpYv+GfbFh/F21tPbjdZn7z2/9HedkFdHQ+wY6G64lEBwB4+aVBXnwxdRLTxL9iOYW/QqWgQKa8QqGiXKWsXKGiwkhFhUx5uYLTORI1YzJWUFB4ZkZkTG7So2qOdLGPxWLs3r2b8vJy8vJyJw2cKvvT4o8A/6tp2nohRD6wTgjxEvAlYKWmab8RQlwFXAVcuR/7oaNzSNPW/l/Wr/sNrW3teNz5+Hy17G58j+7uAD3dEXp7I/T0RLPGtH/6oquYM2cdnZ2PEYuNWPOlpVP7alusAp8ve0TbsmVmHn5kJHxSksyUlX0y496SZE4T74ORi+ZwIhAIsHXrVjZu3MjLL7/MmjVraGtrIxQKcckll7BixQrOPvtsjj766H12z/0m/JqmdQAdw9uDQoh6oBK4ADhj+LR7gVfRhV9nmpFwubj62xjoNzM4GGX+ggiKbAchiEQGMBnLKSg8ky9/6Q+sWZNqnddP+D5dXV4sloSwjlBSkv2rbTbLlJZKlJWplJYplJYqlJUplJWplJUp5OdLE0hHEJ/ENG/+zykvuwCH49icETMHKxfNoU4kEuHCCy9k3bp1dHV1ZZ3lD9DR0YHb7eapp54C2Gfif0B8/EKIWuAYYA1QOvyjANBJ3BWko3NY0NH5BLt23kxPbxvuATMuV4SeXjcet4VI5CgGB63s3v0O7e3tuFwR/P74F9poFDz9TG3SFQMQCLbT3v4ABQXjC20uerojzJyZGUY5b76RT33KTmlpXNxLShVm1FSxdNlVNDRck2ahx3OI5p7sqMiOtB+rbDHvR7prZjShUIiGhga8Xi8nnnhixvFt27bx5ptv4na7x2ynqyuepCUcDrNy5crDR/iFEHnAo8APNE3zpFoTmqZpQoisP3VCiMshnna9pkafWq+zf2lr/y8bN/yWrq52IhEr8xdYiUQGUBQH0WgATYsL5U+v6mD9ej/RrCHrzTnbDwY1fL4YeXmjBzk1ioomNiHQbBYUFysUlyiUlCiUFCuUVyiMBAmPMHu2kW9+ayTOXZLMLFjwU8rLLkAIkTXOPXWMQFGczJt3rS7o46BpGu3t7dTV1fHiiy/y+uuv09raSm9vL9FolKqqKr7yla9gt9vT3DUrV66ktLR0TOE3mUyoKZM+x/uRmAz7VfiFECpx0b9f07THhnd3CSHKNU3rEEKUE08cmYGmaXcCd0I8nHN/9lNn+pBwsQSCHYSCReTlfwHB0fT29tLT00NPTw/d3d3JdXd3N52dLfT29ieTjpaVKfzr/rixEYmkD4oKiRyiPz59vdEswh9PAJaXJ1FULFNUpFBcpIxsFycWGatVQgiJ1JQHufzsw70l24BpLgtdF/mxcbvdbN26lbq6Ourq6li9ejXbtm0bM1Kqs7OTWCyW4a5xu92UlpayY8cOAOx2O+Xl5ZSWllJWVkZZWRl2uz3N7Wa3Z4bDTpX9GdUjgL8D9Zqm3Zpy6Engi8BvhtdP7K8+6ByedHQ+QX391UkrOxrVGBzUMJnOwen4HDt3PUPD9kfoc7koKMjnox8pIBJ1o8h2ojFfcmr+F7+4lp6eNZO+f39/NGed1ALn5L4yqiooLJIpLJRzpX/iYx+zce65tnHbEkKmvPyS5MSqVLfLWH52namxefNmVq5cidvt5r777qOpqWnSbUQiEfr6+iguLk5z19jtdpYuXcrs2bMpLS3FlCUpZCqqqnL22WdP9a1ksD8t/pOBzwN1QoiNw/t+RlzwHxZCfAXYA1y8H/ugcwhQv/3ntLQ8QCQSHZ4YpKIoeUlrOhrV+Mc/XHgHYdAbwTsYY3AwyuBgDM9glCFfwsL9y/AywsKFXj74wfhko1T/OYDdLtPTM3nzPBjU8Ps1LJYswl8Qt9gtFoHTqVBYKFNQkFgUCgpVCgsEhUUKBQXyuIOlCYs9VcwLCs+kq+u/RKMjqUZk2cL8+blj2nU/++Tx+/08+eSTPPnkk+zduxchBH/60584+uij2bx5M0899RTh4aSK6hh5tnKRn59PaWkpsZT6FQl3zdlnn83Q0FCy/cQ9li5dys6dO3G73Qgh0DQtw020L9ifUT1vEn/WzMa+++nS2WfELe1r0LT0XPyJmGxX3yr6B9rYtdNKfv65eH1+mpueZsA9QDBgRpYXEw47cbvdyaW3twWPx0sgoPHRj+bzox8XA+E0F4okwX8ecU/JheLx5L7Ibp9cFlWrVcLhkHE4JQKBGBZL5uzVSz7r4LOXOjCbM4+N5XaRZQvRqD8jqieXZa5Hwuw7vF4v27dvT5ZdTCyNjY1p0TSyLPP4448DcR98qiiXlJQk3TKjUVWVkpISSkpKKC0tpbS0lJKSEiyWzBQVCXdNqq/f7XbvF3EfC33m7jRidNrbgYEYO3cGCAQEgUCEUNBEIKgx5PMRCEAgECUYVBkaChMIhPH7Nfz+GH5/jE992sHHPx53P8SjT+ITcVyuCD/84RZgS5YetI3ZP68vu0gLIcjPlxgYmHxlr0S91GyUlimUlys4HCZmzTqd4uJiiouLKSkpSW6XlpaisYG+vltRlOzprVNJ/TEQwowsmzJEXHe7HFz+85//8NZbb1FfX8+mTZvo7Oyc0HXRaJTu7u6kGKdSUlKCEIKioqKkyCcWp9M5oRDY0e6ao48++oAJ/WimtfCnDvTlytI3c9b/omkau3b+nkCwA4Naxoza71NWel7WX2yAnp4ePB4PHZ0v0Nz0d/z+bmS5iLLySwmHo+zdcz9+fx+aZiEShVDQixAOnAUf4X++fAP5+fnxmZY7fpW0fNetG2L16jCRsCAYDBKNGlHV2QhRQCAQIBAI4Pf707YTy3/+8x/mzlubMUuyfpufa6+deNm5VFx9kaz7s1nBE8XnzS3SeXlyTuEXAvLyJGw2ifx8GZtNwmaLr+0OOac//oorioejWcbLoX4sHZ3Fyc9FqlU+OqoHxo940d0u+49wOExTUxOrVq1iaGgoaS3PnTs36SJ57LHHqKurm1L73d3dFBUVYbfb08R/4cKFLFy4cNwauglG9+lAW/TjMW2Fv6PzCbZvv5qvfmUne/eGgN1o2psknuw0DTRtN/DmqCsbgbexWEz4fNlH67/3ve/x4IMPjtrbCmwco0ddQAMf+MBCZs4sp77+yrT84Dt3hPjvY6llAgeB3nHfJ8R9lfHZkekYTVMX6SF/dhHO5veeCELkrG0DxF0owWAMW75MXr5Efn5c3PPzJaxWKZnEy+E4CY9nQ5YIlgSJ8YOxXSmj0cX60CGRTG7Hjh0ZJRd3795NJBJBkiR+9rOfIcsybreb1CSODodjQvcRQmC329OeAKuqqpIinerjVxQlmcY9msMnaTabOeeccw4ZcR+LaSv8jbtvIRbzE41qRLIbr2MSjYZyHpPfRwWupsa70GKWNNEHUA1Tn8QTDyfL/DCaTO+nzewRtAaDYPlyMyaTwGKVsFokLJa4OFusEg57AStW3Irdbsdut9Pd8zd8vicxm8UYGRjhox/NH7dPDsdJHLv8n2lPcoriAE077EvhHYls3ryZBx54gF27dtHX10dfXx/9/f309vYSCATGvDYWi+FyuSguLs44VlRUlPZaCIHT6aSkpISioiKKioq49tprCYfDvPzyyxkDrKPj7VMt9mz7DgehH820Ff5AsGP8k8YgNkYBlYk+7mXDN9RNIJhZQEJV36/wZ07isdtljj02LtJGk4TJJIaX+LbZJGEyx1+bTQKzRcJiju/LNTAqhOB3N5cjhDr89DTypRlxq5ybcsVt1G+3097+b0bqc6VH9aT8FYBIMrIlW9gi6Nb54YTH46G5uRlIF8y5c+eyadMmnnnmGbZsyTZeND69vb1Zhb+qqoozzjiDoqIiiouLKSgoSPvO2u12li9fDsSt9FxCnssHfzgK/WimrfCbjOUEgu0TPl+K1zJJ5gZX1dxukpKSEsrLjUhSDFmOV2JUZIEkCxQZFEUgK6nb8eOKKnA6yjAZTRl9W7LYyDe/VYjBIFDV+GIwCKyWQo455jbMZjMmkwmTyYTZbE6+tlgsGAwGtjd0ZPj4KytVfvu78sn94bKQGtUzlapGer6W6YumafT29vLCCy/w9NNP09nZSX9/PwMDA7hcLrzeeA6ia665JvmknOqaKSiYfMEgm81GQUFBzhDLgoICTj/9dMxmM5FIJKtFn+BgDrAeTKat8M+a/SO2b7+av95ZlfTrxycSgxDxD4IkgSQZclquufjd737HD684me3br07zNWezglOJt3sNQIaPf9ZsI7NmG7OcfyPlZR8c9/0mhDW9mLUY3o4/DYzkXBkpyqgozrTBy8lO1dct7+lPYiJTfX097e3t9Pf309/fj8vlor+/n1Aot1s0QW9vL6WlmWm5CgsLs56vqiqFhYXJ5fLLL2fevHnMnz+f5ubmNP97ruvPOeccYHq4ZvY101b4J1N7M9u+8QRtIu2PF7OdGtUD8cITsmyc9MBkAt2y1pkKsViMV155hSeffJK2tjZOOeUUzj77bDZs2JA2W/W9995j48aNU7qHy+XKKvylpaXMmzePgoKCNKHPz89PRmrZ7XYuu+yy5DXZ/O9jRdDoQp+JXnpRR2eaE41G6ejoYM+ePezZs4fm5maam5vZsmULu3btwuVypUWq/OQnP8FsNme08/rrr7Nq1apJ3VuSJJxOJ2eeeSaLFy+edN9VVeX888/XxXuK6KUXdXSmMZs3b+a5555LJgx755132LVrF8FgkO7u7jHdIqMZGBjIKvxOpzPr+aqq4nQ6KSgowOl04nQ6KSwsxOl0YrfbkaTM8bJc6QkS9/X7/bprZj+iC7+OziFMOBymvb2dVatW8cILL9Db24vb7cbj8eD1evnKV76CxWIhGAym5YTp6+ujsbFxSvccGBigvDwzKKC0tJSjjz46Ke4JsbdarePOXJUkCaPRqAv6OCTSPG/cuJENGzZw6aWXMmvWrH1+H134dXQOAqmZHz0eD0VFRUiSRFtbG62trcllrOpMAENDQ1lFd7IpfE0mEw6HA6fTmdXah3g02yc+8YkJtaeqKoqi6EI/BpFIhIaGBjZt2sR7L7zN+rffY2v7DvqGBpLn5G8K89WffRvrMSX79N668Ovo7EM2b97MCy+8QFtbG16vl8HBQQYHBwkGg5x33nnJUMLUqJRnn32WhoaGKd3P7XZjtVoz9o+evVpQUEBtbS0zZsxgxowZNDc3YzKZsNvtOByOcdMCjybhmklwOM1aPZj4NnTjeaGZoMvHUbedhzc0NOb5dc31DDy2E2Cfir8u/Do645BqnYfDYWbNmoXVak2GOCYEPrHOVphDCMEpp5zCU089haIoaT73/PzxZy3nwu12U1FRkbG/traWSy+9FLvdTnV1NT/96U8z3lOukMiEhT46qmfmzJl88YtfnHJfjwQikQi7du1i8+bNbN68GdWtcXnlBUQHgkgWhVggAjFQJIVKWykNvWPn+N/atRMtHMPzQrMu/Do6UyFVwFVVJRQKMTQ0hM/nS1uEEKxYsQKIuyxisVgy6uW+++6jtbV10vfWNC3Z9mixtdnGLsKSn59Pfn4+NpsNm82G3W5PrrPNXE29RpZlzj333IzjE0kLrFvvudE0ja6uLurq6ljzwCtsXreJ7T2N7OhtIhgZmdcww1HJV77+UQBiQ+m5YxaXzs0q/CbFyMLi2SwunctxlUsAiA6Mnzl2MujCrzMtSBX1BNu3b8fj8RAKhXC73QwNDaUJvd/vz+o/z8/PTwr/aJHOy8ubch8HBwezXl9eXs6iRYsoKiri/PPPp6qqiqqqKiorK6msrGT79u08/vjjaYO3o5EkCUVR0iZTjed+OVJnrU6Fd999l02bNiXLLm7ZsoXe3vGTKO4ZaMMXGsJqyMz0u7B4NiXWAhaWzGFRyWwWl8xjcekcZjqrkKX0lCmyIzPNy/tBF36dQ4JU4dY0jUAggCzLLF68GI/Hw1tvvUVfXx+apqGqKu3t7bjdbsrLy7nyyivZtGlThki/+OKL9PePzgc0Pj6fL2eq54kIvxACq9VKfn4+eXl5Ses7keZ7dCqBOXPmsHDhwpzx6ol9qeGaqeiDp/uGcDiclgbCt6Gbgf/uRAvF+J+7v8LW7p1Tarehp4nllZlzGL72gYv5xvGfHfd6oUrYPlI7pXvnQhd+nffN6Bhyk8nEGWecgdfr5aWXXqK3txdZljn77LNZuHBh2rlms5kFCxbwrW99i6GhoWS9gYkyNDRErsl9FotlSsIfi8Xw+/1Z6zEUFxdTXV1NXl5emrgnBD6xP1vsOkw9lYBune87fD4f27dvZ8Ozq9nwwmp2dDayo68ZBGxbuQHrMSX4NnTT/0hDMq/g/OKZExb+IouTBcWzWFgym4XFs6lxZI7BABlWfSrCIKGFYsgOI7aP1OpRPTr7jlTB1jQNg8HAzJkzqa+vJxQKUVZWliFIq1at4le/+lXShRIMBgkGgwQCgbTtbC6Ud999l0984hNpx/x+Pxs2bKC7u5vIFPJnDw3ljorIVUgnFZPJhNVqzVhyCfeKFSs4+eSTqaqqmnDx7Vy1U3Uh37/09/dTX1/P9u3bqa+vp271RrZt3Uprfyca2UNkWx/YSBXL8LzQPJJMFphfNDPjXJNiZG5RLQuKZrGgeFZS7IutYySek0Vc1P3RkVRaKQizjOPjc/a50I9GF/4DRKorY7wiyqnn2u12zjjjDObPn8/atWtZuXIl/f39GI1Gli1bRlVVFYsXL6a9vT3tmoKCAtasWcPGjRsJhUJEIhFCoRDhcJhQKEQ0Gk0KdWJfqg/57LPPTkahAMkC1M8888ykp+0nyPWDAHHLf3BwcNJtZnN9JJgzZw42mw2LxYLFYsFqtSbXie2J1lYwm80ZMelPP/0069aty3hPBoOB8847Txf2A0giTDI6EOTaVbfx7LZX6fb2TbqdHV1N2F5wZAymLq9czHnzz2R+8UzmF81kQfEsahwV5J9UydDqiZV23F/W+1SY9sL/3nvvUVdXx7p16/D5fFgsFpYvX86sWbPQNI1YLMY777zDjh070DQtuUiSxGc/+1nOO++8jDZfeeUVXnnllaRfORaLJRdVVbHb7fT29uL3+1EUBavVSk9PD5FIhA9/+MPJuGu3250s7rxmzRr+8Ic/4PF48Hg8RCIRotEokUhkzEE9gD/84Q/4fL6kzzi12Pk777wzpb9bMBj/4IfDYVauXMnRRx/NypUrc1rCE2EsF47JZEoTfoPBgMViSaagHr0kjlkslpz++MQAbTZUVSUSiYw5OQrGHiA977zzsn4+dPY9fr8/rSJXW1sbv//69Qw8uStuPafgGxqakugLBC3uDo4ZWITsMKaJ/wnVyzihelna+bLDSMGFcwEYWtOZYb0DoAqcn5x3SIh9KtNe+C+55JIpTV1XVZW5c+P/1NFf7ltuuYXnnntuSv057bTT0ibcxGIxnnvuOSRJor6+fkptrlu3jtmzZ2fsz5WvfCKkRockImXcbjdG48SiC2RZTtYPMJlMGI3GrNkZE1x00UVIkpSsM5D4gZFlOfkDnYvReV9SEUJgMpn0GaSHAdFolL1797L52Xepe+E9drc10ehppcnbTktnZgjtdy0fx27InAMxp7BmzPtIQqLGUc68opnMLZzBvKKZzCuqZXZBDWbVlLTMU338o0kdcC24cG7yB+BwYdoLv8/nm9J1CUtw3bp1GcLf3d095f5kq9fp9/unVJAigcfjybp/ssIvSRIGgyG5JEhM/08UoD777LMxGAwYjcaMJSHyiqIgy3La+5UkKflElYosy5xzzjkZCbtylbs7lItY60wc1+M7+dtf7+KV3atp6m+hub+NUHTiyeQae1s4pmJRxv45hTMAUCWFmc4q5hTOYM6wwM8tmsFMZzVmNYcBI4s0d0wiqiftlEPIZTNVpr3wj+cmyUVCnLK5AnIVW54Iua5NFdpsKIqSXBJ5UBRFwWQyZdQYTeBwOPjgBz+IqqqoqorBYMhYJ5ZEm6NJrViUKEB9yimnjNnXhHsEstcsHR3VM5Gp/rqwHz7EYjHa29upe+49tj6/lj0dLfz0/G9j/+jMkYiZx3ZAWGNzx3Ze2PnGlO6zq29PVuE/qWY5r33tfqrt5ahy/DMtzDJENLRwih7IAiQgHP+OSxYF+/mzk4JuPabksBb3sZj2wj9jxoyM6A4hBLIsM2PGDJqamhBCZCwJV0M23/HChQuRJCnnIstyxrYsy8iynDV5ltls5qKLLuLUU0+lqamJ1157DRgR+8RA7uhY9USuciDr9Hur1crJJ5+c828zetKP2Wxm8eLF4xa0GD1RKnFtNgGfrjVLj3SCwSDNzc00Njay7dWNNLy1maauvezpb2OvuyNt9irAV479NNpjEYJ73PjXdSfFttZZNaH7CQS1M2tZsGAB8+fPp6zZyAdKsn+O8owW8owj33mhSjg+PgcgOQA8Haz298O0F/6///3vGaKYWtzh6aefzhkHDnDsscdm7Lvqqqt47LHHJtyHhA9669atGVEoCTdHovLQ4sWLqampyRrjnWt/gtFRPdnCDSVJIhaLTdlFoseTH1m4Ht+ZHLi8e92jPL/3LfZ0t9I+0JUzJDIbzf2tFFmdGYOgMwvShb/AbGdWQTWzCmqYVVDFLOfwdu1MZl57avK80XH2aagCocRDJkcL/JEq9KM5IipwjQ6PHC142cLyhBAce+yxOaM2ciW5Gs8HPV5fdHQOBL4N3bQ8Xkfz3mbaAj209Lezt7eddn8Pj9z3EPnHlsVFPyVU8ecv38bd6x6d0v3+cO7P+PSSj2bs7/G5eKN5LTOdVcwsqMZhyhysFaqE45NzM0Tbt6E7LapntKtGJ3cFriNC+HV0jjS867toemwDe1r20u7posXdSXugly6Dm+Y9zextb2UwlD3w4d3vPcaiL51M/8MNadb53957mF++8qcJ3d9hsjHDWcEMRyUznVWcM+80FpfOzTppaSyOdJfM+0UvvaijM43oW72XnY+to0oqQnYYMS5wEtzen4w9//aTv+TJ+pVTantvbxtVLzRnCPTo1ANlecVJca9xlFPrqEq+dpozM44KVcJ8bAn+dd3pg6wJVAFhTRf7A4Au/Do6hxjBYJC2tjba2tpoaWmhcc12GlfX09bfSYenm/bBbvqGBhAIdv3oZQwDZMweLc0rnPL9W9wd8R+QUdb5sZVLuOfTv2WGo4IqexkmZZw5HRJIJoXYUCRNzH0z7Pogaxai0Si7du1iw4YNydKLN954I8cdl2Gwv2904dfROUCkphVIFbxbb72VVatW0draSltbGz09PRNqT0Ojy9tLtT2zPm6lLfdkuQRGxUCVrYxqezlV9jJqHOVU28s5tmJx8iki9Qel0OLg7NknprWRsOKTTxvDPxZjCfp0DpOcKLFYjHfffZeNGzeyadMmNm7cyObNmzNyT11wwQW68OvoHGr4NnTjfr6Jvs5eun199Hhd9Gpuek0+2ne30NHXRZe3j0AkyLNfvCt5XXQgmCyp99577/H0009P6f7tnu4cwl9GnsFCpa2UKntZ+tpWRrWjnCKLM2u4cmJWakKck5E4AtRZNmJ9Qd1a3wd88IMfHHeC6YYNG/bLvXXh19FJwbehG/dTu9OrJSVcHgLuW/84De5mXBY/XT1ddLS00+N1EYyGcjWZJBgJYVRGJuolSupVVU0slj0VSUiU5hXiD2evzPThuSez7QfPZQq7LEDTMsMgc/jXD8d0BAcLr9fLli1bqKurS5ZeLCsr47rvfIM3HryPwb5e8guLOPWSL7Dw1DM56qijWL169Zhtbty4cb/0VRd+nWlLqmsFEfehDmg+ejx9uDz99A714wp56B3qp8/joicwQN+gizyDlX9efPNIQ9rI+pntq3h779SssG5fX4Z1Hh0IUllZmbZPkiTKysqorKykeMhKuamIsvxiKmwlVOSXUGEroSSvEEXK/fWVRGYyvYSogz6R6f2QqKv73MP/ZuVTT7Cno5POwSF6PZnZZQvsNk4yRIiE4j/Qg709vHhnPDJq6dKlGcJfVFTEsmXLOOaYY1i2bBnLly/fL+9BF36dwxJN0/B4PASDQaxtI0ImzDJCCGJDEX707G9o7G/FNTSAy+9mwO+Z0KQjhyl3Ddxi69QHTbsGM/3xssPIueeeS3V1dbLUYnl5eTJ9hm9DN/3/2QHRzH5LlpGB09FRPQAIsBxfltVi14V+cvz5z39mzZo11NXVUV9fn8xeOx4ut4d+j4d808hAeCQU5I0H7+PMMz+Ky+Vi2bJlLF26lGOOOYby8vKs7rd9jS78OgeEXAObAIPrOtny4Nv0dfcyKAcIzTMxZI/S+uZOena2MeAfZCDgwaP48Qg/fX19uFwuIpEIpx53Ev/+6O+S4YGaP5qU9vXtW9nZt2fSfR0IeAhHI8k8L6nkKrJhUc2U5BVQYi2kJK+QUmshpflFlFgLKc0rojSvMCMcMuFLL59bkswEO5rE3yjV/XSginUcKWiaRkdHB+3t7cmB1Id/dTUtWzYlz7lr9SYa9mZmCJ0IHe7BNOEHGOzr5fLPfIbPfOYzU+/4+0AXfp1JkeoD1zSNoBJBOqOEcI2Kx+Oha10zHa/uxO3xMBj04Ql4GQx6cQe9HFu5mM8tu4DoQJD+hxqSbfY/toOTbvnUlPrT09KVPSYccJoz8yJNlN6hfsrzizP2f2TeKVTbyyi2FlBaWEyxuYBigzMtN8xEmMwsUz0KZt+gaRqtra3U19ezbds23n7lZda/9x7tff34w2HyTEauu+BDCElCG5VM0amMX4dCAEX5Vsrs+ZTb86lw2Ci323BazRnn5hdmT6x4oNCF/zBmIlPWUy1tzSTwBf34Br0ETTGkDxQQrTLg8/no3dxG77t7GBzwMCSHOOsz53D2l85N95MDewbaueTfP2Aw5MMXGiISi8KvJ9bfUDTM55ZdkHzd/9gOZKsBKSrIN1hzziQdC5c3d03dQosjY5/dlE+RxUmBxUGhxU6RpYAiizO+bS2g0OKkyOKgyOLM2maiIEcijQCQNo6QCGXM6npBTytwIIhGozQ1NVFfX59c1r+7hh07dxEI50777A0EGfQHMqxzgDJ7eioJm9lEqS2PMltc5Msc+ZTa8jBmyXA7GsVg5NRLvjD5N7YP2W/CL4T4B3Ae0K1p2pLhfdcBXwMSgco/0zTt2f3VBxjbxbAv2xs9kJiIAhkvpjlxXU97F12+PoKREKFomFAkTEiJoCwrhAojgUCAgR3dDGxoI+APEIgEh5cQn192AQtLZhMbisT9wcStxKf+8ghfv/I7DIX9BMLBCUWeJAj5gxzjmJcxy9IgKbR6JlZqbjSegDd9R1hLCqPdlD9p4bdarVhNuStwfefEz/Ol5Z/EabFTaHbgNNuzum/SkIgn+ErNwT7O/1MX8YNL/Rur0qJm7n23jrfXrptSW12eTLcMwLzSIi48ZhHf+/2fWLJkCb3bt/DinX9KDtoCSIoSrzeR8rSgGIwsPv1sGje8lxHVczDZnxb/PcCfgPtG7f+Dpmm37Mf7JvFt6Oa6H15Nl6cXGM6t/wgoRWYiAwFiwSiaDDFNIxaOgiqQyy1IDgPSYIzfnfTDNIEHGHhsJ7e9dg9v7llHNBYl+ucYMZMg7A0SiUaIRCOEY1GisSjhWIRILEI4GiH88whhLUJDQwOzZs1K9m/gsZ1o4RgPbHqa375+Z+abuH/893nKjOUsLBmuwBXV8LzQjPWYErzvddAxOLWiMV6/L2s5uTyjNfsFE8AT9GbsS5S4m188E7spH4c5H7sxH7spH6fZhsNsw2Gy4TDl4zDbcZjzWfyrD1NQUIDJZEr7G47m6LL5Iy+GRVuYZbRILJkWWBgkkEXWTI46B59YLEZLS0uy5OLqVStZt2Y1A14fP/rIaagmE9FIJCm2g709CI9r0vcxKDKltjxiOcb+S2x5lNjyOPPMuGAXF8fXo8M0s+072CKfjf0m/JqmvS6EqN1f7U8EzwvNPLnlZXb0NU/8ouFIPbNq4qZF3wJGJtsIVUILx9jZ18w7UwzpS83m6XmhOSlY41qiYxAYlfs8YUUbglOvj+sL+7Mm07Ia0v2VRtlAntGCzZxHntFKnmIh32jFZrSSb8zDllysVIyeTSrA9pFaBh7byT2f/u3IblVCqckjvDuzspjlhDIKKkYGSRMinS2qRxfywweXy8WOHTvYsWMHb7/8Iu+9/SYdvS56fUOEI9mLFw0GgtiyPOkVZ/GpJzCpCiX5eZTa8ii1x90zpbY8HBYz0jjRNNVLlqa9XnjqmVlF/VAU+tEcDB//d4QQXwDWAv+raVpuJ+37ZLR/dTLEtHQLUgvHkiItC3nK7abWsk3tn1Geen3cwKhJPLIj/qiaV5AZlmhRzVhUU3wxmLGaLFiMFszCQJ7Bkjx+XNVRWTMpSkLiza8/SJ7BQp7BEp+QJIHzorh1nSv0MBuW48syhDtVrFNzwY8XmqiL+6HNaHdMwhK+4ooruPfee3G5Jm+ldw/6sJlNGftLbPnkGQ0ce8KJLFy4kP4t67FLUGrLx2Y2TilcsnrJUi6+9sZJX3eocqCF/y/Ar4h/lX8F/B74n2wnCiEuBy4HqKkZu3hyLhICOBXGKtkoS/tG+BNuDoBCi5N5RTMxyioGWcWgGDDKBoyKAaPZiEk1YogqGBUDJsU4vBgwqUaOrVySdo+EW+oDnzuT1fwHszBgVs2YFEPahz51gHK0u2SsTIozUsISs4UWZsx8hfiPCGQV8VzCrc8aPbzQNA2Xy8XL/3mIlx59iNaOTvoDIXo9g3zjtOORpPiHIHUSUywWm5LoA3R7vMwpyZxXMbekkN9/5VIu//PdQPxHZ7Q/frTv3WjNQwgIeL2HtItmX3FAhV/TtK7EthDiLiBnghJN0+4E7oR4Pv6p3M/2kVq+t+aLDPhGXAZCCMSwCknD20IIJCHFXwuBLElIZIp7om7n11dcwicXfwhZklFUBcuiYmI7PEgxgSIpqJKMLMmokoIiKyiSgsFooOTTC3Esr0zrX0Jwz194FucvPCvzTcgC56fnAROzpi0njFjRBcdXs8RgTFrTkmV48CmHPzvroHVKJkU9AZdONBpl1WMP8+Tdd9HZ00ufd4h+f5CeQS99g1784UjW6wb8fgqsIyGviUlMcxeNn4DMbFApybdSXlSI06BQkm+lOD+PorzsIbSq0ZQWNZMQ8MPB936gOKDCL4Qo1zStY/jlJ4At+/N+1mNK+NLPv5UmaMYFztz5wMlt6abW7Vz4gsq8fRDVM9rNMZpsoX9p1vQYJeZS7/F+YsV1IT8ySXXNmPLyCIdCPPLOOtY07iWaawR0DPq8Q2nCD/FJTEcNT1wzGo3MnTsXxefBaVQpzrfGlzwrVqMBW3EJp17yBZ6/4zZikdFPkwKjNY+gL7e1nssff6SyP8M5/w2cARQJIVqBXwBnCCGWEZfFZuDr++v+CbIJV6oVm8sKHitn+L4UyMlcp4uwzr7g3eee4ul7/kZreztDSIRNVhp376a7f4ABf4D//PFmdrz1WtI1EhiM56AxyPKURB+g1+tjbmn6pKX8wiJOOeUUmpubqa6uRpKknG6ZVDF/5d47k30y5uVz9pcu10V9kuilF3V0piHbt29n69atvLtqJWvfeJWuPheeYJj+IT/eIf+Y1151zhkU5WeG7b69aw+PrR/7IV2RJQqtForyrBTmWSjMs1CcZ6XCYSMvJT5eMRj58OXfySrYuQaCdSaPXnpRR+cwp/6NVaz85z9oaW0lpBgoO3o5V95wU/JYqlg+tbOVp196eUr3cfmGsgp/4bBP3Wo0UGi1UGC1JMU9Ifb5ZuO4YZGm/HzO+mJuK113y8Rxu90YjUZMpszIpfeLLvw6OocIXq+XtrY2WltbaW1tZf2br7Px7Tfp6R/AEwzR7/UxFEpJOfDUi3zo9NMwm0xp7pHB3h4C7Xun3A+XL/sTweziAm74xIcxqRMPPTbm5R9R0TJTQdM02tvb2bhxI/+99yXWrV1Pa98uej0dfOfjv+G7P/si844v26f31IVfR2c/Uv/GKl594B66OjqoqKzMKnxf/epXefihBxn0Tj5X0dN330WZ057mEwewmww5rgBZknBazBRYzcNrC05rfF1gNWdNWQCgyDKKnBntpppMxDSN6HCq4vEsep14Tv+rrroqWXqxt7c363l7Onbw8r31APtU/HXh19GZJC//7f/YvPJ5wuEIg4Egg4EgnkAAjz+YfO0NRwhKCl3d3QwGAhhkhRs/+ZFk/HqqKPa1tU5J9AHa2tuxxjITj5XZ8llQXozTYsZpiQu702LGOSzsY7ljRse4J6J6oik56PVB1fHp7u7G5XIhuR2888RuvK4gJqtCJBwlEtK465934xkaew5Da98utJjGO0/s1oVfR2dfkuofV8wWhoaGMAxPWR4tcOedfgprN25iMBBMd7uMQzASIRCOYCIeT54qmMHujtwXjkISArvZhMNixmExUVhcTH5hEYO96QXaZxYX8O2ZZxMNhcacuJRfWMSsYz5wyCURO5wIBALU19dTV1fHay+8w+q31tHasxvPkIvakoX86BN/GjnXNxKKWlkwe0zhF0IiFIn/77yuqWchyIYu/DrTkoSYu3t6iCgqQ6Egfa4BYgYjxqJSmnY00NffjzcQwhsM4g2G8A6LeVGehas+Fhe+oHeQ5/7yRyBupe/csYMuT2ayuYkwGAhgUvMY7Et/rDeL4VQgksBmNuEwm7CbzdjNRhwWM3aLKSn2+UZjcgZsIjIGyBoCefaXLgf0iUv7ilgsRlNTE3V1dbz63Du888Za9nbsotvdRkzLnk+o3dVETItlLYVZWTiL+tb3ADAoJioLZ1FVOCe+LppLRcFMDEoi/crUsxBkY1zhF0J8F/jX/sypo6MzHvVvrOLlu++g39XPUChESFKZc8oZmEwmIju3pAlbW0M9m156llteeJ0u9+AEii2mMxhIT3qnRaNJK92Ww/89HlajAX8obu2NLsJx2jFHc1RlGVajYUwXjKQoqCZzzolKuQReF/r3z4UXXshLL73E0NDQpK4LRQL0etopsVdlHDtuzlnUFM+jsnA2xbYKpBypYIQkOPGC2VPqdy4mYvGXAu8JIdYD/wBe0A6H4H+dg062eGwYFqgU10QsprGpq5fKo4/F4Cykv7+f5oZ6mhq2M+jz4Q9H8QWDBELhdBF/5uW4S+PME4F4NMtzf/ljMkVvlhxzEyIYiRCKRDEoI1/EhJWen5IUTAB5JiP5w4vNZMRmNpJvMmEfXtvM8f2JQdFsRTg+/IWvjptLZjxrXQ+BnDyaptHZ2cnWrVtZ9ew7bF3TzIeOugwAo1XmtIvnJ/3qoVBo0qKvyCrlzlr8OepMVBXNoapozphtqEaZMy6df+CjejRNu0YIcS3wYeDLwJ+EEA8Df9c0bfc+7Y3OIUFSsHt74mXoYrFkWJ7P4yFmsrLogx+lZN4itrz1Ou88+wSDnkEC4cjwEsY/ah0IRViy8nUuOPaoLFPu4YE330V7491J99UbSPd9phbBsBpzR7bkQgAWowF/KJwm/Akr/X++8AWWvfIi+SYjVqMBWcqd+lpSFI4688PjireeS2b/kii5uG3bNrZt28bq19axfu1m2nqa8IdG3HaqYuTsxZcgSTJBX5SX79sGxKNplixZwnPPPZfzHgV5pVQUzKSicBaVBbOoKJxJib16QgkdhQyLT66geUsfXleQvAIjJ14we5+LfSoT8vFrmqYJITqBTiACOIH/CCFe0jTtJ/utd0c4Y1rMw9EWmgZBnzdrdsFAMMhz9/6N/t5eFGsehbVzaK7fgru/H8lkpuroY8gvq6Tujddo3dVAMBwhGI0SDEc4traSZdUVaMNZSoPe+BR5l9fHbx95Fv75yKTfT7/Pnyn6xAcszao6qcHSBGNdkzcs/CZVIc9owGo0kGc0pmwbyDMZ44vRQL7JiMWgZoi5kOXk3/5zV11LWVEhm1c+n/zbZGOyIY26xb5v2LGmkzt++292t22jc2APnf176Xa3EAiNb62HI0H6BjsptscTKWpRktE0S5bEM+AWFBRQbK2h1DYjLvQFsygvqMVssGK0yoQCUXK4+7OS+mRx+pTe8dSYiI//+8AXgF7gb8CPNU0LCyEkYCdwyAr/aOGcdcwH2Pr6SiLBiY2QJ768MCK2ssGQDGvTNA1NAzXPyqmf/RJzjj+ZcDicXOrffp01Tz6Kp6+PqKYRjcWocNhQZZn8omIcZRW0bqtDi8Vo63fT3NdPJBojhiCixQiFwkSiMSKxKOFojL889QLhaIxILEY4Gh1eYlx4zCLmlIw4NQZ7e3j+jtuoa2nn7jfey/0GV72V81CV0w7VmfsnUlM0F2PVOzUbJib8JlXBajBgMapYDHHxzlV68dPHHc0lK5ahyFMvSJMtbPGDX/0WH/zqt6bcps77w+1209zczNKlS9mxpjMZKmm0yoSGory8/j/U7Xl7Sm139DcnhR9GomkuvPBC2tvbKSsrY+e7Xay6fzuRlPKcikHitIvjNSlef7iBoG9E/WWDQFVlAr7IAbHmJ8JEvsUFwCc1TduTulPTtJgQ4rz90633TyLZ012vvEWfL/5rr/3rP/E1gKahxVdAXMC1lLUqy1x5zhk8939/ACGSLoRoMMi/12xkw952YqlDHfdMzAK+6mNnUJRnZbC3J83P3dDZw7N1DVN6r75gpmDGIhHUMdwQ4xHMYpkDGNWpC79/DOFfXlOJPxzG4XDEBzlDQSxGAxaDillV4+vR1rgQSLKc9hQh5OEKXJEIppS+KkYjkVAoPXxxVAgk6PHphwrhcJjm5mYaGhp488W1rH5jPW1de+h2t+AZ6keWFG79yjPIspIcyEmIbZmzZsLCb1BMlDlnUO6cQbmzljLnjLTjiWgam82GzRYvbJQQ7cQPzmgxP9iiPhEm4uP/xRjH6vdtd/Ydbzx4H5FQkF6vb0rhd+qwlZjtcV7TtHTRnwTRHO4B5X2IdDia/dnS8D4s3VCOcncGWcZhMWGQZUyqilFVMCkKJjWxqGnbZlXBZIivrWYzkqJkdfd8ZMk8JEXho9/4PpAZnihkGUVVCQcCwIhAw+Fb91QH3np2M0/d/xp7WppwDbXR1d9Kp6uFXk870Vhun0k0FqHX00GpI/OxtNSRWbjJZLBS5qih3DmD0hShd+QVZw21hLjvPVc0zbzjyw4Lgc/FtI3jHx0rPVnG0vWplG5LkCutrfw+RDqX8BtVFYfFjEGRMchy+lpR0rcVGZOiYFRlDLKSTMg1GiEE15x3djLqpG7Vi1mFfDT5RcU5o3ogu098ouJ9uNY9PRLQNI2uri7KyuIi+doD29n6ZjtaDBDwj5d+xfrdr06p7a6BlqzCP6NkPqcu+jhlzhmUOWooddZgtxTm/N4qBokFJ5Sxa113coLV6Kie6ca0Ff5ssxkngzZGIGBqrLUAJClewUuWJCz5+aiqSsg7iECLV/MaruolS1JOy77Mns+Js2tQJBlFjp+XXEsSqhzfr8oSiiyjyjKqHN/vsGQWl5YUhYoCB9ecl6Wq1zCKwUj5vAW0bNmUcUw2GokGgxlRPaOTbVXOX5iWHz2VXAOcExFlfbDz8KH+7Tae+dc77NnbxGC0m4DsYtfOXXT0ttA72EEoHODOH60kNPojokGxrTJrm2MhSwpFtgo0LfvTc7mzls+c+v0x21CNMuFgNM1Nc/qlCybdl8OVaZuPP+Hj7+jrIxJN+YAIkSz/mhBwIUiWYEzsFwIcFjNCktJ8/DDiromXbBy+ZthNkRCrbAUl9jWm/Pwxo3qAjMHtbKGFidwzWiyGkCSOPvuj+uClTpLEAGpTUyOucCuWiiCD0R52797N9q07aG1vIRob+6nv6ov/TrmzNmP/6oYX+Nerv8t6jc1SQIm9ihJ7NaWOKkoc1ZQ6qinML88ZJink+Pc3GhnRNWeZmYFuP1oMhASLT6k4YkT+iMvHny02el9F9TDq+myWbdr9szx5jI7qSUVWVRSjKTlD8/3kUpnIeXqUypHNjjWdvPHYdlr2tjAY6WVRzbEEfBGEBKlG9XPr/8m7O16a0j163G1Zhb+8oJYZxfMpsldSaq+m2F5JiaOKEnsVZkNmTYBsKAZBJKQdMhEzhwPT1uLX0dEZIRgM0tLSwlvPb+C159bT0dmKy9tFn6eDvsEu3L7epHvz5i8/mVV0n117H8+uu3fS9zYZrFx08nc4ft6H3/f7kJURa/5Is96nwhFn8evoTHd2rOlMixlXjTKSEg9rXNv0Alv3vEdPfycDQz24fX1M1MjrG+ykqjAzmqXIVp7zmjyTgyJbOcX2SopsFRTbKpLbeSb7mAERskEQDWkYrTICkYx3r11SeEBnsx5J6MKvo3OIs/m1Jp779xra2trwa/1YK8N0drezbWMjl3/4+qSohoNRGPZC7ti7lfcaVk3pfq4cwl/unMGCquMotlVQUVbFxd8+G2XITtObQRQmXx5wIhb7gZzNeqgQi8VobGxkw4YNnHrqqcmIqH2JLvw6OgeB1BmnfqmPooUa69/eRtPuFgZ8PQx4e+j39TDg68EX8ORsxxfwkGe2Z+wvyC+ZdJ/slkIKbeUoUvbSitXF8/jOub8F4ENfXpS0vnfM7UybzDTaUtct99wEAgG2bt3Kxo0bWfPf/7L+zTfZPjiIb3jc78EHH+Qzn/nMPr+vLvw6OvuYHWs6eeWBOrp6unEP9TEU7af6qDyu/vX/Jo+nTvm/95lb2fKX1VO6V7+vO7vw55WmvRYI7NZCCvJKceaXUphfRmF+GQV5pRTaynBaS1CViSW1W3JaRZpwZ5vMNNpSPxIt91x0/PKX9P77QS5qbmJXMMhYqX1WP/KILvw6OgeLhIXe09FH2OClcqkR1Rmio6ODzs5OOjo66OjoYE9jC+3tHQwF04PW5WcVPnX+Z1lwYgXvPLE7Lc+LI694yv3q9/ZQXTQ3Y/+ssiVcdvqPKcgvpSCvFEdeEXk2M9GwlnbvsUhE9STWurU+MUKhENu3b2fTpk1IksRll12G+6mn6P7DH4m0twNx4Q3EYmOKPsC6VVNz142HLvw6RxypbhaLU2XhGQW4+nt5/anNdHd1IxRYPvNM0OKiVznXQWeTh0goxp+evZI93dsnfc9oLMJLD61nwYkVGWX0HNaiHFfFkYSEzVKIM68Yp7UER14xBfklOK0l1JZk948X2crTBmNTk4gl3ntC0EcPquriPjE0TWPb3Xfz5u9+R0Ofix3BIDvCIZqCQSLDA+kLqqs5z2aj49qfow2nG0kw32hiT478VTZJYqHJxLL3kcplLHTh15kWpIp5wq/80vOr6OzsJBAbZHBogAFPP97AAF7/AIMBN15/P96AB+036Raww1rM8tr4/ActBq0NA8ljNnPBlPvY0RavrZtXYEwT/zLHDGaXHYUjrxiHpQhHXhEOazEOaxHOvGJs5oK06kyJFAPb3uogFk2P1ElEyJisChoaQV/0sEwidqjhcrnYsmULW7Zsoa6ujk2vv87WhgY8OdKlJNjZ0kLzr27AMEr0ARaYjLzoHaRSVZlvNLLQaGKB0cgCk5EKRUUIgVJRsV/ejy78Oockmqbh8/lwuVz09fVlrBNLbW0tl33sm2k+c68ryJbX27nj8evpG+yc9L29/oGcqZ5tFueE2ohb6QXYLIXYLYXYrYU4i+K++BMvmJ3W32WzTmXZrFMn1K7JqnDqxfOYd3wZ5bMdOTNE6kyd0W4ZgPOaGmkMhca4KjtRYFd3N4tMmVFPlzicXOpwYhuuzoYQaUnChMlEyQ9/MOl7TgRd+HX2Ca89sJ0tb7QnU+RKskA2aAz0e5AsYeac4GDxibXMnZvpj45EIlxwwQW4XC76+/uTS3iMNM4JPvCBDzAr/OGsfmuryT4l4Y/EwvhDXizG/IxjhfnlFNkqsFkKKLAXccKHllBWVkZ5eTnl5eWEelW2v+LGotrSrHQhwwe/sAjInda3/u32tKcLGNu/frhniDyYDA4OUl9fz9atW9m6dSvbtm3D19bGXWYL0YGBjPPnGo2TEv4yRWG+0cg8owlbDneNQ05JOyFJOD5zMd7XXifS0YFSXk7JD3+A/fzzJ/vWJoQu/EcYo10io8VE0zQCgQBCCExZrJR3X6zn5l/9P4b8QwTCPgKhIfyh+DoQ9g1vx9fBsH/kwr/AJz52MY8981BGm4qisHLlSoITTKWRSm9vb4bPPEGeKTPaJRtmg5U8swOb2Ume2Um+2UEsRwKwDx/zWT58zGdRDBJnXrYgq/AunNfJGw/vGDPTYzbR1kV83+NyuXjvrrtYe/c97OzuplFAkyTR2puZvVcChubOw5hFqOcajLxAZiJCqyQx12BkrtHIPKOR+cb4tj1F1GWHg1ggkOHjTyDMZsqv/+V+E/ls6MJ/kEkV4vGiJ3as6eTN/zbQ3z2IIR+OOquM8gX5VFRU0LHNl9HOkOilV92K3z/Errp2vINeQpEAoUiAYDi+Dv3Nj2yJEYoE8Hq9eL1eotEov/nNb7jyyisz7v/cvev4z5t/mdJ7bd7ZkfOY0+mks3Py1nlvb2+GzzzBrLIlKLJCnslBnslOnnlknZ94bXZgNBjjRXjGcNdWzXcw0OOfkFtFt8QPDgkXzV+21PGW389uv5++cXzwqcSAxlCIhVkMnoUmI/OGBX6O0cC8YaFP+OJzIUwmSq/+GUDcfXQArPmJMG2FP5H3u2egg0g04TLQkFUJSYHQUHS44lZsuBJXDDSNGBqapqGoElXOeVlD2vLne+nsamfb6jZ8ngAGi0RBhYWuFjdDgwEQEULhCLFYhGgsSiQaJhqLEtMifO+bP+TjXz8RiAvpyvvqiUU11u56hbfqnyYcCRGJhYn+NYxqEUS1MMFgkKEhPwG/P90SvT2++vPv7kZuqU26OxKnNDbv4o7nr5/S328wS5rld57YjUmZWOKsrG16c09Eyib8ZrOZgoICnE4nBQUFFBYWJtepy8KyWbz6QEOGu+ejyy8bt08JnzmMuF5kgyAa1pJRPXo+mEODoaEhdu7cSUNDA62trVxxxRV0/PKXDDz8CKQI/I5AkHe9ky++BLArFMwq/Gfm5XNmXqbrLyuqCpFIhsAfTKEfzbQU/tce2M6W1+MDM3c8fzWd/XvGuSITg2Li1q88kxTRxNrrCvKnG3/H2p2vTKlvJ796HvZ8J6dfuoA3Ht6RjMro93azs31UXnzXxNqse2sPS8oyqw4ZFOOU+gjZhd/rCmI0ZOb+HwuTwYp5eCkvrsp53l//+leApNA7nU7M5onfSwiRc/ZoaoTLeD5znYNLNBqlpaWFHTt2sGPHDhoaGmhoaKB+40Zae9Kz3F7Q10fo0ccy2phlGH8imgzUGAzMMhiYYzAyx2hkjsHAzAlcG29ARuTno6WOB8gyjosvovwXOYsWHjJMS+Hf+mb7+CeNQ64iDwCCqcfWRmMRtr7ZzumXLkj6gAEUOfs0+YkwOOCDLJplUCafPwVAVVViWUpExl0qcOZRn8KomjGpFkwGS1Lc469HhN5osCTL2iV84rk49dSJRbXkYiKzR3UOPZ555hlevvtutr72Ok0eD3sjYUI5ypOOZuMD/2aRMdO4mWUcEW9VCGpVA7OMBmYbDMw2GJltNFCrGjCM9uWPiqrJhexwUHr1zw4pC36yTEvhH0OzJ97GGB+AXDU6J0I0GsnaP0WemKUhhIQqG1AVA6pswGgwYXPkZT3XkVfEWUd/GoNiii+qCWPqtmrGqJg48+IlLD6plvz8fKxWK4YcVs+JF8zmpXu28amTxs/dLwQYLHLWOHKd6Y+maXR2drJr1y6am5v5uMOR1cf9wB/+wAMrV07pHk3BYFbhP85s4U+VlcwyGKlSVZRRPnihqvHvd0rJUGEyYf/EhQcsquZgMy2FP7WARGF+2SjrfaQClxBSsiKXEBJCCASJMoq5/zTVRXPxh7wIISfPlaX4tiQpydeyJKe8VlAkBZulgMTvhtEqJ1PqLqk5gZLzbkGRVRRZxWQ0csonFrDwhGqMRiOtWzysfrSZWGSkUliqFZ0aF57AYS3mU6d8E4HImOiTYMlpFZx+ycT81wnhXnV/PZHQSHuyIlCMki7yRxiRSIS9e/fS2NjIlv/+ly1PPc2e/n5atBh7QyH8KeG47yxYiH3YmIq0t9Nx7c8BKG1smvD9BFClqtQOu2RmGLI/JRcqCmfl8McnrHU4tAZbDzTTshBLqo9/fyBkxhTT8VhyWnywcMeaTl6+b1tGNEnqJJ1UxgrFHCs6CDKn6esCrTMZ3E89xT1X/C9v9/TQGg7REo3SHg4ny5COx0M1Mzhq1JiNUlHBMw0N/LC9LW2/XZKYaTSy9OKLmTdvHrYH/k2Nz0eNqqaFWgqLBW1oKOv9Mo6ZzVQc4JDJQ4EjqhBLIgJj65vtGW6V1GIVY5EoxpwrURWQczBRMQgiw1EhqYyOEMk1kWcqYYLjhRDqAq+TjfZHHmHTLb9nT3s7bbJMZyjID/NtCEWBaBSlooK8009j4JH/8E5PDw+7B6Z0n73hcIbwRzo6OLqmhm8EA9SoCSvegEOWUSoqmHvPPQC4jzoqI9eNMJko/+V1DK1fPxLVcxgNrh5spqXFr6OjE8fj8bB3716am5vZ/vTTbH/ySVq9XtrDYdojEfoimUXSX589hyIl0yb8u6uP3/dk1o/ORZ4kUa2qzDAYuNju4ARreiiwUlFByQ9/kF3Uf3V9mnWeTKNwhLpmpsoRZfHr6BwJxGIxJEmKx7I/+FAyIkVYLNxeXcW/X3+dgSzpB8ajLRzOKvxVaqZPvVCWmWHNoxKNGtVAtapSYzAwQ1VxyHLOyU2JPDQJ8R5P1O3nn68L/T5kvwm/EOIfwHlAt6ZpS4b3FQAPAbVAM3Cxpmn9+6sPOjqHGwnLNtTejsdqpT0UpKN/gG6LBc9RS+g2GmlpaaGlpYXu7m52/PjHDD70cFob2tAQnjffnJLoQ1z4l2aZQ7HEZOYnxSVUqyrVBpVK1YC9qiqr1T4aoapgtaK53VknNumiHsflcrFx40ZufuJmVq9dTdE5RVhqLFw07yKuOeGafXaf/Wnx3wP8CbgvZd9VwEpN034jhLhq+PWVWa7V0ZmWpM00FQJMJp7v7maLFqPTH6ArGKArEqErEiE82g27c0dGezv//SBlWXLLVKQmABsDGShXVSpVlQpFpUpVmWPMHs5bqap8qWAkLbVQ1ZxWe97ppx0xoZFTQdM0mpub2bhxY3J5Z+079LSnu9Is8yyYqk081BDPcbWvxH+/Cb+maa8LIWpH7b4AOGN4+17gVXTh15kmhMNhurq66OjoYOfjj7PrP4/S2ddLdzRKIBrjljlz0iNNNA38fp73eHjRmzlTeiJ0BoOUZbHOy4fdMsrwdkWKuFeocYGvUFVKFCUjzn00iRh393PPJ2eqjp7EpFvtkyMajbJo0SICYzwlAQT2jBx/ZMcjh77w56BU07REpq5OoDTXiUKIy4HLAWpqMtMR6OjsT9JysstyMsJl02mn0uZ0ppVcTKx7e3tzTvwTwK99PtQsIluqTv1r2JMjnPJUax6vzp1HkRBIYwm7JCFsNjS3G2G3I0E8LXHKe05Y63q0zNjEYjH27NnDP178B/9e9W96dvdgc9q444472NC9gUd2PEJMiyEJiYvmXcSSJUsYL2jFv3ckw22ujLFT4aAN7mqapgkhcoYUaZp2J3AnxKN6DljHdKYdowtrhDSNgWiUvkiE/miUPi2Gf8kS/MuW0d3djdzVxf+2tY/4rIcTgEXa2/nNLbewzuebdB80oC8SoSzLAGlploFUiEfFlCkKZaoaXysqlcVFHHv77dTU1FBVVYXnllsY+PeDGddaVZXKiy/C/d/Hc6cDdjgoP8xTDxwsXC4Xd75wJ3e9eBf9zf0EWgOE2kJE/elh4kMFQ/z0jZ+ipcR2x7QYDzU8hLE8Sy4tGYzlRswzzJhqTJhnjjzNvZ+MAaM50MLfJYQo1zStQwhRDnQf4PvrTENSQ/1ku50YoA0McEdfL+3hMK5olP5IFFc0LvSebFZyWxu88AIAharKFbNmZ71X0fuogdqdQ/hXWCx8r6iIMiXueilTFEpVBauU7qdPhjl+6EPJfdZhK3x0VE/5L6/Dfv75WJYv18Mg9wEPPvgga9euZcuWLbyx9g2G+rJPHBtNxBUh7A2j5GVKbVdJF6eddhrLli3j5fDLBMuCGCuMSGr2z9hF8y56X+8hlf0axz/s4386JarnZqAvZXC3QNO0n4zXjh7HPz1JE+yyMjjheNpfew1XewduNNzhMB5JZiAYwB2JMhCL4o5GGUhZFlos3DWjFi1Lta6PNTbSHJ58uTwJ2DRvPnIWF8mNXV3cP5A9EE0IQXFxMQVDQxRpGiWKQrGsxNeKwnEWS3rVpXEQZjMYjVkjYXT2LYFAgPtX389DvQ/R6eukzFrG95d/n3NnnQvACSecwJo1a6bU9syrZmJdkD2ded0X6wB4pvEZrn3rWsKxzM+xQHDx/Iun5N8/4HH8Qoh/Ex/ILRJCtAK/AH4DPCyE+AqwB7h4f91fZ9+SawJNavhhqKQE45e/hLZiBQMDA7jdbtxud3J74cKFXHDBBcn2EiGAEU3j6FdXEXl11aT71RMKZRV9AKcs0zx+9cYMYoArGqU4iwtmhcWCZrWw4OtfT5ZcTKxLSkpQVTXtvWUgyxCL135IRPUQCIz413WR36/4/X4aGhrYtm0b27ZtS5Ze3L17N7JNZv4f5wPQ4evgurevA+DcWeeyZMmSCQm/ZJEwVZniS83IOuu5Ka6bxA/Mb979DQPBAQDsBjs/Pf6nyWP7kv0Z1fPZHIfO3l/31EkX6LHERNM0mq+9lo5H/sNQJMIQIJ91JqZLLmFwcJD8e++lon57Rvud4TDXrlmD75JL8FuteAYGGIxG8cViaA3b4Y3Xc/btsssuSwp/9x/+mBRGRQgMQiIyhcEr9xgVlpxKdutaEK936pRlimSFAkWmQJYpUg0svuFXWPfsIf+ppyFLjdUPFxfzxVGzSkeTFt44anBYF/QDg8fjYfv27Wzbto36+npeXfcqdVvq8Hf7M1KpJIgNxIh4I0m3TCAa4Lb1tyWFPxUhCwzlhhGRrzJhrDaiFmRW5BKINB9/gtGum3NnnbtfRD4b+szdCZLN4oXMGYcAXTf+Or1g83Ce79Qv/ujZlpqiELNY8Pf3E5IkQpEIIUkiGIkQzssjHIsxNDhIxOHA9LFz8IdCdD/7LP7+fs6w2amWZYTDAT5f0gLe0NHB7b09BGIa/qZG/G+9SdBqZSgSwef1Ehvt5mvcDX/7GwDfKyriG4VFGX+HGPDW0PDgZo4EWblInVAU6Ugvw2iTJYYikxf+/mgUTdOyzhD9lN3OKRYrTkWmQFZwDou9Q5azunEcn72E8ssvB8B9wgnvS7j18MaDx0kfOYl3XnxnStcG24Io80dksdMXrwp3xhlncM0113Bv370Yq4wYS40IJfMzpAiFT837FK+3vp7mMsoW1bMvJ2RNlmkv/P/617/o6+sDYKiujsHXXiPm8SDybVhPOxVN0xh8/Q0igx4wmtCAaMCPajLztcrKZJhbqqA+XL+Nui99iWhMIxKLEUUj2tZK5NLLiAARLUZUgwgaYS2+RDSNSFMTd3Z2UvvYY/jfWZ3Wzzu7OrktSwHoDFr2Qt3mtF1likr16GpAwGAsyurR4pzFis3GUI4wwbz3MbiZKvxKeXkyygbALssMRKPYZRmbJGOTJRyyjF2WsUvxdfx1fL9DkpPHc6UFGLNUXmrRjSzJvXThPjR4pvEZbn3nVvY27sXcb6bYW0zdtjqGXEPU/qQWh9GR5g55pvEZdoZ3TuleaqFKzJ/+uS+zxpMbLlu2jGXLltH5QierO1dnuxyzbOYXJ/0iq9V+7qxzD6rQj2baC/9NN93Etm3bMg90d8PuXTmvMwvBV4eTSo0W1Hd8QzwzmLt+7Fj4A4EM0QeyxndPlEAOF4n5fYR/5RJ+yxjCbxaCPEkm32ig+KijsNvt2O12HA4HdrudefPmJc8dPc3/4Rm1U/8bCIFstxN1u9OiejLQszceskSjUfbs2ZMsufji2hd5Y8Mb+Dv8hPuyD9REB6O4hZtr3owL6rmzzuW29behlI0hawLUIhVThQljpZGbL7qZxYsXs8e0h99u+i2B6Mi4jEk28f3l30+7/K6P3MXXXvhamvgbJAPXn3z9AXPT7AumvfBPlbGcDvLUNTpzGv4whvch/MFY9jZN0thtqkJgFgKLJGGRJKyShEWSMQuYY8her1cRgr9WVWE1mij70AfhtdewhCPkSRKKEFkzK2Zj9DR/83D6X+9rr6e5V4TZHP9xSP27pVjreiz64ckzjc9w2/rb2HT/Jtzvugl1h9Aik4swDHYEUWwKES2S9MV3+jrj8fEyGEuMGCuMGMuH15VGjGVGJGPceCm3lvOlT38JgA/wAcxWM7etvy1rVE8qd33krvf9/g82uvDnYCzhl5i6SOcWfgmFuBgbhgc7jVJiW2BKeW1KOW4SImdx6VrVwF1V1ZiFwCRJWMwmaq+8kvILL8Rz6634Hn4k4xrHZy8h2Nyc9akkwZlz52VE9UwlTlx3p0w/otEo9751L39e+Wc693QS6goR6g1R/a1qRBZDJDIYIdgenNK9gh1BrPPjT+UJX3yZtYzYohiL/roIScn9dJrNmj+Qg6sHm2kv/J/73Ofo7Oxk4LHHiHl9CMFI6UXiI+4CkMTIa1mAPIa4n2+zcbTVihSLIRO3ghURL8GuDm/LAhRE8rUi4lb9jHwb5mOXZwjrRXY7FzscE3tTioIQInsYo6Ig5+URdbvJLyzkNLJH9Tiuv54OWc5ZxKL5y19O76OqUvHrG/V0uTo8uvVRfv/i72nf047RbcTpdbJr9y4GOwYJ94TRslSmi7gjqM7MyWvGsuxPlmkMu2eMZcPWe5kxHlFTPRImmfDFf3/597nu7esyXDYXzLkgY8D1SBH5bBwxhViyxlaPJaCjSRHUhIgOrV+fFpmTbNNgSE/GNYGoHlQV2WpNy5OSdHc4HBlhmaCHC+rsexIumGwC+bOf/Yy//v2vuLpdk2639spa8hbmZewf3DzInlv3ACDbZIylRgxlhrjIl8W3DcUGJENu610RCjecckPaAO9EXDZHArkmcB0xwg/jh2Smxr0nBwnHmVCjVwbSOdx4evfT3PzKzbS2tBLpjRDsCRLuCxPqCRHuCzPnhjmI4YEsCYlfn/przp11Lv/7v//LrbfeOqV7Vny5goLTCzL2R4eiBDuDGEuNyNbxZzWfUHYC2/u3H5BJTtMBXfh1dI4gOjs72blzJ3v27EmWXly7fS3bd20n0BtAC+f+3s+7eR6G4pFxI7Ns5t3Pvcuf//xnvvOd74x7bzlfxlBiSC7GUiOWeRYMRdnHoiaCw+jgqhVX6QI/SfTSizo60wBN0xgYGKClpYXH1z/OS6aXMqxfgK984St0vdU1pXuEekJpwu+PxlMDz5o1K75DxGPeDcUj4m4oNmAojW/L5onnIxqNRbHgj/iPeBcNkEzxnWueyvtBF34dnUOEp3c/zY2v3khvZy9hVxhlUGGFaQVmnzlZbrGlpQVfSlroRXcuSvq/3SE3P33jpyiSQtSeO5XFeIR7s495nXrqqdy58k7u2HsHIZF7IqAiFPIMeckfpGy8n8Rj05FoNMrOnTvZuHEjG174NxvfWcmGliH+/YUazv7m7+DofZvWTBd+HZ39SGKgscPTQbmtnNOqTsuILnnlz6/w4GMP0tneSSyUHki8m91jth92hdMiYzQ0wrEwamFmBE0qklnCUGRALVLT18UqxtL0SBsxHOGWl5fH1876GhWNFWmDp9ne05FsqU+ESCTCXXfdxcaNG9m0aRN1dXUMZUmBsnF3J2c/9b34i30o/rrw6+hMgYSgt/e344w4ubDkQlzdLh5b/xh9XX1E3BHCA2Ei/fG1FtXg/0jWToWRDJD5jfm0N7ePcbfcjBb+BMYyI6ZaE4bCuKirhcPCPryeyEBqgovnpwvOkRTv/n7QNA23240jS5i2LMtcc801uFxjR0ht6IxB2A8rr9eFX0dnfxKLxZBypKa46qqreO6159ixdwdhd5ioL+5SeZM3x283GEvOGk0QiAboZQI5mlIwm80Ih0A4BULN7v/NW5zHnMVzkq8dRgeBSCAtvj1r27KZQDSAhnZIJBM7XPB4PNTV1bH5ubupW/UYm1s81HXHWFpu4PUvmsBeBWf/PCneQgiWLl3KqlVjpyKv7x122blb92l/deHXmfbEYjH6+/vp6emhp6eH5+qe46F1D+Ht9xLxRIgMRoh6olgCFmKDMYqLi6mvr8/a1rp169i8enPWY+MRHghnuFEAgnkjM1eFQaA6VdQCFcWhoBaqFJUV8buP/47q6mqqq6spKCjg2aZnsxbuEAgUSUnbb5JNXLXiKoCki8ZmsCGEwB106+6ZSRAKhWhoaGDLli3U1dUllz179mQ9f3NHEE0zINwtMMplM1r4i4uLOaZgiKWFYY4pk1lWJjGvcNhQsFft0/ehC7/OYUHSV+7tIC+aR2gwxED/AJIsYZphotxaniFeZ555Jtu2baOvr4/oGHn7E/iID5pGIpGc55SVlU3tDQiIeqJQmnlo7ulzufrSq/nrnr8SM8XSojhGT05KMFbhDiDnBCZd3KfA5of5zre+yWs7B9jeG2My2cPdQWjxaNTYRYbL5sILL6SkpIRly5axdOlSysvLEXWPxH8gwiNF1lHN8aeFfYgu/DoHjRtW38AjOx4hGo3irfMS9UXjy1CUqDe+LfyCvHAePX09hL3DrpWUL55lnoVZP5uVUTEJoLe3l+7uyZd1drvdBAIBTKbMyknl5eXpOwQodgXFrqA61Pi2I76oDnVkbVOy5m83ySZ+cupPOHfWudQ21k6qAtNYvnZd4CdGLBZjz/P/x7b/3kxfbzdfWGYGLQr26rjY7l0Na//B9nYvW7onXy/CboQWd4wa+7DlnuKyOf300zn99NPTL0j48VdeHz93lItoX6ELv86kCQaDeDweBgcH8Xg8PF//PA9ufJC+gT5i/hiRoQhqSCU6FMU/6E/uK19ezu2/uZ1zZ53LDatvSBvo3PPHPTkrI/WTvcYtQNQ7YsmnVkwCKCrKLCQzEYQQ9PT0UF1dnXHsi1/8InmL8nio7SFi+THkfBkhCVRJRdM0IlrupwWIzzzdM7gnpzWuC/b+IRqN0tzcnCy5mFjqt9bh88ddbfkG+PzRwxW03C3w+Ldg2GW2pERmZVPup0ZZgnnFRo4uinJ0qcxRJRJLy2SqbSI9Dn8iLpujL97nQj8aXfinIalukXyRTzQQxe11UyAVUCKXUNdRRzQQRQtpLHcsp1QpZeWulbg9bmLBGNFAFNuxNmzLbBkzJhsaGliwYMGU+tVb2Ju0yh/ZMZIZVEgC2SInB0onQ8SbLrSJLI0Q95kmsNlsFBcX0yv1ErPGUGwKcr6MYlPiS/6w1W5T2fytzShZ6u0CLF68mMWLF3Ns47EZ7hSIu1g6fB1IQkpWW4ppsayuKJ39Q0NDA5s3b6a+vp76d16gfvN6GroDBMb+TWYwlOKWgaToAywpGRmUr8wXHFUqcVRJXOCPKpVZWCRjvPiuTDdNKvvBZTNVjgjhv2H1DTzc8HBG3cvEl9JusCcHuuxGO5qm4Ql5sg56pSaASgyQDQQHkm05jA5i0Rhuv5t8OZ9gKIg/6I+H80VBcSpU2CuS7Sba27NrD1KXRDAQJBgMokU0TJg4tfRUWvpb2NKxhVg4RiwcQwpLLLAtwCE58Pv9/OpXv+Kkk05K9i+RndCzwcOW27eM+bfZy96s+w2FBmzLbAwEB7j2rWuBuEWanz9GVatxiA3FklZ5bFTxGMkiTVj4JZOEbJWR8+LCnVp6MZGlEeAPf/gDf/zjHyksLMRojA+qPtP4DNe8eU1Oy/wz8z+TU/RTyWWd68J+YHC73djt9swDmx/mB5/5Cs9v906p3a3d0RG3TArnzVN448sWFhfLOM1ZIqns1ZluGrMz/trfv99cNlNl2gv/secfS8PuhpEdw9qfzFGkxRdN05LbaCBUgfYzjaveuIoN3Ru45oRrkqLaeE8jnnUetFhczLWYFhf2GPH1GOmP5v1uHh1K3B+9oXsDT+x6gkA0gHudm67/ZE6xb6Ipaztv8VZy+5vf/GZy+7b1tyVD9sbKaDgescCIMIdj4aQLxWazTbnN6FBc2Dt9nckfygT5R+cTHYwi58nIFjkp7LI1c1tSs7+v0TnWKysrM85JCPNNa27CHXIn9+szSQ89QqEQu3fvpqGhIb688zwNm9bQ0BXAFwbfew8gLbtk5ILND8NT32OhI8Tzk7iP0wSLS2QWFUmU5mX/bJXlSZTlOIYkj1jyB8BNsy+Y9sK/df3WKRV6EIaRX/WHGh7imJJjkqIaHYoSGRjnuTEHiSpDgWggWXwZyDrwN1H8/pFHy1RXhzBOvc1oIN36TrRrtVoxGAxYrVZsNht9Wh8xYwzJLCGb5fjaIidfyxYZyRLfVuzxj1titmeqj7/i8xU5+6JKKp+c+8nk7NDEU5k75J6SK0X3pR86xGIxWltb2blzZ7Ls4o4dO2ioW0dTaxc5issBsPdf36VWktIt7bCfhUXZBbrYIlhULLGwSGJRsczikvh2WZ7Ing9HUuMp1aNj1Kk2WOG8Px4WYp/KtBf+KTNqAD/h3gGyVhKaKKlFKlIt3n0l/GXWMjp8HUDc4heKQDJKCKNAMkhIxiyLadTaKGGqSo9oSbhQhBAEAoHkFyXVtTQRElZ5QnhTf/yyoWdlPPzRNC0eppjhAnHxmUf8/GfbBOphZGF75xC1qTNahyNmjimX+cjsuN994bDQLyyWKLLksNjNBXEBd7eAkNOjemC/R9gcDHThz8UoSyMxiNfh64AJeFBEvIwXQhYIRSTXqaS6OwxlBmzH2hDq8PmKQFKl+Gt1ZFtSJYQhLuIFeQXc/MGbWbRoUbLN1ApE5hlmFv9t8bh9lYVMVMvtX1clNc2FkmodJQR59KBmYtwkdfxjtFV+zQnX6K6VaUI0GqXlnsvZ9drD7HZF2N2vsUurZpfXTHPjLnp/nI9BGzYO/CNpCmY5pmbwGGXo9sXSZ7Taq8DdwnEVMs9/zjqxhlQznPPbscV8Ggj9aKa98H/hui/w0q6X0ncOf9ZEah1GKUXQpEyrPjHQe93b11H2mTJKP1kaP2f4XKHE2xKKmNATQaIcXMLHn78kn/wlmQOnEhKxLBWAJSRuPPVGPjTrQ2n7U4U41S2SGKyekT+Dd7veTUacXDTvoqQbq8PXgUCkDYJPxOLWXSdHBl6vl6amJnavvI/GVf9kd7uLxgGN3a4Yze4Y4QzbYVdyq7lXYl5hZn6guYVjW1GV+YL5RRLzC+OzWBcUycwvlKixC2RJpIdHnv3zzKga2QCGvJEB1rkfhp0vTjsLfrJMe+G/82t3Tiqqx6yYGYqkZ8kb7Z4YL6onIbQ2g41QNJTMZ54Q1VTLNyG6CZEORoLJ8xOiu6F7Q1r/zbKZX5z0iylN7MmFLtxHMJsfhueuJOzto21Qo9YhEbeIhr8vQgItxtefiPLARt9YLeVklyuWXfgLJJym+A/A/EKZuQUS86qLmW/pZ06BRJ4h1YhK6RNkhkceoMlP0wG9AlcW9JqdOtORyD/Oo3Xza+wZiNE8EKPZI9HcH6apP/66xaMR08D3s3wsWZK/XfNKgBvfGGOgcwz+dI6Jb6/IrMCVGooLjPjWs6UtWHqpbq1PEr0C1yTQXRc6hxWbH86wcp9tzePtt99mz8bX2Vu/juY+P20ejegE7LzmgRiLijOt81nOsd0yxRbB7AKJ2U6JOQWCOQUSswtU5n7+VgrfuBoimQEAaaKfsOB1y32/owu/js5hQHjdA3Q8cR0trW20eAQt7ggdASO//4gFkeqaHM4C+Z/3FnL3E69O6V5N/dmFf26BxCynYLYzLu4zh9ezCyRmOSVs2cKHj/sKnP5VcNqyRvVkRNEkxP0wiYffX4RCIbZu3cqsWbOyT1R7n+jCr6NzkAkGg7SvvIvW535PW0cXrSEbrbbltHa5aGnYQOtAmE6vliWmPcjPT9ZwmEYJbthPjX/rlPpSlicYyhFdeeoMhd3fG2PmtiRDLEZ8BqQMx34Jzrs1fuwIF/KxGBgYYNOmTWzcuDFeenHDBrZu3UYkEqb4E1czd8VZ/Pgj87nwmMwJiVNFF34dnf1ELBajp6eH9vZ2+vv7Oeuss7Ke94mTF/DcuuaUPX7guQndo8Udw2HKtM5nmLKnLCixCmbYBTOdErV2iRkOiZkOQa0jvp3Ntz82wwOuoy12nTGJRCJ8+tOf5u1319HTkbvISqirkbaBE/npY3UA+0z8deHX0Zkow770YF8LXVIpnY7j6Fj/PJ0Dfjq8MToGNTp9Gh2DMdoHNbqGBJFoPBTXZDIxNDSUOUN088NUxtqm3KUWT4yjSjOFf8WCCq4ecjPD5GWGQ2KGXVBjlzBPWNgzo3owF8RfH4K5Zw41BgcH2bJlCy/XtfC8q4j2AT8VDnPSclcUZVzRBwh1x2su+8NRbn6hQRd+HZ19SSAQoPu1f9D9wu8JDnRx8lG1o2ZutgCCs+71sqo5CniAneO0OuKbCQQCDAwM4HQ6009ZeT1VtonlVCqxCqptgmq7RI1NotoumJ8lRBLVzOJP/pobLmPsbJGSArGoLuLvg2g0yq5du9i8eTOPvPQWK996D097I5GB+Cx/Q+lsyr90GwBtA/40yz3iqIExhF/OL0a2jnxe2gdy/B+ngC78OtOLlAiXtlA+3Z4APe4heoc0egIqPX5Bt3uInqH4zM9uv0x3QMbjHflSzbALmmuG87Gn5WrRpuAKGaG9vT1T+N2t1NgFFfmCKpugMl+iyiYlt6vtgiqbRGW+wDiRtB7mgsyZqIkfrlwDqTrjomka7e3t3Pn4q/ztyVdxtzcR7mkm3NeCFskd4hrq3YMWjSDkuNSmWu4xZw3wNggJtbAKQ+lsDCUzUUtmYSidhWxOT4hY4TDvs/ejC7/OoUFSsNMFSjvrWgZnnoPL5Yovz95I36YX6PVF6fND6aKT+fqfXx5pI8XCPfHPbbR4UkdEs1lMmakqunxaPL48ljnKWZY3OeF3mKBy9mIqKnIkobNX8eVjWvjyMZkx7sm/Q+YBQJuY60UfVJ0yj29o4+YXGmgf8NPzryvwte2YfCPRCGFXG4biGcldCct99inn0z73BAxFNQhl5P/vtKgEwjH8KVOhzarMjz8yf+pvZhS68OvsH4Zng+J3EdM0vJKTmLkIx9Cu9PPMBUQWXMAVv7mT/qEI/X6N/oCGy6/h8m/D9aNLxqxxevzOV/n6OVfEo0eGszMmKLaKUcI/MQKReFEOW2ZddMryBJKIx6yX5QnK8wXlefEMj+V50vBrQUV+fJ/ZoMAvxqiJkG2yEgKO+x+oOSH5NwSyW/M6U8blcrF161a2bt3K06+9y3u7OrCc/R0qHGbOXFDMo+vakuIbsxRMrnEhoTgrMBTXZhxKWO7XXnI6P32sLkPgf3F+PL9W4kcndWxgX6EL/5FMlok/HH0xPH0FrLs7PqCXYFh0vLM+xiuvvIJny0sMrn8Uz0A/bvJwFy3Ho5bgdrtxt+/C3bYDdyDGQEDDE4SYNsj/LOvg7xeMelz1u5DX/4M73vUTnnxJU/r8Gqy7Jy787nR/aZFl4ta5LOI+9MTiD2tZ49KvPtXIL88wxvPETIRjvzT28fEmK+ki/77QNI2uri62b9/Ov194mydffZeB9iairhbC3lElPSWFmjO+QduAn/tX701L8KIWzcC/c3XWe0gWO4biGahFtXFXTXEtalE1kppZsznVck8IeS6B35dCP5qDIvxCiGZgkPhzdiTblOIjkmxCDOlWn2oFxZic/BKJRhDmAmQtBKFEHpW4K6AzYuOdPUF8vkF8YQlfKIpPsuErPwlfzx58rVvxhTW8IfCGtuO9+VK82v8w6B3iqlMMfO/4FJPX74Invk3X8mu54ILvk04AeHHct9cfyG59CyFwmgXdvslb571DsRF3yHB2xgTzCiTaBzWKLILixGIVlFil5HbpsNA7nYVIsUC65Z0lH7tZlUiGL879MGx6EMKp+WuG3TCj49jHQnfH7DMe39DGj2/6f3Q2bEC429D6W/F63ONfCBCLEO5vx1BUk1FLyVA8A6GaUItqUItmYCiuRS2egaF4RtoA7Fg4zCrXfXxxmqBfeEzlfhX4XBxMi/9MTdN69/dNIuv/jfbKDeBuRTM54/9Qfz+ayYEGxIYG0GwVxE67Em3xJ4jFYsRiMTRNo6j9laxl1Fq1UvqP/hrR2R8kEokQ2f48kbf+TMTvIRyFcEwjHBWEixYSdncRGuwjbHQSnnsOl/3kVmyvXxe3UrVoUiCeW9vEY08+QyAKwYhGMNpA4M+fIxjVCIQ1AhENfwQCkUECEfCH468jMXjikggfn6+mvOv4x/a93X188sHRfu0e4Ikx/mJxEesdyiLC0RD56/5v8v+EYQZyCD+A05Rb+M2qoKCkgsJIJwVmKDSL+GIRFFkEGlI8yeoot8n/+9gEB8NUM5z7u/h2th/esVIHTETYdfYZg4OD3Pnkm/zp6TVoMz4AjASeOswqvlCE9s1vMtTw1pjt5CLcuxdDUU3Gfsu8k7AsOAUhJl/VzmlR+cX5iw+KwOdiert6Nj/M0nM+z7buhA/Nk3Jw9PaXh5c4VrMR79WOEQswJYf4jx9r5MHrfzyBDqxL2fYDf+dDtiZsQykJ57QorP07m98M8rcNUytI4c9xmdUw9QiUwRxFy2yhjim1Z1HBkCXyMMEvTjcSjGoUmAVOU/wJoNAscJolTBffNeKCWvv3zIuPG/6/Zat5Gg2OPAmNelrKmSpgNLo1fkCJRqM0NzezY8cO/rPyXZ55cx0DHXuIuNqIevviJwmJmiseRShq0jofGP4iqIXVE7uRrKAWVA1b8TUYCmswVo3UtkjNBSpkBbMq86ljK3lmcwf9w9ObHWaV85aWZ+wbbdkfahws4deAF4UQGvBXTdPu3C93WXk9TDH7aCwSyhn/rLyPClyhPWsgSx4U4/v4T/gj2d+jRc26e0IMhrK3aSyo4uOLW7AKPzajSC52o8DmLMR+8Z+w967HvvZ27IYodhPYjQJVHuNvJql89uOnQ9PrpFfAGR7kTAhvwroe9bSUZnXrbpPDit8/8Dx/+c9L9LQ1E+lvJ+xqIzLQiRYdxwjSYnG3TEq0TAK1sCrttVCNWIprwFmFWlgdX4pqUBxlCCm7NZIQ+VXbezL87zdceFTG+dn2HcocLOE/RdO0NiFECfCSEGK7pmmvp54ghLgcuBygpibz0WtCuMeeFTcWsTGKfY6lYeORWawijnGKjUoid5slVokL5itYDWBRBFaDwKqSXOcZ4vvyDGBVBflGQZ7JgFUO4zRn6Y9sQHzwFzzxQbKnzT3/Vjj6QuBCWLEkMyLFWgK929PbTI1UyTXYnMp5t+rulcMETdPo7OykqamJbvMMfvnU1gxL+f/d9Ds8W1ZNqf2wqzWr8BsrF+E866tJka+pruYn5yzMiKBRZQFa3DWbyqHomtnXHBTh1zStbXjdLYT4L7ACeH3UOXcCd0I8H/+UbmSvQpHqUVLccoL4eB3ERTPxWhIgSRLCmI8syxgjnmwtAlBlEywullBUA7IEihZClQSyBKoEqgyqJIbX8Q+YKsVdHRkJtYY5vVbmr+eZMCnxHwGjAiZFYFQljFIMsyIwDe8zqyRfG2SyF4omnkb38UssmQdkA0QjZBQWlmS48A7YuzpnVE/mxKAcIj0Vy1u31g87IpEILS0t3PfCGv72zDt4ulsJD3SguTvR3J0EA3HjoPqHjyAZRsZcBvxh/rV6L8JePrkbCgnFUYZaUIlkzF5eUbGXYPvAhUDccv/JOQtzRtBk2zedBT/BAS/EIoSwApKmaYPD2y8B12ua9nyua6ZciGXUhJ4xUc1w/u0jwjPetYnzIT7DM8tkn6zXVK2ApteyHJRIF+IcsdzZ/NTmgnRfdsYEnyw+bdBjxHUmxOMb2vjlU1vpaNhAsH0HkYEOIgOdRN2dxAZ7iEYi47ZR/qXbMZTOytjv2/YqvU/dkrFfsjhQCypQnJWohZVxX7yzEsVZhpBz+zBVSZBnUhgYCh9RQp6LQ6kQSynw32ErVQEeGEv03xfZBvsgPtMxdTuXxZrr2mznp4ooAAJmngauxhxx8vek+6lrTjjwsdy6yOsQzyO0Z88empqa2Lt3L1/72te49oktGbHsvi2v4N08fthuNsL97VmFXy2ZhWXhaajOCpSCyuRaNuVlncGajcQgbKUu9BNGL72oozNNSaQcaO0ZoEDz8PHZKt3trTz19iYGutqRfD0oQ33093alXXfFfW/w6NbM2Hf3Ow8z8Pp9k+qDMJhRnRXYT7oEy7wTM49DRsw8xF00N30yPmB68wsNtA34kYUgqmm6wE+CQ8ni19HReZ+k5pFJpBhIjUAxbH2Cd15+jrCnm9iQm73Axgm2/dAr61BK52TsV+ylWc+XLA4UR2ncWneUoTjK49vOciSzLecYlCoJPrOimlXbe8YUdl3g9z268OvoHKJomsYDb2zn5sfepqOtFWnIRWCgm7Cnl+hgD1FvP+Vf+RNtA37+tXpv8rq2AT99W3cR7BwvbXR2gv2dWYXfUDqLvGM+hjos7oqjFMVeRqHTjjcQyYiOkSWBRGbUDBwese7TGV34dXQOAqkWe97ALk4u9NPX1cFrGxsY7O1CDLmIDvYSCgyN2U7M50bOy0wZoNhKJt4ZIVFdVcnMmTOZOXMmL0ULs56mFlZT+OFvpe2TJZFMKnbdk1uTk6gSIZFwZEbNHOrowq+jsw+5+r+buf/1ekKePqK+fqLePqyRQVZUWXjkb7clI2T6Uwrb7n7lQbbkSAA2HpHBnhzCXzzyQkjI+UUo9hIUWzGKrQTFUYpsL0WxlVBTXc0713wkefo1j9elPUHkwmqQufETR43rktGF/tBDF34dnXFIWOdtA36iPXsIurvQfP2EvS5M4UFqLSGEf4D63Xtxu3pg1KzTPmCvkPjZOV/mvxs7M6JUlPyiKfct6umF8nkZ+00zllJ66W9Q7CXIeYVjzlC98twlafsSs1BTo3pGi7zO4Y0u/DpHJJqm8f/bu/fYuOorgePfc+/ceXg8djy2SVIIJIWkpAsN5tHyUJd2eTSlFbAUlSIQC6qolrZb9RWpiNV2tRsFddGutH1I3aJWbFeE0qDd1F2o8kcLolCSLdsQCEWhgUJwQnGw8/Bj7Hmd/eOO7ZnxjD3xY2Zn7vlIke+87pyfxzn3N7/7u+c3NjbG4OAgO369n4d++SJHB98hruNcee5Kfvyv2wA/6Rdf8Xl013eZPPzK9H5OAO9UeoNZb5jn4af2IxUqObqJykMrABIK4ya6/R57oge3o7fkZ6ir8gVQ0Y4uvPYVFA+ve65wyyVrKpYhKLf1xvObrgyBqZ0lftO0yodNpk4YPv/mMNv3HOLk/ifJjbyLTJxkU6/LyWNDHHjjCBMjw2jqJPnM7Ep0Q8Ajv0ly051f4Ma+03lg14GSHnqtJXgrSY8MEanw+vCq9cTPv9pP6NNJvhu3vdtffq/KrJgpAlx+dpI3hlJ2VaqpiSV+01Dl0xK/fu0Grl7fybFjxxgeHqZ/z6s8/PTLDA0NEydF32khkqE0+18b4KXXBwgl19D98S8BfhmALz/6wvS+Tzyznexxv5roU6cQU3bsOP/0i1e4se/0WQtcOzUkfvEiuO1JP3HHu3AT3YTak4QrjMUDxNZeQMd7+0Agk5vpopcXCot6DpPZfEkvfr457ZboTSWW+M2iFCfuzphHJpdndDxFfnKMcC6Fm01x8sRJOkMZ7rrmIr5x5/Ulr733P19ifDLNkR9+nkMTo9x03yjkK1+pOQSUn3IMZ6ovdO3EOuD4AspIa56BPw0C/jJ5h4uSf/i0dUTX9uG2d/lJPZ7Eja9g5arVfHjTOTx+cAInMrs+0lQSL17Ob8rUNxWwHrqpD0v8AXfbg8/xzMEhyGXJZ1JctDrC1k9uoKenh1WrVrFz7+GSaXr5sWMce/YnaHocyaTITY6TmxgjPznOofQ4+cmxQgG4Uu8A9790FeduuqikYFYqk0Mcl9zJd9FslUUA5pBLVS+m57Z1zP1i18NtW4Eb78SJdeLGV+C2+T9XJ9sB2PKx95WM8Scu2Ezigs0lu4l5Lltv8k98/u3Ol3hkz1vkiq6IL+6VX3xWcs7kbone1IMl/mVWnjjL5zeXX7H40XN7+e99b3M8lUFVkXyWfDZNh6fk05OcGBtHsxk0O4lm0+SzaSIrzyGcSHLrh/wFKLbvOUReIT34OiN7n0Azk4TyadZ1hoi7WcbGxhgbG2Pg6DEmUik0nZquxDkA/Oxe2LZtGxs338GWHftKLsDJZ9OM7n18Qb+LTGqEB3YdmE5uxcMoTjRObvTUE38+NVL1sdj6S/GSZ+C0dfiJva0Tt60Dp81P8BKOkYyHZ9WDiXku997gn9gsPkgVf1bVrjKd76Roo5baM6ZYSyf+nXsP8/VvP8LJ0VEA2sMOt15yJoryX78bYGh0krArpLN5VPP+oi2a54pzktz6oXXccsstJfua6qnF/vQiH+waZ+OqdrLZLPvfGuaZVwcZSU0Q94S+MxKc1RXlD28f57k/DJLPZyCXQ/NZctd+ga/tyJZc0ZhTZeR3j7Nn92PszqX9xJ7LzJoWWE3vX96Hu+GyWXOvcyNDjL4wU//uhVP43Y2M+Em6/KpLCVco81yj/MRYSbIvHkZxou3kRv0id44XYVVvN8fzEXJeHCfajhNN4MYSOLEE3cluPnX5uTz8wjD5SLt/gKxwAjSx6WMltz1XZo2h13KRkSVr02paNvHv3HuYLTv2cejn3yEz5CfEo8C27fO/9mfAE5HodOIvn9L35v/s4pVXKpVW9qf3HZlj3/mP3EUu30X5KHY+M0Fu5Oj8wVWg2crj3OJFKt5fi5GREY7kZ5ekLq6pXpUTwom04UTi/s9oHInECfes5T0rZl5fPIxy2s3fBNcjnujkW5/2h4PKf+8wU7zrxr7TuWyeWT1Tx6yY53D/TR8Aqid4S+wmSFo28VfqrZ6KbG6mNn75lD5xTn3B5SlaYfwbmLPG+Lz7rDI2Ll609p04Lk44hoRjOF6U3t5e3hMuPbHpxxkiec1fI14UJ9KGhNtmkny4DYm0IaFwxR54zHOnpxlC6TDKEVZWTcZzJetKCbva8njF+zQmyFo28ZdPwztVWrT61Kx9yRyrhs8nXyXxh6okfieEhDw/mbrhme1QxN/2IrjxZMWXhjpXkrzmHsSLIl4Ex4vQ29XJQ5/7MPF4nHv7D/C/b0/ieJGSA88VZyf5u7sv4wOFb03lB9DEhZ+cCU+gI+pxIpWZntUzlvYPkjHPIeq5cy6KMd8wig2zGLP0WjbxT40fR9b8GaHOooJVUz1REUCmb4s4II5/Wxycokvcy6f0xdb14cTaScQiiOMwmlZwXP+yeMdFnBAr2qNk1CGVBdwQ4riIG8ItlLb1HClJqPGNVxJbd5GfzF0PXM/floV/u3DbOklc+Inp254rbL15ExcXEunOjRu57cHnePa1mQVkrjg7ycN3+3XTpxJu8cnp4vrpVmHRmObUsgux7KzSW52rVGyx2y89c3q4YK6xZmDOx7Y8tq/khOLUvqem9c01qwf845CqPxtIlen7oTQJuyKzZvUUC8IC0saYUoFbiKVSb7VSqdio55DKzAzrCHBbUdIv3tdcMz8W8li1JLzYGilWY8UYM5eW7fEbY0zQVevxL3wA2RhjTFOyxG+MMQFjid8YYwLGEr8xxgSMJX5jjAmYppjVIyJHgTcX+PIe4N0lDKcZWJuDwdocDItp81mq2lt+Z1Mk/sUQkecrTWdqZdbmYLA2B8NytNmGeowxJmAs8RtjTMAEIfH/oNEBNIC1ORiszcGw5G1u+TF+Y4wxpYLQ4zfGGFOkZRK/iGwWkQMiclBEvlHh8YiIPFp4fI+IrG1AmEuqhjZ/VUR+LyIvisgvReSsRsS5lOZrc9HzPiUiKiJNPQOklvaKyKcLn/PLIlLD4qL/v9Xwd32miDwpInsLf9vXNSLOpSQiPxKRQRHZX+VxEZFvF34nL4rIhYt6Q1Vt+n+AC7wGvBcIA/uA95c95/PA9wvbnwEebXTcdWjzR4G2wvY9QWhz4XkJ4GlgN3Bxo+Ne5s94PbAX6CrcPq3RcdehzT8A7ilsvx94o9FxL0G7/xy4ENhf5fHrgF/gV46/FNizmPdrlR7/B4GDqvq6qqaBnwA3lD3nBuDfC9uPAVdJpYVhm8e8bVbVJ1V1vHBzN3BGnWNcarV8zgD/CHwLmKhncMuglvbeDXxPVY8BqOpgnWNcarW0WYGOwnYncKSO8S0LVX0aGJ7jKTcAP1bfbmCFiKxe6Pu1SuI/HXir6PZA4b6Kz1HVLHAC6K5LdMujljYX+yx+j6GZzdvmwlfgNar6eD0DWya1fMYbgA0i8qyI7BaRzXWLbnnU0ua/B24XkQHgCeBv6hNaQ53q//c5tewKXGaGiNwOXAxc2ehYlpP4CxT/C3Bng0OppxD+cM9H8L/RPS0i56vq8UYGtcxuBR5S1X8WkcuA/xCR81Q1P98Lja9VevyHgTVFt88o3FfxOSISwv+KOFSX6JZHLW1GRK4G7gOuV9XJOsW2XOZrcwI4D3hKRN7AHwvtb+ITvLV8xgNAv6pmVPWPwKv4B4JmVUubPwv8FEBVnwOi+PVsWllN/99r1SqJ/7fAehFZJyJh/JO3/WXP6Qf+qrB9M/ArLZw1aVLztllE+oB/w0/6zT72C/O0WVVPqGqPqq5V1bX45zWuV9VmXbezlr/rnfi9fUSkB3/o5/U6xrjUamnzIeAqABHZiJ/4j9Y1yvrrB+4ozO65FDihqm8vdGctMdSjqlkR+SKwC39WwI9U9WUR+QfgeVXtB36I/5XwIP5JlM80LuLFq7HNDwDtwI7CeexDqnp9w4JepBrb3DJqbO8u4FoR+T2QA7aoatN+k62xzV8DHhSRr+Cf6L2zyTtxiMgj+AfwnsK5i28CHoCqfh//XMZ1wEFgHLhrUe/X5L8vY4wxp6hVhnqMMcbUyBK/McYEjCV+Y4wJGEv8xhgTMJb4jTEmYCzxG2NMwFjiN8aYgLHEb8wCiMglhbroURGJF2rhn9fouIyphV3AZcwCichW/HIBMWBAVe9vcEjG1MQSvzELVKgl81v8uv+Xq2quwSEZUxMb6jFm4brxayEl8Hv+xjQF6/Ebs0Ai0o+/QtQ6YLWqfrHBIRlTk5aozmlMvYnIHUBGVbeLiAv8RkT+QlV/1ejYjJmP9fiNMSZgbIzfGGMCxhK/McYEjCV+Y4wJGEv8xhgTMJb4jTEmYCzxG2NMwFjiN8aYgLHEb4wxAfN/n6IepOFNKeUAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# Plot the learned functions\n", "fig, ax = plt.subplots()\n", @@ -674,7 +583,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.12" + "version": "3.7.8" } }, "nbformat": 4, diff --git a/tutorials/04_motion_planning.ipynb b/tutorials/04_motion_planning.ipynb index 15869b98c..278ada035 100644 --- a/tutorials/04_motion_planning.ipynb +++ b/tutorials/04_motion_planning.ipynb @@ -74,20 +74,7 @@ "execution_count": 2, "id": "d96aa120", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "data/motion_planning_2d/im_sdf/tarpit/0_im.png\n", - "data/motion_planning_2d/im_sdf/tarpit/0_sdf.npy\n", - "data/motion_planning_2d/opt_trajs_gpmp2/tarpit/env_0_prob_0.npz\n", - "data/motion_planning_2d/im_sdf/tarpit/1_im.png\n", - "data/motion_planning_2d/im_sdf/tarpit/1_sdf.npy\n", - "data/motion_planning_2d/opt_trajs_gpmp2/tarpit/env_1_prob_0.npz\n" - ] - } - ], + "outputs": [], "source": [ "dataset_dir = \"data/motion_planning_2d\"\n", "dataset = theg.TrajectoryDataset(True, 2, dataset_dir, map_type=\"tarpit\")\n", @@ -146,7 +133,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQ4AAAEECAYAAADZKtrDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABBk0lEQVR4nO2dd3iUVdqH7ynJTHoj1AAJIi2BAAIfESEKLuJqwoIgCKwFJbCuuqJmBUFEpCyKrqICGywsC4sIFoqLWABdUVeiIEIUpYReAgRC6rT3++PMmTchARKYSePc1zXXzLwtZyZ5f3nOc55i0DRNQ6FQKKqAsaYHoFAo6h5KOBQKRZVRwqFQKKqMEg6FQlFllHAoFIoqo4RDoVBUmRoTjoMHDzJkyBDCwsIIDQ1l8ODBHDhwoKaGo1AoqoChJuI4CgsLSUxMxGKxMH36dAwGA5MnT6awsJDt27cTFBRU3UNSKBRVwFwTP3ThwoXs3buXXbt20bp1awA6derEtddeyz/+8Q8ee+yxmhiWQqGoJDVicfTr14/i4mI2b95cZntycjIAX3zxRXUPSaFQVIEa8XHs3LmThISEctvj4+PJysqqgREpFIqqUCNTldOnTxMREVFue2RkJLm5uZc8v0GDBsTGxvpgZAqFojTZ2dmcPHmy3PYaEY7LISMjg4yMDACCgoLIzMys4REpFPWfbt26Vbi9RqYqERERFVoWF7JEANLS0sjMzCQzM5Po6GhfD1GhUFyEGhGO+Ph4du7cWW57VlYWHTp0qIERKRSKqlAjwpGamsq3337L3r17Pduys7PZvHkzqampNTEkhUJRBWpkObagoIDExEQCAgI8AWBPP/00586dY/v27QQHB1/0/G7duikfRw1gt9s5dOgQxcXFNT0UhZexWq3ExMTg5+dXZvuF7rUacY4GBQWxYcMGxo8fzx//+Ec0TaNfv368/PLLlxQNRc1x6NAhQkJCiI2NxWAw1PRwFF5C0zROnTrFoUOHiIuLq9Q5Nbaq0qJFC957772a+vGKy6C4uFiJRj3EYDAQFRVFTk5Opc9R2bGKKqFEo35S1d+rEg6F4iIsWrSII0eOVHnfxViwYAGLFy+u8nlnzpxh3rx5VT7PF9SZADBF7aPxnMYcLzjutes1CmrEsSeOee16V4rT6WTRokUkJCTQtGnTcvsvts/pdGIymSq87rhx4y5rPFI4HnzwwUqf43A4MJu9f5sri0Nx2XhTNCp7vSVLltCjRw86d+7M2LFjcTqdbNmyhU6dOlFcXExBQQHx8fHs2LGDTZs20adPH2677Tbatm3LuHHjcLlcAHzyySckJSXRtWtXhg4dSn5+PgCxsbE8+eSTdO3alWXLlpGZmcnIkSPp3LkzRUVFnnGsXLmy3L7S565YsYKFCxfSvXt3EhMTueOOOygsLARg6tSpzJkzB4A9e/YwYMAArrvuOnr37s0vv/wivovjxxk0aBCJiYkkJiby9ddfM2HCBPbs2UPnzp1JT09H0zTS09NJSEigY8eOLF++HIBNmzbRu3dvUlNT6dChA1OmTOHll1/2jH3SpEm88sorV/S7UhaHos7w888/s3z5cjZv3oyfnx8PPvggS5cu5e677yY1NZXJkydTVFTEqFGjSEhIYNOmTXz33XdkZWXRsmVLBgwYwPvvv8+NN97I9OnT+eyzzwgKCmL27Nm89NJLTJkyBYCoqCh++OEHAN544w3mzJlTLvR6yJAhvPbaa+X2lT731KlTjBkzBoDJkyfz5ptv8vDDD5e5TlpaGgsWLODaa6/lf//7Hw8++CAbNmzgkUceITk5mQ8++ACn00l+fj5/+9vf2LFjB9u2bQPgvffeY9u2bfz444+cPHmS7t2706dPHwB++OEHduzYQVxcHNnZ2QwePJhHH30Ul8vFO++8w3fffXdFvwslHIo6w+eff873339P9+7dASgqKqJhw4YATJkyhe7du2O1Wpk7d67nnB49etCqVSsA7rrrLr766iusVitZWVn06tULAJvNRlJSkuecYcOGXfYYS5+7Y8cOJk+ezJkzZ8jPz+eWW24pc2x+fj5ff/01Q4cO9WwrKSkBYMOGDR4/iMlkIiwsrFyaxldffcVdd92FyWSiUaNGJCcns2XLFkJDQ+nRo4dnaTU2NpaoqCi2bt3K8ePH6dKlC1FRUZf9GUEJh6IOoWka99xzD7NmzSq379SpU+Tn52O32ykuLvZUkTt/tcBgMKBpGr/73e9YtmxZhT/nSirQlT733nvv5cMPPyQxMZFFixaxadOmMse6XC7Cw8M9FoQ3Of8zPPDAAyxatIhjx44xevToK76+8nEo6gz9+vVj5cqVnDhxAhBJkfv37wdg7NixPPfcc4wcOZInn3zSc853333Hvn37cLlcLF++nBtuuIGePXuyefNmdu/eDYhI5l9//bXCnxkSEsK5c+eqvA/g3LlzNGnSBLvdztKlS8vtDw0NJS4ujhUrVgBCGH/88UfPZ50/fz4gHK1nz54t9/N69+7N8uXLcTqd5OTk8OWXX9KjR48KxzJo0CA+/vhjtmzZUs7yuRyUcCjqDB06dGD69On079+fTp068bvf/Y6jR4+yePFi/Pz8GDFiBBMmTGDLli1s2LABgO7du/PQQw/Rvn174uLiGDRoENHR0SxatIi77rqLTp06kZSU5HFKns+9997LuHHjyjlHL7UP4LnnnuP//u//6NWrF+3atSuzT1pCS5cu5c033yQxMZH4+HhWrVoFwCuvvMLGjRvp2LEj1113HVlZWURFRdGrVy8SEhJIT09n0KBBdOrUicTERPr27cvzzz9P48aNK/wc/v7+3HTTTdx5550XXO2pCjWSq3KlqFyVmuHnn3+mffv2nve1fTl206ZNzJkzh7Vr13rtmt7g4YcfpmvXrtx3333V9jNdLpdntefaa6+t8Jjzf79Qy3JVFPWD2hRzUVd4+umn+d///sfUqVOr7WdmZWVx++23M2jQoAuKRlVRFoei0lT0H0lRf6iKxaF8HAqFosoo4VAoFFVGCYdCoagySjgUCkWVUcKhqPds2rSJ22+/HYDVq1fzt7/9rdrHMGvWLFq3bk3btm1Zv379RY995JFHan0lPLUcq7h8GgPeTJBtBFRyhVfTNDRNw2is2v++1NTUai+InZWVxTvvvMPOnTs5cuQIN998M7/++muFgViZmZmVakpW0yiLQ3H5eDer/pLXy87Opm3bttx9990kJCRw8OBB/vSnP9GtWzfi4+N55plnPMd+/PHHtGvXjq5du/L+++97ti9atIiHHnoIEJGfK1eu9OyT/+WPHj1Knz596Ny5MwkJCfz3v/+9oo+1atUqhg8fjsViIS4ujtatW1eYnep0OklPT+f555+/op9XHSiLQ1Gn+O233/jnP/9Jz549AZgxYwaRkZE4nU769evH9u3badOmDWPGjGHDhg20bt26ytmu//73v7nllluYNGkSTqfTU0ejNOPHj2fjxo3ltg8fPpwJEyaU2Xb48GHPeAFiYmI4fPhwuXNfe+01UlNTadKkSZXGWxMo4VDUKVq2bFnmJnz33XfJyMjA4XBw9OhRsrKycLlcxMXFeaIkR40a5WkfWhm6d+/O6NGjsdvt/OEPf6Bz587ljvn73/9+xZ+lNEeOHGHFihXlMmhrK2qqoqhTlE4X37dvH3PmzOHzzz9n+/bt3HbbbVXq+WI2mz0VwVwuFzabDYA+ffrw5Zdf0qxZM+69994K64OOHz+ezp07l3tU5Hht1qwZBw8e9Lw/dOgQzZo1K3PM1q1b2b17N61btyY2NpbCwkJat25d6c9S3SiLQ1FnycvLIygoiLCwMI4fP866deu48cYbadeuHdnZ2ezZs4drrrnmgnU3YmNj+f7777nzzjtZvXo1drsdgP379xMTE8OYMWMoKSnhhx9+4O677y5zblUsjtTUVEaMGMFjjz3GkSNH+O2338qlv992220cO6Z7hoODgz1p/7URJRyKOktiYiJdunShXbt2NG/e3FPRy2q1kpGRwW233UZgYCC9e/eusG7GmDFjGDhwIImJiQwYMMBjzWzatIkXXngBPz8/goODL6sieWni4+O588476dChA2azmddff92zovL73/+eN954o8KCx7UZleSmqDTlkqBqcDlW4X1UWr2ielA3+VWLco4qFIoqo4RDoVBUGSUciipRB11iikpQ1d+rEg5FpbFarZw6dUqJRz1D0zROnTqF1Wqt9DledY6uXLnS0zbvxIkTtGjRgsGDB/PUU08REhICiHwD2SjmfHJzcwkPD/fmkBReJCYmhkOHDpGTk1PTQ1F4GavVSkxMTKWP96pwzJkzhxYtWjBz5kxiYmLYunUrU6dOZePGjXz99ddlMhknTpxYLktRiouiduLn53dB0a8KR44cYerUqRXmgHiDli1bMmXKFCwWi0+ur/CycKxZs4bo6GjP++TkZCIjI7nnnnvYtGkTffv29exr1apVmZwDxdVDXl4e7777LmfPnvXJ9RMTE3nqqaeUcPgQr/o4SouGRPb5rCgbUKFQ1E187hz94osvAMpFpE2cOBGz2UxYWBipqan89NNPvh6KQqHwEj6NHD18+DBTpkzh5ptvplu3bgBYLBbGjh1L//79iY6O5pdffmHmzJlcf/31fPfdd6pvh0JRB/CZcOTn5zNw4EDMZjNvv/22Z3uTJk1YsGCB533v3r0ZMGAA8fHxzJgxgyVLllR4vYyMDE9NBeXVVyhqFp9MVYqKikhJSWHv3r2sX7/+kss8zZs354YbbmDLli0XPCYtLY3MzEwyMzMr9KUoFIrqw+sWh91uZ8iQIWRmZvLpp5/SsWPHSp8rO3grFIrajVeFw+VyMXLkSDZs2MDatWsrvdx64MABvvrqK/7whz94cziKy8Rms7Fv3z6cTqdPru/LayuqB68Kx5///GdWrFjBpEmTCAoK4ttvv/Xsi4mJISYmhscffxyXy0VSUhLR0dHs2rWLWbNmYTQamTRpkjeHo7hMjh49yq233srJkyd9cn2Xy0VBQYFPrq2oJjQv0rJlSw2o8PHMM89omqZpb775ptatWzctPDxcM5vNWqNGjbS77rpL++WXXyr9c6677jpvDltxHvv27dMaNGhwwd9lbX8kJiZq+fn5Nf011gsudK951eLIzs6+5DGjR49m9OjR3vyxCoWimlHZsQqFosoo4VAoFFVGCYdCoagyqlhxNeFyufjf//7HmTNnfHJ9o9FIz549CQsL88n1FYrSKOGoJhwOB+np6XzzzTc+uX5AQAD//e9/6dKli0+ur1CURglHNeJyuTwtB31xbU2V9FNUE8rHoVAoqowSDoVCUWXUVEWhqGmcgJzBGgFTDY6lkijhUChqAheQB2QDpxDiAeCH6MkbAwQDtTRhXAmHQlHdnAJ2AEcBO0IsQFgbRuAMsBfRhLsNEFr9Q7wUSjgU9Y5aXdflELAJYWE4ERZF6YU2k/thR1gjuUAXoEF1DvLSKOFQVDtNmzZl9uzZBAYG+uT6YWFhtbM1wlHgY8Dhfu9Ez+k1IO5GU6mHH8L6+B7oCdSi2D4lHIpqJyQkhNtvv/3q6tpnBz5BCIEZXTRAiIbRfYwZ3UHqQrdMfgKup9asgyrhUCiqg9+AXQh/hRNhdZw/ozK59xnR/R5SXA4D56g1VocSDoWiOvgMIRZ2hBg4EAIhhcGIbmFIa0P6PjT36/1Ap+ob8sWoJYaPQlGPyUZMNfyAEqAIISAlgE28zrZn47K5xPvSD3mMC9iHvmxbwyjhUCh8zQ8IsXAghMBe9uG0O7nBdAPXGK7hkO2Q2C6tE5v7tQMoRAmHQnFVUAT8iLjTzrci3NbGOtZx2HgYEyaaOZt5tnsEQ4pIMfrUpoZRPg6FwpfsRkSIOtCnHKWdogaYFzQPgLTiNAwOQ9l/5wb3uRoQQK35V6+EQ1EOf39/OnXq5LOiQ7GxsZhMdSAh40pxANvR77Ji9BvfLR6/mX9jnWUdFs3C6MLRejyHEd2BakdMU1qgr7bUMEo4FOVo3Lgxa9eu9Vl9D6PRWDsDtLzNQeA4YAGsiOXUoLKHzA2dC8DIwpE0sDUQwiADxPwQloYNKABqUT92JRyKchiNRgICAmp6GHUbFyIfxYVYXrUgwsft7v0GyPXL5e0g0ZD9L2f/ootE6dwVOb2xAtdU2+gviRKOasRoNPosj8KX11ZcBieAY+7XRsAf4aMocD8bYEHQAgqMBfyu8Hd0snXSpykyOMzlfn0cGIYQj1qCEo5qwmw2M3v2bHJzc31yfZPJRKtWrXxybUUVcSF8G3b0IC8/IASxonIOigOLeSX8FQDST6cLgTChPzvd5+chsmSTq/kzXAIlHNWE0WikV69eNT0MRXVwCmFtSANQOkT9ECHnefB20NscNx+nS1EXbj53c9niPS7EMq4LITa/cz/XIpRwKBTeRAN2InwTIG5+DeHjcCez2Y12ZjeZDcDEIxMx5BuEcBjRpyvhCLFoDPSozg9QOZRwKBTe5AQiIc2EbjWcF3vxr7B/sd9vP+3s7bjDeIdIXJNFfKRoBCH8Il2AiOoafOVRwqFQeAsXIgNWWhmSUvU27EY7M6wzAJhUNAljiFH4M2TshhUhGhZE6cDO1Tb6KqGEo5pwOBy8/PLL7N2712vX7NixI+PGjVOrKbWF4+grKTIWw4AejwH8y/Av9hr30sbVhruMd4l9gQixkfEeVoS1cS0QWW2jrxJeFY5NmzZx0003ldseFhZWJgoxNzeX9PR0PvzwQ4qKikhKSuLvf/87HTt29OZwahUul4v333/fq53cUlJSGDt2rBKO2oADYW3IFHgNsSoil1Q1sBltPGd+DoApjimYzCYhEBq6WAS4n6W1UUtCzM/HJxbH3Llz6d69u/5DzPqP0TSNlJQUsrOzefXVV4mIiGDWrFncdNNNbNu2jZiYGF8MSaHwLceAk5SdpkifhTuQ6w3HG2STTQetA8P9hwsHqiwX6O9+lvkoLYGoav4MVcAnwtG+fXt69uxZ4b7Vq1ezefNmNmzY4LFOkpKSiIuL4/nnn2fu3Lm+GJJC4TtKgF/cr2X8ha3UexsUuAp4DmFtPGd4DpPTJKYoDsQUxYiwMiyI6UsCtdbagBoY2urVq2natGmZKU1YWBgpKSmsWrWquoejUFwZGnAAEU4uK3iBHvlpBCzwiukVjnGMbnRjkP8gIRAgLAwz+hTFhEhmq2VVzc/HJ8IxcuRITCYTUVFRjBgxggMHDnj27dy5k4SEhHLnxMfHc+DAAfLz830xJIXCNxQiKnPJLFYZiyGdogY46TjJbIeI2/ib9W8YnAaxr/RDCkcQwtqo5W4rr05VwsLCePzxx0lOTiY0NJStW7cyc+ZMkpKS2Lp1Kw0bNuT06dPExsaWOzcyUriPc3NzCQ4OLrc/IyODjIwMAHJycrw5bIXi8nAh6m3IeA3cr23o1cnNMK1kGnnkMcAwgH70EyLhQDyDcIxKX0cLamXcxvl4VTi6dOlCly5dPO+Tk5Pp06cPPXr0YO7cuUyfPv2yr52WlkZaWhoA3bp1u+KxKhRXzGlEr5RSKyeY0YvvOODXgl+Zb5+PAQOzA2frTZgCEUJhdr82I6Yv11KrfRsSn8dxdO3alTZt2rBlyxYAIiIiKkz0On36tGe/4urg3LlznDp1ymvXMxgMNG7cuHpqfTgQ1oaz1KMYMV2RDlIjPOF6AgcO7jfdTydTJ2FllG776M6UxQDEIaJG6wDVFgAmYw3i4+P55JNPyu3PysqiRYsWFU5TFPWTNWvW8Oijj3rtelarldWrV9O5c2evXfOCHEYks0lLQ/ZCMSJWWczw6blPWWNfQzDBTA+frtcSlQFhcjXFihCQ1tR634bE58KRmZnJrl27GDJkCACpqam8/fbbfPHFFyQni1zhvLw81qxZw4gRI3w9HEUtoqioyKv+KqvVisPhuPSBV0ohoseJnJLYENYG+rPdYefRkkcBeMr6FI1tjYVAyOVXKRwy+S2OctXBajNeFY6RI0cSFxdH165dCQ8PZ+vWrcyaNYtmzZrxyCOPAEI4kpKSGDVqFC+88IInAEzTNP761796czgKhfdxITrJ51M2A9YfIRqBQAnMK55HljOLawzXMD5kvG6VBKNHisoesaFALHXG2gAvC0dCQgLLli3j1VdfpbCwkMaNGzN48GCeffZZGjQQC9NGo5G1a9fyxBNP8OCDD1JcXExSUhIbN26kefPm3hyOQuF9coAj7tfSr2FATE9cQAEcMx5jSsEUAP4e8nesWIWwSKGR0xr3ci1t0FdY6gheFY6JEycyceLESx4XGRnJW2+9xVtvveXNH69Q+JYShENUBnrJ0HKZn+IO5krPSSdPy+M2/9tICUzRHaaB7uNldKgZkcTWpBo/g5dQ2bEKRWXQEH6NAvSm0TZ0Z6gJyION2kaWlCzBipW5gXPF/hD38dLHISNETUA76uRdWAdWjBWKWsBpxEoK6MutIMTDvZxaElrCuLPjAHgq5ClahbUSx5a4j7EjRMMfcec1p9amzV+KOqh1CkU1Y0NMUUoQFoOcppjc24xAEczKn8Wvzl9pZ27HX/3/KvbJuI1A93n+iLvOinCI1tF/3XV02ApFNSGnKGcRVoOGEAQnYlnWLF5nWbKYWTATgH+E/QNLhEUPI5ch5dK3AWL5NbQaP4eXUcKhUFyM04iObC6E5SHLAEoBcIpu8/cfvR87dtJC0+jj30fkrMiGSmb3s7Q2IoBm1fw5vIyaqigUF6IY2ON+7cCz3OrpuGYFSmCuYy7f2r+lqbEps4NnC4FwIgK6pFPUhb6Sci3imDqMEo5qJCYmhmuu8V4fv8aNG3vtWorzcCHS5fMQIiBvfLkaYgeK4DfHb0w6NQmAf0T/g3BzeNmer1JEAtznNabOOkRLo4SjmvDz82PhwoVeDYn29/dX9UZ9xTFEqwMj+hJsPkJASoBAcBY5ue/EfRRpRYwKHMXtAbfrqyhB7nNkeLmsuXEN9cJBoISjmjAYDISFhdX0MBSV4RzC2nCgL7vKMn/ueA3y4cX8F9lcspkmpibMjZyrJ6zZ0VPm5dKrBrSizkWIXgglHApFaWwIv0YJ4mYvQl9BkWUBg2H72e08nfs0AG82fJMIa4Q41oDe+1WKhhERHdqoGj+Hj1HCofDgcrl46aWX2LFjh9eu2a5dO9LT0zGZTJc+uKZxIeqHniz1Xi6j5iOmG3lQXFLMyJyR2LAxLngctxpvFceFIaySEPRgLyPCymhJ2f6wdRwlHAoPmqbx6aefVlgv5XK58cYbeeKJJ7x2PZ+Sg6joZUAvB1iAnj7vFocJByaww7aDNn5tmBMzRxyXj/BryGpgoE9LYql1TaOvFCUcCgUIv8VexI0vi+3YEGnwRQjrIQ8+sn/EK3mvYMbM0oilBBUGiUAuGeglfdUW97WiESsp9Yx64N9VKK6QEoRo2NyvixAxHOfQywEa4EjwEe49eS8AMxrMoFujbkJgiikb4yHT5gMRDtF6+O+5Hn4khaIKOBArKKfRrQUZryGtDxM4zjgYcXoEJ10nuTnwZp7wf0IIhhXhCA1FCI+s6CWretXTSphKOBRXLxoi4/U0eu3QIvdzHkIE3LEYz9qe5YviL2hsbMySFkswmo3COpHXcVslnojQRtT6pkpXgpqqKK5ONIQz9DB6DoosNiy7q7kjRtcdW8f0k9MxYmRpo6U0KmokhEZOSYLQRUOWB4yjXv9brscfTaG4CHmIKYodYTnITNcC9I5sTthv3s+oU6MAmBY1jb4N+pZtb2BHryMqw8pjEVOYeowSDkWNER4eTtu2bb12PYvFgtVaiTs2H1FfowBxo8uITxdi2TQfMIgq7IOODuK06zS/D/49E0Mn6kV5bAi/hqzHgfu5GfV6iiJRwqGoMVJSUujXr5/XrmcwGAgKukSPgRKEpSFXS2zoEZ8FCOvBAJpRY9zZcWy1baWVuRVLYpZgNBnFcRb0tHkrej5KGBBDnapWfrko4VDUGP7+/vj7V2N+uR0hGmcR1oWsqyFXQ+wIQdHg5WMvs/jMYgINgXzQ9AMitAh9lcXsPs+JXqk8CLH06sdVgRKOWoymaZc+qIpctdm0TvRwctkUugBxB8hG0e7eKJ+UfMITp0W066Imi+gU0kmIRrD7OBNlCw7L+qH1dOm1IpRw1FJsNhvTp09nz549lz64kvTo0YNHHnnk6hMPJ6KK1wnEaogBcbPLFrNBiGAvF/xc9DNDDw7FhYtJUZMYGjpUDzmXEaSl4zXMCNFoWJ0fqOZRwlFLcblcrF+/nu+++85r1ywpKfF01Ltq0BC1NY6hR4aWrjzurq2BP+TYcrj9yO3kufK4I/gOpkVP01s1ynT5QPez9GtEAk25KvwapVFxHIr6iwuRtHYQYS2Y0OMtzOhJaIVQZC9i4IGB7LXv5Trrdfyz2T8xWoy601Q2XXK5zzEhnKFxXDV+jdIoi0NRPzk/wEt2ipd+DZnNGgDOQid3H72bb4q/obm5OWti1hCkuVdnwhCiIyuUS4vDhEiVryeFeaqKEg5F/UND+DP2owdzgb4aYsbj19DMGuNzxrMybyWhxlD+0/w/NAlpInwaheg1NGSkqAshInFAeHV9oNqHEg5F/UJDrJwcQPgvZCUvKQLuIsMEAhaYnTObV0+/ir/Bnw9jPiTBP0GPBpWl/yzoOShm9DyUq8yvURrl41DUH0pbGrJ7vPRJyHBw2VmtABaeWcjEExMxYGBx08XcFHWTsERseOI5PB3mpZM0inpXzety8Kpw3HjjjRgMhgofAwYMACA7O/uCx5w5c8abw1FcTbgQPo396HVCpV+jECEk0skZDCvOrmDcYdHn9bWmrzEsaJg4zg8RSu4vjiMQITbyfQuuetEAL09V5s2bR15eXplt33zzDY899hipqalltk+cOLHctpCQelZfTVE9aMBx4BBCLGTzJFkwWGa+2oBzsLZkLSOOjMCFi2kNpvFgowd1h2kx+pRGrpZIS6UV9T55rbJ4VTg6dOhQbtvChQvx9/dn+PDhZba3atWKnj17evPHK65GXIgYjUPoN72s+VmMsKkLEVOQQPjk+CcMOTQEBw7SG6YzOWKyEIwI9MjPQITIBKI3Yop1X0MB+Ng5WlhYyIoVK0hJSSEysh60r1LULlwIwTiBvuQKQjAC0UPDXUAefO78nIGHBlKilfDn8D8zu/FsDAEGMYUpQe/xail1/QCEaERU02eqI/jUOfrBBx9w7tw57rnnnnL7Jk6ciNlsJiwsjNTUVH766SdfDkVR37AjAruOUza13YC44QsRvo5CwAKf2z8nJTuFYq2YsQ3GMrfJXAyFBjGdCURYFSEIqyMAfSWlGfWiZaO38anFsXjxYho2bMitt97q2WaxWBg7diz9+/cnOjqaX375hZkzZ3L99dfz3Xff0b59e18OSXERjEYjkyZN4oEHHvDaNaOjozEavfz/yQFkI0r+lSAsDNnSIAA969UAnIVP8j5h4IGBFGvF3B96P/OazsMYYBTnOdFL/0nfiAshJs0QOShX8bLrhfCZcBw5coTPPvuMv/zlL5jN+o9p0qQJCxYs8Lzv3bs3AwYMID4+nhkzZrBkyZIKr5eRkUFGRgYAOTk5vhr2VY3BYKBPnz41PYyLU4yI0chFz2iVwVmyOrms6hUMa51rGbJ/CCVaCWnRacxvNB9jgVGP0UAc58lZkY2UohHxGipgoUJ89rUsWbIEl8tV4TTlfJo3b84NN9zAli1bLnhMWloamZmZZGZmEh0d7c2hKuoKhYj2jKfQy/3luR+yWLBs7myHFUdWMCh7ECVaCQ+GPcj8JvMxBhvFlEROaaRvRDZSsiKCu5qjll0vgs+E45///CeJiYkkJiZW+pyrLt1bUXnOIsr95SFucNnCwOp+LnFvzwMM8FbJWww/NByH5iC9cTqvxb6GsdBdmdxfHEMoYqVExmv4IwK8VKzGJfGJcGRmZpKVlVUpawPgwIEDfPXVV/To0cMXw1HUZTSEL+M3RM0MmUNS6H5fiPgrlrEWDnhp/0vcf+B+XLh4NvJZZke7V09CEFMUaWnY0at6WRCWRktUIkYl8MlXtHjxYsxmMyNHjiy37/HHH8flcpGUlER0dDS7du1i1qxZHsecQuFBpsUfQ3dcyopbfu5HqemGFqIxMW8is4/PBmBui7k8HPWwnhFrQgiRLDIchB7oFYGYnijRqBRe/5rsdjvLli1jwIABNGxYvixSfHw88+fPZ9GiReTn5xMVFUXfvn155plnvFrxWlHHsQNH0JdbQbcuzrn3g6ctgb3YTtqvaSw6uwgzZt5u9DajwkfpMRlylUWWCXSgWxqRiFgNJRqVxutflZ+f30VXPUaPHs3o0aO9/WMV9YlixHJrrvu9LPcni/DI1RB33dD80HyGHh/Kx2c/JtAQyMo2K7k1+FYREWp2n+fOUcGMmLLI1ZMIhE9DiUaVUF+XovagIayJ/eiNnEEXjnx0v4QGWOFo/lFu33E7P5T8QANzA9Y2Xsv/Wf9P77Am+6UUovd5tblfR6JE4zJRX5midlC6Ylc+YkpS4H52oGeoylyUAtjpv5PfH/g9B2wHuMbvGj7u8DGt/VrrtTek4zPY/T4Y3dKIQvk0rgD1tSlqHju6E1RWIDegL4nKpVan+70VPj39KUN2DyHPlUfPoJ6sbriaaC1aX6INRC9KbEevrRGIEI0Y1JLrFaCEQ1GzlCD8GWcpW4Fchn7LBtB+iOlLHiywLeChAw/hxMmQkCEsbr+YAFeAHjbuRLy2IqwLK0I4TEBjRESoEo0rQglHLcXPz4/Zs2eTm5t76YMrSdOmTb12rStGQwRr7adsD1cnYqXDifB3OPGkyTssDh4/8DhzT88FYGKTiUwPno6xxKj7MgIpm3NiQE9kk6KhwsivGCUctRSTycSNN95Y08PwDU70uqDyvfRrFLm3yYhQdyGe3NO5DDs1jE/zPsUPPzKaZHBvy3uFSEgrQz6bEOIjLRUDwp8RhUpY8xJKOBTVix1hZeSiJ6PJwCwzekNnmbBmgJ+1n0k9nMpu226izdF80OYDerl6if0WhGURhB6GLjusyQbRLRFtDpRoeA0lHIrqQUNYFYfwtFv0rJiAHpgly/W5LY01R9Yw8vhIzrnOkWhJZFXzVbQMbSmOleHjMpir1Hme5dgWiLgNhVdRsz2F73EhqnT9il5D4yzCtyFjNKyIv0Z3cWGX3cXUE1NJPZrKOdc57oy8k80Jm2lpdouG7HFSuviODA6TRXliUaLhI5TFofAtJQgr4yT6vymZZ2JCz3bV8AR1nfE7wx9/+SNrC9ZiwMDM6Jk82ehJDH4GTz8UT68Um/s16NOThojlVhlhqvA6SjgUvkFGgWYjxEPWAy1y73MX2vEEdTmBPNhu287gPYPZU7KHCGMEy9os45aQW4RIyHgMB8KSMKInqsnryBgN9ZftU9TXq/A+TkSC2gmEAxP0Kl0m96MYMVWRqyFWWFy0mHGHxlGkFdE5sDPvNX6PVpZW+uqKO23eE9Ql/Rtm97VjEJW71ATc5yjhUHiXIkTY+En0ICtZYasYvQI5iOmKEYpzi3nk8CMszFkIwL1h9zKv7Tw9qMuOEBgXwhdiQYiIjNMIQIhGJGrlpJpQwqHwDi7EEut+9LT1PPTqXPKGl3EX7lJ/v7l+Y+jhofxY/CMWg4XXY19ntP9oDDaDvtQqa4LKFRgjer3RYEQDaClGimpBCYfiypEO0DPoYd+ycI4/wsqQAV4uPNOOdw++ywM5D3DOdY5r/K5hZfOVdG7YWV81KR3U5YcQElnER0P4M5qh19xQVBtKOBSXj4ZYVi3dGd6AHkJ+DmERyIAsgHwo0ooYf3Q8/zjxDwCGRg7ljbg3CC0IFdeQlb1CEFMfGTauoU9PGgFNUTknNYQSDsXl4UBktB5FFwzZtNmIsCrM6FMMDQiELGMWw38ezk+2n7AYLLzU8CX+1PBPYqlVNkKSiW6lO8w7EdMdP/QmScoJWmMo4VBUDRkBegBhbchIT2lVuJdVPc5LC2AC7ZTGwtyFPHr4UYpcRbTxa8PydsvpbO2sx2NIx2YI+tRElg30R/gxWqD3eFXUGEo4FJXHgVgtOeh+76RsXIa0NCwIEXD7O05bTzPm5BjeP/s+APdF38fciLkEG4P1hLQA9B4n0oeBe7sRsczaDBXUVUtQwqGoHOcQgpGLXhSndBq8XG4t1UWNINh4aCN/zPkjh+2HCTGGsKDRAka0HCFESLYocCKEJhA91kO+tiAiQRui/Bm1CCUciosjfRnH0StwGdEtggL0aYYsJmyDkrwSJp+dzItHX0RDIykoiaWtlxJXEqdntfohBKbQfW0nerMk2aIxDtHOQFGrUMKhqBgNIQr70RshGdyvjYibPxg958SOmLaYYQc7GLV3FD/afsSEickNJjM5ejLmAHPZgj0yhFzGYzjxtG+kAWLVJKC6PrCiKijhUJTHgaj/eQQhBib3sxQJP/f7QnTrwQKuIhcv73+ZiScmYtNstDK3Ysm1S0gKSRKCI2tvGNAtDdnDtXSflBigCWrVpBajhEOhI8v5yRUTf/SaGWaESEgBkTUvXMA5yA7I5t5D9/JF/hcAjIkew0sRLxFsChbXkJGj0tKQuSsW9z4zwrpohiq6UwdQwqEQ2BB+jMOltsmCO4Xo2acyTqNIPGt+Gm+ee5Pxe8aT78qnkbkRC6MXktIiRZ/u2BCCIQVE+jJkWT8zEI4o76eiQOsESjiudlwI6yIbEZ8BHlHw9Ff1Q196dSLiLILg8OnDjMkdw7q8dQAMCR/C/FbzaVDcQIhNIHqrgmL0XBPZ80T6L5ojfBpq1aTOoITjaqYQscR60v1eFvqV+SDS4pCdzwKBU6DlaywuXMyjBx/ljOsMEaYIXmv2Gnf53yUiQGXEaGkHqJWyEaAO9NJ+QaipSR1DCcfViKwyvh+9poUs21eC3i5RBnQ5EFZJOBz2P8zYfWP5qPAjAG4LvI2MVhk0DWoqLBZ5ruzRKq2X0vVEXYgVkyaltinqFEo4riakz+EAIpPVhl5UR+aTSN+D2+kp64FqxRpvHXqLx048Rp4zjzBjGK+0fIW7Q+7GUOQu6SdT242lrinricq4jdIOULVqUmdRwnG1YEcsrx5FWAVyOiHT3EEIiWzsHIpYMs2HbL9s0o6k8Wn+pwCkhKWwIHwBTcOblk1KkwFggei5JtIB6odwgDZDxWbUAyql+YcOHeLhhx8mKSmJwMBADAYD2dnZ5Y4rLi4mPT2dJk2aEBAQQFJSEl9++WW541wuF7NmzSI2Nhar1UpiYiLvvffeFX8YRQW4ENOS7cA+9CjPYoQlYEdYIbJrmvRDFIDT5GTu2bkk/JzAp/mfEmWKYmmTpaxqs4qmkU31cyyIaUkAet6KTIWXqzEtgVYo0agnVEo4du/ezbvvvktERAS9e/e+4HH3338/CxcuZNq0aaxdu5YmTZpwyy23sG3btjLHPf3000ydOpWHHnqIdevW0bNnT4YOHcp//vOfK/owilLIYsG7gCz0YKtihJhIsbAjrAGze5sdCIAdhTvo9XMv/nLiLxRoBQwLG0ZWfBYjgkdgsLurcwW5f5YstmNGWCpW97M/wsrogFg1UVOTeoNB0zTtUge5XC6MRvFbf+ONNxgzZgz79u0jNjbWc8yPP/5I586deeutt7jvvvsAcDgcxMfH07ZtW1avXg3AiRMnaN68ORMmTODZZ5/1nN+vXz9ycnLYvn37JQfdrVs3MjMzq/RBrypk9/fD6GnppYvsWNzHWBBJa7LmRSEUa8VMz53O7BOzceCgqV9T5jWax8CggUIMpO8jxP06FF18HOjp9NKXoZLT6jQXutcq9T9AisbFWL16NX5+fgwbNsyzzWw2M3z4cNavX09JifgLXr9+PTabjVGjRpU5f9SoUfz000/s27evMkNSVIQGnEJMS/YgbmgbepFgudwqa2oUoU8vimBj0UY67evEjBMzcOBgXPg4sq7JYmCTgXr2q+yQJgXCXuq6gQgrowHQHtHkWYlGvcRrxuPOnTuJi4sjMLBs1dj4+HhsNhu7d+/2HGexWGjdunW54wCysrK8NaSri3zgZ+BH9LyQQnRLQwZ05aPX8HQXDT7pOMl9R++j7/6+/Gb7jfb+7fmq9VfMbzafMGeYuL7MUJXh4rJbWiBihcQfMUVpClyLis2o53htVeX06dNERESU2x4ZGenZL5/Dw8MxGAwXPU5RSWyIQsGH0UO7QU97Bz27NRB9+VUDDY1FZxeRfiydU65TWAwWJkdP5q8Rf8Xf6C9ufidCgAIoGwUq63E4EKIRgqrOdRVRZ5ZjMzIyyMjIACAnJ6eGR1MLcCIaHu1Fj5mQN7Is6luI3gBJCoDb/7Dz7E4ePP4gXxaLVa++AX2Z33Q+bQLa6LkoToR4yPobTvQoUlm5y4DeCKnO/DUprhSvTVUiIiLIzc0tt11aENKiiIiI4MyZM5zvkz3/uPNJS0sjMzOTzMxMoqOjvTXsuoeGcGhuB3ai55e4EDe77GfiQM8JKcITr1FgK2DCwQl03t+ZL4u/JNoUzb+a/ovP4j6jjV8b3YKQDlR5nQDECkkAejm/EHRfhhKNqwqvCUd8fDz79u2jsLCwzPasrCz8/f09Po34+HhKSkrYs2dPueMAOnTo4K0h1T8KgV+ArQhrQ1oBMgM1HyEQoBfWcUeDavkaH+R+QPvD7ZmdOxsnTsaGjWVXy12MihiFQTPoLRZL+zCkSMjery73+2uANujtDxRXFV4TjpSUFOx2OytWrPBsczgcLF++nP79+2OxiHzpAQMG4Ofnx9KlS8ucv2TJEhISEoiLi/PWkOoPNkT26hbE1ER2QpM1PqVgGNBXUWQUZz7sLtnNbWduY/ChwRx0HKSLfxe+af4NC5ovIMI/Qm/kbEYIgawhKnuZyLgMP4TzMwHR10StmFy1VNrAXLlyJQDff/89AOvWrSM6Opro6GiSk5Pp0qULw4YN49FHH8VutxMXF8f8+fPZt29fGZFo2LAhjz32GLNmzSIkJISuXbuyfPlyNmzY4In1ULhxICyL3QgHp5x6yKVVmVAmjy1ArHBYgDwoCC5gVt4sXjj0AjZshBnCmN5wOn+K/BOmElPZIsEy+EtGe5pLPUvxaIZKf1cAlQwAA8qtgkiSk5PZtGkTAEVFRUyaNIl///vfnDlzhsTERGbPns2NN95Y5hyn08msWbNYuHAhx44do23btkyZMoUhQ4ZUatD1PgBM9mH9DRGXIS0C6fyUVbhk4FUeen9VF2gBGitPreTx3Mc56BS9DO4Ju4fno56nobNh2aCtIvTphryG2f2QVks0YsVEFdm56rjQvVZp4ahN1FvhkKX79iIS0mTvVLmvGPHf3oa4ic+hN3I2iH07CnfwyJlH2Fi8EYAuli68Fvka1/tfL6wRudKiIQTE4b5GEXpymhSOQPQq48qPcVVyoXtN+cJrC4WIJLRshECAsDxkvQzZ9V02LtIQN7N76TWXXJ45/Qzzzs3DiZNIYyQzwmYwJmwMphCTqKch+7KWrsilua8dhl4a0IQeLq4aICkqQAlHTVOCsDCyEU5OE/rKhoYeUyHL98kb3gLYwGFysLBgIU+feZpT2imMGPlzyJ+ZFjGNyMBIPYNVWhMyPsMfEaPhQrcynOi1P0Oq4bMr6ixKOGoKO6Js3y8Ia0D6L1wIwZBTk9K+jBLEDe8Srz/ncx499Cg7nDsAuNF6I6+Ev0KnoE76ykogevk+WT9UXtNB2TJ+LVFZrIpKoYSjunEiKnDtQtTJkDkkoDtBpaUhK3Q50HuSFMGvxl9JP5HOartYhYo1x/JC+Avc4X+HqPlpQG/YLJPS7OhTHz+E30K2OGiJKOOnnJ+KSqKEo7qQrRS3u58lMohLxmHIxkRyalIqqey0/TTTiqbxevHrOHAQbAjmqbCnGG8ajzXUqlsrdvQkM9laUYqJbLFoQkxHYt3PyspQVAElHL7GiVghyUR0R5MrIFIwpHVhR1/tAD3fxAY2k435Z+bzrO1ZcrVcDBgYHTia6f7TaRLRRG/ebEQIhnwvu8Bb0H/TsgZoC4TzU/0FKC4D9WfjK+SU5BvEaom0KGQLRBkaLqcOpWtluAO9NKPG+4XvM8Exgd0uUZagr7kvLwa9SOfgzuL8QvRuaEUIwZC5JvJ6UqjMiNUSFZOhuEKUcHgbJyL57CPEaom8kaU1YETvXWJECEcgenKZuwTfN8XfkE46m52bAWhrbMsL1he4PeR2DEaDcH6Gojdwls5PC7o1IwXEibAuWqJiMhReQQmHt3AhIj0/RoSIa+gd2IsRId1n0NsghqC3U7Th8WPscuxiUtEk3nOJ4s3RRDPVbypjwsbgZ/fz1AT1OD9l/xIzugPUihANDSFKsahQcYVXUcLhDZyIKclXiJu5EXpzoxL0uhUOxNQiFz22wr3vmPEYz9qeZaFhIU6XkwACeNz4OOlB6YQaQ8V1ZHE1WRPDWuq6ZoTFIetv+COmJTGoaYnC6yjhuFJciKzVH9ArbMl+JdKPIR2e0tpwIULLnXDWdJY5ljm8ZHmJQkMhRozcr93Ps9ZnaUYzvXKXbMUY7L6O9JPIQK7SDaEbI6wMVb5P4SOUcFwp+xBBXIHoUZkyFkPetOc/W6DYVMzr1teZFTmLU6ZTAAx0DmQWs2jv116IhLzxSzs8JX7orRbltCQcUScjArW8qvApSjiuBDuimriM+pQ+hopuWnf5PTt2FoUt4tmwZznsdxiA3rbe/K34b1wfeL2+yiKT1+SKicSM7sOQKzRBiGZHjVC/UUW1oP7MroTTiOhPGXgFZacGBv290+TkHfM7PNPgGfb4iepnicWJzDo8iwHWARgCDXqKuww5D0Dv4ypjMmSNDNDjMVpSVlwUCh+jhONKyHY/X8jCMIDL4OI963tMtU4lyyzKI7axt+HZM89yZ+6dGIuMQhiC0BPNLOjTEplvIptByw7yTYHWKD+GokZQwnG5yDaK8maXvUvccRoup4v3Te8zLWgaP5l+AqClsyVT8qZwd/7dmJ1mvbqWH7pPxIreqLl0A2eZwdoQaIfwZyg/hqKGUMJxuZReKZFTEhMeITljPMN9hvvIN+QT44phUtEkRheNxt/hX/Zbl1Gj0q8hl1NlrIYUjShEceAmKMFQ1DhKOC6X0haGAV0A3NsjjZFMc0zD4rBwv+1+LE6L2GdGL8xDqXPN6L1KZMFgAyLSswMiHkMV1VHUEpRwXC5GxE2di/gWbejC4I7hGO8YrwuMzBWROSmll2iDEaIQjJiaSL9GO8TyakD1fCSForIo4bgSWiJaL8q8EBn0JS0Rf4Sg+J13XunsWGlhyLBxC0IwElDtFBW1FiUcV0I4EAnkoFchlw5PEKLhj15jQya4yTqiDoTVYkVYFR2AREQAl1opUdRilHBcCSZEaPcp9HgLKNvw2U7ZgjoydFwKRxTCuuiJCBVXgqGoAyjhuFKaAG0RYeelw8xBX2mRtURt6Mu4BUB34DbElEetlCjqEEo4rhQjcC1CIHYiLAzZzV12d5c1Qx2IquNBwJ1AN1Squ6JOooTDG8gmzFGIpLej6B3jZQlAENbJ7YgO74HlL6NQ1BWUcHgLA8KpGYHIOTmJmI64K3oRgWo9oKg3KOHwBQGIpkYKRT1F/f9TKBRVRgmHQqGoMko4FApFlamUcBw6dIiHH36YpKQkAgMDMRgMZGdnlzkmMzOTtLQ02rVrR2BgIC1atGDkyJHs27ev3PViY2MxGAzlHh9++KE3PpNCofAxlXKO7t69m3fffZfrrruO3r1788knn5Q75p133mHnzp088sgjxMfHc/jwYZ577jm6devGtm3baN68rLfwlltuYerUqWW2tW3b9vI/iUKhqDYqJRx9+vTh+PHjALzxxhsVCseTTz5JdHR0mW29evUiLi6OhQsXMm3atDL7GjRoQM+ePS933AqFogap1FTFaLz0YeeLBkDLli2Jjo7m8OHDVR+ZQqGotfjUOfrzzz9z4sQJ2rdvX27fmjVrCAwMxGKx0LNnT+XfUCjqED4TDofDwbhx44iOjub+++8vsy8lJYVXX32V9evXs3TpUqxWK4MGDWLJkiW+Go5CofAiPoscfeihh/j666/56KOPiIiIKLPv1VdfLfN+0KBB9OzZk4kTJzJq1KgKr5eRkUFGRgYAOTk5vhm0QqGoFD6xOCZMmEBGRgZvvfUW/fv3v+TxJpOJoUOHcujQIY4ePVrhMWlpaWRmZpKZmVmhP0WhUFQfXrc4ZsyYwezZs3n11Vf54x//WOXzDQZVyUahqO141eKYO3cukydPZsaMGTz00EOVPs/hcLB8+XJatGhB48aNvTkkhULhAyptcaxcuRKA77//HoB169YRHR1NdHQ0ycnJvPPOOzz66KMMGDCAvn378u2333rODQ0NpUOHDgAsW7aMVatW8fvf/57mzZtz/PhxXn/9dX744QeWLVtWqbFkZ2d7lnoV3iMnJ0d9pz6gLn+v50eIe9AqCXpH0zKP5ORkTdM07Z577rnkMZqmad9884120003aQ0bNtTMZrMWFham9evXT/v4448rOxRN0zTtuuuuq9LxikujvlPfUB+/V4OmaVrFklK76datG5mZmTU9jHqF+k59Q338XlV2rEKhqDJ1VjjS0tJqegj1DvWd+ob6+L3W2amKQqGoOeqsxaFQKGqOOiMcBw8eZMiQIYSFhREaGsrgwYM5cOBATQ+rzrBp06YKiyeFh4eXOS43N5cHHniABg0aEBQUxM0338xPP/1UM4OuZVSmoBVAcXEx6enpNGnShICAAJKSkvjyyy/LHedyuZg1axaxsbFYrVYSExN57733quGTeIGaXdSpHAUFBVrr1q21+Ph47YMPPtA+/PBDLSEhQWvVqpWWn59f08OrE2zcuFEDtLlz52rffPON57FlyxbPMS6XS+vVq5fWrFkz7d///re2bt06rU+fPlpUVJR28ODBGhx97WDjxo1aw4YNtVtvvVXr37+/Bmj79u0rd9yIESO0sLAwLSMjQ/vss8+0QYMGaVarVdu6dWuZ45566inN399fe+GFF7QNGzZoaWlpmsFg0D766KPq+UBXQJ0QjpdfflkzGo3ab7/95tm2d+9ezWQyaS+++GINjqzuIIXj008/veAxH374oQZoGzZs8Gw7c+aMFhERoT388MPVMcxajdPp9LxeuHBhhcKxbds2DdDeeustzza73a61adNGS0lJ8Ww7fvy45u/vr02ZMqXM+X379tU6duzomw/gRerEVGX16tX07NmT1q1be7bFxcXRq1cvVq1aVYMjq1+sXr2apk2bctNNN3m2hYWFkZKSor5nKlfQavXq1fj5+TFs2DDPNrPZzPDhw1m/fj0lJSUArF+/HpvNVi4bfNSoUfz0008V1uqtTdQJ4di5cycJCQnltsfHx5OVlVUDI6q7jBw5EpPJRFRUFCNGjCjjJ7rY93zgwAHy8/Orc6h1kp07dxIXF0dgYNken/Hx8dhsNnbv3u05zmKxlPlnKI8Dav3fdZ3o5Hb69OlyNT0AIiMjyc3NrYER1T3CwsJ4/PHHSU5OJjQ0lK1btzJz5kySkpLYunUrDRs25PTp08TGxpY7NzIyEhCO0+Dg4Goeed3iYn+rcr98Dg8PL5cNfv5xtZU6IRyKK6dLly506dLF8z45OZk+ffrQo0cP5s6dy/Tp02twdIq6Rp2YqkRERFRoWVxI3RWVo2vXrrRp04YtW7YAF/+e5X7FxbnUdygtioiICM6cOYN2Xvzl+cfVVuqEcMTHx7Nz585y27Oysjzp+orLR5rLF/ueW7RooaYplSA+Pp59+/ZRWFhYZntWVhb+/v4en0Z8fDwlJSXs2bOn3HFArf+7rhPCkZqayrfffsvevXs927Kzs9m8eTOpqak1OLK6TWZmJrt27aJHjx6A+J4PHz7MF1984TkmLy+PNWvWqO+5kqSkpGC321mxYoVnmyxU1b9/fywWCwADBgzAz8+PpUuXljl/yZIlJCQkEBcXV63jrjI1vR5cGfLz87VrrrlGS0hI0D788ENt1apVWqdOnbS4uDjt3LlzNT28OsGIESO0SZMmae+99572+eefa3PmzNGioqK05s2bazk5OZqmiTiFpKQkLSYmRlu2bJn28ccfa8nJyVpERIR24MCBGv4EtYMVK1ZoK1as0MaNG6cB2rx587QVK1ZomzZt8hwzbNgwLTw8XFu4cKH22WefaXfccYdmsVi077//vsy1nnzySc1isWgvvviitnHjRm3cuHGawWDQ1qxZU90fq8rUCeHQNE3bv3+/NnjwYC0kJEQLDg7WBg4cWGHUnqJiZs6cqXXs2FELDQ3VzGazFhMTo40ZM0Y7cuRImeNOnTql3XfffVpERIQWEBCg9e3bV9u2bVsNjbr2QSWKVRUWFmrjx4/XGjVqpFksFq1Hjx7axo0by13L4XBozz33nNaiRQvN399f69ixo7ZixYrq+zBXgMqOVSgUVaZO+DgUCkXtQgmHQqGoMko4FApFlVHCoVAoqowSDoVCUWWUcCgUiiqjhEOhUFQZJRwKhaLKKOFQKBRV5v8BjD18V4v6/R0AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQ4AAAEECAYAAADZKtrDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABBk0lEQVR4nO2dd3iUVdqH7ynJTHoj1AAJIi2BAAIfESEKLuJqwoIgCKwFJbCuuqJmBUFEpCyKrqICGywsC4sIFoqLWABdUVeiIEIUpYReAgRC6rT3++PMmTchARKYSePc1zXXzLwtZyZ5f3nOc55i0DRNQ6FQKKqAsaYHoFAo6h5KOBQKRZVRwqFQKKqMEg6FQlFllHAoFIoqo4RDoVBUmRoTjoMHDzJkyBDCwsIIDQ1l8ODBHDhwoKaGo1AoqoChJuI4CgsLSUxMxGKxMH36dAwGA5MnT6awsJDt27cTFBRU3UNSKBRVwFwTP3ThwoXs3buXXbt20bp1awA6derEtddeyz/+8Q8ee+yxmhiWQqGoJDVicfTr14/i4mI2b95cZntycjIAX3zxRXUPSaFQVIEa8XHs3LmThISEctvj4+PJysqqgREpFIqqUCNTldOnTxMREVFue2RkJLm5uZc8v0GDBsTGxvpgZAqFojTZ2dmcPHmy3PYaEY7LISMjg4yMDACCgoLIzMys4REpFPWfbt26Vbi9RqYqERERFVoWF7JEANLS0sjMzCQzM5Po6GhfD1GhUFyEGhGO+Ph4du7cWW57VlYWHTp0qIERKRSKqlAjwpGamsq3337L3r17Pduys7PZvHkzqampNTEkhUJRBWpkObagoIDExEQCAgI8AWBPP/00586dY/v27QQHB1/0/G7duikfRw1gt9s5dOgQxcXFNT0UhZexWq3ExMTg5+dXZvuF7rUacY4GBQWxYcMGxo8fzx//+Ec0TaNfv368/PLLlxQNRc1x6NAhQkJCiI2NxWAw1PRwFF5C0zROnTrFoUOHiIuLq9Q5Nbaq0qJFC957772a+vGKy6C4uFiJRj3EYDAQFRVFTk5Opc9R2bGKKqFEo35S1d+rEg6F4iIsWrSII0eOVHnfxViwYAGLFy+u8nlnzpxh3rx5VT7PF9SZADBF7aPxnMYcLzjutes1CmrEsSeOee16V4rT6WTRokUkJCTQtGnTcvsvts/pdGIymSq87rhx4y5rPFI4HnzwwUqf43A4MJu9f5sri0Nx2XhTNCp7vSVLltCjRw86d+7M2LFjcTqdbNmyhU6dOlFcXExBQQHx8fHs2LGDTZs20adPH2677Tbatm3LuHHjcLlcAHzyySckJSXRtWtXhg4dSn5+PgCxsbE8+eSTdO3alWXLlpGZmcnIkSPp3LkzRUVFnnGsXLmy3L7S565YsYKFCxfSvXt3EhMTueOOOygsLARg6tSpzJkzB4A9e/YwYMAArrvuOnr37s0vv/wivovjxxk0aBCJiYkkJiby9ddfM2HCBPbs2UPnzp1JT09H0zTS09NJSEigY8eOLF++HIBNmzbRu3dvUlNT6dChA1OmTOHll1/2jH3SpEm88sorV/S7UhaHos7w888/s3z5cjZv3oyfnx8PPvggS5cu5e677yY1NZXJkydTVFTEqFGjSEhIYNOmTXz33XdkZWXRsmVLBgwYwPvvv8+NN97I9OnT+eyzzwgKCmL27Nm89NJLTJkyBYCoqCh++OEHAN544w3mzJlTLvR6yJAhvPbaa+X2lT731KlTjBkzBoDJkyfz5ptv8vDDD5e5TlpaGgsWLODaa6/lf//7Hw8++CAbNmzgkUceITk5mQ8++ACn00l+fj5/+9vf2LFjB9u2bQPgvffeY9u2bfz444+cPHmS7t2706dPHwB++OEHduzYQVxcHNnZ2QwePJhHH30Ul8vFO++8w3fffXdFvwslHIo6w+eff873339P9+7dASgqKqJhw4YATJkyhe7du2O1Wpk7d67nnB49etCqVSsA7rrrLr766iusVitZWVn06tULAJvNRlJSkuecYcOGXfYYS5+7Y8cOJk+ezJkzZ8jPz+eWW24pc2x+fj5ff/01Q4cO9WwrKSkBYMOGDR4/iMlkIiwsrFyaxldffcVdd92FyWSiUaNGJCcns2XLFkJDQ+nRo4dnaTU2NpaoqCi2bt3K8ePH6dKlC1FRUZf9GUEJh6IOoWka99xzD7NmzSq379SpU+Tn52O32ykuLvZUkTt/tcBgMKBpGr/73e9YtmxZhT/nSirQlT733nvv5cMPPyQxMZFFixaxadOmMse6XC7Cw8M9FoQ3Of8zPPDAAyxatIhjx44xevToK76+8nEo6gz9+vVj5cqVnDhxAhBJkfv37wdg7NixPPfcc4wcOZInn3zSc853333Hvn37cLlcLF++nBtuuIGePXuyefNmdu/eDYhI5l9//bXCnxkSEsK5c+eqvA/g3LlzNGnSBLvdztKlS8vtDw0NJS4ujhUrVgBCGH/88UfPZ50/fz4gHK1nz54t9/N69+7N8uXLcTqd5OTk8OWXX9KjR48KxzJo0CA+/vhjtmzZUs7yuRyUcCjqDB06dGD69On079+fTp068bvf/Y6jR4+yePFi/Pz8GDFiBBMmTGDLli1s2LABgO7du/PQQw/Rvn174uLiGDRoENHR0SxatIi77rqLTp06kZSU5HFKns+9997LuHHjyjlHL7UP4LnnnuP//u//6NWrF+3atSuzT1pCS5cu5c033yQxMZH4+HhWrVoFwCuvvMLGjRvp2LEj1113HVlZWURFRdGrVy8SEhJIT09n0KBBdOrUicTERPr27cvzzz9P48aNK/wc/v7+3HTTTdx5550XXO2pCjWSq3KlqFyVmuHnn3+mffv2nve1fTl206ZNzJkzh7Vr13rtmt7g4YcfpmvXrtx3333V9jNdLpdntefaa6+t8Jjzf79Qy3JVFPWD2hRzUVd4+umn+d///sfUqVOr7WdmZWVx++23M2jQoAuKRlVRFoei0lT0H0lRf6iKxaF8HAqFosoo4VAoFFVGCYdCoagySjgUCkWVUcKhqPds2rSJ22+/HYDVq1fzt7/9rdrHMGvWLFq3bk3btm1Zv379RY995JFHan0lPLUcq7h8GgPeTJBtBFRyhVfTNDRNw2is2v++1NTUai+InZWVxTvvvMPOnTs5cuQIN998M7/++muFgViZmZmVakpW0yiLQ3H5eDer/pLXy87Opm3bttx9990kJCRw8OBB/vSnP9GtWzfi4+N55plnPMd+/PHHtGvXjq5du/L+++97ti9atIiHHnoIEJGfK1eu9OyT/+WPHj1Knz596Ny5MwkJCfz3v/+9oo+1atUqhg8fjsViIS4ujtatW1eYnep0OklPT+f555+/op9XHSiLQ1Gn+O233/jnP/9Jz549AZgxYwaRkZE4nU769evH9u3badOmDWPGjGHDhg20bt26ytmu//73v7nllluYNGkSTqfTU0ejNOPHj2fjxo3ltg8fPpwJEyaU2Xb48GHPeAFiYmI4fPhwuXNfe+01UlNTadKkSZXGWxMo4VDUKVq2bFnmJnz33XfJyMjA4XBw9OhRsrKycLlcxMXFeaIkR40a5WkfWhm6d+/O6NGjsdvt/OEPf6Bz587ljvn73/9+xZ+lNEeOHGHFihXlMmhrK2qqoqhTlE4X37dvH3PmzOHzzz9n+/bt3HbbbVXq+WI2mz0VwVwuFzabDYA+ffrw5Zdf0qxZM+69994K64OOHz+ezp07l3tU5Hht1qwZBw8e9Lw/dOgQzZo1K3PM1q1b2b17N61btyY2NpbCwkJat25d6c9S3SiLQ1FnycvLIygoiLCwMI4fP866deu48cYbadeuHdnZ2ezZs4drrrnmgnU3YmNj+f7777nzzjtZvXo1drsdgP379xMTE8OYMWMoKSnhhx9+4O677y5zblUsjtTUVEaMGMFjjz3GkSNH+O2338qlv992220cO6Z7hoODgz1p/7URJRyKOktiYiJdunShXbt2NG/e3FPRy2q1kpGRwW233UZgYCC9e/eusG7GmDFjGDhwIImJiQwYMMBjzWzatIkXXngBPz8/goODL6sieWni4+O588476dChA2azmddff92zovL73/+eN954o8KCx7UZleSmqDTlkqBqcDlW4X1UWr2ielA3+VWLco4qFIoqo4RDoVBUGSUciipRB11iikpQ1d+rEg5FpbFarZw6dUqJRz1D0zROnTqF1Wqt9DledY6uXLnS0zbvxIkTtGjRgsGDB/PUU08REhICiHwD2SjmfHJzcwkPD/fmkBReJCYmhkOHDpGTk1PTQ1F4GavVSkxMTKWP96pwzJkzhxYtWjBz5kxiYmLYunUrU6dOZePGjXz99ddlMhknTpxYLktRiouiduLn53dB0a8KR44cYerUqRXmgHiDli1bMmXKFCwWi0+ur/CycKxZs4bo6GjP++TkZCIjI7nnnnvYtGkTffv29exr1apVmZwDxdVDXl4e7777LmfPnvXJ9RMTE3nqqaeUcPgQr/o4SouGRPb5rCgbUKFQ1E187hz94osvAMpFpE2cOBGz2UxYWBipqan89NNPvh6KQqHwEj6NHD18+DBTpkzh5ptvplu3bgBYLBbGjh1L//79iY6O5pdffmHmzJlcf/31fPfdd6pvh0JRB/CZcOTn5zNw4EDMZjNvv/22Z3uTJk1YsGCB533v3r0ZMGAA8fHxzJgxgyVLllR4vYyMDE9NBeXVVyhqFp9MVYqKikhJSWHv3r2sX7/+kss8zZs354YbbmDLli0XPCYtLY3MzEwyMzMr9KUoFIrqw+sWh91uZ8iQIWRmZvLpp5/SsWPHSp8rO3grFIrajVeFw+VyMXLkSDZs2MDatWsrvdx64MABvvrqK/7whz94cziKy8Rms7Fv3z6cTqdPru/LayuqB68Kx5///GdWrFjBpEmTCAoK4ttvv/Xsi4mJISYmhscffxyXy0VSUhLR0dHs2rWLWbNmYTQamTRpkjeHo7hMjh49yq233srJkyd9cn2Xy0VBQYFPrq2oJjQv0rJlSw2o8PHMM89omqZpb775ptatWzctPDxcM5vNWqNGjbS77rpL++WXXyr9c6677jpvDltxHvv27dMaNGhwwd9lbX8kJiZq+fn5Nf011gsudK951eLIzs6+5DGjR49m9OjR3vyxCoWimlHZsQqFosoo4VAoFFVGCYdCoagyqlhxNeFyufjf//7HmTNnfHJ9o9FIz549CQsL88n1FYrSKOGoJhwOB+np6XzzzTc+uX5AQAD//e9/6dKli0+ur1CURglHNeJyuTwtB31xbU2V9FNUE8rHoVAoqowSDoVCUWXUVEWhqGmcgJzBGgFTDY6lkijhUChqAheQB2QDpxDiAeCH6MkbAwQDtTRhXAmHQlHdnAJ2AEcBO0IsQFgbRuAMsBfRhLsNEFr9Q7wUSjgU9Y5aXdflELAJYWE4ERZF6YU2k/thR1gjuUAXoEF1DvLSKOFQVDtNmzZl9uzZBAYG+uT6YWFhtbM1wlHgY8Dhfu9Ez+k1IO5GU6mHH8L6+B7oCdSi2D4lHIpqJyQkhNtvv/3q6tpnBz5BCIEZXTRAiIbRfYwZ3UHqQrdMfgKup9asgyrhUCiqg9+AXQh/hRNhdZw/ozK59xnR/R5SXA4D56g1VocSDoWiOvgMIRZ2hBg4EAIhhcGIbmFIa0P6PjT36/1Ap+ob8sWoJYaPQlGPyUZMNfyAEqAIISAlgE28zrZn47K5xPvSD3mMC9iHvmxbwyjhUCh8zQ8IsXAghMBe9uG0O7nBdAPXGK7hkO2Q2C6tE5v7tQMoRAmHQnFVUAT8iLjTzrci3NbGOtZx2HgYEyaaOZt5tnsEQ4pIMfrUpoZRPg6FwpfsRkSIOtCnHKWdogaYFzQPgLTiNAwOQ9l/5wb3uRoQQK35V6+EQ1EOf39/OnXq5LOiQ7GxsZhMdSAh40pxANvR77Ji9BvfLR6/mX9jnWUdFs3C6MLRejyHEd2BakdMU1qgr7bUMEo4FOVo3Lgxa9eu9Vl9D6PRWDsDtLzNQeA4YAGsiOXUoLKHzA2dC8DIwpE0sDUQwiADxPwQloYNKABqUT92JRyKchiNRgICAmp6GHUbFyIfxYVYXrUgwsft7v0GyPXL5e0g0ZD9L2f/ootE6dwVOb2xAtdU2+gviRKOasRoNPosj8KX11ZcBieAY+7XRsAf4aMocD8bYEHQAgqMBfyu8Hd0snXSpykyOMzlfn0cGIYQj1qCEo5qwmw2M3v2bHJzc31yfZPJRKtWrXxybUUVcSF8G3b0IC8/IASxonIOigOLeSX8FQDST6cLgTChPzvd5+chsmSTq/kzXAIlHNWE0WikV69eNT0MRXVwCmFtSANQOkT9ECHnefB20NscNx+nS1EXbj53c9niPS7EMq4LITa/cz/XIpRwKBTeRAN2InwTIG5+DeHjcCez2Y12ZjeZDcDEIxMx5BuEcBjRpyvhCLFoDPSozg9QOZRwKBTe5AQiIc2EbjWcF3vxr7B/sd9vP+3s7bjDeIdIXJNFfKRoBCH8Il2AiOoafOVRwqFQeAsXIgNWWhmSUvU27EY7M6wzAJhUNAljiFH4M2TshhUhGhZE6cDO1Tb6KqGEo5pwOBy8/PLL7N2712vX7NixI+PGjVOrKbWF4+grKTIWw4AejwH8y/Av9hr30sbVhruMd4l9gQixkfEeVoS1cS0QWW2jrxJeFY5NmzZx0003ldseFhZWJgoxNzeX9PR0PvzwQ4qKikhKSuLvf/87HTt29OZwahUul4v333/fq53cUlJSGDt2rBKO2oADYW3IFHgNsSoil1Q1sBltPGd+DoApjimYzCYhEBq6WAS4n6W1UUtCzM/HJxbH3Llz6d69u/5DzPqP0TSNlJQUsrOzefXVV4mIiGDWrFncdNNNbNu2jZiYGF8MSaHwLceAk5SdpkifhTuQ6w3HG2STTQetA8P9hwsHqiwX6O9+lvkoLYGoav4MVcAnwtG+fXt69uxZ4b7Vq1ezefNmNmzY4LFOkpKSiIuL4/nnn2fu3Lm+GJJC4TtKgF/cr2X8ha3UexsUuAp4DmFtPGd4DpPTJKYoDsQUxYiwMiyI6UsCtdbagBoY2urVq2natGmZKU1YWBgpKSmsWrWquoejUFwZGnAAEU4uK3iBHvlpBCzwiukVjnGMbnRjkP8gIRAgLAwz+hTFhEhmq2VVzc/HJ8IxcuRITCYTUVFRjBgxggMHDnj27dy5k4SEhHLnxMfHc+DAAfLz830xJIXCNxQiKnPJLFYZiyGdogY46TjJbIeI2/ib9W8YnAaxr/RDCkcQwtqo5W4rr05VwsLCePzxx0lOTiY0NJStW7cyc+ZMkpKS2Lp1Kw0bNuT06dPExsaWOzcyUriPc3NzCQ4OLrc/IyODjIwMAHJycrw5bIXi8nAh6m3IeA3cr23o1cnNMK1kGnnkMcAwgH70EyLhQDyDcIxKX0cLamXcxvl4VTi6dOlCly5dPO+Tk5Pp06cPPXr0YO7cuUyfPv2yr52WlkZaWhoA3bp1u+KxKhRXzGlEr5RSKyeY0YvvOODXgl+Zb5+PAQOzA2frTZgCEUJhdr82I6Yv11KrfRsSn8dxdO3alTZt2rBlyxYAIiIiKkz0On36tGe/4urg3LlznDp1ymvXMxgMNG7cuHpqfTgQ1oaz1KMYMV2RDlIjPOF6AgcO7jfdTydTJ2FllG776M6UxQDEIaJG6wDVFgAmYw3i4+P55JNPyu3PysqiRYsWFU5TFPWTNWvW8Oijj3rtelarldWrV9O5c2evXfOCHEYks0lLQ/ZCMSJWWczw6blPWWNfQzDBTA+frtcSlQFhcjXFihCQ1tR634bE58KRmZnJrl27GDJkCACpqam8/fbbfPHFFyQni1zhvLw81qxZw4gRI3w9HEUtoqioyKv+KqvVisPhuPSBV0ohoseJnJLYENYG+rPdYefRkkcBeMr6FI1tjYVAyOVXKRwy+S2OctXBajNeFY6RI0cSFxdH165dCQ8PZ+vWrcyaNYtmzZrxyCOPAEI4kpKSGDVqFC+88IInAEzTNP761796czgKhfdxITrJ51M2A9YfIRqBQAnMK55HljOLawzXMD5kvG6VBKNHisoesaFALHXG2gAvC0dCQgLLli3j1VdfpbCwkMaNGzN48GCeffZZGjQQC9NGo5G1a9fyxBNP8OCDD1JcXExSUhIbN26kefPm3hyOQuF9coAj7tfSr2FATE9cQAEcMx5jSsEUAP4e8nesWIWwSKGR0xr3ci1t0FdY6gheFY6JEycyceLESx4XGRnJW2+9xVtvveXNH69Q+JYShENUBnrJ0HKZn+IO5krPSSdPy+M2/9tICUzRHaaB7uNldKgZkcTWpBo/g5dQ2bEKRWXQEH6NAvSm0TZ0Z6gJyION2kaWlCzBipW5gXPF/hD38dLHISNETUA76uRdWAdWjBWKWsBpxEoK6MutIMTDvZxaElrCuLPjAHgq5ClahbUSx5a4j7EjRMMfcec1p9amzV+KOqh1CkU1Y0NMUUoQFoOcppjc24xAEczKn8Wvzl9pZ27HX/3/KvbJuI1A93n+iLvOinCI1tF/3XV02ApFNSGnKGcRVoOGEAQnYlnWLF5nWbKYWTATgH+E/QNLhEUPI5ch5dK3AWL5NbQaP4eXUcKhUFyM04iObC6E5SHLAEoBcIpu8/cfvR87dtJC0+jj30fkrMiGSmb3s7Q2IoBm1fw5vIyaqigUF6IY2ON+7cCz3OrpuGYFSmCuYy7f2r+lqbEps4NnC4FwIgK6pFPUhb6Sci3imDqMEo5qJCYmhmuu8V4fv8aNG3vtWorzcCHS5fMQIiBvfLkaYgeK4DfHb0w6NQmAf0T/g3BzeNmer1JEAtznNabOOkRLo4SjmvDz82PhwoVeDYn29/dX9UZ9xTFEqwMj+hJsPkJASoBAcBY5ue/EfRRpRYwKHMXtAbfrqyhB7nNkeLmsuXEN9cJBoISjmjAYDISFhdX0MBSV4RzC2nCgL7vKMn/ueA3y4cX8F9lcspkmpibMjZyrJ6zZ0VPm5dKrBrSizkWIXgglHApFaWwIv0YJ4mYvQl9BkWUBg2H72e08nfs0AG82fJMIa4Q41oDe+1WKhhERHdqoGj+Hj1HCofDgcrl46aWX2LFjh9eu2a5dO9LT0zGZTJc+uKZxIeqHniz1Xi6j5iOmG3lQXFLMyJyR2LAxLngctxpvFceFIaySEPRgLyPCymhJ2f6wdRwlHAoPmqbx6aefVlgv5XK58cYbeeKJJ7x2PZ+Sg6joZUAvB1iAnj7vFocJByaww7aDNn5tmBMzRxyXj/BryGpgoE9LYql1TaOvFCUcCgUIv8VexI0vi+3YEGnwRQjrIQ8+sn/EK3mvYMbM0oilBBUGiUAuGeglfdUW97WiESsp9Yx64N9VKK6QEoRo2NyvixAxHOfQywEa4EjwEe49eS8AMxrMoFujbkJgiikb4yHT5gMRDtF6+O+5Hn4khaIKOBArKKfRrQUZryGtDxM4zjgYcXoEJ10nuTnwZp7wf0IIhhXhCA1FCI+s6CWretXTSphKOBRXLxoi4/U0eu3QIvdzHkIE3LEYz9qe5YviL2hsbMySFkswmo3COpHXcVslnojQRtT6pkpXgpqqKK5ONIQz9DB6DoosNiy7q7kjRtcdW8f0k9MxYmRpo6U0KmokhEZOSYLQRUOWB4yjXv9brscfTaG4CHmIKYodYTnITNcC9I5sTthv3s+oU6MAmBY1jb4N+pZtb2BHryMqw8pjEVOYeowSDkWNER4eTtu2bb12PYvFgtVaiTs2H1FfowBxo8uITxdi2TQfMIgq7IOODuK06zS/D/49E0Mn6kV5bAi/hqzHgfu5GfV6iiJRwqGoMVJSUujXr5/XrmcwGAgKukSPgRKEpSFXS2zoEZ8FCOvBAJpRY9zZcWy1baWVuRVLYpZgNBnFcRb0tHkrej5KGBBDnapWfrko4VDUGP7+/vj7V2N+uR0hGmcR1oWsqyFXQ+wIQdHg5WMvs/jMYgINgXzQ9AMitAh9lcXsPs+JXqk8CLH06sdVgRKOWoymaZc+qIpctdm0TvRwctkUugBxB8hG0e7eKJ+UfMITp0W066Imi+gU0kmIRrD7OBNlCw7L+qH1dOm1IpRw1FJsNhvTp09nz549lz64kvTo0YNHHnnk6hMPJ6KK1wnEaogBcbPLFrNBiGAvF/xc9DNDDw7FhYtJUZMYGjpUDzmXEaSl4zXMCNFoWJ0fqOZRwlFLcblcrF+/nu+++85r1ywpKfF01Ltq0BC1NY6hR4aWrjzurq2BP+TYcrj9yO3kufK4I/gOpkVP01s1ynT5QPez9GtEAk25KvwapVFxHIr6iwuRtHYQYS2Y0OMtzOhJaIVQZC9i4IGB7LXv5Trrdfyz2T8xWoy601Q2XXK5zzEhnKFxXDV+jdIoi0NRPzk/wEt2ipd+DZnNGgDOQid3H72bb4q/obm5OWti1hCkuVdnwhCiIyuUS4vDhEiVryeFeaqKEg5F/UND+DP2owdzgb4aYsbj19DMGuNzxrMybyWhxlD+0/w/NAlpInwaheg1NGSkqAshInFAeHV9oNqHEg5F/UJDrJwcQPgvZCUvKQLuIsMEAhaYnTObV0+/ir/Bnw9jPiTBP0GPBpWl/yzoOShm9DyUq8yvURrl41DUH0pbGrJ7vPRJyHBw2VmtABaeWcjEExMxYGBx08XcFHWTsERseOI5PB3mpZM0inpXzety8Kpw3HjjjRgMhgofAwYMACA7O/uCx5w5c8abw1FcTbgQPo396HVCpV+jECEk0skZDCvOrmDcYdHn9bWmrzEsaJg4zg8RSu4vjiMQITbyfQuuetEAL09V5s2bR15eXplt33zzDY899hipqalltk+cOLHctpCQelZfTVE9aMBx4BBCLGTzJFkwWGa+2oBzsLZkLSOOjMCFi2kNpvFgowd1h2kx+pRGrpZIS6UV9T55rbJ4VTg6dOhQbtvChQvx9/dn+PDhZba3atWKnj17evPHK65GXIgYjUPoN72s+VmMsKkLEVOQQPjk+CcMOTQEBw7SG6YzOWKyEIwI9MjPQITIBKI3Yop1X0MB+Ng5WlhYyIoVK0hJSSEysh60r1LULlwIwTiBvuQKQjAC0UPDXUAefO78nIGHBlKilfDn8D8zu/FsDAEGMYUpQe/xail1/QCEaERU02eqI/jUOfrBBx9w7tw57rnnnnL7Jk6ciNlsJiwsjNTUVH766SdfDkVR37AjAruOUza13YC44QsRvo5CwAKf2z8nJTuFYq2YsQ3GMrfJXAyFBjGdCURYFSEIqyMAfSWlGfWiZaO38anFsXjxYho2bMitt97q2WaxWBg7diz9+/cnOjqaX375hZkzZ3L99dfz3Xff0b59e18OSXERjEYjkyZN4oEHHvDaNaOjozEavfz/yQFkI0r+lSAsDNnSIAA969UAnIVP8j5h4IGBFGvF3B96P/OazsMYYBTnOdFL/0nfiAshJs0QOShX8bLrhfCZcBw5coTPPvuMv/zlL5jN+o9p0qQJCxYs8Lzv3bs3AwYMID4+nhkzZrBkyZIKr5eRkUFGRgYAOTk5vhr2VY3BYKBPnz41PYyLU4yI0chFz2iVwVmyOrms6hUMa51rGbJ/CCVaCWnRacxvNB9jgVGP0UAc58lZkY2UohHxGipgoUJ89rUsWbIEl8tV4TTlfJo3b84NN9zAli1bLnhMWloamZmZZGZmEh0d7c2hKuoKhYj2jKfQy/3luR+yWLBs7myHFUdWMCh7ECVaCQ+GPcj8JvMxBhvFlEROaaRvRDZSsiKCu5qjll0vgs+E45///CeJiYkkJiZW+pyrLt1bUXnOIsr95SFucNnCwOp+LnFvzwMM8FbJWww/NByH5iC9cTqvxb6GsdBdmdxfHEMoYqVExmv4IwK8VKzGJfGJcGRmZpKVlVUpawPgwIEDfPXVV/To0cMXw1HUZTSEL+M3RM0MmUNS6H5fiPgrlrEWDnhp/0vcf+B+XLh4NvJZZke7V09CEFMUaWnY0at6WRCWRktUIkYl8MlXtHjxYsxmMyNHjiy37/HHH8flcpGUlER0dDS7du1i1qxZHsecQuFBpsUfQ3dcyopbfu5HqemGFqIxMW8is4/PBmBui7k8HPWwnhFrQgiRLDIchB7oFYGYnijRqBRe/5rsdjvLli1jwIABNGxYvixSfHw88+fPZ9GiReTn5xMVFUXfvn155plnvFrxWlHHsQNH0JdbQbcuzrn3g6ctgb3YTtqvaSw6uwgzZt5u9DajwkfpMRlylUWWCXSgWxqRiFgNJRqVxutflZ+f30VXPUaPHs3o0aO9/WMV9YlixHJrrvu9LPcni/DI1RB33dD80HyGHh/Kx2c/JtAQyMo2K7k1+FYREWp2n+fOUcGMmLLI1ZMIhE9DiUaVUF+XovagIayJ/eiNnEEXjnx0v4QGWOFo/lFu33E7P5T8QANzA9Y2Xsv/Wf9P77Am+6UUovd5tblfR6JE4zJRX5midlC6Ylc+YkpS4H52oGeoylyUAtjpv5PfH/g9B2wHuMbvGj7u8DGt/VrrtTek4zPY/T4Y3dKIQvk0rgD1tSlqHju6E1RWIDegL4nKpVan+70VPj39KUN2DyHPlUfPoJ6sbriaaC1aX6INRC9KbEevrRGIEI0Y1JLrFaCEQ1GzlCD8GWcpW4Fchn7LBtB+iOlLHiywLeChAw/hxMmQkCEsbr+YAFeAHjbuRLy2IqwLK0I4TEBjRESoEo0rQglHLcXPz4/Zs2eTm5t76YMrSdOmTb12rStGQwRr7adsD1cnYqXDifB3OPGkyTssDh4/8DhzT88FYGKTiUwPno6xxKj7MgIpm3NiQE9kk6KhwsivGCUctRSTycSNN95Y08PwDU70uqDyvfRrFLm3yYhQdyGe3NO5DDs1jE/zPsUPPzKaZHBvy3uFSEgrQz6bEOIjLRUDwp8RhUpY8xJKOBTVix1hZeSiJ6PJwCwzekNnmbBmgJ+1n0k9nMpu226izdF80OYDerl6if0WhGURhB6GLjusyQbRLRFtDpRoeA0lHIrqQUNYFYfwtFv0rJiAHpgly/W5LY01R9Yw8vhIzrnOkWhJZFXzVbQMbSmOleHjMpir1Hme5dgWiLgNhVdRsz2F73EhqnT9il5D4yzCtyFjNKyIv0Z3cWGX3cXUE1NJPZrKOdc57oy8k80Jm2lpdouG7HFSuviODA6TRXliUaLhI5TFofAtJQgr4yT6vymZZ2JCz3bV8AR1nfE7wx9/+SNrC9ZiwMDM6Jk82ehJDH4GTz8UT68Um/s16NOThojlVhlhqvA6SjgUvkFGgWYjxEPWAy1y73MX2vEEdTmBPNhu287gPYPZU7KHCGMEy9os45aQW4RIyHgMB8KSMKInqsnryBgN9ZftU9TXq/A+TkSC2gmEAxP0Kl0m96MYMVWRqyFWWFy0mHGHxlGkFdE5sDPvNX6PVpZW+uqKO23eE9Ql/Rtm97VjEJW71ATc5yjhUHiXIkTY+En0ICtZYasYvQI5iOmKEYpzi3nk8CMszFkIwL1h9zKv7Tw9qMuOEBgXwhdiQYiIjNMIQIhGJGrlpJpQwqHwDi7EEut+9LT1PPTqXPKGl3EX7lJ/v7l+Y+jhofxY/CMWg4XXY19ntP9oDDaDvtQqa4LKFRgjer3RYEQDaClGimpBCYfiypEO0DPoYd+ycI4/wsqQAV4uPNOOdw++ywM5D3DOdY5r/K5hZfOVdG7YWV81KR3U5YcQElnER0P4M5qh19xQVBtKOBSXj4ZYVi3dGd6AHkJ+DmERyIAsgHwo0ooYf3Q8/zjxDwCGRg7ljbg3CC0IFdeQlb1CEFMfGTauoU9PGgFNUTknNYQSDsXl4UBktB5FFwzZtNmIsCrM6FMMDQiELGMWw38ezk+2n7AYLLzU8CX+1PBPYqlVNkKSiW6lO8w7EdMdP/QmScoJWmMo4VBUDRkBegBhbchIT2lVuJdVPc5LC2AC7ZTGwtyFPHr4UYpcRbTxa8PydsvpbO2sx2NIx2YI+tRElg30R/gxWqD3eFXUGEo4FJXHgVgtOeh+76RsXIa0NCwIEXD7O05bTzPm5BjeP/s+APdF38fciLkEG4P1hLQA9B4n0oeBe7sRsczaDBXUVUtQwqGoHOcQgpGLXhSndBq8XG4t1UWNINh4aCN/zPkjh+2HCTGGsKDRAka0HCFESLYocCKEJhA91kO+tiAiQRui/Bm1CCUciosjfRnH0StwGdEtggL0aYYsJmyDkrwSJp+dzItHX0RDIykoiaWtlxJXEqdntfohBKbQfW0nerMk2aIxDtHOQFGrUMKhqBgNIQr70RshGdyvjYibPxg958SOmLaYYQc7GLV3FD/afsSEickNJjM5ejLmAHPZgj0yhFzGYzjxtG+kAWLVJKC6PrCiKijhUJTHgaj/eQQhBib3sxQJP/f7QnTrwQKuIhcv73+ZiScmYtNstDK3Ysm1S0gKSRKCI2tvGNAtDdnDtXSflBigCWrVpBajhEOhI8v5yRUTf/SaGWaESEgBkTUvXMA5yA7I5t5D9/JF/hcAjIkew0sRLxFsChbXkJGj0tKQuSsW9z4zwrpohiq6UwdQwqEQ2BB+jMOltsmCO4Xo2acyTqNIPGt+Gm+ee5Pxe8aT78qnkbkRC6MXktIiRZ/u2BCCIQVE+jJkWT8zEI4o76eiQOsESjiudlwI6yIbEZ8BHlHw9Ff1Q196dSLiLILg8OnDjMkdw7q8dQAMCR/C/FbzaVDcQIhNIHqrgmL0XBPZ80T6L5ojfBpq1aTOoITjaqYQscR60v1eFvqV+SDS4pCdzwKBU6DlaywuXMyjBx/ljOsMEaYIXmv2Gnf53yUiQGXEaGkHqJWyEaAO9NJ+QaipSR1DCcfViKwyvh+9poUs21eC3i5RBnQ5EFZJOBz2P8zYfWP5qPAjAG4LvI2MVhk0DWoqLBZ5ruzRKq2X0vVEXYgVkyaltinqFEo4riakz+EAIpPVhl5UR+aTSN+D2+kp64FqxRpvHXqLx048Rp4zjzBjGK+0fIW7Q+7GUOQu6SdT242lrinricq4jdIOULVqUmdRwnG1YEcsrx5FWAVyOiHT3EEIiWzsHIpYMs2HbL9s0o6k8Wn+pwCkhKWwIHwBTcOblk1KkwFggei5JtIB6odwgDZDxWbUAyql+YcOHeLhhx8mKSmJwMBADAYD2dnZ5Y4rLi4mPT2dJk2aEBAQQFJSEl9++WW541wuF7NmzSI2Nhar1UpiYiLvvffeFX8YRQW4ENOS7cA+9CjPYoQlYEdYIbJrmvRDFIDT5GTu2bkk/JzAp/mfEmWKYmmTpaxqs4qmkU31cyyIaUkAet6KTIWXqzEtgVYo0agnVEo4du/ezbvvvktERAS9e/e+4HH3338/CxcuZNq0aaxdu5YmTZpwyy23sG3btjLHPf3000ydOpWHHnqIdevW0bNnT4YOHcp//vOfK/owilLIYsG7gCz0YKtihJhIsbAjrAGze5sdCIAdhTvo9XMv/nLiLxRoBQwLG0ZWfBYjgkdgsLurcwW5f5YstmNGWCpW97M/wsrogFg1UVOTeoNB0zTtUge5XC6MRvFbf+ONNxgzZgz79u0jNjbWc8yPP/5I586deeutt7jvvvsAcDgcxMfH07ZtW1avXg3AiRMnaN68ORMmTODZZ5/1nN+vXz9ycnLYvn37JQfdrVs3MjMzq/RBrypk9/fD6GnppYvsWNzHWBBJa7LmRSEUa8VMz53O7BOzceCgqV9T5jWax8CggUIMpO8jxP06FF18HOjp9NKXoZLT6jQXutcq9T9AisbFWL16NX5+fgwbNsyzzWw2M3z4cNavX09JifgLXr9+PTabjVGjRpU5f9SoUfz000/s27evMkNSVIQGnEJMS/YgbmgbepFgudwqa2oUoU8vimBj0UY67evEjBMzcOBgXPg4sq7JYmCTgXr2q+yQJgXCXuq6gQgrowHQHtHkWYlGvcRrxuPOnTuJi4sjMLBs1dj4+HhsNhu7d+/2HGexWGjdunW54wCysrK8NaSri3zgZ+BH9LyQQnRLQwZ05aPX8HQXDT7pOMl9R++j7/6+/Gb7jfb+7fmq9VfMbzafMGeYuL7MUJXh4rJbWiBihcQfMUVpClyLis2o53htVeX06dNERESU2x4ZGenZL5/Dw8MxGAwXPU5RSWyIQsGH0UO7QU97Bz27NRB9+VUDDY1FZxeRfiydU65TWAwWJkdP5q8Rf8Xf6C9ufidCgAIoGwUq63E4EKIRgqrOdRVRZ5ZjMzIyyMjIACAnJ6eGR1MLcCIaHu1Fj5mQN7Is6luI3gBJCoDb/7Dz7E4ePP4gXxaLVa++AX2Z33Q+bQLa6LkoToR4yPobTvQoUlm5y4DeCKnO/DUprhSvTVUiIiLIzc0tt11aENKiiIiI4MyZM5zvkz3/uPNJS0sjMzOTzMxMoqOjvTXsuoeGcGhuB3ai55e4EDe77GfiQM8JKcITr1FgK2DCwQl03t+ZL4u/JNoUzb+a/ovP4j6jjV8b3YKQDlR5nQDECkkAejm/EHRfhhKNqwqvCUd8fDz79u2jsLCwzPasrCz8/f09Po34+HhKSkrYs2dPueMAOnTo4K0h1T8KgV+ArQhrQ1oBMgM1HyEQoBfWcUeDavkaH+R+QPvD7ZmdOxsnTsaGjWVXy12MihiFQTPoLRZL+zCkSMjery73+2uANujtDxRXFV4TjpSUFOx2OytWrPBsczgcLF++nP79+2OxiHzpAQMG4Ofnx9KlS8ucv2TJEhISEoiLi/PWkOoPNkT26hbE1ER2QpM1PqVgGNBXUWQUZz7sLtnNbWduY/ChwRx0HKSLfxe+af4NC5ovIMI/Qm/kbEYIgawhKnuZyLgMP4TzMwHR10StmFy1VNrAXLlyJQDff/89AOvWrSM6Opro6GiSk5Pp0qULw4YN49FHH8VutxMXF8f8+fPZt29fGZFo2LAhjz32GLNmzSIkJISuXbuyfPlyNmzY4In1ULhxICyL3QgHp5x6yKVVmVAmjy1ArHBYgDwoCC5gVt4sXjj0AjZshBnCmN5wOn+K/BOmElPZIsEy+EtGe5pLPUvxaIZKf1cAlQwAA8qtgkiSk5PZtGkTAEVFRUyaNIl///vfnDlzhsTERGbPns2NN95Y5hyn08msWbNYuHAhx44do23btkyZMoUhQ4ZUatD1PgBM9mH9DRGXIS0C6fyUVbhk4FUeen9VF2gBGitPreTx3Mc56BS9DO4Ju4fno56nobNh2aCtIvTphryG2f2QVks0YsVEFdm56rjQvVZp4ahN1FvhkKX79iIS0mTvVLmvGPHf3oa4ic+hN3I2iH07CnfwyJlH2Fi8EYAuli68Fvka1/tfL6wRudKiIQTE4b5GEXpymhSOQPQq48qPcVVyoXtN+cJrC4WIJLRshECAsDxkvQzZ9V02LtIQN7N76TWXXJ45/Qzzzs3DiZNIYyQzwmYwJmwMphCTqKch+7KWrsilua8dhl4a0IQeLq4aICkqQAlHTVOCsDCyEU5OE/rKhoYeUyHL98kb3gLYwGFysLBgIU+feZpT2imMGPlzyJ+ZFjGNyMBIPYNVWhMyPsMfEaPhQrcynOi1P0Oq4bMr6ixKOGoKO6Js3y8Ia0D6L1wIwZBTk9K+jBLEDe8Srz/ncx499Cg7nDsAuNF6I6+Ev0KnoE76ykogevk+WT9UXtNB2TJ+LVFZrIpKoYSjunEiKnDtQtTJkDkkoDtBpaUhK3Q50HuSFMGvxl9JP5HOartYhYo1x/JC+Avc4X+HqPlpQG/YLJPS7OhTHz+E30K2OGiJKOOnnJ+KSqKEo7qQrRS3u58lMohLxmHIxkRyalIqqey0/TTTiqbxevHrOHAQbAjmqbCnGG8ajzXUqlsrdvQkM9laUYqJbLFoQkxHYt3PyspQVAElHL7GiVghyUR0R5MrIFIwpHVhR1/tAD3fxAY2k435Z+bzrO1ZcrVcDBgYHTia6f7TaRLRRG/ebEQIhnwvu8Bb0H/TsgZoC4TzU/0FKC4D9WfjK+SU5BvEaom0KGQLRBkaLqcOpWtluAO9NKPG+4XvM8Exgd0uUZagr7kvLwa9SOfgzuL8QvRuaEUIwZC5JvJ6UqjMiNUSFZOhuEKUcHgbJyL57CPEaom8kaU1YETvXWJECEcgenKZuwTfN8XfkE46m52bAWhrbMsL1he4PeR2DEaDcH6Gojdwls5PC7o1IwXEibAuWqJiMhReQQmHt3AhIj0/RoSIa+gd2IsRId1n0NsghqC3U7Th8WPscuxiUtEk3nOJ4s3RRDPVbypjwsbgZ/fz1AT1OD9l/xIzugPUihANDSFKsahQcYVXUcLhDZyIKclXiJu5EXpzoxL0uhUOxNQiFz22wr3vmPEYz9qeZaFhIU6XkwACeNz4OOlB6YQaQ8V1ZHE1WRPDWuq6ZoTFIetv+COmJTGoaYnC6yjhuFJciKzVH9ArbMl+JdKPIR2e0tpwIULLnXDWdJY5ljm8ZHmJQkMhRozcr93Ps9ZnaUYzvXKXbMUY7L6O9JPIQK7SDaEbI6wMVb5P4SOUcFwp+xBBXIHoUZkyFkPetOc/W6DYVMzr1teZFTmLU6ZTAAx0DmQWs2jv116IhLzxSzs8JX7orRbltCQcUScjArW8qvApSjiuBDuimriM+pQ+hopuWnf5PTt2FoUt4tmwZznsdxiA3rbe/K34b1wfeL2+yiKT1+SKicSM7sOQKzRBiGZHjVC/UUW1oP7MroTTiOhPGXgFZacGBv290+TkHfM7PNPgGfb4iepnicWJzDo8iwHWARgCDXqKuww5D0Dv4ypjMmSNDNDjMVpSVlwUCh+jhONKyHY/X8jCMIDL4OI963tMtU4lyyzKI7axt+HZM89yZ+6dGIuMQhiC0BPNLOjTEplvIptByw7yTYHWKD+GokZQwnG5yDaK8maXvUvccRoup4v3Te8zLWgaP5l+AqClsyVT8qZwd/7dmJ1mvbqWH7pPxIreqLl0A2eZwdoQaIfwZyg/hqKGUMJxuZReKZFTEhMeITljPMN9hvvIN+QT44phUtEkRheNxt/hX/Zbl1Gj0q8hl1NlrIYUjShEceAmKMFQ1DhKOC6X0haGAV0A3NsjjZFMc0zD4rBwv+1+LE6L2GdGL8xDqXPN6L1KZMFgAyLSswMiHkMV1VHUEpRwXC5GxE2di/gWbejC4I7hGO8YrwuMzBWROSmll2iDEaIQjJiaSL9GO8TyakD1fCSForIo4bgSWiJaL8q8EBn0JS0Rf4Sg+J13XunsWGlhyLBxC0IwElDtFBW1FiUcV0I4EAnkoFchlw5PEKLhj15jQya4yTqiDoTVYkVYFR2AREQAl1opUdRilHBcCSZEaPcp9HgLKNvw2U7ZgjoydFwKRxTCuuiJCBVXgqGoAyjhuFKaAG0RYeelw8xBX2mRtURt6Mu4BUB34DbElEetlCjqEEo4rhQjcC1CIHYiLAzZzV12d5c1Qx2IquNBwJ1AN1Squ6JOooTDG8gmzFGIpLej6B3jZQlAENbJ7YgO74HlL6NQ1BWUcHgLA8KpGYHIOTmJmI64K3oRgWo9oKg3KOHwBQGIpkYKRT1F/f9TKBRVRgmHQqGoMko4FApFlamUcBw6dIiHH36YpKQkAgMDMRgMZGdnlzkmMzOTtLQ02rVrR2BgIC1atGDkyJHs27ev3PViY2MxGAzlHh9++KE3PpNCofAxlXKO7t69m3fffZfrrruO3r1788knn5Q75p133mHnzp088sgjxMfHc/jwYZ577jm6devGtm3baN68rLfwlltuYerUqWW2tW3b9vI/iUKhqDYqJRx9+vTh+PHjALzxxhsVCseTTz5JdHR0mW29evUiLi6OhQsXMm3atDL7GjRoQM+ePS933AqFogap1FTFaLz0YeeLBkDLli2Jjo7m8OHDVR+ZQqGotfjUOfrzzz9z4sQJ2rdvX27fmjVrCAwMxGKx0LNnT+XfUCjqED4TDofDwbhx44iOjub+++8vsy8lJYVXX32V9evXs3TpUqxWK4MGDWLJkiW+Go5CofAiPoscfeihh/j666/56KOPiIiIKLPv1VdfLfN+0KBB9OzZk4kTJzJq1KgKr5eRkUFGRgYAOTk5vhm0QqGoFD6xOCZMmEBGRgZvvfUW/fv3v+TxJpOJoUOHcujQIY4ePVrhMWlpaWRmZpKZmVmhP0WhUFQfXrc4ZsyYwezZs3n11Vf54x//WOXzDQZVyUahqO141eKYO3cukydPZsaMGTz00EOVPs/hcLB8+XJatGhB48aNvTkkhULhAyptcaxcuRKA77//HoB169YRHR1NdHQ0ycnJvPPOOzz66KMMGDCAvn378u2333rODQ0NpUOHDgAsW7aMVatW8fvf/57mzZtz/PhxXn/9dX744QeWLVtWqbFkZ2d7lnoV3iMnJ0d9pz6gLn+v50eIe9AqCXpH0zKP5ORkTdM07Z577rnkMZqmad9884120003aQ0bNtTMZrMWFham9evXT/v4448rOxRN0zTtuuuuq9LxikujvlPfUB+/V4OmaVrFklK76datG5mZmTU9jHqF+k59Q338XlV2rEKhqDJ1VjjS0tJqegj1DvWd+ob6+L3W2amKQqGoOeqsxaFQKGqOOiMcBw8eZMiQIYSFhREaGsrgwYM5cOBATQ+rzrBp06YKiyeFh4eXOS43N5cHHniABg0aEBQUxM0338xPP/1UM4OuZVSmoBVAcXEx6enpNGnShICAAJKSkvjyyy/LHedyuZg1axaxsbFYrVYSExN57733quGTeIGaXdSpHAUFBVrr1q21+Ph47YMPPtA+/PBDLSEhQWvVqpWWn59f08OrE2zcuFEDtLlz52rffPON57FlyxbPMS6XS+vVq5fWrFkz7d///re2bt06rU+fPlpUVJR28ODBGhx97WDjxo1aw4YNtVtvvVXr37+/Bmj79u0rd9yIESO0sLAwLSMjQ/vss8+0QYMGaVarVdu6dWuZ45566inN399fe+GFF7QNGzZoaWlpmsFg0D766KPq+UBXQJ0QjpdfflkzGo3ab7/95tm2d+9ezWQyaS+++GINjqzuIIXj008/veAxH374oQZoGzZs8Gw7c+aMFhERoT388MPVMcxajdPp9LxeuHBhhcKxbds2DdDeeustzza73a61adNGS0lJ8Ww7fvy45u/vr02ZMqXM+X379tU6duzomw/gRerEVGX16tX07NmT1q1be7bFxcXRq1cvVq1aVYMjq1+sXr2apk2bctNNN3m2hYWFkZKSor5nKlfQavXq1fj5+TFs2DDPNrPZzPDhw1m/fj0lJSUArF+/HpvNVi4bfNSoUfz0008V1uqtTdQJ4di5cycJCQnltsfHx5OVlVUDI6q7jBw5EpPJRFRUFCNGjCjjJ7rY93zgwAHy8/Orc6h1kp07dxIXF0dgYNken/Hx8dhsNnbv3u05zmKxlPlnKI8Dav3fdZ3o5Hb69OlyNT0AIiMjyc3NrYER1T3CwsJ4/PHHSU5OJjQ0lK1btzJz5kySkpLYunUrDRs25PTp08TGxpY7NzIyEhCO0+Dg4Goeed3iYn+rcr98Dg8PL5cNfv5xtZU6IRyKK6dLly506dLF8z45OZk+ffrQo0cP5s6dy/Tp02twdIq6Rp2YqkRERFRoWVxI3RWVo2vXrrRp04YtW7YAF/+e5X7FxbnUdygtioiICM6cOYN2Xvzl+cfVVuqEcMTHx7Nz585y27Oysjzp+orLR5rLF/ueW7RooaYplSA+Pp59+/ZRWFhYZntWVhb+/v4en0Z8fDwlJSXs2bOn3HFArf+7rhPCkZqayrfffsvevXs927Kzs9m8eTOpqak1OLK6TWZmJrt27aJHjx6A+J4PHz7MF1984TkmLy+PNWvWqO+5kqSkpGC321mxYoVnmyxU1b9/fywWCwADBgzAz8+PpUuXljl/yZIlJCQkEBcXV63jrjI1vR5cGfLz87VrrrlGS0hI0D788ENt1apVWqdOnbS4uDjt3LlzNT28OsGIESO0SZMmae+99572+eefa3PmzNGioqK05s2bazk5OZqmiTiFpKQkLSYmRlu2bJn28ccfa8nJyVpERIR24MCBGv4EtYMVK1ZoK1as0MaNG6cB2rx587QVK1ZomzZt8hwzbNgwLTw8XFu4cKH22WefaXfccYdmsVi077//vsy1nnzySc1isWgvvviitnHjRm3cuHGawWDQ1qxZU90fq8rUCeHQNE3bv3+/NnjwYC0kJEQLDg7WBg4cWGHUnqJiZs6cqXXs2FELDQ3VzGazFhMTo40ZM0Y7cuRImeNOnTql3XfffVpERIQWEBCg9e3bV9u2bVsNjbr2QSWKVRUWFmrjx4/XGjVqpFksFq1Hjx7axo0by13L4XBozz33nNaiRQvN399f69ixo7ZixYrq+zBXgMqOVSgUVaZO+DgUCkXtQgmHQqGoMko4FApFlVHCoVAoqowSDoVCUWWUcCgUiiqjhEOhUFQZJRwKhaLKKOFQKBRV5v8BjD18V4v6/R0AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -156,7 +143,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQ4AAAEECAYAAADZKtrDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABFeklEQVR4nO2deXyU1fX/37NP9oQQEAmYILIlGEBAIoUIKlCQWKgr0KIo6NevWJdapVLkpyBubS1a9RusRYsiolXQFq0KaAURwqJAFBQJ+56E7Mlk5vn9cZ87d0KCJjiTScJ985pXhmebO8/M/cy555x7rsUwDAONRqNpBNZwN0Cj0bQ8tHBoNJpGo4VDo9E0Gi0cGo2m0Wjh0Gg0jUYLh0ajaTRhE459+/Zx9dVXExcXR2xsLOPHj2fv3r3hao5Go2kElnDkcZSXl5ORkYHL5WLOnDlYLBZmzpxJeXk5X331FVFRUU3dJI1G0wjs4XjRBQsW8P3337Njxw66du0KwIUXXsgFF1zA//3f/3HPPfeEo1kajaaBhMXiuOyyy6isrGTNmjW1tmdlZQHwySefNHWTNBpNIwiLj2P79u2kp6fX2Z6WlkZeXl4YWqTRaBpDWIYqBQUFJCQk1Nnepk0bCgsLf/T8tm3bkpKSEoKWaTSaQPLz8zl+/Hid7WERjjMhJyeHnJwcAKKiosjNzQ1zizSa1k///v3r3R6WoUpCQkK9lsXpLBGAadOmkZubS25uLklJSaFuokaj+QHCIhxpaWls3769zva8vDx69eoVhhZpNJrGEBbhyM7OZt26dXz//ff+bfn5+axZs4bs7OxwNEmj0TSCsAjH1KlTSUlJ4aqrrmLZsmUsX76cq666ik6dOnHrrbeGo0kajaYRhEU4oqKiWLlyJd26deNXv/oVEydOJDU1lZUrVxIdHR2OJmk0mkYQtqhK586deeutt8L18hqN5iegZ8dqNJpGo4VDo9E0Gi0cGo2m0Wjh0Gg0jUYLh0ajaTRaODQaTaPRwqHRaBqNFg6NRtNotHBoNJpGo4VDo9E0Gi0cGo2m0Wjh0Gg0jUYLh0ajaTRaODThxzAf9T3/sfNOfd7ki32cnbSYYsWaFooB+MxHDVANeIBK86/X3If53Irq/BbzIZ/7Av5vnLLNGrDNgvhmuwGH+ddpbpPna34SWjg0P4y0AHyoDl0TsL8mYF+gEFSZz6vMY6pQAmIgOjTmMXbzGC+iYwdaHYEd3UDZyEbAsaCEw2Ze2xtwvg0hHE4gAYgBXGgR+Qlo4ThbMQIesvN7ERaB7MSVKJHwoYTBYv6tQXRSD0oQrOY1rAHXlJaB3TzWjhCSCiAKKDXPiTWfW4AIoMT8a5jHRwNl5vlOoNg8R4pTjNnmMiASJVAV5iMSOGH+jQDama8vRUzTYLRwtHZk55W//tISqEB1eCkY8hfYG3CuHWVByF/pckRnsyI6L4hfdWl1SAuiHNFJK81jPebfcvNYN1BkXssJHEWIgwEcQ1gHxea1I8xtUihKzecnzHa5gOPmcVaUANUAceY1C83jTpptOY4Qm3PM19K9ocHoW9UaMFDi4EH9wkpfghQFS8BzadYbqF/jGvO5K+CaUlyc5rUqER2x/JTnVaghQrV5jhvRsaPN/5eax8tr2szXlK9lMV9fWi6l5vvzIqwIm7lf+kQqzL8ealtPVoS1Em+2+whKkLzmdQrM93zSfJ0I4Fwg0dyv+UG0cLQkZMeQHboc0aGk01FaAt6A46W5Lq2NSFTHxTxWDgtqEJ2tFCEK8eY1Zcf0IDq3tDLcCCshCtHZTiA6nhw6SP9Cpfl6Eea5VoQ4FZrnGuZ2+XqGub0I0eGltRRjtlNaKCfNc6SgxZj3w2q+z0ARkvdOWio21JDLap6/x3zNjub52gdyWrRwNEekM7IGZTWUIjqPFIxAq0GKSZS5z4voXDXm/iLzurHmcx+iwxWfcg0QnVF28iKUv+Gkec1IxK+1G2WxSJFwIjqu13xeguj41Wbb3eZzB8pnEvhe5V9pGQQ6XqsDzrGjLCzfKcdWovwbJxEWjrQwogPuixSRGJQoVZv3pBRIBtqiExZOgxaOcBM4JPAgvriVAQ/ZueQnVYUQCGmmV5vnRyJ8ABaEQJw090ehrAs57ncgrIPAX247SiwcCIugGiUO0uKQVofHvKbNbBMosXCjOjuoDi7FSXZcG0oQpGUioyRVKCeq3F8VcI6MxlSirIbqeq55ashXOk9jAt5btdnuwFDuEfP1OqLFox60cDQlUiSqUV/WMoQIyM4ghxYyMgHql7YCIQqFKKef9ANIK8Ri7pdhyQKU87AQ0akjzOvL15KvK30b0tKRry0FAETHkx1ORi9k53Whfv1l281O7DE87C3Zy67yXXxX/R3feL5hR9UOCr2FlPvKqaYaK1bsFjtW85/FYsFiBIwXAsOvgGExMAwDn18VwGqxEmeJI8meRCdHJy5xX8KQqCGcYztHtBdUxKcEZQF5zPdSbt4f+b6tQAe0eJyCFo5QESgSlQhLogzxxZR5DaDMdiu1hxZOREepNJ/LY6QlEYEQAjmel+dEIjqEEyUK8tcblKkfGFKV7Q2MrAQ+rwCfxcdJ30kKigs46TzJSe9JiouLKa0opbSqlJLKEkoKSyipKKHYV0whhRRWF3Lcd5zDnsMc9x7HCENa59M8DcBA10B+Ffsrrk+8nraVbVUeiLzPVShLKjBsfMT8277Jm96s0cIRLKRVUI6wAqS3XjoGpd8B1LjehujkMnxpR4iL/OUOjEKUAW1QURIpCh7El18OJeSvpNwnf6VrTnluUlNZw6HqQ+yt2cu+gn0crD7IQe9BDlYd5HDNYY7UHOFo9VEKvAW1ftkbiwULneydON95Puc7z6eHswfdXd1pZ2tHJJE4nU58VT5qrDX48GFYDHyGz29hGBhY7BZlHYmLCssECxafRVgfLh9FRUUcdR1lZ8VO/lv2X9ZUrWF91XrWH1vPb4//lsmRk7m74930MHooZ6zPvO+g/Cfl5mdyCDHk04sM+tHCcabIoUMxwl9wEhUClQ5HqJ0KLcfo0iyWUQUZBo2ldvhT5kzI65WgHI9lAdsrqW0pEPB6wEnfSb498S3fVX7HrppdfF/xPburdrPbs5t9Vfvw+sMwP0ysLZY21jbEO+KJtcUS440hNiKWGEsM0TXRxETFEOONIcaIISEmgYSqBBKdiZwTcQ5JVUnY3Xblb3CihkNy6CAjLDLHoxzlL5EOzFLzXFAOV3nPZBQnyjzWDrSFcl85y08s55WqV1hRtoKcshwW7FzA1MipzO04l7autkpUPShnM6hEuL1Ad3So1sRiGEaLmxbUv39/cnNzm+4FaxACUYBwQB5HfJmqUH4CG8rbL6MU0pKQnUT+lY5HO+rLKiMiDnN7CeLLL0OtMivShwo1WsxrVYDX6iXfyCfvZB47qncIH0LZDnZW7+RozdEffHvn2M+hs6szneydSHYmc27EuXQwOtDB1YF2Ee1o52lHYkQiDpdD3IdIs41FZrss5vMEVLQiwXwPmO+twDwWVEi03Hw/MQHXkh013jxHJm+Vm9uKUBGdk+bryG2BWa4O8zOTIVzTittRsYM/lv+Rv5/8OzXUkGBL4B9J/2BMzBj1ecWaf93me4sxr3kBZ92Q5XR9TVscP0Qx8B2QBxxE/MpLi8KN+FK7EHdRikaEeYwbZWFIcZDWQWBkwIX65ZThRPnFDYwmRAMW8FX72GPdw9airWyr2MZ273a2l21nR9UOKo3Ket9GhDWCrs6udHV15fzI8+li60IXVxdSo1PpTGfcNrdyEMpf7cA8jMAhlnQcyvCvjGjI55jvSXZe6ZuRmabSySjvmcxOtQbcK2ltybCqxbw/XlRnxmyLjII4Au6zfC9y6CFfowq6u7uT48zh7qi7ubPoTj4q/4jsw9n8mT9zZ9s7VVvke5fZpwbC6ogPuO5ZjBaO+qgCtgM7URGKeETnCIyI7Ed8iWIQX3L5hZOdSYZO5ZyKIsSXXWY/yvRrmZUZmNNgg9KKUrYaW9lycgtfFX3FlxVfsq18GyWG/CmvTUdnR3q5etHD2YMeMT3obu9Od2d3zo0+F6vXqmaRSqtI5kg4UaFMu9k+2UFl6NJntlXmPXjM5/K9yHkkFvO59A9IB69M5JK/6NL5KMOosQH3Td4jmdBlN88vMo+Tn0GMeW/lcE++ngzjSlGWQiL9TF7o6ezJf5L+w8OFDzO7eDa/Ofwbuli6cGXslWq4IkUj2rxWJeIHJLXe239WoYXjVCqBjQhvuhWVwCQtBIk010sC9kejfulKUROs5HVlpMWBCvuViGudqD7BpvJNbPJsYvPhzWyu2My31d/WG4lob29P78jepFvSSU9MJ82VRk9fT+Li4pQPIfDXXJrwblTqthth6keY7ZGOWJt5jLQQygKuJfNJAv01MpdCDtdkqrncL5PH7OZ9kUlhMnwcZe6PNM+Rlod0/krR8iKcw9LHI4cm0QGvK62+GpSY2MxryrT6Svzfeoth4aHEh4hwRXD/sfu55cgtbI3dSpI1SYmFFSXsLuAwkMRZ7ygNqnC8+eabLF68mNzcXI4ePUrnzp0ZP348v//974mJEQPc/Px8UlPrl+zCwkLi4+OD2aTGUQ18hfBhgPKuB04tl4EFmasgf4mOU3sKtzT77aecXwMFFLCxYiO51bnkluaysXoje2r21GmOHTtpEWlkODPIcGWQkZhBb09v2kW3Ex2nGDWpS3YYmekpHabSnyLDszIrNHB4IDu1TM+WQwRQlgIIYZFmeyLKT5OA6JjyuuWoDl2K6PA1ZpsSUfNhpGUQjxquyWGSDEGDEi5p0cmhitXcV42aawO1fUzSqpORKsznUhAd8Fv3b1nhWsHqqtX8/ujvWZC0oPYEPnl/5XyX/UA3zurcjqAKx1NPPUXnzp159NFHSU5OZvPmzcyePZtVq1axdu1arFZ1p2fMmEF2dnat86W4hI0jCIecE/FlA2UlBAqG3C7H3zKnohLl5TedoRXeCjZXbBbhwPL1rK9Zz66aXXVeOtISSR9XH/pF9KOvuy99Y/rSy9sLV7xLDRPkhDL52jIMK0OJVQHbZV6CHP+D8huA6ghyYpl0QpahnJwlqI5+qoNWCo38RZdCIOeZyKn0CaghiHwuBUIO5UAMQaSVYUdFn6TfQ/pM5JBK7pdDGynUgbN+QYmHtKKkn0mKZZlIGnuh4wv0/r43fyv8G7dG3kp/e39l0QSGzuVnLR2zZylBFY53332XpKQk//+zsrJo06YNkydPZvXq1QwfPty/r0uXLgwaNCiYL//T8CLGr3LC06lzJeSvOdQtU2ea8EapwS7LLtY51rGuZh3rqtbxpfdLampVvgG3xU1fZ1/6u/vTP6o/F/kuokfbHthqbOo15CQvUMMDOVSQyVqRqCiEjG7IaIsMY0pHrbQEIhHCIiMWcmiC+d6lr8FA1KuoQPl4ZGQoMKQs74+0UmRoVTpCZTp8oHUjhxpSQKT4SCE2Tnku74m8LvXsl0IFKu/lOCJULsO6MplOCqrMoYmE7tXduSvqLp4se5I7C+9kTcwaLE6LKgcgBU4O/Q6gQr5nIUF924GiIRkwYAAABw4cCOZLBZ9ChGkqY/iBX15O+WvmDFRQQa4llzXWNayNXcvnts85bj2uskIRCUq9bb0Z6B7IxY6LGeAcQFpEGg6HQ3whA8OSsgNJ/4AcWoDytQTOKZEdUfoAbIhhQbn5PA4VqpQT1GRWZHtU0Z44ahfiCfQXyEI3cogjf7XlnBfpcA18Lr9VtoDn1oDzQj3rNAJxXzsg7uVh4FtU7ou81xGonBgPzDx3Jq/sfoXPyz/ntaLXmJgwUc3mlSIo/TLFiO9M3a/8WUHI9fKTTz4BoGfPnrW2z5gxg9tuu42oqCiysrKYO3cuvXv3DnVzTk8h6pdIzuMI9EsaUGAUsKZmDZ/6PuUz4zM2WjbicXhqXSbJl0SmNZNBjkFkWjPpH9OfaFu0crLJa0qzW5r90jKQ/hGZryF/8WRehOx8gU7DRFSnsKOmuVcgLAU5LIgwX1uO9+XrScEKrM0p/xKwX/oYIPSdP1i4gPMQIrIeFQmTRqAU3CiI9cUyL2EeU45N4XfHf8cvEn5BlC1K5ZfIBDX5kR9ECNRZGJ4NqXAcOHCAWbNmcfnll9O/f38AXC4Xt956KyNGjCApKYlvvvmGRx99lEsuuYT169fXEZgmIzBVW/7ySixwRdkVfFzzca0oh8Vi4ULfhQxmMJdUX0JmZSZdLF2wJFjUl0mKkfy1kmY+iI5chfjFl53SQFgNMgFMZipWm8cHRibkr7fcJ8OqMiIi22BDRQkcAdeRVkBTWQLhxAkMQLznIoTQRiPEVX7uPpicMJnnSp8jtyKXx489zsMpD6sCy/JzlE7SKkRCYHJTv5nwE7LM0dLSUi699FIOHjzI+vXrSU4+/d3dt28faWlpZGdns2jRonqPycnJIScnB4Bjx46xZ0/dKMRPIg8xJ0HOUahG5ShUwdUFV/Oe5z0GWgcyxDqEITVDyLRmElcVJ873onIKolDFYmSUQiKf+xCCIeemSCdmGSp6Ib/QslaEHDLIZDEZ2pXDBukojEQJhJPaw4SznWOIHB2ZKyfvv6x7YoM1FWv4Wf7PcFvc7EjdQWdrZ/F5goqaGagEwK4oH0gr43SZoyERjoqKCkaPHs2XX37JJ5980qAhyOjRo9m1axc7duz40WNDknL+LcKMlUVnZC0M8wt1yHeIhKoE3LjVUEb6MqRP4gSik8cjhCAeZb3IL5aBqpspRUWKhBw/V6E6vBzSSAepGzWsiDKP0wLRcLzADkQEzUBZHMXUmlF8w64beL3kdW6IvYHXur+mZi/LKIvMoHUgnMjn0Srv++n6WtAj0R6Ph6uvvprc3Fz+/e9/N8pvYbGE8c63oXbHC0w9dkAHWwfcFnftyWvSvLdRO4wYiSqgE4X6kkWikqNkpW2Zxh2J+FLWoJyYbvP5uUAXoAfQE+iFmDfREZWMpNcNaRg2RCeXwzY5Yc6FCmOXwmPtH8NtcbO4eDGfl3yuHOcliOey6LMsilTOWUVQfRw+n4+JEyeycuVK3nvvvQaHW/fu3ctnn33GL37xi2A2p3HEoUr1S+ehHP/LcKz0IcgvmEz+klaBC9GRZZ2HUxOuZEJWYLKVfA05tIhGDXdcAftbKYZhcODAAYqLi3/84AbicrlITU2tlTdUi0hEZfN9iHteTu25NnFwnv087i27l7mH5nLP7ntY220tFpdFCTuoeUcOxDA3lVb9WQUSVOH43//9X5YuXcqDDz5IVFQU69at8+9LTk4mOTmZe++9F5/PR2ZmJklJSezYsYN58+ZhtVp58MEHg9mcxmFHfJl2mv+XHVaGO6UIBM54lWIh09FltmQUKndC/rIFJj45EEMa6Qs5S0TidMyaNYs333wzaNfr3bs3H374IZGRkfUfYEFYa0WoYWdg6ryZD3O/+35etL/Iuqp1LK1cyrXOa1VZRTlXR35ehYghSyxnBUEVjhUrVgAwd+5c5s6dW2vfQw89xOzZs0lLS+P5559n4cKFlJaWkpiYyPDhw3nooYfo3r17MJvTeNojnGcFKMGQogG1Q3FyFqassCWtDVkQ12ZuizAfCYgvlZwQJ49pIVRXV7Ns2TIKCwuDds3u3bszdOhQKioqKCmpf+LemVBWVsaPuu5ciBDtbsTnIUPWMnICxLSN4WEe5tbdt/LAnge4qsdVuHCpgs6BUTCoXfG9lRNU4cjPz//RY6ZMmcKUKVOC+bLBw4HwI+QhxEN+9wInjcmkMBnxkMd1QFWJSkJ8mZJQ1kcLd1pWVFQwa9Ysvvnmm6Bdc8qUKQwdOjRo12s0SYjPT/ospDUondPAlLgp/MX1F/Kq8ni+4HnuOvcu8XnHBBwr0/Bl2cfEJn0XYeEsnqZzGiKAdIQpKy0NmRglhx0WhGl61Dz+YmAYMNp8DDGv0R4hJNpp2TyxI3IwpO9JOrQDsnjtFjuPdXoMgDmH51BUVaR8VtWI74YMp3sRFuuZV1hsMWjhqA8XInIxGOiNCKvKMKj0YVwC3AJMB8YihKIdqriMpmUQg1g/RVqSPsSQUkbC7HBl/JUMjR7KiZoTPHn0SSEYJxERlkqE1RJYqKmg6d9GU3OWTtFpIJGIMOh5qOnkMlR7FoxjzwqsiHB3EWqekA81I9gBFruFxzs/TmZeJk8feZrp7aeL5RbkJDeZVSoTAI+hcnlaKdriaAjS0SnNUi0arYsIhF9CWg2xiM+6jfncCoPcg7gq/irKfeXMOTBHOUHlD4rMCZE1SEqb/m00JVo4NBoLwrktE/Hk2rdeREp6qThmbse5WLCQczyH/OJ8MVwpMo87ibA4ZA7PEVQErhWihUOjAWFhSF+HHWV1gL/ebFpiGhMTJ+IxPDyy7xEhEvEov5asPl+CWs6zlaKFQ6ORJKJqmVpQ9WNldK0MHmr/EDZsvHziZXZad9bO95FDFbm4dgG169S2IrRwaDQSmRTmRKWgG4hISZH4f9f4rtx4zo148TJnzxy1IJecHV2Amr9Ugari1srQwqHRBBKPGHLIOUkJCEGJQzhL3fDguQ9ix86rR19lZ+lOdY5cTEsOU6woUWllaOHQaAKxIzJKZRZpJWISnMwULoFUTyo3Jt6IDx9zCueooYysw+pEVWk/iarp2orQwqHRnIr0dchaJ7LMgSz1GAe/v+D32Cw2XjvyGrsKd4khSjVCZApRhZfsiLyOVmZ1aOFoYRiGEfLHWY8NVR5BVgiTjs848TzVncqvEn+FFy+P73lclUSQ1ocVYW1UmY/gzeFrFrTi3LbWh2EYPPHEE3zxxRchub7VamXmzJn06dMnJNdvUcShoiIWVL6GXEqyDGa0ncHLx19mYeFC/mD5A53opGZNy+iMdJIWm9dsJdMRtHC0MNatW8c777wTkmtbrVamTp0akmu3OKSvoxBVxS3Az0E0dGvTjWsLrmXJ0SX8ec+f+VPHP4lz5epxPsSwx4cQnrbUrj/bgtFDFY3mdMSgFrmWFeHkolQuwAL3d7wfgJxDORRUFajFuuWaNaWohcVlndNWgBYOjeZ02BBWglxeQk5+kwWdSqFvTV9Gxo2kzFfGs8XPqhIKFmova1mBf+Gn1oAWDo3mh4hHLYfgNP8vi/jYgUS4v4uwOp7d/ywVFRXCwnCgFtqWVeAqEUOfVoAWDo3mhzDFwT/rFfxr7chFrS6Nu5R+Uf045jnGon2L1Op7ct5KBUJMXAhfRxUtHu0c1TQIi8WC2+0mIiLixw9uIE6n88cPag7EIRawjkL0mOOoyvc+sJRb+G3b3zKhbAJ/LPgjN19wM1aLVRU0jkAt7mVBiUgLRguHpkFERUXx6quvUllZ+eMHN5DExBZSnNOJsDr2opaxkJPbSoFouDruau4/fD87ynfw/on3GR09WhwjSwpKP0kZIswrl/1soWjh0DQIm81Gr169gn5dwzBITU2lX79+Qbtmt27dTr+mypkSj8gAlbU6ZJlAsyKcAwfTO07nd9//jqd3P83o7qPFMWXm8Q7UfJYqRF5HfHCb2JRo4dCEFYvFwuzZs5k5c2bQrmm1WnG5gjwWcCCiJIWI4UcVKszqAWrglshbmG2dzYclH7Ldup00R5oKv0prowaRH1JCi04I08KhCTtOp7P5+zssiGLUshCxHTFz1obI2SiDhMQEJneYzPMHnueZ/c/wQrcXai/UJRcar0Bsl5ZIC6QFj7I0mibGifJNmOUE/TkaZi3aO5LvAGDR4UWcLDqp/CCBs2RlbsfxJm19UNHCodE0FFkqUCZ3ORG+Ch/CeqiGXkYvhscMp8xXxsslL9deQ9iGGN6cDDi3hc6a1cKh0TQGWYtULg0ajRATORyxw/+e978APHfoOQwMNfFNzp4NzPMIXpCqSdHCodE0BiuiEpgTMQTxmdtkrQ43ZLfNpqOrIzvKd/DJkU9U/oYsCuQyH15EhbAWOH9FC4dG01iiUKvWRyMsB5lV6gG7x87NiTcD8MKRF9T6K1UIP0clYpjiQAhJC7Q6tHBoNI3FhRieeFCVwuIRguICDLil4y1YsfLPgn9y1HdULeKVYJ5ThZpBW9G0zQ8GWjg0mjMhHpVKLssEyuGIAzrFdGJM2zF4DA+v7H9FzW2RkRg7QmiqUUWCWhBBFY7Vq1djsVjqPOLj42sdV1hYyC233ELbtm2Jiori8ssvZ+vWrcFsikYTWpwoa8OFsD6KUP6KGri5rRiu/O3w34STtAoxpDmBEBgvQnDklPsWREgSwObPn8+AAQPUi9jVyxiGwdixY8nPz+eZZ54hISGBefPmMWzYMLZs2UJycnIomqTRBBcLIgN0FyKVXCZ0yUSvahgdM5pzHOfwTeU3rK1cy+D4weIYWQC5BFUlrAQRsWkhhEQ4evbsyaBBg+rdt3z5ctasWcPKlSsZNmwYAJmZmaSmpvLEE08wf/78UDSp1dCtWzcuvvjikFzbarXWsQ41P0A0yjlajrBAZNlAAxzRDiZ3mMzjex/n74f+zuCowWqIYkGIRpR5vgUhKi0kl7vJm7l8+XLOPfdcv2gAxMXFMXbsWJYtW6aF40d45JFH8Pl8Ibu+w9FCc6DDgQ3R8WVlMLlIdUAq+Y3tb+TxvY/zxpE3+EunvxBFlFpT1ooQHitqGBPflG/gzAmJcEycOJHjx48THx/PyJEjeeyxx+jcuTMA27dvJz09vc45aWlpvPLKK5SWlhIdHR2KZrV4LBZL85/TcQp79+5lyZIlIRO7888/n1/+8pdYLGGaLRaPmL8i116pRE25N6CHtQeDogexrnQdbxe/zaQOk8R5VQgLRS6bkIiYQBfflI0/c4IqHHFxcdx7771kZWURGxvL5s2befTRR8nMzGTz5s20a9eOgoICUlJS6pzbpk0bQDhO6xOOnJwccnJyADh27Fgwmx10DMMIqVUAYlgRts7SCHbt2sWMGTPwekMTNhg9ejTjx48P372IQMyWlUspyDVYvAgLwgWTO05m3Y51vHzkZSEcHoSlYYZuqUJYLHL5yBZg9AVVOPr27Uvfvn39/8/KymLo0KEMHDiQ+fPnM2fOnDO+9rRp05g2bRoA/fv3/8ltDSUlJSX85je/4dChQyG5fps2bZg/fz5t27YNyfU1jcCKcGrKOSgWhBDIWh02uK7ddfxm52/4uPBjDhYf5Nzoc4VgyOrpsah5LKWIXI9mTsh9HP369aNbt25s2LABgISEBAoL61ZsLSgo8O9v6Xg8Hj799FO+//77kFy/Q4cOVFW1gsKVrYVIhEjI0oInqBVhSfAmMCZ+DG8Xvs3iE4u5N/JeIS5e1JwXp3mdFlIdrMmaJ03JtLQ0tm/fXmd/Xl4enTt31v4NTcvDhbAa5CpvDsR8FnO5SCz4fRuLji9SyWJy3osF4evwIqyQFrCEQsgtjtzcXHbs2MHVV18NQHZ2Nn//+9/55JNPyMrKAqC4uJh3332XCRMmhLo5rZJNmzaxc+fOoF0vKiqKK664ArfbHbRrtmrkNHtZcyMwscvMGB3TbgxxO+PYUrqFbwq/oUdUD+HnkOfLUG4ZLaKYcVCFY+LEif76kfHx8WzevJl58+bRsWNH7rzzTkAIR2ZmJpMmTeLJJ5/0J4AZhsHvfve7YDbnrOHll18Oahg7JSWF9evXa+FoDG7E0ERmlEoRcQAecOFifMJ4/n7s7yw+upj/l/r/1MS4GtQSDDZEdKWZD1eC2rT09HSWL1/OTTfdxMiRI3n66acZP348X3zxhd+RZ7Vaee+997jiiiu4/fbbGTduHDabjVWrVtGpU6dgNkdzhugV688AB6KzyyQuJ8LJKSe+eeGGpBsAWFywGMNh+IcxRJjnHUctM1nd1G+gcQTV4pgxYwYzZsz40ePatGnDSy+9xEsvvRTMl9dowkssovNXIoYoUajV3BwwrN0w2n3bjm8rvuXL4i/pE9lHiEcEatlIH6puRzM2+JqxMaTRtDCcqFKBkaglH62ABezYGZ84HoClB5cKX4gH4RiVk9zkvJcihIg0U7RwaDTBwo6wOioRjk8nKkQLUAXXxF8DwBtFb4jhiqzTUY6wTk6iKqc344i7Fg6NJpjEIwSjAmFNRKKGIjYY2n4oSY4kvqv4ji/LvxSJYD6EPyTCPMdcp0ULh0ZztuBC+CZkQeNqRPSkBnCC3WZnXNI4AN4++Lbf/1FrWr4c5sgK6s0QLRwaTTCxIIYp5YjkLikKICyJShgXJYTjn4X/FPtl+cBCsR8fqhhyM00G08Kh0QQbmQ1agxCNeESo1iwdOLzdcGJtsWwr38a3nm+VD0QW+DmJqkPaTAsZa+HQaIKNdIpaUSUCZYjWCU6XkyvbXgnAssPLxD4rKnvUjhCZSoTV0QzTarRwaDTBxoqwHDyoma6y7oa54ttVsVcBsPz4cpW/UYKwNkyBwYrwczTD4YoWDo0mFLRBWBoysSsRVYPDC6PiRuGwOFhTuobjluPC1+FAWBd2hIDI7NFmmEWqhUOjCQUuhNUhywpaEaJQKfbFxsYyLGEYPnz868S/VBg2BjXvBYRoNMMK6Fo4NJpQIOuRyrqiVdTKIsWAsQljAfjXwX/5Cxz7s0irzfO8NMvFqVtITWVNS8Vut5OQkEBNTU1Irt+s67fEA0dQAiAnwdUAZTDGNYbpTOeD0g+ojqnGaTXryVYghi1liB5q+kWIaOo3cHq0cGhCykUXXcTatWtDNuM2Kiqq+dZejURYHXK5xwjUAtVRkBqXSq89vcgry+Ozos8YnjC8drZpwAQ5KtHCoTl7iIyM5IILLgh3M8KDHeGvMBBDF7limwu/k2B0m9HkleXx/sH3Gc5wIQ4+hGj4UMOcEoQF00w0Uvs4NJpQIgsZx6MK/ci8jmL4uePnAKwoWaGSxHzUriZmQ63X0kzQwqHRhJIYVBlBAyEk0mnqhsGdBhNli2JbxTb2e/arHulAiE1lwLnNKCyrhSNE2O12HA5HSB6Ba/FqmjmyerkDFZotwV8lzGVzMTx+OAAfHvpQ1OEoN88zUPVIm9nC1PobGAJiY2P5xz/+QWVlaCYaOJ1OvaZKS8GCWmA6ATiGEARZ0bwaRrpG8i7v8p+T/+GmDjeJoYlcpAmgnfm3GFWbNMxo4QgBDoeDgQMHhrsZmuZCHHAUf8VzolHzUOwwosMIOAgflnyIz+XDarEKcZEr25eiZtHKqfdhRg9VNJpQ40aVBJR1NyrU9q6xXTnPdR4nPCfYcnyLEIpSVClCG8JyqaTZ+Dm0xdEKuPjii5kyZUrQrpeYmKiXRggmdoTFYENYG0dQKegesHgsXBZ1GS9VvcTHxz+mX3I/IRhV5sMGJCGEowjhcA0zWjhaARMmTNCLWTVnLIjOXohavEnOfC0X2y5LuIyXCl7i46qPuS/mPnVuFaKXliDEpBLlNA0jeqii0TQF0YjhShmi08uZs/HicVmHywD4tOhTqsuqhaAUI3wiEajapDILNcxo4dBomgKH+TfK/CtXtgfwQPuq9vRy96LCV8H64+uVpeFB1eSIQPhGypuw3adBC4dG0xTYUfNP5KpvToQoFAEeGBYzDIBVNauEJSLzP2TGaClqfdkwo4VDo2kKLAixcKDCqwZCTNoCCWKlN4DVhauFOJQhLBMHYqhTY15HTsEPI1o4NJqmQs5ujUatSi8FpBKG2oYC8Hnp51RXVquIihchID6E5dIMyglq4dBomgoHqpSgCxFdqQYKgDJIsifR092TCl8FuUauGK7IFeFkxXRZ2Liinus3IVo4NJqmQi4RaeZv+BO7YhEiEQVZ8VkAfFrwqQjBliB8IA7U8pIGYXeQBlU4Lr30UiwWS72PUaNGAZCfn3/aY4qKioLZHI2m+SGjKi5UZEVOta+AIe4hAKwpW6PCttJBKteVlTkgYVzlLagJYM899xzFxcW1tn3++efcc889ZGdn19o+Y8aMOttiYppBSpxGE0oi8S8HSQRqZXoP4IDB0YMBWFOyBh8+rJFW0UvlGi1yQWrp+wjTmCGowtGrV6862xYsWIDT6eT666+vtb1Lly4MGjQomC+v0TR/XAiroxghHrKkYBTgg872ziQ7ktnv2U9eWR7pvnRxXmAtD1lFrBqVH9LEhFSvysvLWbp0KWPHjqVNmzahfCmNpmUgq4BJ0ZCT2QCqwFJjYXCMsDo+r/xczYSVw5kTqFXtS5uw3acQUuF4++23KSkpYfLkyXX2zZgxA7vdTlxcHNnZ2WzdujWUTdFomgeyPodceCkGYUEU4a9NeknUJQCsLVyrrAqnebys1eEjrMIR0klur7zyCu3atePnP/+5f5vL5eLWW29lxIgRJCUl8c033/Doo49yySWXsH79enr27BnKJmk04ScGMUPW9Gv4hcFclCnTkQnA2oq1arX7UtQC1nb8zlR/TdImxmKEqG79wYMH6dSpE7/5zW/405/+9IPH7tu3j7S0NLKzs1m0aFG9x+Tk5JCTkwPAsWPH2LNnT9DbrNE0CVXA1wihKEANVUoBC1Rbq4nLjaPSqOREvxO0sbRRWaZyeYX25t8LCemyCf379yc3N7fO9pANVRYtWoTP56t3mHIqnTp14mc/+xkbNmw47THTpk0jNzeX3NxckpKSgtlUjaZpsZsPC8LZaVBrqOL0Ounn7gfA+sPrhWURuGSCCzG8MRAiFAZCJhwvv/wyGRkZZGRkNPicZruwjkYTTGyI4Uo1ovMbiCGIE38q+qBIEXFcZ1knoiluhHAUU3ueSu3shyYjJMKRm5tLXl5eg6wNgL179/LZZ5/pOp2as4coVCjVi7AkPOb2eBgYJ/rChuINYggjV6+PR82QleUEw5AIFhLn6CuvvILdbmfixIl19t177734fD4yMzNJSkpix44dzJs3D6vVyoMPPhiK5mg0zQ+5wpsV4aMoQPkvPDDQEMKxvnw9RrWBxW0RvVUOUeLNY8sJSyJY0IXD4/GwePFiRo0aRbt27ersT0tL4/nnn2fhwoWUlpaSmJjI8OHDeeihh+jevXuwm6PRNE9c5kPWFY3Hv7obFkiJSqGtrS3HvcfZY99Dii1FWBg+hKUiw7Ty/CZOBAu6cDgcDo4dO3ba/VOmTAlqYV2NpkViQwiHrCNajhCDaMAHlioL/d39eb/sfXJP5pISnSIsCyk4cnhSbZ4f3bTN17NjNZpwYEUkglUihi0gLIpihD/DA/0j+gOQW56rIjCRCLGQQxYfYgZtE6OFQ6MJF9JB6kGtnyKLE1vgIttFAGyq2iSEoxohLBWIqEwFYXOQauHQaMKFC2E1OBAWRDWiR5rVvfrFi1yOTVWbMLyGqvoVgRjayLyOYsQwpgnRwqHRhAvpr6hBDEFkYpe5rmynsk4kWhM54T3B/tL9qnpYBco5Wm2e38SJYFo4NJpwYUOlkVchBCAWIQ5WsERa6OPqA8BmY7NaT7Y64BwQQhKa9c1PixYOjSZcWBGOUTnZTRb1kXigr6MvAFvKtwhxqEQIS415nkwea+KZslo4NJpwEoPohXK9lQiEJWGGZzMQUza+rPxSHC8rf8nV3DwoP0cTLpmghUOjCSduhAVhRww5POY2M8rSJ6IPAF/WfKmKHMtsUTm1HkRItgkdpFo4NJpw4kZZEQ5UXkYV4IHu3u44cLDLu4vSklKxXa50Lyudy/Vka+pcPWRo4dBowonM3ZBFiOWaK+ZwxOFx0NMqiltt820TglGNEBdpgXgRQ5UmdJBq4dBowokNlQ0qK5nLrFDz0dvSG4BtFdugEPGQztEyhMVh0KQZpCEtHajRaBqAXGvFgyrwU4oQkWpIr0kHF2wt3SoERq7sVoFYj7YMITqFQKemabIWDo0m3EQhhhsWhAhUIKyIUvE3zZ4GLshz5alQrFyMuhIxs9aGWl+2CcYRWjg0mnATiRIEAyEeRxG90w1ptjQAtlu2qyrpsmBxFXAcISJyCOMk5Ggfh0YTbpyonliAsBziEVmkTjjPdh4RRgSHLIcoiihS0Rcb0Abx/+MIsWkiB6kWDo0m3NhR81TKUWnoAA6wOWx0t4giV9/4vlGhW1mHNM58fpAmyyDVwqHRhBsbtcsCRiCGI7KqlwE9ESHZr+1fq+n4NQjBsCKsExDi0QRoH4dG0xyIRYRTo1E1Oqz4/RXdPd2hGnYYO4Rg2FErwjlQhYEONU1ztXBoNM0BuZZsG2pnkdaI/3f3iaHKTstOIRCB81usiJ6cgFhbtglWd9PCodE0B6IQww65PqwPVZjYDd1qusFJ2OnbqeakuFDzXGzUXm5BC4dGcxYQiZgpK1el9yF6p0/8v6ulKwC7fLvwRfiw2qziOBmRkWvQynksIUYLh0bTHIhC+DlsqJCFB78PI9YSy28jf0sHawdqjBqcFqdaM1ZaHDbzOjoBTKM5S4gE2iF8FDKl3GXuMwsRP9n2SX91ML9V4UJZHBYgkSbp1Tocq9E0B2xAd9RsWfmwI3qpfMi6o7Iauoy8OMxjO5v7Q4y2ODSa5kJHRGREhlt9Ac8lloC/0sqwI8TDhYjKNAFaODSa5kIkcAGwy/y/FyUgoNaaxfxrC3hYgFSabClILRwaTXPifMTEtUPUzuUAIRzSxyHDrXIafjLCYmkitHBoNM0JG9ATIRpHURXQfSjhkMMTmSiWjKjD0YQeSy0cGk1zww50A85BWB4nUMIBKoqSCLRH5H80gUP01CZqNJrmhhUxtT4OMVW+FDFkkdZGNGqx6jDQIONm//79TJ8+nczMTCIjI7FYLOTn59c5rrKykvvuu48OHToQERFBZmYmn376aZ3jfD4f8+bNIyUlBbfbTUZGBm+99dZPfjMaTavDggi7JgEdEFZIW8IqGtBA4fjuu+944403SEhIYMiQIac97uabb2bBggU8/PDDvPfee3To0IGRI0eyZcuWWsf94Q9/YPbs2dxxxx2sWLGCQYMGcc011/Dvf//7J70ZjUbTRBgNwOv1+p8vWLDAAIzdu3fXOmbLli0GYLz00kv+bR6Px+jWrZsxduxY/7YjR44YTqfTmDVrVq3zhw8fbvTu3bshzTEuuuiiBh2n0Wh+Gqfraw2yOKzWHz9s+fLlOBwOrrvuOv82u93O9ddfzwcffEBVlVgh94MPPqC6uppJkybVOn/SpEls3bqV3bt3N1z1NBpNWAhaAGf79u2kpqYSGRlZa3taWhrV1dV89913/uNcLhddu3atcxxAXl5esJqk0WhCRNCEo6CggISEhDrb27Rp498v/8bHx2OxWH7wOI1G03xpMeHYnJwccnJyADh27FiYW6PRnN0EzeJISEigsLCwznZpQUiLIiEhgaKiIgzD+MHjTmXatGnk5uaSm5tLUlJSsJqt0WjOgKAJR1paGrt376a8vLzW9ry8PJxOp9+nkZaWRlVVFbt27apzHECvXr2C1SSNRhMigiYcY8eOxePxsHTpUv+2mpoalixZwogRI3C5RFWSUaNG4XA4ePXVV2udv2jRItLT00lNTQ1WkzQaTYhosI/jzTffBGDjxo0ArFixgqSkJJKSksjKyqJv375cd9113HXXXXg8HlJTU3n++efZvXt3LZFo164d99xzD/PmzSMmJoZ+/fqxZMkSVq5cyfLly4P89jQaTUhoaCIIYopNnUdWVpb/mPLycuPuu+822rdvb7hcLmPgwIHGqlWr6lyrpqbGeOSRR4zOnTsbTqfT6N27t7F06dKfnJSi0WiCy+n6msUwjCaoiRxc+vfvT25ubribodG0ek7X13TNUY1G02i0cGg0mkbTYhLAfgyPx8P+/fuprKwMd1M0QcbtdpOcnIzD0UQFNTU/SqsRjv379xMTE0NKSkqddHZNy8UwDE6cOMH+/ft1qL4Z0WqGKpWVlSQmJmrRaGVYLBYSExO1JdnMaDXCAWjRaKXoz7X50aqE42xj4cKFHDx4sNH7fogXXniBV155pdHnFRUV8dxzzzX6PE3LpNX4OE7lnKfO4UjZkaBdr31Uew7/9nDQrvdT8Xq9LFy4kPT0dM4999w6+39on9frxWaz1dkOcNttt51Re6Rw3H777Q0+p6amBru91X4FWzWt1uIIpmg09HqLFi1i4MCB9OnTh1tvvRWv18uGDRu48MILqayspKysjLS0NLZt28bq1asZOnQoY8aMoXv37tx22234fGLJrv/85z9kZmbSr18/rrnmGkpLSwFISUnh/vvvp1+/fixevJjc3FwmTpxInz59qKio8LfjzTffrLMv8NylS5eyYMECBgwYQEZGBr/85S/9kxNnz57NU089BcCuXbsYNWoUF110EUOGDOGbb74R9+LIEcaNG0dGRgYZGRmsXbuWBx54gF27dtGnTx/uu+8+DMPgvvvuIz09nd69e7NkyRIAVq9ezZAhQ8jOzqZXr17MmjWLp59+2t/2Bx98kL/85S8//QPThBQt90Hi66+/ZsmSJaxZswaHw8Htt9/Oq6++yq9//Wuys7OZOXMmFRUVTJo0ifT0dFavXs369evJy8vjvPPOY9SoUfzzn//k0ksvZc6cOXz00UdERUXx+OOP86c//YlZs2YBkJiYyKZNmwB48cUXeeqpp+jfv3+ttlx99dU8++yzdfYFnnvixAmmTp0KwMyZM/nb3/7G9OnTa11n2rRpvPDCC1xwwQV88cUX3H777axcuZI777yTrKws3n77bbxeL6WlpTz22GNs27bNX5j6rbfeYsuWLXz55ZccP36cAQMGMHToUAA2bdrEtm3bSE1NJT8/n/Hjx3PXXXfh8/l4/fXXWb9+ffA/IE1Q0cIRJD7++GM2btzIgAEDAKioqKBdu3YAzJo1iwEDBuB2u5k/f77/nIEDB9KlSxcAbrjhBj777DPcbjd5eXkMHjwYgOrqajIzM/3nBNZ0bSyB527bto2ZM2dSVFREaWkpI0eOrHVsaWkpa9eu5ZprrvFvk3VjV65c6feD2Gw24uLi6tRi+eyzz7jhhhuw2Wy0b9+erKwsNmzYQGxsLAMHDvSHVlNSUkhMTGTz5s0cOXKEvn37kpiYeMbvUdM0aOEIEoZhMHnyZObNm1dn34kTJygtLcXj8VBZWUlUVBRQN1pgsVgwDIMrrriCxYsX1/s68twzIfDcG2+8kXfeeYeMjAwWLlzI6tWrax3r8/mIj4+vs7RFMDj1Pdxyyy0sXLiQw4cPM2XKlKC/nib4tFofR1Nz2WWX8eabb3L06FFAVDTbs2cPALfeeiuPPPIIEydO5P777/efs379enbv3o3P52PJkiX87Gc/Y9CgQaxZs8Zf3LmsrIydO3fW+5oxMTGUlJQ0eh9ASUkJHTp0wOPx1KmNAhAbG0tqaqq/vophGHz55Zf+9/r8888DwtF68uTJOq83ZMgQlixZgtfr5dixY3z66acMHDiw3raMGzeO999/nw0bNtSxfDTNEy0cQaJXr17MmTOHESNGcOGFF3LFFVdw6NAhXnnlFRwOBxMmTOCBBx5gw4YNrFy5EoABAwZwxx130LNnT1JTUxk3bhxJSUksXLiQG264gQsvvJDMzEy/U/JUbrzxRm677bY6ztEf2wfwyCOPcPHFFzN48GB69OhRa5+0hF599VX+9re/kZGRQVpaGsuWLQPgL3/5C6tWraJ3795cdNFF5OXlkZiYyODBg0lPT+e+++5j3LhxXHjhhWRkZDB8+HCeeOIJzjnnnHrfh9PpZNiwYVx77bWnjfZomhetZlr9119/Tc+ePf3/b+7h2NWrV/PUU0/x3nvvBe2awWD69On069ePm266qcle0+fz+aM9F1xwQb3HnPr5apqG002rb7U+juaUc9FS+MMf/sAXX3zB7Nmzm+w18/LyuPLKKxk3btxpRUPT/Gi1FoemdaE/3/CgC/loNJqgoYVDo9E0Gi0cGo2m0Wjh0Gg0jUYLR5hZvXo1V155JQDLly/nsccea/I2zJs3j65du9K9e3c++OCDHzz2zjvvJDo6uolapmmutNpwLOcAwZwg2x5oYITXMAwMw8BqbZwuZ2dnk52d3fi2/QTy8vJ4/fXX2b59OwcPHuTyyy9n586d9SZi5ebm1rs+sObso/VaHMGdVf+j18vPz6d79+78+te/Jj09nX379vE///M/9O/fn7S0NB566CH/se+//z49evSgX79+/POf//RvX7hwIXfccQcgMj/l6nmA/1f+0KFDDB06lD59+pCens5///vfn/S2li1bxvXXX4/L5SI1NZWuXbvWOzvV6/Vy33338cQTT/yk19O0DlqvxREGvv32W15++WUGDRoEwNy5c2nTpg1er5fLLruMr776im7dujF16lRWrlxJ165dGz3b9bXXXmPkyJE8+OCDeL3eOot8A9x9992sWrWqzvbrr7+eBx54oNa2AwcO+NsLkJyczIEDB+qc++yzz5KdnU2HDh0a1V5N60QLRxA577zzanXCN954g5ycHGpqajh06BB5eXn4fD5SU1P9WZKTJk0iJyenwa8xYMAApkyZgsfj4Re/+AV9+vSpc8yf//znn/xeAjl48CBLly6tM4NWc/bSeocqYSBwuvju3bt56qmn+Pjjj/nqq68YM2ZMoyp12+12f0Uwn89HdXU1AEOHDuXTTz+lY8eO3HjjjfXWB7377rvp06dPnUd9jteOHTuyb98+///3799Px44dax2zefNmvvvuO7p27UpKSgrl5eV07dq1we9F0/rQFkeIKC4uJioqiri4OI4cOcKKFSu49NJL6dGjB/n5+ezatYvzzz//tHU3UlJS2LhxI9deey3Lly/H4/EAsGfPHpKTk5k6dSpVVVVs2rSJX//617XObYzFkZ2dzYQJE7jnnns4ePAg3377bZ3p72PGjOHwYeUZjo6O9k/715ydaOEIERkZGfTt25cePXrQqVMnf0Uvt9tNTk4OY8aMITIykiFDhtRbN2Pq1KlcddVVZGRkMGrUKL81s3r1ap588kkcDgfR0dFnVJE8kLS0NK699lp69eqF3W7nr3/9qz+iMnr0aF588cV6Cx5rzm5a7yS3MIZjNcFHT3ILDz9pktv+/fuZPn06mZmZREZGYrFYyM/Pr3VMbm4u06ZNo0ePHkRGRtK5c2cmTpzI7t2761xPLtN46uOdd945ozdXL4cBI4gPLRoajZ8GDVW+++473njjDX+Z/P/85z91jpFJRHfeeSdpaWkcOHCARx55hP79+7NlyxY6depU6/iRI0fWqfvQvXv3M38nGo2myWiQcAwdOpQjR4Td/+KLL9YrHPfffz9JSUm1tg0ePJjU1FQWLFjAww8/XGtf27Zta4UuNRpNy6FBQ5WGpE6fKhog8hqSkpLqTSgKBS3QXaNpAPpzbX6ENI/j66+/5ujRo/U6td59910iIyNxuVwMGjToJ/s33G43J06c0F+yVoZhGJw4cQK32x3upmgCCFk4tqamhttuu42kpCRuvvnmWvvGjh3LgAEDSE1N5ciRIzz77LOMGzeOf/zjH0yaNOmMXi85OZn9+/dz7NixYDRf04xwu90kJyeHuxmaAEImHHfccQdr167lX//6FwkJCbX2PfPMM7X+P27cOAYNGsSMGTNOKxw5OTn+1Oz6xMHhcPhXB9NoNKElJEOVBx54gJycHF566SVGjBjxo8fbbDauueYa9u/fz6FDh+o9Ztq0aeTm5pKbm1uvP0Wj0TQdQbc45s6dy+OPP84zzzzDr371q0aff+qyiBqNpvkRVItj/vz5zJw5k7lz5/rrSjSEmpoalixZQufOnU+72pdGo2k+NNjikEVlNm7cCMCKFStISkoiKSmJrKwsXn/9de666y5GjRrF8OHDWbdunf/c2NhYevXqBcDixYtZtmwZo0ePplOnThw5coS//vWvbNq06bQTvk4lPz/fH+rVBI9jx47pexoCWvJ9PTVD3I/RQDhNMnZWVpZhGIYxefLkHz3GMAzj888/N4YNG2a0a9fOsNvtRlxcnHHZZZcZ77//fkObYhiGYVx00UWNOl7z4+h7Ghpa431tkZPc4PSTbzRnjr6noaE13lddyEej0TSaFisc06ZNC3cTWh36noaG1nhfW+xQRaPRhI8Wa3FoNJrw0WKEY9++fVx99dXExcURGxvL+PHj2bt3b7ib1WJYvXp1vcWT4uPjax1XWFjILbfcQtu2bYmKiuLyyy9n69at4Wl0M6MhBa0AKisrue++++jQoQMRERFkZmby6aef1jnO5/Mxb948UlJScLvdZGRk8NZbbzXBOwkC4Q3qNIyysjKja9euRlpamvH2228b77zzjpGenm506dLFKC0tDXfzWgSrVq0yAGP+/PnG559/7n9s2LDBf4zP5zMGDx5sdOzY0XjttdeMFStWGEOHDjUSExONffv2hbH1zYNVq1YZ7dq1M37+858bI0aMMABj9+7ddY6bMGGCERcXZ+Tk5BgfffSRMW7cOMPtdhubN2+uddzvf/97w+l0Gk8++aSxcuVKY9q0aYbFYjH+9a9/Nc0b+gm0COF4+umnDavVanz77bf+bd9//71hs9mMP/7xj2FsWctBCseHH3542mPeeecdAzBWrlzp31ZUVGQkJCQY06dPb4pmNmu8Xq//+YIFC+oVji1bthiA8dJLL/m3eTweo1u3bsbYsWP9244cOWI4nU5j1qxZtc4fPny40bt379C8gSDSIoYqy5cvZ9CgQbXW8khNTWXw4MEsW7YsjC1rXSxfvpxzzz2XYcOG+bfFxcUxduxYfZ9pWEGr5cuX43A4aq3QZ7fbuf766/nggw+oqqoC4IMPPqC6urrObPBJkyaxdevWemv1NidahHBs376d9PT0OtvT0tLIy8sLQ4taLhMnTsRms5GYmMiECRNq+Yl+6D7v3buX0tLSpmxqi2T79u2kpqYSGRlZa3taWhrV1dX+9Wi2b9+Oy+Wqs7BVWloaQLP/XreIdVUKCgrq1PQAaNOmjV49vYHExcVx7733kpWVRWxsLJs3b+bRRx8lMzOTzZs3065dOwoKCkhJSalzbps2bQDhOJWLX2vq54e+q3K//BsfH19nNvipxzVXWoRwaH46ffv2pW/fvv7/Z2VlMXToUAYOHMj8+fOZM2dOGFunaWm0iKFKQkJCvZbF6dRd0zD69etHt27d2LBhA/DD91nu1/wwP3YPpUWRkJBAUVFRnRq5px7XXGkRwpGWlsb27dvrbM/Ly/NP19ecOdJc/qH73LlzZz1MaQBpaWns3r2b8vLyWtvz8vJwOp1+n0ZaWhpVVVXs2rWrznFAs/9etwjhyM7OZt26dXz//ff+bfn5+axZs4bs7Owwtqxlk5uby44dO/yLTGdnZ3PgwAE++eQT/zHFxcW8++67+j43kLFjx+LxeFi6dKl/myxUNWLECFwuFwCjRo3C4XDw6quv1jp/0aJFpKenN//6ueGOBzeE0tJS4/zzzzfS09ONd955x1i2bJlx4YUXGqmpqUZJSUm4m9cimDBhgvHggw8ab731lvHxxx8bTz31lJGYmGh06tTJOHbsmGEYIk8hMzPTSE5ONhYvXmy8//77RlZWlpGQkGDs3bs3zO+gebB06VJj6dKlxm233WYAxnPPPWcsXbrUWL16tf+Y6667zoiPjzcWLFhgfPTRR8Yvf/lLw+VyGRs3bqx1rfvvv99wuVzGH//4R2PVqlXGbbfdZlgsFuPdd99t6rfVaFqEcBiGYezZs8cYP368ERMTY0RHRxtXXXVVvVl7mvp59NFHjd69exuxsbGG3W43kpOTjalTpxoHDx6sddyJEyeMm266yUhISDAiIiKM4cOHG1u2bAlTq5sfNKBYVXl5uXH33Xcb7du3N1wulzFw4EBj1apVda5VU1NjPPLII0bnzp0Np9Np9O7d21i6dGnTvZmfgJ4dq9FoGk2L8HFoNJrmhRYOjUbTaLRwaDSaRqOFQ6PRNBotHBqNptFo4dBoNI1GC4dGo2k0Wjg0Gk2j0cKh0Wgazf8HgVTukgD+V5wAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQ4AAAEECAYAAADZKtrDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABFeklEQVR4nO2deXyU1fX/37NP9oQQEAmYILIlGEBAIoUIKlCQWKgr0KIo6NevWJdapVLkpyBubS1a9RusRYsiolXQFq0KaAURwqJAFBQJ+56E7Mlk5vn9cZ87d0KCJjiTScJ985pXhmebO8/M/cy555x7rsUwDAONRqNpBNZwN0Cj0bQ8tHBoNJpGo4VDo9E0Gi0cGo2m0Wjh0Gg0jUYLh0ajaTRhE459+/Zx9dVXExcXR2xsLOPHj2fv3r3hao5Go2kElnDkcZSXl5ORkYHL5WLOnDlYLBZmzpxJeXk5X331FVFRUU3dJI1G0wjs4XjRBQsW8P3337Njxw66du0KwIUXXsgFF1zA//3f/3HPPfeEo1kajaaBhMXiuOyyy6isrGTNmjW1tmdlZQHwySefNHWTNBpNIwiLj2P79u2kp6fX2Z6WlkZeXl4YWqTRaBpDWIYqBQUFJCQk1Nnepk0bCgsLf/T8tm3bkpKSEoKWaTSaQPLz8zl+/Hid7WERjjMhJyeHnJwcAKKiosjNzQ1zizSa1k///v3r3R6WoUpCQkK9lsXpLBGAadOmkZubS25uLklJSaFuokaj+QHCIhxpaWls3769zva8vDx69eoVhhZpNJrGEBbhyM7OZt26dXz//ff+bfn5+axZs4bs7OxwNEmj0TSCsAjH1KlTSUlJ4aqrrmLZsmUsX76cq666ik6dOnHrrbeGo0kajaYRhEU4oqKiWLlyJd26deNXv/oVEydOJDU1lZUrVxIdHR2OJmk0mkYQtqhK586deeutt8L18hqN5iegZ8dqNJpGo4VDo9E0Gi0cGo2m0Wjh0Gg0jUYLh0ajaTRaODQaTaPRwqHRaBqNFg6NRtNotHBoNJpGo4VDo9E0Gi0cGo2m0Wjh0Gg0jUYLh0ajaTRaODThxzAf9T3/sfNOfd7ki32cnbSYYsWaFooB+MxHDVANeIBK86/X3If53Irq/BbzIZ/7Av5vnLLNGrDNgvhmuwGH+ddpbpPna34SWjg0P4y0AHyoDl0TsL8mYF+gEFSZz6vMY6pQAmIgOjTmMXbzGC+iYwdaHYEd3UDZyEbAsaCEw2Ze2xtwvg0hHE4gAYgBXGgR+Qlo4ThbMQIesvN7ERaB7MSVKJHwoYTBYv6tQXRSD0oQrOY1rAHXlJaB3TzWjhCSCiAKKDXPiTWfW4AIoMT8a5jHRwNl5vlOoNg8R4pTjNnmMiASJVAV5iMSOGH+jQDama8vRUzTYLRwtHZk55W//tISqEB1eCkY8hfYG3CuHWVByF/pckRnsyI6L4hfdWl1SAuiHNFJK81jPebfcvNYN1BkXssJHEWIgwEcQ1gHxea1I8xtUihKzecnzHa5gOPmcVaUANUAceY1C83jTpptOY4Qm3PM19K9ocHoW9UaMFDi4EH9wkpfghQFS8BzadYbqF/jGvO5K+CaUlyc5rUqER2x/JTnVaghQrV5jhvRsaPN/5eax8tr2szXlK9lMV9fWi6l5vvzIqwIm7lf+kQqzL8ealtPVoS1Em+2+whKkLzmdQrM93zSfJ0I4Fwg0dyv+UG0cLQkZMeQHboc0aGk01FaAt6A46W5Lq2NSFTHxTxWDgtqEJ2tFCEK8eY1Zcf0IDq3tDLcCCshCtHZTiA6nhw6SP9Cpfl6Eea5VoQ4FZrnGuZ2+XqGub0I0eGltRRjtlNaKCfNc6SgxZj3w2q+z0ARkvdOWio21JDLap6/x3zNjub52gdyWrRwNEekM7IGZTWUIjqPFIxAq0GKSZS5z4voXDXm/iLzurHmcx+iwxWfcg0QnVF28iKUv+Gkec1IxK+1G2WxSJFwIjqu13xeguj41Wbb3eZzB8pnEvhe5V9pGQQ6XqsDzrGjLCzfKcdWovwbJxEWjrQwogPuixSRGJQoVZv3pBRIBtqiExZOgxaOcBM4JPAgvriVAQ/ZueQnVYUQCGmmV5vnRyJ8ABaEQJw090ehrAs57ncgrIPAX247SiwcCIugGiUO0uKQVofHvKbNbBMosXCjOjuoDi7FSXZcG0oQpGUioyRVKCeq3F8VcI6MxlSirIbqeq55ashXOk9jAt5btdnuwFDuEfP1OqLFox60cDQlUiSqUV/WMoQIyM4ghxYyMgHql7YCIQqFKKef9ANIK8Ri7pdhyQKU87AQ0akjzOvL15KvK30b0tKRry0FAETHkx1ORi9k53Whfv1l281O7DE87C3Zy67yXXxX/R3feL5hR9UOCr2FlPvKqaYaK1bsFjtW85/FYsFiBIwXAsOvgGExMAwDn18VwGqxEmeJI8meRCdHJy5xX8KQqCGcYztHtBdUxKcEZQF5zPdSbt4f+b6tQAe0eJyCFo5QESgSlQhLogzxxZR5DaDMdiu1hxZOREepNJ/LY6QlEYEQAjmel+dEIjqEEyUK8tcblKkfGFKV7Q2MrAQ+rwCfxcdJ30kKigs46TzJSe9JiouLKa0opbSqlJLKEkoKSyipKKHYV0whhRRWF3Lcd5zDnsMc9x7HCENa59M8DcBA10B+Ffsrrk+8nraVbVUeiLzPVShLKjBsfMT8277Jm96s0cIRLKRVUI6wAqS3XjoGpd8B1LjehujkMnxpR4iL/OUOjEKUAW1QURIpCh7El18OJeSvpNwnf6VrTnluUlNZw6HqQ+yt2cu+gn0crD7IQe9BDlYd5HDNYY7UHOFo9VEKvAW1ftkbiwULneydON95Puc7z6eHswfdXd1pZ2tHJJE4nU58VT5qrDX48GFYDHyGz29hGBhY7BZlHYmLCssECxafRVgfLh9FRUUcdR1lZ8VO/lv2X9ZUrWF91XrWH1vPb4//lsmRk7m74930MHooZ6zPvO+g/Cfl5mdyCDHk04sM+tHCcabIoUMxwl9wEhUClQ5HqJ0KLcfo0iyWUQUZBo2ldvhT5kzI65WgHI9lAdsrqW0pEPB6wEnfSb498S3fVX7HrppdfF/xPburdrPbs5t9Vfvw+sMwP0ysLZY21jbEO+KJtcUS440hNiKWGEsM0TXRxETFEOONIcaIISEmgYSqBBKdiZwTcQ5JVUnY3Xblb3CihkNy6CAjLDLHoxzlL5EOzFLzXFAOV3nPZBQnyjzWDrSFcl85y08s55WqV1hRtoKcshwW7FzA1MipzO04l7autkpUPShnM6hEuL1Ad3So1sRiGEaLmxbUv39/cnNzm+4FaxACUYBwQB5HfJmqUH4CG8rbL6MU0pKQnUT+lY5HO+rLKiMiDnN7CeLLL0OtMivShwo1WsxrVYDX6iXfyCfvZB47qncIH0LZDnZW7+RozdEffHvn2M+hs6szneydSHYmc27EuXQwOtDB1YF2Ee1o52lHYkQiDpdD3IdIs41FZrss5vMEVLQiwXwPmO+twDwWVEi03Hw/MQHXkh013jxHJm+Vm9uKUBGdk+bryG2BWa4O8zOTIVzTittRsYM/lv+Rv5/8OzXUkGBL4B9J/2BMzBj1ecWaf93me4sxr3kBZ92Q5XR9TVscP0Qx8B2QBxxE/MpLi8KN+FK7EHdRikaEeYwbZWFIcZDWQWBkwIX65ZThRPnFDYwmRAMW8FX72GPdw9airWyr2MZ273a2l21nR9UOKo3Ket9GhDWCrs6udHV15fzI8+li60IXVxdSo1PpTGfcNrdyEMpf7cA8jMAhlnQcyvCvjGjI55jvSXZe6ZuRmabSySjvmcxOtQbcK2ltybCqxbw/XlRnxmyLjII4Au6zfC9y6CFfowq6u7uT48zh7qi7ubPoTj4q/4jsw9n8mT9zZ9s7VVvke5fZpwbC6ogPuO5ZjBaO+qgCtgM7URGKeETnCIyI7Ed8iWIQX3L5hZOdSYZO5ZyKIsSXXWY/yvRrmZUZmNNgg9KKUrYaW9lycgtfFX3FlxVfsq18GyWG/CmvTUdnR3q5etHD2YMeMT3obu9Od2d3zo0+F6vXqmaRSqtI5kg4UaFMu9k+2UFl6NJntlXmPXjM5/K9yHkkFvO59A9IB69M5JK/6NL5KMOosQH3Td4jmdBlN88vMo+Tn0GMeW/lcE++ngzjSlGWQiL9TF7o6ezJf5L+w8OFDzO7eDa/Ofwbuli6cGXslWq4IkUj2rxWJeIHJLXe239WoYXjVCqBjQhvuhWVwCQtBIk010sC9kejfulKUROs5HVlpMWBCvuViGudqD7BpvJNbPJsYvPhzWyu2My31d/WG4lob29P78jepFvSSU9MJ82VRk9fT+Li4pQPIfDXXJrwblTqthth6keY7ZGOWJt5jLQQygKuJfNJAv01MpdCDtdkqrncL5PH7OZ9kUlhMnwcZe6PNM+Rlod0/krR8iKcw9LHI4cm0QGvK62+GpSY2MxryrT6Svzfeoth4aHEh4hwRXD/sfu55cgtbI3dSpI1SYmFFSXsLuAwkMRZ7ygNqnC8+eabLF68mNzcXI4ePUrnzp0ZP348v//974mJEQPc/Px8UlPrl+zCwkLi4+OD2aTGUQ18hfBhgPKuB04tl4EFmasgf4mOU3sKtzT77aecXwMFFLCxYiO51bnkluaysXoje2r21GmOHTtpEWlkODPIcGWQkZhBb09v2kW3Ex2nGDWpS3YYmekpHabSnyLDszIrNHB4IDu1TM+WQwRQlgIIYZFmeyLKT5OA6JjyuuWoDl2K6PA1ZpsSUfNhpGUQjxquyWGSDEGDEi5p0cmhitXcV42aawO1fUzSqpORKsznUhAd8Fv3b1nhWsHqqtX8/ujvWZC0oPYEPnl/5XyX/UA3zurcjqAKx1NPPUXnzp159NFHSU5OZvPmzcyePZtVq1axdu1arFZ1p2fMmEF2dnat86W4hI0jCIecE/FlA2UlBAqG3C7H3zKnohLl5TedoRXeCjZXbBbhwPL1rK9Zz66aXXVeOtISSR9XH/pF9KOvuy99Y/rSy9sLV7xLDRPkhDL52jIMK0OJVQHbZV6CHP+D8huA6ghyYpl0QpahnJwlqI5+qoNWCo38RZdCIOeZyKn0CaghiHwuBUIO5UAMQaSVYUdFn6TfQ/pM5JBK7pdDGynUgbN+QYmHtKKkn0mKZZlIGnuh4wv0/r43fyv8G7dG3kp/e39l0QSGzuVnLR2zZylBFY53332XpKQk//+zsrJo06YNkydPZvXq1QwfPty/r0uXLgwaNCiYL//T8CLGr3LC06lzJeSvOdQtU2ea8EapwS7LLtY51rGuZh3rqtbxpfdLampVvgG3xU1fZ1/6u/vTP6o/F/kuokfbHthqbOo15CQvUMMDOVSQyVqRqCiEjG7IaIsMY0pHrbQEIhHCIiMWcmiC+d6lr8FA1KuoQPl4ZGQoMKQs74+0UmRoVTpCZTp8oHUjhxpSQKT4SCE2Tnku74m8LvXsl0IFKu/lOCJULsO6MplOCqrMoYmE7tXduSvqLp4se5I7C+9kTcwaLE6LKgcgBU4O/Q6gQr5nIUF924GiIRkwYAAABw4cCOZLBZ9ChGkqY/iBX15O+WvmDFRQQa4llzXWNayNXcvnts85bj2uskIRCUq9bb0Z6B7IxY6LGeAcQFpEGg6HQ3whA8OSsgNJ/4AcWoDytQTOKZEdUfoAbIhhQbn5PA4VqpQT1GRWZHtU0Z44ahfiCfQXyEI3cogjf7XlnBfpcA18Lr9VtoDn1oDzQj3rNAJxXzsg7uVh4FtU7ou81xGonBgPzDx3Jq/sfoXPyz/ntaLXmJgwUc3mlSIo/TLFiO9M3a/8WUHI9fKTTz4BoGfPnrW2z5gxg9tuu42oqCiysrKYO3cuvXv3DnVzTk8h6pdIzuMI9EsaUGAUsKZmDZ/6PuUz4zM2WjbicXhqXSbJl0SmNZNBjkFkWjPpH9OfaFu0crLJa0qzW5r90jKQ/hGZryF/8WRehOx8gU7DRFSnsKOmuVcgLAU5LIgwX1uO9+XrScEKrM0p/xKwX/oYIPSdP1i4gPMQIrIeFQmTRqAU3CiI9cUyL2EeU45N4XfHf8cvEn5BlC1K5ZfIBDX5kR9ECNRZGJ4NqXAcOHCAWbNmcfnll9O/f38AXC4Xt956KyNGjCApKYlvvvmGRx99lEsuuYT169fXEZgmIzBVW/7ySixwRdkVfFzzca0oh8Vi4ULfhQxmMJdUX0JmZSZdLF2wJFjUl0mKkfy1kmY+iI5chfjFl53SQFgNMgFMZipWm8cHRibkr7fcJ8OqMiIi22BDRQkcAdeRVkBTWQLhxAkMQLznIoTQRiPEVX7uPpicMJnnSp8jtyKXx489zsMpD6sCy/JzlE7SKkRCYHJTv5nwE7LM0dLSUi699FIOHjzI+vXrSU4+/d3dt28faWlpZGdns2jRonqPycnJIScnB4Bjx46xZ0/dKMRPIg8xJ0HOUahG5ShUwdUFV/Oe5z0GWgcyxDqEITVDyLRmElcVJ873onIKolDFYmSUQiKf+xCCIeemSCdmGSp6Ib/QslaEHDLIZDEZ2pXDBukojEQJhJPaw4SznWOIHB2ZKyfvv6x7YoM1FWv4Wf7PcFvc7EjdQWdrZ/F5goqaGagEwK4oH0gr43SZoyERjoqKCkaPHs2XX37JJ5980qAhyOjRo9m1axc7duz40WNDknL+LcKMlUVnZC0M8wt1yHeIhKoE3LjVUEb6MqRP4gSik8cjhCAeZb3IL5aBqpspRUWKhBw/V6E6vBzSSAepGzWsiDKP0wLRcLzADkQEzUBZHMXUmlF8w64beL3kdW6IvYHXur+mZi/LKIvMoHUgnMjn0Srv++n6WtAj0R6Ph6uvvprc3Fz+/e9/N8pvYbGE8c63oXbHC0w9dkAHWwfcFnftyWvSvLdRO4wYiSqgE4X6kkWikqNkpW2Zxh2J+FLWoJyYbvP5uUAXoAfQE+iFmDfREZWMpNcNaRg2RCeXwzY5Yc6FCmOXwmPtH8NtcbO4eDGfl3yuHOcliOey6LMsilTOWUVQfRw+n4+JEyeycuVK3nvvvQaHW/fu3ctnn33GL37xi2A2p3HEoUr1S+ehHP/LcKz0IcgvmEz+klaBC9GRZZ2HUxOuZEJWYLKVfA05tIhGDXdcAftbKYZhcODAAYqLi3/84AbicrlITU2tlTdUi0hEZfN9iHteTu25NnFwnv087i27l7mH5nLP7ntY220tFpdFCTuoeUcOxDA3lVb9WQUSVOH43//9X5YuXcqDDz5IVFQU69at8+9LTk4mOTmZe++9F5/PR2ZmJklJSezYsYN58+ZhtVp58MEHg9mcxmFHfJl2mv+XHVaGO6UIBM54lWIh09FltmQUKndC/rIFJj45EEMa6Qs5S0TidMyaNYs333wzaNfr3bs3H374IZGRkfUfYEFYa0WoYWdg6ryZD3O/+35etL/Iuqp1LK1cyrXOa1VZRTlXR35ehYghSyxnBUEVjhUrVgAwd+5c5s6dW2vfQw89xOzZs0lLS+P5559n4cKFlJaWkpiYyPDhw3nooYfo3r17MJvTeNojnGcFKMGQogG1Q3FyFqassCWtDVkQ12ZuizAfCYgvlZwQJ49pIVRXV7Ns2TIKCwuDds3u3bszdOhQKioqKCmpf+LemVBWVsaPuu5ciBDtbsTnIUPWMnICxLSN4WEe5tbdt/LAnge4qsdVuHCpgs6BUTCoXfG9lRNU4cjPz//RY6ZMmcKUKVOC+bLBw4HwI+QhxEN+9wInjcmkMBnxkMd1QFWJSkJ8mZJQ1kcLd1pWVFQwa9Ysvvnmm6Bdc8qUKQwdOjRo12s0SYjPT/ospDUondPAlLgp/MX1F/Kq8ni+4HnuOvcu8XnHBBwr0/Bl2cfEJn0XYeEsnqZzGiKAdIQpKy0NmRglhx0WhGl61Dz+YmAYMNp8DDGv0R4hJNpp2TyxI3IwpO9JOrQDsnjtFjuPdXoMgDmH51BUVaR8VtWI74YMp3sRFuuZV1hsMWjhqA8XInIxGOiNCKvKMKj0YVwC3AJMB8YihKIdqriMpmUQg1g/RVqSPsSQUkbC7HBl/JUMjR7KiZoTPHn0SSEYJxERlkqE1RJYqKmg6d9GU3OWTtFpIJGIMOh5qOnkMlR7FoxjzwqsiHB3EWqekA81I9gBFruFxzs/TmZeJk8feZrp7aeL5RbkJDeZVSoTAI+hcnlaKdriaAjS0SnNUi0arYsIhF9CWg2xiM+6jfncCoPcg7gq/irKfeXMOTBHOUHlD4rMCZE1SEqb/m00JVo4NBoLwrktE/Hk2rdeREp6qThmbse5WLCQczyH/OJ8MVwpMo87ibA4ZA7PEVQErhWihUOjAWFhSF+HHWV1gL/ebFpiGhMTJ+IxPDyy7xEhEvEov5asPl+CWs6zlaKFQ6ORJKJqmVpQ9WNldK0MHmr/EDZsvHziZXZad9bO95FDFbm4dgG169S2IrRwaDQSmRTmRKWgG4hISZH4f9f4rtx4zo148TJnzxy1IJecHV2Amr9Ugari1srQwqHRBBKPGHLIOUkJCEGJQzhL3fDguQ9ix86rR19lZ+lOdY5cTEsOU6woUWllaOHQaAKxIzJKZRZpJWISnMwULoFUTyo3Jt6IDx9zCueooYysw+pEVWk/iarp2orQwqHRnIr0dchaJ7LMgSz1GAe/v+D32Cw2XjvyGrsKd4khSjVCZApRhZfsiLyOVmZ1aOFoYRiGEfLHWY8NVR5BVgiTjs848TzVncqvEn+FFy+P73lclUSQ1ocVYW1UmY/gzeFrFrTi3LbWh2EYPPHEE3zxxRchub7VamXmzJn06dMnJNdvUcShoiIWVL6GXEqyDGa0ncHLx19mYeFC/mD5A53opGZNy+iMdJIWm9dsJdMRtHC0MNatW8c777wTkmtbrVamTp0akmu3OKSvoxBVxS3Az0E0dGvTjWsLrmXJ0SX8ec+f+VPHP4lz5epxPsSwx4cQnrbUrj/bgtFDFY3mdMSgFrmWFeHkolQuwAL3d7wfgJxDORRUFajFuuWaNaWohcVlndNWgBYOjeZ02BBWglxeQk5+kwWdSqFvTV9Gxo2kzFfGs8XPqhIKFmova1mBf+Gn1oAWDo3mh4hHLYfgNP8vi/jYgUS4v4uwOp7d/ywVFRXCwnCgFtqWVeAqEUOfVoAWDo3mhzDFwT/rFfxr7chFrS6Nu5R+Uf045jnGon2L1Op7ct5KBUJMXAhfRxUtHu0c1TQIi8WC2+0mIiLixw9uIE6n88cPag7EIRawjkL0mOOoyvc+sJRb+G3b3zKhbAJ/LPgjN19wM1aLVRU0jkAt7mVBiUgLRguHpkFERUXx6quvUllZ+eMHN5DExBZSnNOJsDr2opaxkJPbSoFouDruau4/fD87ynfw/on3GR09WhwjSwpKP0kZIswrl/1soWjh0DQIm81Gr169gn5dwzBITU2lX79+Qbtmt27dTr+mypkSj8gAlbU6ZJlAsyKcAwfTO07nd9//jqd3P83o7qPFMWXm8Q7UfJYqRF5HfHCb2JRo4dCEFYvFwuzZs5k5c2bQrmm1WnG5gjwWcCCiJIWI4UcVKszqAWrglshbmG2dzYclH7Ldup00R5oKv0prowaRH1JCi04I08KhCTtOp7P5+zssiGLUshCxHTFz1obI2SiDhMQEJneYzPMHnueZ/c/wQrcXai/UJRcar0Bsl5ZIC6QFj7I0mibGifJNmOUE/TkaZi3aO5LvAGDR4UWcLDqp/CCBs2RlbsfxJm19UNHCodE0FFkqUCZ3ORG+Ch/CeqiGXkYvhscMp8xXxsslL9deQ9iGGN6cDDi3hc6a1cKh0TQGWYtULg0ajRATORyxw/+e978APHfoOQwMNfFNzp4NzPMIXpCqSdHCodE0BiuiEpgTMQTxmdtkrQ43ZLfNpqOrIzvKd/DJkU9U/oYsCuQyH15EhbAWOH9FC4dG01iiUKvWRyMsB5lV6gG7x87NiTcD8MKRF9T6K1UIP0clYpjiQAhJC7Q6tHBoNI3FhRieeFCVwuIRguICDLil4y1YsfLPgn9y1HdULeKVYJ5ThZpBW9G0zQ8GWjg0mjMhHpVKLssEyuGIAzrFdGJM2zF4DA+v7H9FzW2RkRg7QmiqUUWCWhBBFY7Vq1djsVjqPOLj42sdV1hYyC233ELbtm2Jiori8ssvZ+vWrcFsikYTWpwoa8OFsD6KUP6KGri5rRiu/O3w34STtAoxpDmBEBgvQnDklPsWREgSwObPn8+AAQPUi9jVyxiGwdixY8nPz+eZZ54hISGBefPmMWzYMLZs2UJycnIomqTRBBcLIgN0FyKVXCZ0yUSvahgdM5pzHOfwTeU3rK1cy+D4weIYWQC5BFUlrAQRsWkhhEQ4evbsyaBBg+rdt3z5ctasWcPKlSsZNmwYAJmZmaSmpvLEE08wf/78UDSp1dCtWzcuvvjikFzbarXWsQ41P0A0yjlajrBAZNlAAxzRDiZ3mMzjex/n74f+zuCowWqIYkGIRpR5vgUhKi0kl7vJm7l8+XLOPfdcv2gAxMXFMXbsWJYtW6aF40d45JFH8Pl8Ibu+w9FCc6DDgQ3R8WVlMLlIdUAq+Y3tb+TxvY/zxpE3+EunvxBFlFpT1ooQHitqGBPflG/gzAmJcEycOJHjx48THx/PyJEjeeyxx+jcuTMA27dvJz09vc45aWlpvPLKK5SWlhIdHR2KZrV4LBZL85/TcQp79+5lyZIlIRO7888/n1/+8pdYLGGaLRaPmL8i116pRE25N6CHtQeDogexrnQdbxe/zaQOk8R5VQgLRS6bkIiYQBfflI0/c4IqHHFxcdx7771kZWURGxvL5s2befTRR8nMzGTz5s20a9eOgoICUlJS6pzbpk0bQDhO6xOOnJwccnJyADh27Fgwmx10DMMIqVUAYlgRts7SCHbt2sWMGTPwekMTNhg9ejTjx48P372IQMyWlUspyDVYvAgLwgWTO05m3Y51vHzkZSEcHoSlYYZuqUJYLHL5yBZg9AVVOPr27Uvfvn39/8/KymLo0KEMHDiQ+fPnM2fOnDO+9rRp05g2bRoA/fv3/8ltDSUlJSX85je/4dChQyG5fps2bZg/fz5t27YNyfU1jcCKcGrKOSgWhBDIWh02uK7ddfxm52/4uPBjDhYf5Nzoc4VgyOrpsah5LKWIXI9mTsh9HP369aNbt25s2LABgISEBAoL61ZsLSgo8O9v6Xg8Hj799FO+//77kFy/Q4cOVFW1gsKVrYVIhEjI0oInqBVhSfAmMCZ+DG8Xvs3iE4u5N/JeIS5e1JwXp3mdFlIdrMmaJ03JtLQ0tm/fXmd/Xl4enTt31v4NTcvDhbAa5CpvDsR8FnO5SCz4fRuLji9SyWJy3osF4evwIqyQFrCEQsgtjtzcXHbs2MHVV18NQHZ2Nn//+9/55JNPyMrKAqC4uJh3332XCRMmhLo5rZJNmzaxc+fOoF0vKiqKK664ArfbHbRrtmrkNHtZcyMwscvMGB3TbgxxO+PYUrqFbwq/oUdUD+HnkOfLUG4ZLaKYcVCFY+LEif76kfHx8WzevJl58+bRsWNH7rzzTkAIR2ZmJpMmTeLJJ5/0J4AZhsHvfve7YDbnrOHll18Oahg7JSWF9evXa+FoDG7E0ERmlEoRcQAecOFifMJ4/n7s7yw+upj/l/r/1MS4GtQSDDZEdKWZD1eC2rT09HSWL1/OTTfdxMiRI3n66acZP348X3zxhd+RZ7Vaee+997jiiiu4/fbbGTduHDabjVWrVtGpU6dgNkdzhugV688AB6KzyyQuJ8LJKSe+eeGGpBsAWFywGMNh+IcxRJjnHUctM1nd1G+gcQTV4pgxYwYzZsz40ePatGnDSy+9xEsvvRTMl9dowkssovNXIoYoUajV3BwwrN0w2n3bjm8rvuXL4i/pE9lHiEcEatlIH6puRzM2+JqxMaTRtDCcqFKBkaglH62ABezYGZ84HoClB5cKX4gH4RiVk9zkvJcihIg0U7RwaDTBwo6wOioRjk8nKkQLUAXXxF8DwBtFb4jhiqzTUY6wTk6iKqc344i7Fg6NJpjEIwSjAmFNRKKGIjYY2n4oSY4kvqv4ji/LvxSJYD6EPyTCPMdcp0ULh0ZztuBC+CZkQeNqRPSkBnCC3WZnXNI4AN4++Lbf/1FrWr4c5sgK6s0QLRwaTTCxIIYp5YjkLikKICyJShgXJYTjn4X/FPtl+cBCsR8fqhhyM00G08Kh0QQbmQ1agxCNeESo1iwdOLzdcGJtsWwr38a3nm+VD0QW+DmJqkPaTAsZa+HQaIKNdIpaUSUCZYjWCU6XkyvbXgnAssPLxD4rKnvUjhCZSoTV0QzTarRwaDTBxoqwHDyoma6y7oa54ttVsVcBsPz4cpW/UYKwNkyBwYrwczTD4YoWDo0mFLRBWBoysSsRVYPDC6PiRuGwOFhTuobjluPC1+FAWBd2hIDI7NFmmEWqhUOjCQUuhNUhywpaEaJQKfbFxsYyLGEYPnz868S/VBg2BjXvBYRoNMMK6Fo4NJpQIOuRyrqiVdTKIsWAsQljAfjXwX/5Cxz7s0irzfO8NMvFqVtITWVNS8Vut5OQkEBNTU1Irt+s67fEA0dQAiAnwdUAZTDGNYbpTOeD0g+ojqnGaTXryVYghi1liB5q+kWIaOo3cHq0cGhCykUXXcTatWtDNuM2Kiqq+dZejURYHXK5xwjUAtVRkBqXSq89vcgry+Ozos8YnjC8drZpwAQ5KtHCoTl7iIyM5IILLgh3M8KDHeGvMBBDF7limwu/k2B0m9HkleXx/sH3Gc5wIQ4+hGj4UMOcEoQF00w0Uvs4NJpQIgsZx6MK/ci8jmL4uePnAKwoWaGSxHzUriZmQ63X0kzQwqHRhJIYVBlBAyEk0mnqhsGdBhNli2JbxTb2e/arHulAiE1lwLnNKCyrhSNE2O12HA5HSB6Ba/FqmjmyerkDFZotwV8lzGVzMTx+OAAfHvpQ1OEoN88zUPVIm9nC1PobGAJiY2P5xz/+QWVlaCYaOJ1OvaZKS8GCWmA6ATiGEARZ0bwaRrpG8i7v8p+T/+GmDjeJoYlcpAmgnfm3GFWbNMxo4QgBDoeDgQMHhrsZmuZCHHAUf8VzolHzUOwwosMIOAgflnyIz+XDarEKcZEr25eiZtHKqfdhRg9VNJpQ40aVBJR1NyrU9q6xXTnPdR4nPCfYcnyLEIpSVClCG8JyqaTZ+Dm0xdEKuPjii5kyZUrQrpeYmKiXRggmdoTFYENYG0dQKegesHgsXBZ1GS9VvcTHxz+mX3I/IRhV5sMGJCGEowjhcA0zWjhaARMmTNCLWTVnLIjOXohavEnOfC0X2y5LuIyXCl7i46qPuS/mPnVuFaKXliDEpBLlNA0jeqii0TQF0YjhShmi08uZs/HicVmHywD4tOhTqsuqhaAUI3wiEajapDILNcxo4dBomgKH+TfK/CtXtgfwQPuq9vRy96LCV8H64+uVpeFB1eSIQPhGypuw3adBC4dG0xTYUfNP5KpvToQoFAEeGBYzDIBVNauEJSLzP2TGaClqfdkwo4VDo2kKLAixcKDCqwZCTNoCCWKlN4DVhauFOJQhLBMHYqhTY15HTsEPI1o4NJqmQs5ujUatSi8FpBKG2oYC8Hnp51RXVquIihchID6E5dIMyglq4dBomgoHqpSgCxFdqQYKgDJIsifR092TCl8FuUauGK7IFeFkxXRZ2Liinus3IVo4NJqmQi4RaeZv+BO7YhEiEQVZ8VkAfFrwqQjBliB8IA7U8pIGYXeQBlU4Lr30UiwWS72PUaNGAZCfn3/aY4qKioLZHI2m+SGjKi5UZEVOta+AIe4hAKwpW6PCttJBKteVlTkgYVzlLagJYM899xzFxcW1tn3++efcc889ZGdn19o+Y8aMOttiYppBSpxGE0oi8S8HSQRqZXoP4IDB0YMBWFOyBh8+rJFW0UvlGi1yQWrp+wjTmCGowtGrV6862xYsWIDT6eT666+vtb1Lly4MGjQomC+v0TR/XAiroxghHrKkYBTgg872ziQ7ktnv2U9eWR7pvnRxXmAtD1lFrBqVH9LEhFSvysvLWbp0KWPHjqVNmzahfCmNpmUgq4BJ0ZCT2QCqwFJjYXCMsDo+r/xczYSVw5kTqFXtS5uw3acQUuF4++23KSkpYfLkyXX2zZgxA7vdTlxcHNnZ2WzdujWUTdFomgeyPodceCkGYUEU4a9NeknUJQCsLVyrrAqnebys1eEjrMIR0klur7zyCu3atePnP/+5f5vL5eLWW29lxIgRJCUl8c033/Doo49yySWXsH79enr27BnKJmk04ScGMUPW9Gv4hcFclCnTkQnA2oq1arX7UtQC1nb8zlR/TdImxmKEqG79wYMH6dSpE7/5zW/405/+9IPH7tu3j7S0NLKzs1m0aFG9x+Tk5JCTkwPAsWPH2LNnT9DbrNE0CVXA1wihKEANVUoBC1Rbq4nLjaPSqOREvxO0sbRRWaZyeYX25t8LCemyCf379yc3N7fO9pANVRYtWoTP56t3mHIqnTp14mc/+xkbNmw47THTpk0jNzeX3NxckpKSgtlUjaZpsZsPC8LZaVBrqOL0Ounn7gfA+sPrhWURuGSCCzG8MRAiFAZCJhwvv/wyGRkZZGRkNPicZruwjkYTTGyI4Uo1ovMbiCGIE38q+qBIEXFcZ1knoiluhHAUU3ueSu3shyYjJMKRm5tLXl5eg6wNgL179/LZZ5/pOp2as4coVCjVi7AkPOb2eBgYJ/rChuINYggjV6+PR82QleUEw5AIFhLn6CuvvILdbmfixIl19t177734fD4yMzNJSkpix44dzJs3D6vVyoMPPhiK5mg0zQ+5wpsV4aMoQPkvPDDQEMKxvnw9RrWBxW0RvVUOUeLNY8sJSyJY0IXD4/GwePFiRo0aRbt27ersT0tL4/nnn2fhwoWUlpaSmJjI8OHDeeihh+jevXuwm6PRNE9c5kPWFY3Hv7obFkiJSqGtrS3HvcfZY99Dii1FWBg+hKUiw7Ty/CZOBAu6cDgcDo4dO3ba/VOmTAlqYV2NpkViQwiHrCNajhCDaMAHlioL/d39eb/sfXJP5pISnSIsCyk4cnhSbZ4f3bTN17NjNZpwYEUkglUihi0gLIpihD/DA/0j+gOQW56rIjCRCLGQQxYfYgZtE6OFQ6MJF9JB6kGtnyKLE1vgIttFAGyq2iSEoxohLBWIqEwFYXOQauHQaMKFC2E1OBAWRDWiR5rVvfrFi1yOTVWbMLyGqvoVgRjayLyOYsQwpgnRwqHRhAvpr6hBDEFkYpe5rmynsk4kWhM54T3B/tL9qnpYBco5Wm2e38SJYFo4NJpwYUOlkVchBCAWIQ5WsERa6OPqA8BmY7NaT7Y64BwQQhKa9c1PixYOjSZcWBGOUTnZTRb1kXigr6MvAFvKtwhxqEQIS415nkwea+KZslo4NJpwEoPohXK9lQiEJWGGZzMQUza+rPxSHC8rf8nV3DwoP0cTLpmghUOjCSduhAVhRww5POY2M8rSJ6IPAF/WfKmKHMtsUTm1HkRItgkdpFo4NJpw4kZZEQ5UXkYV4IHu3u44cLDLu4vSklKxXa50Lyudy/Vka+pcPWRo4dBowonM3ZBFiOWaK+ZwxOFx0NMqiltt820TglGNEBdpgXgRQ5UmdJBq4dBowokNlQ0qK5nLrFDz0dvSG4BtFdugEPGQztEyhMVh0KQZpCEtHajRaBqAXGvFgyrwU4oQkWpIr0kHF2wt3SoERq7sVoFYj7YMITqFQKemabIWDo0m3EQhhhsWhAhUIKyIUvE3zZ4GLshz5alQrFyMuhIxs9aGWl+2CcYRWjg0mnATiRIEAyEeRxG90w1ptjQAtlu2qyrpsmBxFXAcISJyCOMk5Ggfh0YTbpyonliAsBziEVmkTjjPdh4RRgSHLIcoiihS0Rcb0Abx/+MIsWkiB6kWDo0m3NhR81TKUWnoAA6wOWx0t4giV9/4vlGhW1mHNM58fpAmyyDVwqHRhBsbtcsCRiCGI7KqlwE9ESHZr+1fq+n4NQjBsCKsExDi0QRoH4dG0xyIRYRTo1E1Oqz4/RXdPd2hGnYYO4Rg2FErwjlQhYEONU1ztXBoNM0BuZZsG2pnkdaI/3f3iaHKTstOIRCB81usiJ6cgFhbtglWd9PCodE0B6IQww65PqwPVZjYDd1qusFJ2OnbqeakuFDzXGzUXm5BC4dGcxYQiZgpK1el9yF6p0/8v6ulKwC7fLvwRfiw2qziOBmRkWvQynksIUYLh0bTHIhC+DlsqJCFB78PI9YSy28jf0sHawdqjBqcFqdaM1ZaHDbzOjoBTKM5S4gE2iF8FDKl3GXuMwsRP9n2SX91ML9V4UJZHBYgkSbp1Tocq9E0B2xAd9RsWfmwI3qpfMi6o7Iauoy8OMxjO5v7Q4y2ODSa5kJHRGREhlt9Ac8lloC/0sqwI8TDhYjKNAFaODSa5kIkcAGwy/y/FyUgoNaaxfxrC3hYgFSabClILRwaTXPifMTEtUPUzuUAIRzSxyHDrXIafjLCYmkitHBoNM0JG9ATIRpHURXQfSjhkMMTmSiWjKjD0YQeSy0cGk1zww50A85BWB4nUMIBKoqSCLRH5H80gUP01CZqNJrmhhUxtT4OMVW+FDFkkdZGNGqx6jDQIONm//79TJ8+nczMTCIjI7FYLOTn59c5rrKykvvuu48OHToQERFBZmYmn376aZ3jfD4f8+bNIyUlBbfbTUZGBm+99dZPfjMaTavDggi7JgEdEFZIW8IqGtBA4fjuu+944403SEhIYMiQIac97uabb2bBggU8/PDDvPfee3To0IGRI0eyZcuWWsf94Q9/YPbs2dxxxx2sWLGCQYMGcc011/Dvf//7J70ZjUbTRBgNwOv1+p8vWLDAAIzdu3fXOmbLli0GYLz00kv+bR6Px+jWrZsxduxY/7YjR44YTqfTmDVrVq3zhw8fbvTu3bshzTEuuuiiBh2n0Wh+Gqfraw2yOKzWHz9s+fLlOBwOrrvuOv82u93O9ddfzwcffEBVlVgh94MPPqC6uppJkybVOn/SpEls3bqV3bt3N1z1NBpNWAhaAGf79u2kpqYSGRlZa3taWhrV1dV89913/uNcLhddu3atcxxAXl5esJqk0WhCRNCEo6CggISEhDrb27Rp498v/8bHx2OxWH7wOI1G03xpMeHYnJwccnJyADh27FiYW6PRnN0EzeJISEigsLCwznZpQUiLIiEhgaKiIgzD+MHjTmXatGnk5uaSm5tLUlJSsJqt0WjOgKAJR1paGrt376a8vLzW9ry8PJxOp9+nkZaWRlVVFbt27apzHECvXr2C1SSNRhMigiYcY8eOxePxsHTpUv+2mpoalixZwogRI3C5RFWSUaNG4XA4ePXVV2udv2jRItLT00lNTQ1WkzQaTYhosI/jzTffBGDjxo0ArFixgqSkJJKSksjKyqJv375cd9113HXXXXg8HlJTU3n++efZvXt3LZFo164d99xzD/PmzSMmJoZ+/fqxZMkSVq5cyfLly4P89jQaTUhoaCIIYopNnUdWVpb/mPLycuPuu+822rdvb7hcLmPgwIHGqlWr6lyrpqbGeOSRR4zOnTsbTqfT6N27t7F06dKfnJSi0WiCy+n6msUwjCaoiRxc+vfvT25ubribodG0ek7X13TNUY1G02i0cGg0mkbTYhLAfgyPx8P+/fuprKwMd1M0QcbtdpOcnIzD0UQFNTU/SqsRjv379xMTE0NKSkqddHZNy8UwDE6cOMH+/ft1qL4Z0WqGKpWVlSQmJmrRaGVYLBYSExO1JdnMaDXCAWjRaKXoz7X50aqE42xj4cKFHDx4sNH7fogXXniBV155pdHnFRUV8dxzzzX6PE3LpNX4OE7lnKfO4UjZkaBdr31Uew7/9nDQrvdT8Xq9LFy4kPT0dM4999w6+39on9frxWaz1dkOcNttt51Re6Rw3H777Q0+p6amBru91X4FWzWt1uIIpmg09HqLFi1i4MCB9OnTh1tvvRWv18uGDRu48MILqayspKysjLS0NLZt28bq1asZOnQoY8aMoXv37tx22234fGLJrv/85z9kZmbSr18/rrnmGkpLSwFISUnh/vvvp1+/fixevJjc3FwmTpxInz59qKio8LfjzTffrLMv8NylS5eyYMECBgwYQEZGBr/85S/9kxNnz57NU089BcCuXbsYNWoUF110EUOGDOGbb74R9+LIEcaNG0dGRgYZGRmsXbuWBx54gF27dtGnTx/uu+8+DMPgvvvuIz09nd69e7NkyRIAVq9ezZAhQ8jOzqZXr17MmjWLp59+2t/2Bx98kL/85S8//QPThBQt90Hi66+/ZsmSJaxZswaHw8Htt9/Oq6++yq9//Wuys7OZOXMmFRUVTJo0ifT0dFavXs369evJy8vjvPPOY9SoUfzzn//k0ksvZc6cOXz00UdERUXx+OOP86c//YlZs2YBkJiYyKZNmwB48cUXeeqpp+jfv3+ttlx99dU8++yzdfYFnnvixAmmTp0KwMyZM/nb3/7G9OnTa11n2rRpvPDCC1xwwQV88cUX3H777axcuZI777yTrKws3n77bbxeL6WlpTz22GNs27bNX5j6rbfeYsuWLXz55ZccP36cAQMGMHToUAA2bdrEtm3bSE1NJT8/n/Hjx3PXXXfh8/l4/fXXWb9+ffA/IE1Q0cIRJD7++GM2btzIgAEDAKioqKBdu3YAzJo1iwEDBuB2u5k/f77/nIEDB9KlSxcAbrjhBj777DPcbjd5eXkMHjwYgOrqajIzM/3nBNZ0bSyB527bto2ZM2dSVFREaWkpI0eOrHVsaWkpa9eu5ZprrvFvk3VjV65c6feD2Gw24uLi6tRi+eyzz7jhhhuw2Wy0b9+erKwsNmzYQGxsLAMHDvSHVlNSUkhMTGTz5s0cOXKEvn37kpiYeMbvUdM0aOEIEoZhMHnyZObNm1dn34kTJygtLcXj8VBZWUlUVBRQN1pgsVgwDIMrrriCxYsX1/s68twzIfDcG2+8kXfeeYeMjAwWLlzI6tWrax3r8/mIj4+vs7RFMDj1Pdxyyy0sXLiQw4cPM2XKlKC/nib4tFofR1Nz2WWX8eabb3L06FFAVDTbs2cPALfeeiuPPPIIEydO5P777/efs379enbv3o3P52PJkiX87Gc/Y9CgQaxZs8Zf3LmsrIydO3fW+5oxMTGUlJQ0eh9ASUkJHTp0wOPx1KmNAhAbG0tqaqq/vophGHz55Zf+9/r8888DwtF68uTJOq83ZMgQlixZgtfr5dixY3z66acMHDiw3raMGzeO999/nw0bNtSxfDTNEy0cQaJXr17MmTOHESNGcOGFF3LFFVdw6NAhXnnlFRwOBxMmTOCBBx5gw4YNrFy5EoABAwZwxx130LNnT1JTUxk3bhxJSUksXLiQG264gQsvvJDMzEy/U/JUbrzxRm677bY6ztEf2wfwyCOPcPHFFzN48GB69OhRa5+0hF599VX+9re/kZGRQVpaGsuWLQPgL3/5C6tWraJ3795cdNFF5OXlkZiYyODBg0lPT+e+++5j3LhxXHjhhWRkZDB8+HCeeOIJzjnnnHrfh9PpZNiwYVx77bWnjfZomhetZlr9119/Tc+ePf3/b+7h2NWrV/PUU0/x3nvvBe2awWD69On069ePm266qcle0+fz+aM9F1xwQb3HnPr5apqG002rb7U+juaUc9FS+MMf/sAXX3zB7Nmzm+w18/LyuPLKKxk3btxpRUPT/Gi1FoemdaE/3/CgC/loNJqgoYVDo9E0Gi0cGo2m0Wjh0Gg0jUYLR5hZvXo1V155JQDLly/nsccea/I2zJs3j65du9K9e3c++OCDHzz2zjvvJDo6uolapmmutNpwLOcAwZwg2x5oYITXMAwMw8BqbZwuZ2dnk52d3fi2/QTy8vJ4/fXX2b59OwcPHuTyyy9n586d9SZi5ebm1rs+sObso/VaHMGdVf+j18vPz6d79+78+te/Jj09nX379vE///M/9O/fn7S0NB566CH/se+//z49evSgX79+/POf//RvX7hwIXfccQcgMj/l6nmA/1f+0KFDDB06lD59+pCens5///vfn/S2li1bxvXXX4/L5SI1NZWuXbvWOzvV6/Vy33338cQTT/yk19O0DlqvxREGvv32W15++WUGDRoEwNy5c2nTpg1er5fLLruMr776im7dujF16lRWrlxJ165dGz3b9bXXXmPkyJE8+OCDeL3eOot8A9x9992sWrWqzvbrr7+eBx54oNa2AwcO+NsLkJyczIEDB+qc++yzz5KdnU2HDh0a1V5N60QLRxA577zzanXCN954g5ycHGpqajh06BB5eXn4fD5SU1P9WZKTJk0iJyenwa8xYMAApkyZgsfj4Re/+AV9+vSpc8yf//znn/xeAjl48CBLly6tM4NWc/bSeocqYSBwuvju3bt56qmn+Pjjj/nqq68YM2ZMoyp12+12f0Uwn89HdXU1AEOHDuXTTz+lY8eO3HjjjfXWB7377rvp06dPnUd9jteOHTuyb98+///3799Px44dax2zefNmvvvuO7p27UpKSgrl5eV07dq1we9F0/rQFkeIKC4uJioqiri4OI4cOcKKFSu49NJL6dGjB/n5+ezatYvzzz//tHU3UlJS2LhxI9deey3Lly/H4/EAsGfPHpKTk5k6dSpVVVVs2rSJX//617XObYzFkZ2dzYQJE7jnnns4ePAg3377bZ3p72PGjOHwYeUZjo6O9k/715ydaOEIERkZGfTt25cePXrQqVMnf0Uvt9tNTk4OY8aMITIykiFDhtRbN2Pq1KlcddVVZGRkMGrUKL81s3r1ap588kkcDgfR0dFnVJE8kLS0NK699lp69eqF3W7nr3/9qz+iMnr0aF588cV6Cx5rzm5a7yS3MIZjNcFHT3ILDz9pktv+/fuZPn06mZmZREZGYrFYyM/Pr3VMbm4u06ZNo0ePHkRGRtK5c2cmTpzI7t2761xPLtN46uOdd945ozdXL4cBI4gPLRoajZ8GDVW+++473njjDX+Z/P/85z91jpFJRHfeeSdpaWkcOHCARx55hP79+7NlyxY6depU6/iRI0fWqfvQvXv3M38nGo2myWiQcAwdOpQjR4Td/+KLL9YrHPfffz9JSUm1tg0ePJjU1FQWLFjAww8/XGtf27Zta4UuNRpNy6FBQ5WGpE6fKhog8hqSkpLqTSgKBS3QXaNpAPpzbX6ENI/j66+/5ujRo/U6td59910iIyNxuVwMGjToJ/s33G43J06c0F+yVoZhGJw4cQK32x3upmgCCFk4tqamhttuu42kpCRuvvnmWvvGjh3LgAEDSE1N5ciRIzz77LOMGzeOf/zjH0yaNOmMXi85OZn9+/dz7NixYDRf04xwu90kJyeHuxmaAEImHHfccQdr167lX//6FwkJCbX2PfPMM7X+P27cOAYNGsSMGTNOKxw5OTn+1Oz6xMHhcPhXB9NoNKElJEOVBx54gJycHF566SVGjBjxo8fbbDauueYa9u/fz6FDh+o9Ztq0aeTm5pKbm1uvP0Wj0TQdQbc45s6dy+OPP84zzzzDr371q0aff+qyiBqNpvkRVItj/vz5zJw5k7lz5/rrSjSEmpoalixZQufOnU+72pdGo2k+NNjikEVlNm7cCMCKFStISkoiKSmJrKwsXn/9de666y5GjRrF8OHDWbdunf/c2NhYevXqBcDixYtZtmwZo0ePplOnThw5coS//vWvbNq06bQTvk4lPz/fH+rVBI9jx47pexoCWvJ9PTVD3I/RQDhNMnZWVpZhGIYxefLkHz3GMAzj888/N4YNG2a0a9fOsNvtRlxcnHHZZZcZ77//fkObYhiGYVx00UWNOl7z4+h7Ghpa431tkZPc4PSTbzRnjr6noaE13lddyEej0TSaFisc06ZNC3cTWh36noaG1nhfW+xQRaPRhI8Wa3FoNJrw0WKEY9++fVx99dXExcURGxvL+PHj2bt3b7ib1WJYvXp1vcWT4uPjax1XWFjILbfcQtu2bYmKiuLyyy9n69at4Wl0M6MhBa0AKisrue++++jQoQMRERFkZmby6aef1jnO5/Mxb948UlJScLvdZGRk8NZbbzXBOwkC4Q3qNIyysjKja9euRlpamvH2228b77zzjpGenm506dLFKC0tDXfzWgSrVq0yAGP+/PnG559/7n9s2LDBf4zP5zMGDx5sdOzY0XjttdeMFStWGEOHDjUSExONffv2hbH1zYNVq1YZ7dq1M37+858bI0aMMABj9+7ddY6bMGGCERcXZ+Tk5BgfffSRMW7cOMPtdhubN2+uddzvf/97w+l0Gk8++aSxcuVKY9q0aYbFYjH+9a9/Nc0b+gm0COF4+umnDavVanz77bf+bd9//71hs9mMP/7xj2FsWctBCseHH3542mPeeecdAzBWrlzp31ZUVGQkJCQY06dPb4pmNmu8Xq//+YIFC+oVji1bthiA8dJLL/m3eTweo1u3bsbYsWP9244cOWI4nU5j1qxZtc4fPny40bt379C8gSDSIoYqy5cvZ9CgQbXW8khNTWXw4MEsW7YsjC1rXSxfvpxzzz2XYcOG+bfFxcUxduxYfZ9pWEGr5cuX43A4aq3QZ7fbuf766/nggw+oqqoC4IMPPqC6urrObPBJkyaxdevWemv1NidahHBs376d9PT0OtvT0tLIy8sLQ4taLhMnTsRms5GYmMiECRNq+Yl+6D7v3buX0tLSpmxqi2T79u2kpqYSGRlZa3taWhrV1dX+9Wi2b9+Oy+Wqs7BVWloaQLP/XreIdVUKCgrq1PQAaNOmjV49vYHExcVx7733kpWVRWxsLJs3b+bRRx8lMzOTzZs3065dOwoKCkhJSalzbps2bQDhOJWLX2vq54e+q3K//BsfH19nNvipxzVXWoRwaH46ffv2pW/fvv7/Z2VlMXToUAYOHMj8+fOZM2dOGFunaWm0iKFKQkJCvZbF6dRd0zD69etHt27d2LBhA/DD91nu1/wwP3YPpUWRkJBAUVFRnRq5px7XXGkRwpGWlsb27dvrbM/Ly/NP19ecOdJc/qH73LlzZz1MaQBpaWns3r2b8vLyWtvz8vJwOp1+n0ZaWhpVVVXs2rWrznFAs/9etwjhyM7OZt26dXz//ff+bfn5+axZs4bs7Owwtqxlk5uby44dO/yLTGdnZ3PgwAE++eQT/zHFxcW8++67+j43kLFjx+LxeFi6dKl/myxUNWLECFwuFwCjRo3C4XDw6quv1jp/0aJFpKenN//6ueGOBzeE0tJS4/zzzzfS09ONd955x1i2bJlx4YUXGqmpqUZJSUm4m9cimDBhgvHggw8ab731lvHxxx8bTz31lJGYmGh06tTJOHbsmGEYIk8hMzPTSE5ONhYvXmy8//77RlZWlpGQkGDs3bs3zO+gebB06VJj6dKlxm233WYAxnPPPWcsXbrUWL16tf+Y6667zoiPjzcWLFhgfPTRR8Yvf/lLw+VyGRs3bqx1rfvvv99wuVzGH//4R2PVqlXGbbfdZlgsFuPdd99t6rfVaFqEcBiGYezZs8cYP368ERMTY0RHRxtXXXVVvVl7mvp59NFHjd69exuxsbGG3W43kpOTjalTpxoHDx6sddyJEyeMm266yUhISDAiIiKM4cOHG1u2bAlTq5sfNKBYVXl5uXH33Xcb7du3N1wulzFw4EBj1apVda5VU1NjPPLII0bnzp0Np9Np9O7d21i6dGnTvZmfgJ4dq9FoGk2L8HFoNJrmhRYOjUbTaLRwaDSaRqOFQ6PRNBotHBqNptFo4dBoNI1GC4dGo2k0Wjg0Gk2j0cKh0Wgazf8HgVTukgD+V5wAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -644,9 +631,11 @@ "with torch.no_grad(): \n", " final_values, info = motion_planner.forward(\n", " planner_inputs,\n", - " track_best_solution=True,\n", - " verbose=True,\n", - " damping=0.1, # keyword arguments for optimizer.optimize()\n", + " optimizer_kwargs={\n", + " \"track_best_solution\": True,\n", + " \"verbose\": True,\n", + " \"damping\": 0.1,\n", + " }\n", " )" ] }, @@ -697,7 +686,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAGQCAYAAAB4X807AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAB09UlEQVR4nO2dd5hU5dn/PzM7MzvbWHbpHRRBXBDkxYL+FLEgGsFYsGLUqGgUjahYYtfwooKxxWjQgDGxIBoFjYIKYhJ9kzerQX3BglQBlbawdfr5/fGce58zLFV22HZ/rmuunTltnqPs+e7dfY7jOCiKoihKBvE39AIURVGU5o+KjaIoipJxVGwURVGUjKNioyiKomQcFRtFURQl46jYKIqiKBmnwcTm22+/5ayzzqKwsJBWrVpxxhlnsHr16oZajqIoipJBfA1RZ1NdXc3AgQPJzs7m17/+NT6fj9tvv53q6mo+++wz8vLy9vWSFEVRlAwSaIgvffrpp1m+fDlfffUVvXv3BuDggw/mgAMO4Pe//z3XX399QyxLURRFyRANYtkcf/zxRCIRPvzww7Ttw4YNA+CDDz7Y10tSFEVRMkiDWDaLFy/mtNNOq7O9pKSEWbNm7fL8tm3b0rNnzwysTFEURfmxrFy5ko0bN253X4OIzebNmykqKqqzvbi4mLKysl2e37NnT0pLSzOxNEVRFOVHMmTIkB3uaxCx+TFMmzaNadOmAbBhw4YGXo2iKIqyJzRI6nNRUdF2LZgdWTwA48aNo7S0lNLSUtq1a5fpJSqKoij1SIOITUlJCYsXL66zfcmSJRx00EENsCJFURQlkzSIG2306NHceOONLF++nP322w8wgaUPP/yQ+++/vyGWpCjKjyAej7NmzRoikUhDL0XZh4TDYbp27UowGNztcxok9bmqqoqBAweSk5NTW9R5xx13UFFRwWeffUZ+fv5Ozx8yZIgmCChKI2DFihUUFBTQpk0bfD5fQy9H2Qc4jsOmTZuoqKigV69eaft29mxuEDdaXl4eCxYsoE+fPlx44YVccMEF9OrViwULFuxSaBRFaTxEIhEVmhaGz+ejTZs2e2zNNlg2Wvfu3Xn11Vcb6usVRaknVGhaHj/m/7l2fVYURVEyTpOps1EUpfHTcWpHfqj6od6u1yGvA9/f+H29Xe/YY49l6tSpOy0+fP311+nTp09tZuydd97JMcccwwknnLBX371o0SLWrVvHKaecskfnrVu3jmuvvZZXXnllj7/z2WefZcSIEXTu3HmPz61v1LJRFKXeqE+hycT1dofXX3+dJUuW1H6+995791powIjNW2+9td19iURih+d17tz5RwkNGLFZt27dHp2TTCZ/1HftChUbRVGaLFVVVfzkJz9h4MCB9O/fn5kzZwIwf/58DjnkEAYMGMDPf/5zotFonXO9yUivvPIKF198MR999BFz5sxh4sSJDBo0iGXLlnHxxRfXPux3dN2ePXty1113MXjwYAYMGMCXX36Z9l2xWIw777yTmTNnMmjQIGbOnMndd9/NhRdeyFFHHcWFF17IypUrOfrooxk8eDCDBw/mo48+AkxZSP/+/QEjBBMnTuTQQw/l4IMP5ve//33tdzzwwAMMGDCAgQMHcsstt/DKK69QWlrKBRdcwKBBg6ipqdnp+m+++WYGDx7M/fffz+DBg2uvu3Tp0rTPPxYVG0VRmixz586lc+fOfPrpp/zf//0fI0eOJBKJcPHFFzNz5kw+//xzEokETz755G5d78gjj2T06NFMmTKFRYsWsf/++9fu29V127ZtyyeffMIvfvELpk6dmnbdUCjEvffeyznnnMOiRYs455xzAFPI/t577/Hiiy/Svn173n33XT755BNmzpzJtddeW2d9f/jDHygsLOTf//43//73v3n66adZsWIFb7/9NrNnz+Zf//oXn376KTfddBNnnXUWQ4YM4fnnn2fRokX4fL6drr9NmzZ88skn3HbbbRQWFrJo0SIAZsyYwSWXXLLb/092hIqNoihNlgEDBvDuu+9y88038/e//53CwkK++uorevXqRZ8+fQC46KKL+Nvf/rbX37Wr655xxhkA/Nd//RcrV67crWuOHj2anJwcwBTIXn755QwYMIAxY8akufKEd955h+eee45BgwZx+OGHs2nTJpYuXcp7773HJZdcQm5uLmCaGu/p+kUAAS677DJmzJhBMplk5syZnH/++bt1PztDEwQURWmy9OnTh08++YS33nqL22+/neOPP36740u2hzd9tz46IGRnZwOQlZW10xiMF+9U4ocffpgOHTrw6aefkkqlCIfDdY53HIfHH3+ck046KW37vHnz9mLldddy5plncs8993DcccfxX//1X7Rp02avr6+WjaIoTZZ169aRm5vL2LFjmThxIp988gl9+/Zl5cqVfPPNNwD86U9/qh3M6KVDhw588cUXpFIpXnvttdrtBQUFVFRU1Dl+d6+7I3Z0XWHr1q106tQJv9/Pn/70p+0G6k866SSefPJJ4vE4AF9//TVVVVWceOKJzJgxg+rqasA0Nd72O/dk/eFwmJNOOolf/OIX9eJCAxUbRVHqkQ55Hfbp9T7//HMOO+wwBg0axD333MPtt99OOBxmxowZjBkzhgEDBuD3+7nyyivrnHv//fdz6qmncuSRR9KpU6fa7eeeey5TpkzhkEMOYdmyZbXbd/e6O2L48OEsWbKkNkFgW6666ir++Mc/MnDgQL788ss0S0OssMsuu4yDDjqIwYMH079/f6644goSiQQjR45k9OjRDBkyhEGDBtXGjC6++GKuvPJKBg0ahOM4e7T+Cy64AL/fz4gRI3b7HndGg/RG21u0N5qiNA6++OIL+vXr19DLaNZ8/PHHXH/99XzwwQf79HunTp3K1q1bue+++7a7f3v/73f2bNaYjaIoSiOltLSU888/f593wz/99NNZtmwZCxYsqLdrqtgoiqI0UoYMGcLXX3+9z7/XG8OqLzRmoyiKomQcFRtFURQl46jYKIqiKBlHxUZRFEXJOCo2iqLUHx0BXz2+OmZmmQsXLuTUU08FYM6cOfs82wtg8uTJ9O7dm759++6yA8C1117b5KcYazaaoij1R31PBNiD6zmOg+M4+P179jf06NGjGT169B4ubO9YsmQJL730EosXL2bdunWccMIJfP3112RlZdU5trS0lLKysn26vkyglo2iKE2WlStX0rdvX372s5/Rv39/vv32W37xi18wZMgQSkpKuOuuu2qPnTt3LgceeCCDBw/mL3/5S+32Z599lvHjxwOkjRMAO4bgu+++45hjjmHQoEH079+fv//973u17tmzZ3PuueeSnZ1Nr1696N27N//7v/9b5zgZKfDggw/u1fc1BtSyURSlSbN06VL++Mc/csQRRwAwadIkiouLSSaTHH/88Xz22Wf06dOHyy+/nAULFtC7d++0Dse7wwsvvMBJJ53EbbfdRjKZrO1B5mXChAm8//77dbafe+653HLLLWnb1q5dW7tegK5du7J27do65/72t79l9OjRae10mioqNoqiNGl69OiR9uB++eWXmTZtGolEgu+++44lS5aQSqXo1asXBxxwAABjx45l2rRpu/0dhx56KD//+c+Jx+P89Kc/ZdCgQXWOefjhh/f6XrysW7eOWbNmsXDhwnq9bkOhbjRFUZo03oaVK1asYOrUqcyfP5/PPvuMn/zkJ3s0PiAQCJBKpQBIpVLEYjEAjjnmGP72t7/RpUsXLr74Yp577rk6506YMIFBgwbVeW0v+aBLly58++23tZ/XrFlDly5d0o75z3/+wzfffEPv3r3p2bMn1dXV9O7de7fvpbGhlo2iKM2G8vJy8vLyKCws5IcffuDtt9/m2GOP5cADD2TlypUsW7aM/fffnxdffHG75/fs2ZOPP/6Ys88+mzlz5tS28l+1ahVdu3bl8ssvJxqN8sknn/Czn/0s7dw9sWxGjx7N+eefz/XXX8+6detYunQphx12WNoxP/nJT/j+++9rP+fn59eOB2iKqNgoilJ/dKB+M9L2cGLBwIEDOeSQQzjwwAPp1q0bRx11FGDGA0ybNo2f/OQn5ObmcvTRR293tszll1/OaaedxsCBAxk5cmSt1bRw4UKmTJlCMBgkPz9/u5bNnlBSUsLZZ5/NQQcdRCAQ4IknnqjNRDvllFN45pln6Ny58159R2NDRwwoivKj0REDLZc9HTGgMRtFURQl46jYKIqiKBlHxUZRlL2iCXrilb3kx/w/V7FRFOVHEw6H2bRpkwpOC8JxHDZt2kQ4HN6j8zQbTVGUH03Xrl1Zs2YNGzZsaOilKPuQcDhM165d9+gcFRtFUX40wWCQXr16NfQylCaAutEURVGUjKNioyiKomQcFRtFURQl46jYKIqiKBlHxUZRFEXJOCo2iqIoSsZRsVEURVEyjoqNoiiKknFUbBRFUZSMo2KjKIqiZBwVG0VRFCXjqNgoiqIoGadexeaVV17hzDPPpEePHuTk5NC3b19uvfXWOrO+y8rKuOyyy2jbti15eXmccMIJfP755/W5FEVRFKURUa9iM3XqVLKysvjv//5v5s6dyy9+8QuefPJJTjzxRFKpFGBmIYwaNYq5c+fy+OOP8+qrrxKPxxk+fDhr1qypz+UoiqIojYR6HTHwxhtv0K5du9rPw4YNo7i4mIsuuoiFCxdy3HHHMWfOHD788EMWLFjA8OHDARg6dCi9evXiwQcf5LHHHqvPJSmKoiiNgHq1bLxCIxx66KEArF27FoA5c+bQuXPnWqEBKCwsZNSoUcyePbs+l6MoiqI0EjKeIPDBBx8A0K9fPwAWL15M//796xxXUlLC6tWrqayszPSSFEVRlH1MRsVm7dq13HnnnZxwwgkMGTIEgM2bN1NUVFTn2OLiYsAkDyiKoijNi4yNha6srOS0004jEAgwY8aMvb7etGnTmDZtGoDOO1cURWliZMSyqampYdSoUSxfvpx58+bRtWvX2n1FRUXbtV42b95cu397jBs3jtLSUkpLS7cbG1IURVEaL/UuNvF4nLPOOovS0lLeeustBgwYkLa/pKSExYsX1zlvyZIldO/enfz8/PpekqIoitLA1KvYpFIpLrjgAhYsWMDrr7/OEUccUeeY0aNHs3bt2trEAYDy8nLeeOMNRo8eXZ/LURRFURoJ9Rqzufrqq5k1axa33XYbeXl5/POf/6zd17VrV7p27cro0aMZOnQoY8eOZcqUKRQVFTF58mQcx+Gmm26qz+UoiqIojQSf4zhOfV2sZ8+erFq1arv77rrrLu6++27AxGduvPFGXn/9dSKRCEOHDuU3v/kNAwcO3K3vGTJkCKWlpfW1bEVpVDiOg+M4pFIp6vHXs97w+XxkZWXh8/kaeilKI2Nnz+Z6FZt9hYqN0pxJJpMsXryY//znP0QikYZeTh06duzI4YcfTseOHRt6KUojY2fP5oylPiuK8uNIJBL861//4rHHHqvN0mxMHHbYYXTu3FnFRtkjVGwUpRFSVVXF999/z8aNGxt6KXXYuHEj8Xi8oZehNDF0no2iKIqScVRsFEVRlIyjYqMoiqJkHBUbRVEUJeOo2CiKoigZR8VGURRFyTgqNoqiKErGUbFRFEVRMo6KjaIoipJxVGwURVGUjKPtapQWiXRWbox9aJPJJKlUqqGXoSj1ioqN0iKprKxk0aJFrFy5stEJTiKR4OOPPyYajTb0UhSl3lCxUVokZWVlvPrqq8yZM6dRWhHl5eVUVVU19DIUpd5QsVFaJPF4nA0bNjRKy0ZRmiOaIKAoiqJkHBUbRVEUJeOo2CiKoigZR8VGURRFyTgqNoqiKErGUbFRFEVRMo6KjaIoipJxVGwURVGUjKNFnc2csrIyVq5cSWVlZUMvpQ7Z2dl0796dDh064PP5Gno5iqJkEBWbZs7SpUt56qmn+PLLLxt6KXVo3749l156KaeccgpZWVkNvRxFUTKIik0zZ+vWrXz22Wd8/PHHDb2UOnTp0oVTTz1V28UoSgtAYzaKoihKxlGxURRFUTKOio2iKIqScVRsFEVRlIyjYqMoiqJkHBUbRVEUJeNo6rOiKEp9Ewe808YDQAsvJVOxURRF2VtSwFZgM7AFiACOuz0LCAF5QCFQDOQ0yCobFBUbRVGUH0sS+AFYC2zCCEyW+9MBfJhgRQQjRuswQlMEdAMK9v2SGwoVG0VRlB9DFfAFRkDAiEoKqHE/+7BiIy/Z9h1GnHoAnYDgPlt1g6FioyiKsqd8D3wKVGAsmSRGaFIYMfFaNQ5WbLKABFZcvsa43g4Ewvtu+Q2Bio2iNDJ8Ph/t27enc+fOBION70/efv36kZ+f39DLaDjWAP/ECEvC3SZCs702f1kY4Qm4x4s4Jd33G4HFQAnNWnBUbBSlkREIBDjqqKO44IILKCwsbOjl1KF169Z07969oZfRMGwE/geIYYQliREQH3XFRlxmsi2OzUrLco8PuPs3A18CA2i2WWsqNorSyPD5fHTr1o2jjz6adu3aNfRyFCEG/AMT6A+4n8GKjLjO5Kcg1YwiIgn3/NQ2536HSRzokbE7aFBUbBRFUXaHT4HVGFdXBOsK257QiDUjohNyt4nQgK3DkWODwHJManQzzFJTsVEURdkVW4F/YayUGEY0RGQgXXQgPSFAznGwT9wEVoBCnu/xYwStJEP30YBouxpFUZRdsQRYj4m7RDBiEfe8RGy8cZokEAWq3eP9nm1gRSvmbo+7739wv6OZkVGxGTlyJD6fj9tvvz1te1lZGZdddhlt27YlLy+PE044gc8//zyTS1EURflxxIG/Y9xnCdKFJoYRBvlZ43lFsRlnSazo4O5PudcQwZHrVmISBpoZGRObF198kU8//bTOdsdxGDVqFHPnzuXxxx/n1VdfJR6PM3z4cNasWZOp5SiKovw4VmCC9w5GFGJYkZC4izcTTeprcI+rcc/xu+dEsK41r+BIrU4Sk/XWzMiI2JSVlTFhwgR+85vf1Nk3Z84cPvzwQ/70pz9x3nnnMXLkSObMmUMqleLBBx/MxHIURVF+PP+LFRYRhRjGcpHXtpZODbY/mqRFR7BFnzXuzyjW5eYVsDK2X7PThMmI2Nx8883079+f8847r86+OXPm0LlzZ4YPH167rbCwkFGjRjF79uxMLEdRFOXHUY6p8g9gxECExdspQKwRsXLcxIB3s97lweSD/FDzg9nvw1pGPoz4yDZxz4mg1bjXbEbUezbaP/7xD5577rntutAAFi9eTP/+/etsLykp4bnnnqOysrJlVycritJ4+ALTkkbcXT7SxQbPT28KNPBQ7kPMC8wj25fNL+O/NCKSjRWRELbQU2puvO4274iCZkC9WjaxWIwrrriCG2+8kb59+273mM2bN1NUVFRne3FxMWBccNtj2rRpDBkyhCFDhrBhw4b6W7SiKMr2iGLEBmzwXgo5xTUmHQREQNyU5+VZy5mXNY9sJ5ux0bG2ZY1YM+I2E8tIBMx7zWZGvYrNgw8+SE1NDbfddlt9XhaAcePGUVpaSmlpqVZVK4qSeb7FdGaW5pmSIBDButOksFNSot14zVP+pwA4O3k2bZJtjFtMxg+I4IjYiBUj6dNiQTWzKsh6u53Vq1czadIknnnmGaLRKNFotHZfNBply5YtFBQUUFRUtF3rZfNmk+u3PatHURRln5LE1NbIQ1+sGm8djbi5ZJtrvVQ71TwTegaA8dXjbZuaCMZ1FnDfZ2NES3qtxrFZark0uyrIehOb5cuXE4lEGDt2bJ19U6dOZerUqfznP/+hpKSEd955p84xS5YsoXv37hqvUfYJ2dnZdO/enYMPPhjHaVxpP6FQiC5duhAINLM/bZsSP2CKOKUTgFgg4i7z7eA84M/5f6bMX8ZhicM4LHaY2ZiNEZ24e5DEZbxCE8IIWBToUG930miot3/NgwYN4v3336+zffjw4YwdO5ZLL72U3r17M3r0aGbMmMEHH3zAsGHDACgvL+eNN97g/PPPr6/lKMpOKS4u5pxzzuHoo49udGLj9/vp0aMHubm5Db2UlkkSk4Hm7QrgYEQgm7opyWLZYOoIH8l5BIBrq6611olYMNLAMwdb8Cmi443dqNjsmNatW3Psscdud1+PHj1q940ePZqhQ4cyduxYpkyZQlFREZMnT8ZxHG666ab6Wo6i7JTc3FwGDhzIwIEDG3opO8Tn28mfz0rm2Iwp4hSRCQB52Kr+7f1t4rrR5uXO44vgF3ROdmZM1RizLxvrHsMcRwwjMJISLUWh1RihUbHZe/x+P2+++SY33ngjV111FZFIhKFDh/L+++/TrVu3fb0cpQWjD3OlDg7wDbbYUjLEJJssyfZHOLuFmQ/lPATANVXXEMoK2WJOrxsty3NdmeIphZ3lwAkZurcGJuNisz0XRXFxMdOnT2f69OmZ/npFUZTdZytm5LM0zUxhYilhjOurDBO8hzqJAYuyF/Feznvkp/K5csuV5hoyLC3mXke6BmRj3WciahXuteuWITYLNALZAvD7/fj9jS+1xe/3q3WhNB4czDyZKup2CHAwrjTpAJBNevcA4MFi027rsqrLaO1rnS5WfozI5HjO8V4/jhGys7Fi1sxQsWnmdOrUiZNPPpkDDzywoZdSh+LiYvbff38VHKVxUA6sxTwVoxjLI8v9LJX/Oe6+Gneb23RzRWAFL+e/TMAJMGHTBNuMU7LL5FixcLzzbBIYq6YLcMi+udWGQMWmmbP//vtzxRVXEIvFdn3wPiYrK4vWrVs3SqtLaWGIVSMTOLfXIUBcZnkYd1sFtbGYKW2mkPQl+VnFz+ge726Hokl8Rqwhbw81yXCrBloDRwKtMn6nDYaKTTMnJyeHnJychl6GojRuKkiP1cjfZgFsXEWslSBGRKqAGvgu+zumtzLx55s332wD/pJxFsCKltTXBDBzaxyM0PQABmX2FhsaFRtFUVo2DmZmjbSgka4B3tEB3pdYLW4CwG8Kf0PUH+WMLWdwUOVB5tyAu1+6Asj7EMaSycK45NpjLKWDMKLTjFGxURSlZVOJ6RgANq5Sg7VAxO2Vhc0sA0jCxvBGnmzzJAC3lt1qBCrinhdyj6vwXCcG5GPcZQXuqzVQkplba0yo2CiK0nJJYWI10lQzihGcILZLM9jMMamxca2Xh0MPU+Wv4uSakxkSHALtsBYQ2MLNMCbLzIcRmBz3czbQHWiTyZtsHKjYKIrScinHWDXS0l9SlKXxphR3ivtMxCgFm4KbeDzncQDuiN1hCz8lvVnqaES4RGzyMVZPgfvzIJpd083toWKjKErLJAmsxIiCjGoWF5hkowXc7bnY/mautfNw1sNU+CoYkRjB0MBQc4xcK4ytoZG6mSysNZPjXrsbJm7TAlCxaeZUVVWxYcMGIpHIrg/OED6fj8LCQtq0aUMwuL1eH4rSAGwGNmBjKRKTSWHiOGCEBqyVEgPCsCm5iUf9jwJwV/QumzQQwoiYH5vqLO/9GJEJmmsQBvpiRxA0c1RsmjnffPMNzz//PMuXL2+wNfj9fo4//njGjBlTO5FVURqUJGY4mrjHwCYFRLHpy5K2LPvd/mZTs6ZS6avkJOckjsw6Mn3UM9g052yMeInYhLHp1O1pMVYNqNg0e9avX8/7779PaWlpg60hEAhQVFTEqFGjGmwNipLGBswUTrDTN7Owrf6ljiYHKzKuZfMDP/C4z8Rq7nXuNQIi15H2NAGstSOiJSIjmWoH0KKewC3oVlsujWVeS2NZh9LCiQOrMNaHuMekPU2lu18SA6StjKQ758LkmslUOVWMckZxWOow21kghLWUpNGmY86p/SmutnY0yzECO0PFRlGUlsV6TLsZaclXhSm0FGtExCELWzfjus++jX7Lk35TV3Nf4D5zvrSyycaKjLefmnR+FqsmgLFqWlj4UsVGUZSWQwRj1YibDEwsJRfbvyyKsT68DTTdjs33VN9DzIlxjnMOA7MG2phMjPR+aGDca3FsdpvMtGnnvloYKjaKorQc1mFiMDLELIkRoBRGfAJYKyeB7e4chq8iXzHDmUEWWdwXvM+6zKRfmtTqBLH7crExmqB77P60OKsGVGwURWkpVGAKOKXZZgSbiSbpyClMsaWIjN9974dfJX9FihTjssZxQNYB1oKRPrcy9yYb2zsti/TU5/ZA20zeZOOlBdStKorS4klhUp0lBhPHiIsPmwAgFokUZUpyQCv4p++f/CX5F3LI4a6cu8x+sU4qsMWc0jlg21RnieH0pEVaNaCWjaIoLYFyYCM2YC+utHKM9SGdmFOY5AHPCGcn4HBT8iYArg9cT+eazuYa0g1ALJpc972kTntTn4OYhpst1KoBFRtFUZo7CcwIARGCaoyFE8DWyIjrLBebheYHfDC7ejZ/T/ydtr62TGw10YhHxHMNH9YiysFaSxKjkfk3LTRWI6jYKIrSvFmPEZgYtn1MGNuipgqbKRZ33wNEIR6Mc3PVzQDcFbyLwnihbTsjbrZsjAAlsSOfE9jkAD8m+6yFN89QsVEUpfkSBdZgYyp+jPB4s88SGOGRZIAIRkxy4Knyp/g69TUH+A/gipwrbHNOsM07wbrgfJhhaDKATWpsetJieqDtCBUbRVGaJw6wGtsNoBLb80wSANxpm1S6PwswYlQOZYEy7o7cDcCD4QcJErQTN/MxgpR0r5eHTQ4Q15zU3HSi2U/h3B1UbBSlEZNMJtmyZQvl5eWkUqldn5AhQqEQRUVF5OXl4fP5dn1CY8CbFCDZZgGM5ZLACEEE6wqTGIzr/rpvy31sdjZzbOBYTis4zVwziU0skPk0Uo8jn8XFJhlo3dC8X1RsFKVRU1NTw7x583jnnXeIx+O7PiFDdO7cmTFjxnDooYc22Br2iCTGfRbBPuhjGAsm4W6XkQHSaDPlvg/DV/6veDz+OD58PBR6CF+lz1gzMhog7p4v8Rqpr4m63yWpzx2AwgzfaxNBxUZRGjHRaJRFixYxa9Ysampqdn1Chujbty9HHHFE0xGbH7D9zyIY15gf25pGUqALMHUy3lk2W+GG2A0kSHBZ3mUMbjXYiEsltm4GbLwmgNmf674k4ywX6ILtwdbCUbFRlEaO4zikUqkG7ZrtOE7T6dpdgxEb6d7sHc3sdgOo7fScjYm3VGHEJgfmOnP5a9VfKaCAX4d/bYUoG5utJl0I/BiLR9xyuNd2MLGa/IzfbZNBxUZRlOaDg+l/JgF/sWzKSXebBTBiI21pXBdYLBHjl+W/BODO/DvpkOhghCjk+Y44Ji7jd68h3s0sz3EFQGfUqvGgYStFUZoPZZjBaGLFyHhnSUHOw2agFWCzy2LmnEeqH+HrxNf0DfTl2sJrjWUiiQVh0mtqgtguAgXu94gV1Rlbr6MAKjaKojQXYpikAAn0SzaYtPePed5LxX8+tdbHWtZyX5WZUfNYwWOE4iHrHpM06bB7jrczgHR4Druf8zEuNCUNdaMpitL0cTBxmips239v002fu0+SBGow4iPiUQM3bLyBSqeSn4Z/yojsEbb6P4kRmwpswWYc4zILYzsKyPjn7uiTdTvofxJFUZo+FZhYjR8jKpIpFsS6vPKwCQM+jIvNrb+Z78xnZnQmOeTwSP4j1r0WxrjKcrDpzlLM6U00kNHQrWnxbWl2hLrRFEVp2iQwQiPFlT5sgaVkhqWwM2ak5Uwr8zMaj3L1hqsBuL3odnrk9bC1M5XY4WpiLcXczzLRMw+brdYDfaruALVsFEVp2mwAtrjvvR0CyrE1MBXYgH0E23gzH6asn8JXya/om9WXG0I32HRmaT8j3QDAdnSWdjeSbRbENNvUVOcdomKjKErTpQJYi+1vJtaN9CWTZpjSJFPiOVuAXFjmW8avK34NwFNFT5GdyjYiVYARkJDnvBz3OknPz6DnuG5oqvNOULFRFKVpkgC+w7izpCGmWBySqiwxmhxMFwHJIAuAU+Hwi62/IOpEubDgQo4tOtb2UavEuOLEJebtQCDfI5aSH+iKpjrvAhUbRVGaJhsxFopMxJQMM+kGkMKIRja2VibmHhuA57Oe5934uxT7ipkanmonbOZgizNz3J8J970ImMR0gpjYT5uM3mmzQMVGUZSmRwWmpiYLIyDV7kvcZ5KGHMbGcMBYLjWwKbCJCRsnAPBQm4doH2hveql5B57JsDWxhryjo8NYl1w3WvQEzt1FxUZRlKaFZJ/FsTUwMnkzgLFApF1N2D0GbI+zGrj+u+vZmNzI8JzhXNT6Ils7Iw06JfhfhQn6iwDlYsQG93N7jGWj7BIVG0VRmg4Oxn22FTuGuQYjDpKWLDNmxLrJwYiGO6lzLnN5LvocYcL8vuD3+FI+I0JBz3dIVpl0c5a+apIcINlsndCkgN1ExUZRlKZDJcZ9FsC4tSIYl1oQY2nInJosrHXjx4hSFCqo4Ir1VwBwT5t7OCB0gBEU71w6mW8j7rgq7CROmcKZwNTU5KDsJio2iqI0DeKYNGdxd0WxwfwARmTiWKHAPUbiL8Ctm25ldWI1g7MHc33R9cYqEfdbCFtbI6MEQu7nfPc7fe6rGGib0bttdmitq6IojR/pfVaBeeiLG0tSnmPYppkyLTNEWruaDxIf8ETlEwQIML1oOoFEwHYWiHvOyXV/yrhoKQxNYIWtM1bQlN0iI5bNW2+9xf33388nn3yC3++nT58+PPjggxx33HEAlJWVMXHiRF5//XVqamoYOnQoDz/8MAMGDMjEclo0xcXFHH744RQVFTXYGrKysujXrx/Z2VqIoPxIyoDvMeJRjXGRVWCD+VJDI24vGYzm9kGrqqni5z/8HDAtaQaGB1pLRro2exttyjXD2PY3KffVGTtSQNlt6l1sfv/73zN+/HjGjx/PHXfcQSqVYtGiRVRXVwNm4t+oUaNYuXIljz/+OEVFRUyePJnhw4ezaNEiunbtWt9LatEccMABXH311bX//RsCn89H27ZtadVK03aUH0ENRmgSmJhMBOs+k8B+HDssrRVGjKQeJgC3VtzK8sRyDg4dzK1tbjXbJfgvnQG87jTHcy3XBVc7PqAjmhTwI6hXsVm5ciXXXXcdU6ZM4brrrqvdftJJJ9W+nzNnDh9++CELFixg+PDhAAwdOpRevXrx4IMP8thjj9Xnklo8rVq14qCDDmroZSjKjyOF6RJQhREbmUsjYiCuM6mnkeLNHPt5QeUCHt/yOAECPNvhWUIJt2JTBqx5G2mmsF2hZQqnuO2SGKvGO7VT2W3qNWYzffp0/H4/V1555Q6PmTNnDp07d64VGoDCwkJGjRrF7Nmz63M5iqI0ddZjUp2DGCGowvQuK8eIyVaM+6saIxw12NTkMJRHy7lk4yUA3Fl4J4fkHmKsE/HoRt1riqjESJ+Bk4NNDmiHGSGg/CjqVWz+8Y9/cOCBB/LSSy+x//77EwgE6N27N0888UTtMYsXL6Z///51zi0pKWH16tVUVlbW2acoSgukHNPRWeIpNe77LGwgXywZV1yowYpPAK6ruI7VidUMCQ3hlna3WGtFRjkXYS2jXIyw5GLcZ7nuOhz3fRc0pWovqFc32rp161i3bh0TJ07kv//7v9l///2ZNWsW48ePJ5FI8Mtf/pLNmzfTs2fPOucWF5uJQ2VlZeTn1+3TPW3aNKZNmwbAhg0b6nPZSgvBcRzi8TiJRGLXB2cQn89HMBgkKysLn0+d/9sljqmnkVYzkjEmKc7iRvO6z0LUTt0kCa+tf40ZW2YQ9oX5Y+c/EkwEzXk12MFnfuxTUD5L7Ea+NwV0QBtt7iX1KjapVIqKigqeffZZzjjjDACOO+44Vq5cyeTJk7n22mt/9LXHjRvHuHHjABgyZEi9rFdpWUQiEf75z3/y8ccfN6jgFBcXM2zYMPr06dNga2jUpDBC41onta6tSuwAM8k2k7HNPmxwH/i+8nvGbTLPiweKH+Cg/INsS5oo6V2dZUia1NA4mDiOdAsoQmtq6oF6FZs2bdqwdOlSTjzxxLTtI0aMYO7cuXz33XcUFRVRVlZW59zNmzcDNGiKrtK8iUQivP/++zz99NNEIpEGW8cBBxxAx44dVWy2h4OJ05RjHvQV2EJNsG4z6XcmfzNsxcRXssEJOly65VI2pjZyYvhExuePN9aMt37GHQdda63EsG65BLajQA6m0aa6z/aaehWbkpIS/vnPf+5wv9/vp6SkhHfeeafOviVLltC9e/ftutAUpT5IpVLU1NSwZcuWBhWb8vJyYrHYrg9siVRgijdlFLNkhrkNNMH9nI2dVSMtaSqBGPy25re8VfkWRVlFzOg8A3/Kb9Og5fEibrkc7KhosN0DJEu/A7ZFjbJX1Kten3766QDMmzcvbfvcuXPp2rUrHTt2ZPTo0axdu5YPPvigdn95eTlvvPEGo0ePrs/lKIrSlIgB32KtFj+2uFIyxsTSCWBnykBtvObz+OdM3DARgGc6P0OX/C4mEaDAvW61e768arC90aTuRgSpEHWf1SP1atmccsopDB8+nCuuuIKNGzey3377MWvWLN555x1mzJgBwOjRoxk6dChjx45lypQptUWdjuNw00031edyFEVpKiQxfc/E4NyC7bQcx1owktos50QxApEFNYEaztt8HlGiXJZ3GWcEzjDHSOFnK/daee75Kay1Ix2iJfEgG+iOus/qkXoVG5/Px+uvv86tt97KXXfdRVlZGQceeCDPP/88559/PmBcaW+++SY33ngjV111FZFIhKFDh/L+++/TrVu3+lyOoihNAYnTbMUOQJOssyxs4aYUXoLNIqvGCFMuXL/pehZHF9Mn1IdHOj9ihKgcIzJZ2ASApOc6Uk8j1o3EdDT7rN6p93Y1rVq14oknnkirrdmW4uJipk+fzvTp0+v76xVFaWpsxVg1Uj8j0zAlrCWDzGRks2Sl+TBWSgBmbZjFU5ufIuQLMbPHTPJy8mzdjfQ4g7qZZ9LAM4ztg9YKdZ9lAB0xoChKw1GFERpJYd6KEZUI1qWVwrrVvCOb3TTnFb4VXL7lcgAeKnyIQcFBZoc00JREAK+IbW98AO52zT7LCPqfVFGUhiGOGe8cozaTrNa6kSyxbTsFOBhhcOtuYskY56w6h62prZzW6jSuLr7aCJaIFVjxkkLOELVTO2vn1/jc7dr7LGOoZaMoyr5HEgK2YB76XjeXFGmKWGyvU0AAKIeJqyby75p/0yPYg+ldp+ML+GyzTm/dbtw9X2p0Ilhhy3ePL8IMRVMygoqNoij7FhmEthUjHhXYQkoZ8SxNN8WikVYyKfenH17lVR6rfIwgQV7u8jLFAVcppDZHija91ou331lrbOpzPsaq0e5BGUPFRlGUfYeDGYS2ERO4B5sRJpM1ZS6NDyM4MolTrJ4wLI0t5edrzDC0qe2ncljiMCMc0sJG2tyIFSSfg57ridsuB+iKPg0zjP7nVRRl31GF6XvmDcjLpEywVo1YJpLyLIkCSajaUsUZ68+gPFXOWYVncU2Ha2zgX4aigbFmajBi4mCHr/nda0ryQDE6eXMfoGKjKI0Yn89HIBAgOzubVCq16xMyRCgUIisra9cH7owaTIcA6QAgBZtV2E7LUqgp2WO5WHeaH5yww7jvx/F/0f+jb7CvidP4fLZw04/NLkt6rivile/5njjGldZ+725L2T1UbBSlEZOdnc3QoUNJJBLE4/Fdn5AhOnTowH777ffjLxAHVmOD847705uCLBZMlfsS11qA2i4Cv930W16oeIE8fx5/6fAXCmIF1gKS4xKku+PkvdTtxLB1NV2wTT6VjKJioyiNmJycHI477jiOPPJIHMfZ9QkZIisri7y8vF0fuD0k86wC2xZGamXkQS8xmizsTJogdoJmCj6o+oAJ6yYA8Ieuf+CgVgfZa0jmWQqbdYb7fdKEM+F+b7a7vxPaZHMfomKjKI0Yv99Pfn5+0+2GnsLU0mzBPOSr3G1RTIKAZI5JtphknonIuMH9b6u/ZcyaMSRJMrHtRM5pfY65ftD9ngL3uilqh6fVxmayMJ0GpFNADNOORqeZ7FNUbBRFyQwpzFjncoy14XPfi7tMBMHBdgkQt5oIkx9qnBrOWHsGG1IbODH3RCYXT7ZxnyxsXEZ6mYn7LYxt2iluNAeTENABTXPex6jYKIpS/zgY8ViDbUWTg42viCB43WfiChO3VxCcmMNl311GaU0pPYM9ebHbi2T5suyQM2lpEyG9M4CkPUuYK4lJNghj3Gf65Nvn6H9yZbdxHIfy8nLKyspIJpO7PiFDZGVlUVRURKtWrUwmktL42IJtrilNsWSGjKcws3Z8gA8jRhKrcVOYH9j0AC9sfYF8fz5zes6hTXYbIxwOdkaNpDR7YzUxd3+Y9OLODtjCTmWfomKj7DaJRIKPPvqI2bNnU1FR0WDraNWqFT/96U85/vjjCQT0n3CjowITp5HMs6j7ysIOLBP3WSXp45olmywAb9S8wa82/AofPv7c5c8MyBpgzhHXmTTU9HYYECGRQWgyzyaFsWhaZ/TOlZ2gv6nKbpNKpfjqq6947bXX2LBhQ4Oto3379hx00EEMHz68wdag7IBqTC1NDBNzkbhJCpuKLIkBYAsvvXGXGvi06lPOW30eDg6T2k/itFan2WFqDkZYakh3nUmSgcSAJMkgDyM87dA4TQOiYqPsMalUqkHTcBvyu5WdIEWbEWzjTLfqvzYZYNs+8znUWjLSD+07/3ecuupUqlJVXND6Am7tcKs5Jol1nYmFJG43SG+26XePjbqfO6P1NA2Mio2iKHtPFJMMEMdYHxFsU804xpoREZCiTnF95VA7obOKKkYtG8WaxBqOyj2KP7T/Az589jregs0Q6WOdExiBCbjvE+4xXdF6mkaAio2iKHtHDNMdoBIbj5H2MZJ9JokAIjLl7s8wtfGaZCzJBesu4OPIx+wX3I/XerxGdm62uaYYszVYd5zEbryzaaSIU+prOmHcaEqDo2KjKMqPJ4axaMoxcRGJvXiba0qcRNKUpfkmGGGIgZPtcN3a65hdPpuirCLe7PUm7WhnBERcZzGMBeR1nSWw4iIxG0mxboWpqdE4TaNAxUZRlB9HHJPeLJZHJXasc8r9HMLGaSR7TObKVGJEIQkPr3mY3276LSFfiNe7vE6/UD9bPxPwvMR1luu5Zo57XRnxXIMRms7UjREpDYaKjaIoe04CO2lTYiniuhJBEItDkgQq3eMkXTkM1MDM6pncsP4GAP7Y448c0/YY23IGcwzSrUc6AXjrdyQWJNZPAabBpj7dGhX6v0NRlD0jgXGdbcIIhgiIuMnAxlTAipCIgQTus+G98ve4cPWFADzQ8QHODZ9rzsl3j4th4zQSq5HJm1IUKsPXCjCWUmc0IaARomKjKMruk8CkN1djHvAxjOtMijQrMA96sTykbQykpznH4JPyTzh91enEiXNd0XVMbDPR1uHkYxMM5PxsbBq1fA5iREZErgM6CK2Roh5NRVF2D7FoKjAFm9XYGTEST/EOQIu6x0axLWpygDh8k/qGk1efTGWqkvOKz+Oh/R4yKc7uOAGinu+VZIAQJlaT514nTHornA6YhAClUaKWjaIou0aSATZhLAoRDtz3YlkEsBX+YARKEgHctjRrIms4YekJrE+u54S8E3i2w7P4s/zGmoljhMbt+FzbN026AogFFce66UKYcQFt0cyzRoyKjaIoOyeOsWhkTEAS4zoTYZG2NNLyP4oVm1xsSnIVbPBt4MTlJ7IqvorDw4fzWo/XCBEycZk8bI80uZbMuhFrSdrTyLEpjCB1QjsENHJUbBRF2TEiNOUYl1kU83CXOTFidYgQiQtMBqFJmnMVbM3aysnLTubLyJf0z+nPW33fIj+Wby0VKfwE21NNCjLj2BTnOHaUdD6mQ4CcpzRaNGajKMr2iWI6A2zC/lmag7U6pNdZNrZjgLjYtmBiOq7lURms5JTlp9R2B3in5zsUh4tNMF8y2SqwXQDEgvKKmmShxdzvCGNSnDXzrEmglo2iKHWJYHudSUflSqzrTKwXsWC8MZQ80tKca8I1jF41mo9qPqJroCvv7fcenehkLZkwdjKnd0yS9FnztruRRIQsoCPaiqYJoWKjKEo6NRihkdYwKWzsRIh6Pku9i7jNPK6zKFHO+OoM3q96n47Bjiw4YAG9nF5GsKoxlo0kGOS47/OwgiaxmTimK4CITztMUoDSZFA3mqIolipMHY00yvRhp11mYYsrJSFAAvZJoAwrQEGIBqOMWT2GuVVzaZvVlvl95nNAqwNs8WXC/T7poSZdAMA21xQhSniu3RFNcW6CqGWjKIrNKluLTV2W6n1pmikuNT/myRHBdnjOw2Souf3QYtkxzv72bN6ofIPirGLe7fkuBzkH2fTlPIxgVZNuMUljTbGWJJNNXG0FQBv0z+QmiIqN0mIIBoMccMABHH/88USj0V2fkCG6detGhw4dGuz76yBNNNdgHvQSm5G4i+O+ZKKm1L8ksVlgIiA1EIvFOHvl2cwpn0NRVhHz95/PoKxBdky0NNHMwghILraHWhxrSYUwrjNxzeVgrBoVmiaJio3SYsjNzeWUU05hyJAhpFKpXZ+QIcLhMF26dGmw76/DJuB7bFdmaRMjrWXkKSGuNLAD0pLYWEsQotEo56w6h9mVZlTA/H7zGZQ/yBxXjbGe5PpgRwPIIDUHW2cj/4uimILNLmgtTRNGxUZpMQQCAbp27UrXrl0beimNgxRGaDa7n8U1JiLiuD8l8C/WjqQ552NSnJNALkT8Ec5ceyZvVb5lXGfd3+WQrEPMtbPc4yVzTZDOANnuZxn5LCnQIYzFpF2cmzz6v09RWiJJYCOwHvNgl4SAmPsSl1YVRnzEqpFsMDBPD3d+THVFNT9d91PerXiXtoG2vNfzPQYGB9qqf+kGEHavKxlnKff6YAVNxjzLd2rRZrNAxUZRWhoJYB0me8zBzqCRzgBizYi4SHxGJmX6sA//bKiIVDB69WgWVi+kfaA98w+aT//c/ub4KoyQtcbGXgS5hg8jMJJ1FsR2fu6KtXqUJo2KjaK0JKShZhQjNAGMIMgY5wTpVfsSR5GZNA7GdZYPhKEsWcbJ357Mv6r/RadAJ+Z3n0+/7H7mfBGwSuwgNREbETSw7jpJe05gEgO0O0CzQsVGUVoKNcB3GEtDAvYiBjKbRtKd3eFmtZMxPZaMZJWtj61nxKoRfFr9KT1CPZjffT77+/Y3bjGp7JcssgDpFlINNqssha3hkWSDztiu0kqzQMVGUVoCFRjXWSXmIV6DfbCL1SJuLpmCKd0DYqR3BwjD6urVjPh2BF/FvqJPuA/v9XuPbqFuRmiq3OPF/SUZZ7nYTDSZrClWVD52rEBn7BhopdmgYqMozRkHU2z5g/vZ2+cshK3al0r9LM9xMiEz6l6jwOz/MvYlJ64+kTXxNRycfTDv7PcOHbLduiERsPg210xhCzq9a5M2NzUYMeqCCk0zRcVGUZorKUwSwHfu+wqsdSLpzWCEZ9uuzdJ5GYzIbAXKodRXysnfnMzGxEaOyjuKN7q8QVGiyNbkgLVocrCdmqUzgDd9Oul+Ryv3+1RomjUqNorSHElgRGaL+17iL97Kf4nDyICzFEZ4xLUlwXm3O8CC9Qs4bd1pVKYqObn1ybxywCvkkmtETDLO/J5zHM81ZKRzEDubJowRPRGagnq8f6XRUa+NHz788ENGjBhB+/btKSgoYPDgwUyfPj3tmEgkwsSJE+nUqRM5OTkMHTqUv/3tb/W5DEVp2cQwrWekZb8fkwwQwXZr9jZQkGp9SYEOYERHhAB4ueJlRq4dSWWqknNbncvrvV8nNyvXnFPonhPFZrWJu07YtrGmtL8JoULTQqg3sfnss8844YQTiMfjPP300/zlL3/h0EMP5dJLL+XJJ5+sPe7SSy/l6aef5t577+XNN9+kU6dOnHTSSSxatKi+lqIoLZdqTGrzJszDvBwjGtLXrAYjQhXuS+bSOJ5rBDAP/wpzvce/e5xzl55L3Ilzbdtreb7984QiIXu8jGnOxlgsksocwU7glKaacWyLm1ygOyo0LYR6c6O99NJLJJNJ3njjDfLzjeP1xBNP5LPPPuO5557jF7/4BZ9++ikvvPAC06dP55JLLgFg2LBhlJSUcOeddzJnzpz6Wo6itDy2YHqcVWMe5jHsKAAZPia1MpIRVuOeK8WckiCQDU6Ow21rb2Py5skATO42mZs73Ywv7jNCJDEeSB9wFiJ9Hg3uWrxNNUFjNC2MerNsYrEYwWCQnJz05PjCwsLapodz5swhGAxyzjnn1O4PBAKce+65zJs3r0E78SpKkyWJsWTWYWMlMYxVE6V2YmadYk0f6Z0DpP4GiKViXPTdRUzePJksspjRfQa3dLkFn99nBEYGmcXsObUWjXyH1M6IKEktTwDTGUCFpkVRb2Jz8cUXA3Dttdeybt06tmzZwtNPP838+fOZMGECAIsXL6ZXr17k5uamnVtSUkIsFuObb76pr+UoSssgjulv9i3mQb7R/RnFxmeqsK6zKmxLGK8w5GDEYStsjW7llC9P4U+b/kSeP483ur3BxeGL00c2S9GnjAcQN5kIm/clmW9+jMusGyo0LZB6c6P179+fhQsXcvrpp/O73/0OMPNDnnrqKc4991wANm/eTFFR3VmuxcXFtft3xLRp05g2bRoAGzZsqK9lK0rTJYKJz0QwgpGNEZggtsWM/Ib7MO41SYGW+hrv/nxYs2ENP1nyEz6LfkaHYAf+2vev/Ffuf5mEgQpMMoDPc46DERxxm8mIgiS2Y3MCI2Y+jOss/W9NpYVQb2KzdOlSzjzzTEpKSnjqqafIyclh9uzZXHnllYTDYS644IK9uv64ceMYN24cAEOGDKmPJStK08Q7VRNs1+QajKBIRpl3PID4MKRbQBI7ktn1fP+n5j+cuuZU1sXX0TfUl7f7vU2vnF5mZwHpPc4C2IwzcZHJ7JtsjKUj2yXTrQvagqYFU29i86tf/YpgMMibb75JMGgS+I8//ng2bdrEL3/5S8477zyKiopYtWpVnXPFohELR1GUHeBg5s9swHZglhTiBHYeTARjicSwcRkvMsp5i/n4ZuRNzl16LlWpKo7JP4bX2r5GseP5ffT2OMvCiI60sgm7+2UGTtzzvSlM/U1ntKlmC6fexObzzz9n4MCBtUIjHHbYYbzwwgusX7+ekpISXnvtNaqrq9PiNkuWLCEUCtG7d+/6Wo6SIbKyssjOziYUCu364AwRCoXIymqBIxulUFNqYPIw1kk26dlgYnlINwAZiObzHIP7swB+u+a3/HLjL0mRYmzbsTyz3zNkJ7JN14AAtm2NNOVsjRUS6QqQ8hwTxrrQghiLpuH+uSiNhHoTm44dO7Jo0SJisVjag+hf//oX4XCY4uJiRo0axV133cWsWbO46KKLAEgkEsycOZMRI0aQna2DKxozWVlZHHzwwVx88cVUVlY22DoKCgro378/fn8LGkYfwaY1y8CxBFYQAljLRnRY0py9qcgRanucJZwE1313HU9sfAKAuzvdzZ3d78Tn85lzCrGFmeI2w/Md0uJG4jGS3ixxoyA6+Eyppd7EZvz48YwZM4ZRo0Zx1VVXkZOTw5w5c3jxxReZMGECoVCIQw45hHPOOYfrrruOeDxOr169ePLJJ1mxYgXPP/98fS1FyRBZWVkceuih9O/fvzadvSHw+/3k5ua2HOtmC8ZtVo4RAfnp87ziGCGKu/ukviaCTXMOYwRhK2zN28rZy8/mna3vEPKF+EOnPzA2f2x6TzQRqRxsQaZkmHnHA8gcnKT70wcUA+3RhlhKLT7HcZxdH7Z7vP322zzwwAMsXryYSCTC/vvvz7hx47jiiitqHww1NTXcdtttvPDCC2zZsoWBAwfywAMPcOyxx+729wwZMoTS0tL6WraiNE5SGJEpwz7gHUwsRtxYMs4ZrOBIppnEUbyxEgeWrV/GqLWj+CL2Be0C7Xit72sclX+UsZIkPVkEJ4Z1h6Uw8aFsz3c4GLdaCjsyoAhohwpNC2Rnz+Z6FZt9hYqN0uyJYYRmM+bBvgXzwJfWMzIewDuXJomJ54j4yOcQtVlg7299n7O+PovNyc0clH0Qb/Z7k15hN+MshRErcctJ1lrQnk8ck7osCQnSYFMGsbUBOpA+/llpMezs2dyCnN6K0kSoAFZjZtBIfEYEQOppZCBZBGPd1JDe3wxsxlkVEIUnv3+SEV+OYHNyM6e0OoWPOn9EL18ve7zMsMnBiomMBpBri5tNuhRIGnYI6IgKjbJDVGwUpbGQwrSdWYMNwgcxD3X5TZWOyj53n2SLxTFWDO57IQDx3DhXLbuKq1ZeRcJJcFOnm5jTbw6FrQvNOd7OACJiYUywP9/9DklpFgFKYkSvADv0rBgVGmWHqFdVURoDcUyrmfUYMdmKzSorx2aDRbB1M9J/zMEKgmSctTLHr4+vZ8yKMfyt4m+EfCGe6fkMF3a40Fw3GysiKazrLOZ+rwiaxHFknZKlJjGhzmjnZmWXqNgoSkNThWmiKa4wecgHsX3MpAWNDDgTi0bqa8TFFqZ2jPMngU/46dKf8m3sWzoHO/OXzn/h8JzD62acpTznJbGFofKdQtI9Voo2WwOd0PYzym6hYqMoDUUKY8H8gA3wBzHBdsk+82aYS5dmMCIjbWq8Pc4ACuCFVS9w6fpLiTgRhuYP5dU+r9Ip2MlktklSgbSxkZHOEqeR68rsGW+jzdbuOYWY+IyWxim7iYqNojQEcUy22Xr3s0y5DGISBHzYws0YJnYihZRimYQwYiBta8IQT8WZuHoij/7wKACXFl3KEwc8QbbfVYVWpNfKiKsu5X6WzgMSq4lhLJdsbKJCDsZ1pk8PZQ/Qfy6Ksi+R7K11GHHxdmuW7sl+bPqyiE4lRhi2tSQk42wr/JD4gXNWncMHFR8Q9AV5rOtjXBG8Al/KZxMMpEHntoWacfdakmkmbjYp2pSU6FaYYs0WUk+r1B8qNoqyr0hi3GbfYcREBES6NYfdz17XmbctjNTBiEjJb28Q/sW/OOuLs1iTXEOnYCde6fMKRxYcaY6X0QAiOCIkIm4yrdPbSFO6AfixiQSdqE08UJQ9RcVGUfYFUYzLbBM2a0we5pJKHMF2CJDW/V4LQupgEpgMtdbg+Bye/OFJrlt1HXEnzpE5R/JK31foFO5kzsnFiItkj0nGmRRkijtO6mskCUAyzsTCkhHOmtqs/EhUbBQlkzgYYZACTbEUtmJb80uzTGlHI1ZMBTbFWc4FIwpRqN5azRUbr+DPm/4MwLUdrmVKqymEEtu0WA54ru/NOJMkgW3dZhKrkaFnHTGuOkXZC1RsFCVTJDDtZn7AWBNlmAd+FUZssrHNMqWORjLERJQkQcDBPvB98HXoa8766iw+j31Orj+XZ/Z7hvPanmfEYgt2aiZYS6YAWwAawxwrqczZnu357vd1wPQ40/EASj2gYqMomaAaMxLAW6Gfhc0gkxqZBLa+JhsrQAnSJ2Judj+HYdamWVy6/FIqkhX0CfbhL73/QklhifkOP0aU/BjhkPPjpNfw+DHxF2k708pdoxSKFmDERhMBlHpCQ32KUp+kMBbMamymlzTQTHleYGMo2aS7ziRAL7gV/LGKGNctu46zl55NRbKCs4vP5t99/k1JvCQ9qUBiMRJjiXvWAnV7qIkLrQY7HqAjKjRKvaKWjaLUF1FM7Yy4zSQJIIYREWk3s22dS4D0KZtRjKutFbW/oSudlZy77lz+VfMvgr4gD/V4iPEdxptBZzIaWpIBvDGePGwWmwiPFI9u6zYrxGSc5aGJAEq9o2KjKHuLg4nBfI95sAcx1kUUE2B3sOnLcnwV9qG/7W+hxGq2Aq1h9tbZXLzsYrYkt9At0I2Xu7/MEe2OSE9hFhFxPNcTwZH4jxSGRjGC4l1jFmaqpnYEUDKEutEUZW9IYCyZb7HtZyKYGEul+14aXQoSN/F2AIiRTi7EiHH9suv56dc/ZUtyC6OKRrFowCKO8B+RfrwkFuRiMtykRiZBusvM5/kp1pAPIzbdUaFRMopaNoryYxDr5AeMwASwxZHeKZbiSpNEAUkMEKTuJYpxtblxluXR5Zy79lz+Xf1vAgR4oMcDTOg4wbjN/O71vJ0GZE3Z7nfUuNdOYVOdk9hxBTIfpz2m35nGZ5QMo2KjKHtKElOcucn9LLGXKmymVwobqBdRkPiNJAMIPoxbazMQgJerX+by5ZdTniynR7AHL7Z/kaHthlrLJIixYmQcgGScSTKCJB7kYmMzWRghkzRnB9PfTAs1lX2Eio2i7AnV2E4AQeysmUqM2MiDvxrzsJfW/2B/2+IYSwbSamGqc6uZsGIC08qnAXB60en8Yb8/UFRTZK7f2rMOETAZDZDACpy41YQUtpGmrKMTdtSzouwDVGwUZXfwWjMxrEjIrBnvDBoplKzAdkmW7gBynCQVFJljPqv6jPO+OY8lNUsI+UL8pttvuKrTVcZtFsCOfpauA2LJSF2OzKWR2p2Y+71SECrv2wFtSHe/Kco+QMVGUXZFBFug6cNYLSGsmICxLsSa8MZEpHbG8WyD2n5kzlaH30V/xw3f3kDUiXJg+EBebP8ig1oNSg/oS/cAqZXJom4tTtA9zsHOnhG3nYOpnWmDpgUpDYKKjaLsiCSmQHMjxkUWwrrNZJqlJAFIHYu4zmRMs3RtjlDbPFMe9htDG7l09aXMqZoDwGXtL+ORHo+Ql8qzvdPkN1QsowL3eyPYGTgiPNJWRroPiHstF5MIoKOblQZExUZRtodYM5KWLG4qsGMApCATrOuqCpsw4G2emY1xg1UC+fBu+bv8bNnP+D7+PYX+QqZ1m8bZnc6218/Hus0k6SDuXiuEddnlkF5j452omcB0A2iHpjUrDY6KjaJ4kUaW32MEx4cRiCDm4e/tZSZWhRROihWT9BxbgK1ryYPo1ii3rb+NhzY+BMD/K/h//Lnzn+mR7GFHMIMdLxDCiJi3K7McI61uJN250F2XvNpghEbTmpVGgIqNogg1GJGpwTzg8zCuL2kDE8E82OW9tOuXDDARgiyMxbEJY+m47V8WxxdzwdoL+DTyKVlkcXfXu7m1y61kkWW+R1rUgG39L0IiCQfeAlEZES1xHLGuCoG2pGevKUoDo2KjKF5rJoWxZMCIThU2dhJ334N1ocnsF2mw6R3nXGCu5fgcflvxW25adRMRJ8J+wf14vtPzHNHB03LGPbY2oO/tcSaFn36M8IEd0+y4xxRjhK8dJj4j61SURoKKjdKyqcGMaa7APLS9w8ykJYwE5Cvd9zJ0DGwqsyQT+LAP+hB853zHJcsvYV7VPAAubXcpD3d5mILKAmMZiXj43fPcwWi1IrJth2aJ34iYySgBB2PJ6FgApZGiYqO0TJLY5plga1YkvVncU/Jw97aGkVYxSc+2LIy7rMr9HIZZm2dx5Yor2ZzcTJusNjzd62lOb3u62S+xoBDpv4UiIgn3WiJ43lhMDNt+JoJxvbV3f2o3AKWRomKjtDyqMF0ANpJeLxPHuNMkhbgSY2l4J1V6kwBEmCTTKxuIwZbqLVyz+hr+vNmMax6ZP5I/tPsDnXM62+tkYywXaZYZJD2FWVrSyCC0uOc4MFaMWDPqNlOaACo2SsshgQnab8G4qiSwL1lfCeyDXoi4rxDpLi2xZCrcz9nmWvOj87lk9SV8m/iWXH8uD/V4iCvaXYGvxmdcdtJNAOx4AT822cBrmUjcRopDZUSArKMQdZspTQYVG6X5Ix2av8NkfYEt0pS5MhGs60z6mXldZ1JD4/Nsk3kwNVDtVHPzdzfz2x9+C8Bh4cP4U/c/0ae4jzlWZs54h5yJKy4X27tMpmqCzTyLYS2gKqzISFq1ojQBVGyU5k0M4zIrxzzMc7APfGmYmYOdZilV+eIak35mYvmUYywMqYMJwv9U/g8XLb+IpbGlBH1B7up0Fze3upkAAVs7I2Oat53SKcIiIpbjrk06FEjHAInHFGLaznhde4rSBFCxUZonDkYYvsMIjoiIjFwOY2Mk3iQAEZka91ip4IfamIwMHYsEIty14S6mfj+VFCkGhAfw3AHPMShvkPmuraRnnEmqcp57HRnLLJ0GJHVaEhS87f992G4A2ttMaYKo2CjNjwjGminDpjNLtpk0zIxjRKea9PoZ6WcmUzS3YqwLsWRcK6V0UykX/XARSyJL8OPnlja3cHfbu8nOdtUqiLFGKth+xlmu+13SU03azIhFE3OPSWCsmXZobzOlSaNiozQfti3OjGIe+lKkKZMqvdaDN51ZXGYScPfEZADIhmgoyn2r7+P+TfeTJEnfcF+e3e9Zjsg6whwbJb2zc777Pua5ruP5me0eI+1vWrk/C7Gut/boSAClyaNiozQPvOnMQWzAP4URC+mCXI6xYsLYh37WNvtbUceSoQZKI6VcvPJiFtcsxoeP64uv59fdfk1OTo69ljTPFGERKwasGCWw3QGk/b8kJoh148O0nClGkwCUZoGKjdK0SQAbMCOVpTGmbM/GBujloS4/K7E9xoKenyJUuOeHIVIZ4d5N9/LgxgdJkuSA8AFM7zCd/5f//6wLTkQlhU1EkEr/JHbImYxrFhdaNjZpoADbcqYdWjujNCtUbJSmifQwk3TmLIx1I92ZJRlA0obzsYF1sVgkiA+1dTK1YuQKzj+j/+TnK3/OF9EvjDXT7nru63kfueRa11sSmy6dgx0vIK3/vUgSgtTPFGKz0/wYa6YNWjujNDtUbJSmRxQTl6nAuq2qsUWSMgYZzAPfj632j2MtGbE0pKAyFxNnqYZqfzV3rLqDhzc/jINDn1AfpnedzlHho2yNTD5GrGqwwXtxj+VjuwzIGiRZIYkVmJj7knEAEuNRlGaGio3SdEhiEgDWYK0GSWmuwDbErME8tL3TMmW6ZjVWjLyWjOzLhYXVC7n8u8v5JvYNfvzc1Okm7mp/FzmxHBvIl5hOIcaiimOtG0k0EJdZHjYmFMRaNmLVdMCIjf42Ks0Y/eetNH68HQCqsW1lKrE1KxJv8R7vTXmWLLMwtjJfKvdd99vWmq3ctO4mpm2aBkD/cH9mdJzBkDZDbAZbDXauDZ5rSrdmsWJEcOQYETxpsimWVxe0gabSIlCxURo3MeAHTKYZmId9AGPJxDAPftnmjcmIxSJjnaWvmPQZg7TBZm9sfYMr117JusQ6gr4gt7e/nVuKbiGUFbJiFna/Yyvp7jjc60qqdAI730ayy2LuubKvrfvSTgBKC0HFRmmcJDEZZhsxgiEB/QDmIS9tZsAG6mWui2SdSUdmmUUj3QCkFiYJ31d8z7XfX8usLbMAODzncP7Q9Q+UFJdYKyqFzWoLYadpSvabuM7ATunM8aw37F5Hstakr5l2AlBaELv1z33NmjVcc801DB06lNzcXHw+HytXrqxzXCQSYeLEiXTq1ImcnByGDh3K3/72tzrHpVIpJk+eTM+ePQmHwwwcOJBXX311r29GaSZUAsuAle77ave1GWONyE9xh0nsRTozV2IHkIkYBDCi4wbmnZTD9K3T6fd1P2ZtmUWeP4+HOzzMh70/pCRQYt1sUvsio5fBDjqThppxzzEiSt7amZjnnO6YWI0KjdLC2K1/8t988w0vv/wyRUVFHH300Ts87tJLL+Xpp5/m3nvv5c0336RTp06cdNJJLFq0KO24O+64g7vvvpvx48fz9ttvc8QRRzBmzBjeeuutvboZpYkTBVZjhGYLRkBiWItABEUyvqqwDTbFsvBmmFVj/4V7BOfr5Ncct/w4Ll1zKVtSWxiZN5L/K/k/rmtzHVmOm3MshZe5GCslgnW/CUGMG64A46YTl5g36y3knt8V6IbWzigtFp/jONsOnq1DKpXC7ze/tc888wyXX345K1asoGfPnrXHfPrppwwaNIjp06dzySWXAJBIJCgpKaFv377MmTMHgPXr19OtWzduueUW7rnnntrzjz/+eDZs2MBnn322y0UPGTKE0tLSPbpRpREjWWbfYtv9+7BpwQGMtSJxkyjmwS/1LJsxD/Vcd1u5e6wIhuvmivliPLj+QX694ddEnShts9rySOdHOD/vfHw5PnOOzKfxY9OZJQNNrpnAiEwYK0AS+A+4+2qoLQqlI9blpyjNmJ09m3fLshGh2Rlz5swhGAxyzjnn1G4LBAKce+65zJs3j2g0CsC8efOIxWKMHTs27fyxY8fy+eefs2LFit1ZktIcEJfXMmAFdmYL2EB+mPSU4kqMmGzbml9qaWKeYyX1OQkfVnzI4KWDuWP9HUSdKBcXXcyX+33JBa0vwBf02QadEksRQRP8GBHJxyYfxLHdBuS9D5uG3R7jNlOhUZT68xwvXryYXr16kZubm7a9pKSEWCzGN998U3tcdnY2vXv3rnMcwJIlS+prSUpjJoJxmS3BPJwlBrPJ3VeGyfqSbDKwAXqZQ1OFjdmI6MjD342xlFHGuO/G8f9W/z8WRxfTO9Sb93q9x4yOM2jTqo2NxUitjRRryjgBrwDKGsJAESb2kocZzRxyt+Vgamb2RzsBKIqHestG27x5M0VFRXW2FxcX1+6Xn61bt8bn8+30OKWZIr3MNmDEItvzU9q+SOxDrBvpFNAKIyjyAJeWNeJOk9TmGDgJhxcrX2TCdxNYn1hPkCA3t7mZX3X8FTlZOUbYZLaMTOv0tp3xNuuswQb8vQ02ZRaOxJBCmMaZxajIKMo2NJnU52nTpjFtmim227BhQwOvRtljRDS+xVgl3hqUasy/xCps2rKIh1gzUc9xkgYtD3pxX+WYn1+nvuaqdVcxv2Y+AEfnHc3vO/yefrn90vuQxbGusSr3OpKA4O08IBltkkYt45xlFICDqZlpj7rMFGUH1JsbraioiLKysjrbxVIRy6WoqIgtW7awbV7Ctsdty7hx4ygtLaW0tJR27drV17KVTCPV/N9gYjNbsQIjQiEZZJIeDMZi8cZgJL1ZzpV4ijS2jEAkFuHu7+9mwDcDmF8znzb+NkzvMp2F+y2kX14/c47Uv0iBpYhKHnb0c5z0eI20t5FOAR0wyQiF7po6YbLNVGgUZYfUm9iUlJSwYsUKqqur07YvWbKEUChUG6MpKSkhGo2ybNmyOscBHHTQQfW1JKWhiWL6mC3BNqyUehfZLy6ycmxDTK9FUeO+5OEvwlSFjbdkwTvJdxjwzQDuWX8PMSfGJUWX8GXPL7kk7xL8+NOtlTxsVplc14ct2JT6GbFeRHwk/VmSAQqBHpgGmuo2U5SdUm9iM2rUKOLxOLNmzardlkgkmDlzJiNGjKgdlzty5EiCwSDPP/982vl//vOf6d+/P7169aqvJSkNRRLTYuZLjNhIBb/3Je1cpKeZDyM2UpAJNugvA9BEXKQqvxLWxtZy9qqzOWndSXyT+IaSUAkf7PcB07tNp212WyMC3iC/xFlakd7xGc93BjCutSJsAkABNvgfAg5ArRlF2QN2O2bzyiuvAPDxxx8D8Pbbb9OuXTvatWvHsGHDOOSQQzjnnHO47rrriMfj9OrViyeffJIVK1akCUv79u25/vrrmTx5MgUFBQwePJiZM2eyYMGC2locpYmSwlgo32FqX6T6PoRxh+VirYOI571YEt6CTImfhDzbKzEP/SyIh+I8uv5R7v72bqqcKnJ9udzd7m6uC11HMM9tWiadniXWAumNOcU1JuuR9YoIyvF52NY04kbT4kxF2SN2q6gTqJM9JgwbNoyFCxcCUFNTw2233cYLL7zAli1bGDhwIA888ADHHnts2jnJZJLJkyfz9NNP8/3339O3b1/uvPNOzjrrrN1atBZ1NkKqManMW7FxFulplsBOpZQizSDWFSYdklPYbspRd3+h5xoVQAg+SH3A1euuZnF0MQCnF5zOI10eoXuou/keqE0WqBULsOnVMmpZEgRE4GScc7XnHBGYENrTTFF2wc6ezbstNo0JFZtGRARjyWzAur/iWLdYNlZ0HEz9jFgqUtcimWHlmId5yN1X4Z7ndgZYt2UdEzdO5IXqFwDYP7Q/j7d6nJMLT7bikMSIlmS1JdzzxR1XjU1pTmDETPqXiZDI8DMZJdAKIzTaoVlRdsrOns1NJvVZaWRIAeYqzMNZOilXYx7KUrsSw7i/5IEvVk3SPSaE7RIQwMRmwLrPHIhXx3ms5jHuXn83lalKwr4wt7S9hZs73Ew4FTbWlFglYnXkkN61GWz9jLSWEStImnbKSAIRmnxMplk+Om9GUfYSFRtlz5DW/2swloi4o6QxpvQzi2KD51IXE3VfUj8jVo/EbbzJAH4gBPPL5nPN5mv4Iv4FAKPzRvNIq0fo1aqXtYpySW/YKV0FCrCuMzlWeqXJ/gLPWuVaAYzF0x79DVGUekJ/lZTdw8E0y1yLsWhEZPyYB302dgKliE3SPU+q66W3WZV73LbjmqXdTABWV6zmhq038Eq5SUzpHejNo10e5ZRWpxj3mrcAU9xb8n2yXqnBkYQAdyJnbTpzLuk90KKYeE5HrFtOUZR6QcVG2TniWlqDmZYpAlODdZf5MFaOuM6knkXEQzoDZGOLN6VFDVgB8EFNqoYp5VO4v+x+apwacn253F54O9e3vt6kz/swbq0yjLhJ2rSDsVLk+6S1jHctPmoncxLHxGLi2Amc3TBpzlozoyj1joqNsmNqsCITxQbyxdUlLWTyMA/1ENadJq4sedDHsQkBkubsiZU4AYfXtr7GDWU3sDKxEoCzc89matepdKObOTaGbcSZj627kbk3ks6Me1x8m+8F69ILk954U9OZFSWjqNgodYliMszWYiyFGOYhLQF9mdUiKctiTUjmmGSByfAyEaIkNpFAEgCi8H+V/8cvt/6SBTULABgQHMDj7R5nWPYwc67UwkgnAXG/eSdwbtuZWVKfIxgxFLebjB6QpITOGItIEwAUJaOo2CiWGLARk2FWiY23SCqx9BOLYQsh5cEvs2Mq3WtJL7MYRiSkW7PUsQRhk7OJu7bexZMVT5IiRZG/iPta38cVba4gEA/Y7wPb00yC+RLoD7vXrsR2chYRTLrHZmOD/3Fsd+Z22OJNRVEyioqNYjPMpFFmFtaakcC9TL+UWhqxEqRxZRwb9K92ryk1M1UYwXEf/PHqOE9tfIq7yu+iLFWGHz9X51/NPe3voY2vjR2aJmnQYs3IqCQpBBWhkDiOpCynsGnXYomJ26wQk86sCQCKsk9RsWnJpDAZZksxYiMxGak/8TaglDYvcp70MJOAu7dyPxsjTiIwudS62eYm5nLD1htYEjeNV4/POZ6Hix9mgG+AbRMjacw5mMwzCfZLDCiMTWkWa0YyzmQss8RopGtBPqavmc6aUZQGQcWmJZLCWDDLMMH/FFYwZAqmFGjmes6pwohMK8wDuxJbkS8P9WqMSEhKs1uF/4XzBTd8fwNvx94GYP+s/Xmo1UOMbjPatEKSAL93cmYImwggiQW47+U7vHNwYtgOAjGs660jxmUmYqkoyj5HxaalsQVYiQn+S4FlDDsWWSruJZ1Ygv+Stiz1KiHsULEaz3s8n4GN0Y3cU34PT5Y/SZIkrXytuKPNHVzT6hqyt2RbFxkY0fJmkImYZGMTFKBux2gw7jGxtGRujWSZaQcARWlwVGxaCuXAckwqs6Qcg3mAe9vMiOtLugFIR2bv/JdsrCiIa0sEy01zjhHjt1W/5b6q+9jibMGPn3E547gv/z7at2pvA/be6n0RCdzt3piMWCVSwClTPqWrtKRmS+1NZ9RlpiiNCBWb5k4Fxl22mvTZLfJwlhYy4qoS0YhjG1TWYK2DGmwWmNTZFGAe8BWmXuYv8b9w89abWZY0A/JODJ3IQ20eYkD2ALMeicmEPN8lo5ZFWGSfJCp4OwLI9+e5ayjAdjEoxLjN1GWmKI0KFZvmSgVmFPMKrPtJssdEWCLYgLy4qWLYIkxpPwN2REAO5gEvoiCtY3Lgf33/y40bbuTvyb8D0C+rH1Pyp3BK7in48Jnr5mKzw7wdlqtI76cWwM6/CXjWk8KODYi414lgKv87k54coChKo0HFprlRCXwNfIWtefGKjFTQS+YZ2NYzUk9Tg51oWYNt+SJpz95+aEFYGV3JrVW38lLkJQDa+tpyb+G9XB66nEAwYIP+SWwKsrTvF4slz72mrDPP813SoUC6EUjjThkf0NZ9qctMURotKjbNha0YgfkMY20IIjTiEgNb1S9Fm15rRirsxYoQS8b7HiAbyiJlTIpP4vGax4kRI5tsJuRM4JbALRTmF5pryGhnES2wEzhFXMC6xnKxWXESW5I1Si+zHPe89qjLTFGaCCo2TZ0NwP8Cn2KaU/o8L8keEytGxCKMtXKkANIbz5G4jAxBC2GsJLfNTKQiwhPJJ5gUmUSZUwbA2OBYJrWeRPfs7rYGR1rU5GHb1xRgBU3ccJJ9Jp0Bgu5xMtIZ7ETNEOmFmZplpihNAhWbpsoa4G/Ax9hUZG97Gak5kW7IMufF69ISl5QkC0iwXgLuYMUoAKloiheTL3Jb4jZWxVcBcFzWcUxpNYXBicFWrKT1v7dmJg8bd5HjwFgyBVhrJoJtNZMgvTlmECMymmWmKE0OFZumRhnwd4y7LAIUYYLj8iCXqv8AtnllObYzgDd1WI6TB7u4uaRpZSWQDU7c4V3e5ebozSyKLgKgv68/D+Y8yMjgSHwBny2ulImZIgbSPFN6peVg+5iJ4HmtGYnDSGsZERyZM6OjmRWlSaJi01RIYtrK/B1TmJmHdYtJY0ywlo0UZUoTSukMUO7ZL8SxDTUl5dmtVymtLuUW/y3MT80HoCtduTf3Xn6W9TOyElk24UBcZdKPLIUtsJTstyC2+l9qbLKw1owIoIhTAtNipgu2k4GiKE0SFZumQAL4BFiEfYhL639voF9ERB7W8hNs2/1KTB80STGWh7q4vADisJSl3M7tvMzLkIJCCvlV4Fdc41xDjj/HCoq46qS9jMR6xLIJYdvGSHNMsJZXgeeeZM5MAhuXKURTmRWlGaBi09hJYIL/SzBWSoT0B7xXJKQoUlrAOKQjwX5ppClpx5LWnAXr/Ou4l3t5hmdIkiTbyeZaruWW3FsoptgWWrppz7XuMxlEJrNipFGmfEcQk03m7V0m9+dNRsgCumMsGv3XqSjNBv11buysxNTNSHt/eVh7hWR7lsz2ENeZZHWVU2t5bE5u5kH/gzwWfIwaXw1+x8/PfT/n7uDddKvuZr8vGzt2Wa4lc2K8s23y3WNl3IDEYvwYa0WGoiWxFlEHdGKmojRTVGwaM1sxFo20cvG6zLa1aHYlMknSm2W6fdAqqyp5tPWjTMmfwlb/VgDOSJ3Br2t+Tb/cfra+pgbbJy3Hsx4wQihjmKV7s1g9rTCi4021FmGKu/taY+Iy+Xv0X0dRlCaEik1jJYkRGnEzeeMq8pDfNtC/Ld54TcKzLQURf4SnujzF5OLJrA+uB+CE2AlMSkzisKzDbBGo9DDzuZ/FJSZFoFJP48dOzfT2X8vGCpYMOQNr/XTFjixQFKXZomLTWNkKbMLGYCB95DHbvBe8n7fjWosH4szInsF9be5jTWANAEdUH8GkmkkclzrOdmMW0RDBCWCLQ6VYVOI2UWwLHJnWKdlp4iqTsdC4+zphOgCoyChKi0DFpjHiAKuoKzKQ7j7zio33p4iLZJplQSIrwfO5z3Nv4b0sDywH4ODowdy34T5GrR+Fr8hnq/tFHMQqkbqbELYQNO75LJluMtFT1inrkN5m2RiR0RYzitLiULFpjMQwlo24vyQhQARHREZeYEVGsr/cGE2SJDPDM7m3zb18FfgKgL7xvtyz8R7GVI/Bj9+6zKRljMSEJLMMbHxFYjFi0XiLQfMxAiQNNsX9FsRMyuyCdacpitKiULFpjESwDS8l/uF9QEvBpvz0zntxuwIkE0lmBWdxb8G9fBH4AoD9Evtx59Y7uaD6AgLxgHWxyfAx+S6xaOJYCyfk2ebDutq87jEROelploXpcNANk4GmIqMoLRYVm8ZIJVZIvMjD2usmk1iJa4kkI0lmZc/ivvB9LAksAaBHogd3VN3Bz2p+RjAStK36JbNN2st43WNigYiFI9skMcDbKSDbc0zYvW4roAdGbDQuoygtHhWbxohYNV43mSCuMrDpwwFIxBO8FHiJSXmT+DLrSwC6J7tzW+Q2Lq66mFAiZEUmhhUHb8NOEQ2Ju4SwdTPSpFOC/2LxSHZawN0XxohMW+xYZ0VRWjwqNo0RERMRGz/pBZmSDp1lj/vB/wM/9/+cuC9Oz1RPbo3fysXVFxNKhdKtGK9wiOCIC83B1szIMSHPy9vfTGJIUruTg5mU2QUN/iuKUgcVm8aIuNCkgaY3GUDiMmKhuG6tLsEu3Jm4ky6+LoyNjCXoBM2+iHtNERURFGkRIzEbsXCk0j+XdPeazKCRpAFvbU1nTFxGm2UqirIDVGwaI1Krsm1nABEMsBlkEkPJgtsTt9v2L9XYAWXSXVneu/NpyHKvIYkAudgGndJxIIxNEJBMM8kw6wz0wnYWUBRF2QEqNo2RPKxFIdaMtP8Ha4mI0Mhn6UUmFkeEdMHxu+/j2PiLtJIRC0p6nW0rMt74TQeMyGhHZkVRdhMVm8aIN9VYmlt6a18kRVnERralsCIjVomITJj0gWUBz2cZVJaHraWRmFDQ82oP7IcJ/muGmaIoe4CKTWMkhJlMuQ6bECCjAMC2ganBiouMH8CzTdrHRDFCFML2WJPYjYwXCGMtn7B7nmSnich0QkVGUZQfhYpNY8SHebCvp651IwWT0gBT3GgiGBGMkORgg/5i1UhBZrbnWtKKJh9r3UhyQBHQFxOb0XHMiqLsBSo2jZUCzMN/E7YfWQIjFDXY/3MyQE1cZhKDkaLLBDbrLEz6eAJp8tkO0+Zf3GiFQD9MhpmmMSuKUg+o2DRWsoDeQIX7WcY+ey0aQdr/h7FjAMSaEdcYpLvPHPfarTAWjIhMifu9OsBMUZR6RMWmMZOPyfr6CutGg/Q2Nn6s0ESxQhInvZjTm+7sYKwjH8aiaQ8cjLFmtFZGUZQMoGLT2OmMEZFV2C7KYCdiSjdmcZuJW01cZPISkUlheq+VAz2BI4FDMG47RVGUDKFi09jxY0TBB6zADi6T+htpximjn6UQVKr+ZZsIjSQdjASOwWS9KYqiZJjdKslbs2YN11xzDUOHDiU3Nxefz8fKlSvTjiktLWXcuHEceOCB5Obm0r17dy644AJWrFhR53qpVIrJkyfTs2dPwuEwAwcO5NVXX62XG2qWZGHcaQOxI5Slh5l0Yw5jxzLLe6mZkULOCkxM5gbgp6jQKIqyz9gtsfnmm294+eWXKSoq4uijj97uMS+99BKLFy/m2muv5e233+b+++/nk08+YciQIXz77bdpx95xxx3cfffdjB8/nrfffpsjjjiCMWPG8NZbb+39HTVXfJhiykEY4ZHOyzLITMTHW5gpsZsU0Af4OXAxxjWnKIqyD/E5jrPt1JQ6pFIp/H6jS8888wyXX345K1asoGfPnrXHbNiwgXbt2qWdt2rVKnr16sXtt9/OvffeC8D69evp1q0bt9xyC/fcc0/tsccffzwbNmzgs88+2+WihwwZQmlp6W7dYLMlBmzEuMW2YuplpMZGikBbYYSlEybjTFEUJYPs7Nm8WzEbEZqdsa3QAPTo0YN27dqxdu3a2m3z5s0jFosxduzYtGPHjh3Lz3/+c1asWEGvXr12Z1ktmxBGSDpjYjLSeka6RUsvM0VRlEZARtsofvHFF6xfv55+/frVblu8eDHZ2dn07t077diSkhIAlixZksklNU+kD1oeJl06FxUaRVEaFRkTm0QiwZVXXkm7du249NJLa7dv3ryZ1q1b4/Ol96QvLi6u3a8oiqI0LzL29+/48eP56KOP+Otf/0pR0d4HDKZNm8a0adMAEx9SFEVRmg4ZsWxuueUWpk2bxvTp0xkxYkTavqKiIrZs2cK2eQli0YiFsy3jxo2jtLSU0tLS7caHFEVRlMZLvYvNpEmTeOCBB3jssce48MIL6+wvKSkhGo2ybNmytO0SqznooIPqe0mKoihKA1OvYvPYY49x++23M2nSJMaPH7/dY0aOHEkwGOT5559P2/7nP/+Z/v37ayaaoihKM2S3YzavvPIKAB9//DEAb7/9Nu3ataNdu3YMGzaMl156ieuuu46RI0dy3HHH8c9//rP23FatWtVaLO3bt+f6669n8uTJFBQUMHjwYGbOnMmCBQuYM2dOfd6boiiK0kjYbbEZM2ZM2uerrroKgGHDhrFw4ULmzp2L4zjMnTuXuXPnph0rxwiTJk0iPz+fRx99lO+//56+ffvy8ssvc+qpp+7FrSiKoiiNld3qINDY0A4CiqIojY+dPZszWtSpKIqiKKBioyiKouwDVGwURVGUjKNioyiKomQcFRtFURQl46jYKIqiKBlHxUZRFEXJOCo2iqIoSsZRsVEURVEyjoqNoiiKknFUbBRFUZSMo2KjKIqiZBwVG0VRFCXjqNgoiqIoGadJjhho27YteXl5tGvXrqGXkjE2bNjQrO8Pmv896v01bfT+9pyVK1eycePG7e5rkmIDzX+mTXO/P2j+96j317TR+6tf1I2mKIqiZBwVG0VRFCXjNFmxGTduXEMvIaM09/uD5n+Pen9NG72/+qXJxmwURVGUpkOTtWwURVGUpkOTEptvv/2Ws846i8LCQlq1asUZZ5zB6tWrG3pZe8wrr7zCmWeeSY8ePcjJyaFv377ceuutVFRUpB1XVlbGZZddVpvqfcIJJ/D555830Kr3jpEjR+Lz+bj99tvTtjf1e3zrrbc45phjyM/Pp1WrVgwZMoQFCxbU7m/K9/fhhx8yYsQI2rdvT0FBAYMHD2b69Olpx0QiESZOnEinTp3Iyclh6NCh/O1vf2ugFe+YNWvWcM011zB06FByc3Px+XysXLmyznG7ez+pVIrJkyfTs2dPwuEwAwcO5NVXX90Hd7J9duf+SktLGTduHAceeCC5ubl0796dCy64gBUrVtS5Xkbuz2kiVFVVOb1793ZKSkqc1157zXn99ded/v37O/vtt59TWVnZ0MvbIw4//HBnzJgxzp///Gdn4cKFzsMPP+wUFhY6hx9+uJNMJh3HcZxUKuUcddRRTpcuXZwXXnjBefvtt51jjjnGadOmjfPtt9828B3sGS+88ILTsWNHB3Buu+222u1N/R6feuopJxAIONddd53zzjvvOHPnznXuv/9+54033nAcp2nf36effuqEw2Hn2GOPdV5//XXnnXfeccaNG+cAzu9+97va484//3ynsLDQmTZtmvPee+85p59+uhMOh53//Oc/Dbf47fD+++877du3d04++WRnxIgRDuCsWLGiznG7ez+/+tWvnFAo5EyZMsVZsGCBM27cOMfn8zl//etf980NbcPu3N8NN9zgHHnkkc4TTzzhLFy40Hn++eedAw880CkuLnZWr16ddmwm7q/JiM0jjzzi+P1+Z+nSpbXbli9f7mRlZTkPPfRQA65sz1m/fn2dbX/84x8dwJk/f77jOI7z+uuvO4CzYMGC2mO2bNniFBUVOddcc80+W+vesnnzZqdDhw7OCy+8UEdsmvI9rlixwgmHw87DDz+8w2Oa8v3deuutTjAYdCoqKtK2H3HEEc4RRxzhOI7jLFq0yAGc6dOn1+6Px+NOnz59nFGjRu3T9e4K+SPOcRzn6aef3u7DeHfv54cffnBCoZBz5513pp1/3HHHOQMGDMjMDeyC3bm/7T13Vq5c6fh8PueOO+6o3Zap+2sybrQ5c+ZwxBFH0Lt379ptvXr14qijjmL27NkNuLI9Z3tVu4ceeigAa9euBcz9du7cmeHDh9ceU1hYyKhRo5rU/d58883079+f8847r86+pnyP06dPx+/3c+WVV+7wmKZ8f7FYjGAwSE5OTtr2wsJCUqkUYO4vGAxyzjnn1O4PBAKce+65zJs3j2g0uk/XvDP8/l0/6nb3fubNm0csFmPs2LFp548dO5bPP/98u26pTLM797e9506PHj1o165d7XMHMnd/TUZsFi9eTP/+/etsLykpYcmSJQ2wovrlgw8+AKBfv37Azu939erVVFZW7tP1/Rj+8Y9/8Nxzz/HEE09sd39Tvsd//OMfHHjggbz00kvsv//+BAIBevfunXavTfn+Lr74YgCuvfZa1q1bx5YtW3j66aeZP38+EyZMAMz99erVi9zc3LRzS0pKiMVifPPNN/t62XvF7t7P4sWLyc7OTvvDV44DmtTz6IsvvmD9+vW1zx3I3P01GbHZvHkzRUVFdbYXFxdTVlbWACuqP9auXcudd97JCSecwJAhQ4Cd3y/Q6O85FotxxRVXcOONN9K3b9/tHtOU73HdunUsXbqUiRMncsstt/DOO+9w4oknMn78eB599FGgad9f//79WbhwIbNnz6ZLly4UFRVx9dVX89RTT3HuuecCu76/zZs379M17y27ez+bN2+mdevW+Hy+nR7X2EkkElx55ZW0a9eOSy+9tHZ7pu4v8OOXqtQHlZWVnHbaaQQCAWbMmNHQy6k3HnzwQWpqarjtttsaeikZIZVKUVFRwbPPPssZZ5wBwHHHHcfKlSuZPHky1157bQOvcO9YunQpZ555JiUlJTz11FPk5OQwe/ZsrrzySsLhMBdccEFDL1HZS8aPH89HH33EX//61+2KbH3TZMSmqKhou38J7uivkaZATU0No0aNYvny5XzwwQd07dq1dt/O7lf2N1ZWr17NpEmTeOaZZ4hGo2m++2g0ypYtWygoKGjS99imTRuWLl3KiSeemLZ9xIgRzJ07l++++65J39+vfvUrgsEgb775JsFgEIDjjz+eTZs28ctf/pLzzjuPoqIiVq1aVedcuT/5S7ipsLv3U1RUxJYtW3AcJ+2v/6Z037fccgvTpk3jj3/8IyNGjEjbl6n7azJutJKSEhYvXlxn+5IlSzjooIMaYEV7Rzwe56yzzqK0tJS33nqLAQMGpO3f2f12796d/Pz8fbXUPWb58uVEIhHGjh1LUVFR7Qtg6tSpFBUV8fnnnzfpexT/9Y7w+/1N+v4+//xzBg4cWCs0wmGHHcamTZtYv349JSUlrFixgurq6rRjlixZQigUquPzb+zs7v2UlJQQjUZZtmxZneOARv88mjRpEg888ACPPfYYF154YZ39Gbu/H53Hto95+OGHnaysLGfZsmW121asWOEEAgFn6tSpDbiyPSeZTDpjxoxxwuGw89577233mNdee80BnIULF9Zu27p1q1NcXOyMHz9+Xy31R1FWVua8//77dV6AM3bsWOf99993KioqmvQ9vvnmmw7gzJo1K237iBEjnK5duzqO07T/Hw4bNszp1auXE41G07afd955TjgcdqLRqPPJJ584gPPss8/W7o/H486BBx7onHrqqft6ybvNjlKDd/d+fvjhBycYDDp333132vnHH3+8079//4yufXfY0f05juM8+uijDuBMmjRph+dn6v6ajNhUVlY6+++/v9O/f3/n9ddfd2bPnu0cfPDBTq9everUAjR2rrzyytqak//5n/9Je0mxXzKZdIYOHep07drVefHFF525c+c6w4YNc4qKiuoUYDUV2KbOpinfYyqVcoYPH+4UFxc7Tz75pDNv3jznsssucwBnxowZjuM07fubNWuWAzgjRoxwXn/9dWfevHnO1Vdf7QDOhAkTao8755xznNatWztPP/2089577zlnnnmmk52d7Xz88ccNuPrtM2vWLGfWrFm1v3+/+93vnFmzZqX9MbC793PzzTc72dnZzkMPPeS8//77zpVXXun4fL7agt6GYFf39+KLLzo+n88ZOXJknefO4sWL066ViftrMmLjOI6zatUq54wzznAKCgqc/Px857TTTtuuejd2evTo4QDbfd111121x23atMm55JJLnKKiIicnJ8c57rjjnEWLFjXcwveSbcXGcZr2PW7dutW56qqrnPbt2zvBYNAZMGCA8/zzz6cd05Tv76233nKGDRvmtG3b1snPz3cGDhzoPPHEE04ikag9prq62pkwYYLToUMHJzs72znssMOc999/v+EWvRN29Ds3bNiw2mN2934SiYRz3333Od27d3dCoZAzYMCAOlbuvmZX93fRRRft1n8Dx8nM/WnXZ0VRFCXjNJkEAUVRFKXpomKjKIqiZBwVG0VRFCXjqNgoiqIoGUfFRlEURck4KjaKoihKxlGxURRFUTKOio2iKIqScVRsFEVRlIzz/wGESwCck6aTTAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAGQCAYAAAB4X807AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAB09UlEQVR4nO2dd5hU5dn/PzM7MzvbWHbpHRRBXBDkxYL+FLEgGsFYsGLUqGgUjahYYtfwooKxxWjQgDGxIBoFjYIKYhJ9kzerQX3BglQBlbawdfr5/fGce58zLFV22HZ/rmuunTltnqPs+e7dfY7jOCiKoihKBvE39AIURVGU5o+KjaIoipJxVGwURVGUjKNioyiKomQcFRtFURQl46jYKIqiKBmnwcTm22+/5ayzzqKwsJBWrVpxxhlnsHr16oZajqIoipJBfA1RZ1NdXc3AgQPJzs7m17/+NT6fj9tvv53q6mo+++wz8vLy9vWSFEVRlAwSaIgvffrpp1m+fDlfffUVvXv3BuDggw/mgAMO4Pe//z3XX399QyxLURRFyRANYtkcf/zxRCIRPvzww7Ttw4YNA+CDDz7Y10tSFEVRMkiDWDaLFy/mtNNOq7O9pKSEWbNm7fL8tm3b0rNnzwysTFEURfmxrFy5ko0bN253X4OIzebNmykqKqqzvbi4mLKysl2e37NnT0pLSzOxNEVRFOVHMmTIkB3uaxCx+TFMmzaNadOmAbBhw4YGXo2iKIqyJzRI6nNRUdF2LZgdWTwA48aNo7S0lNLSUtq1a5fpJSqKoij1SIOITUlJCYsXL66zfcmSJRx00EENsCJFURQlkzSIG2306NHceOONLF++nP322w8wgaUPP/yQ+++/vyGWpCjKjyAej7NmzRoikUhDL0XZh4TDYbp27UowGNztcxok9bmqqoqBAweSk5NTW9R5xx13UFFRwWeffUZ+fv5Ozx8yZIgmCChKI2DFihUUFBTQpk0bfD5fQy9H2Qc4jsOmTZuoqKigV69eaft29mxuEDdaXl4eCxYsoE+fPlx44YVccMEF9OrViwULFuxSaBRFaTxEIhEVmhaGz+ejTZs2e2zNNlg2Wvfu3Xn11Vcb6usVRaknVGhaHj/m/7l2fVYURVEyTpOps1EUpfHTcWpHfqj6od6u1yGvA9/f+H29Xe/YY49l6tSpOy0+fP311+nTp09tZuydd97JMcccwwknnLBX371o0SLWrVvHKaecskfnrVu3jmuvvZZXXnllj7/z2WefZcSIEXTu3HmPz61v1LJRFKXeqE+hycT1dofXX3+dJUuW1H6+995791powIjNW2+9td19iURih+d17tz5RwkNGLFZt27dHp2TTCZ/1HftChUbRVGaLFVVVfzkJz9h4MCB9O/fn5kzZwIwf/58DjnkEAYMGMDPf/5zotFonXO9yUivvPIKF198MR999BFz5sxh4sSJDBo0iGXLlnHxxRfXPux3dN2ePXty1113MXjwYAYMGMCXX36Z9l2xWIw777yTmTNnMmjQIGbOnMndd9/NhRdeyFFHHcWFF17IypUrOfrooxk8eDCDBw/mo48+AkxZSP/+/QEjBBMnTuTQQw/l4IMP5ve//33tdzzwwAMMGDCAgQMHcsstt/DKK69QWlrKBRdcwKBBg6ipqdnp+m+++WYGDx7M/fffz+DBg2uvu3Tp0rTPPxYVG0VRmixz586lc+fOfPrpp/zf//0fI0eOJBKJcPHFFzNz5kw+//xzEokETz755G5d78gjj2T06NFMmTKFRYsWsf/++9fu29V127ZtyyeffMIvfvELpk6dmnbdUCjEvffeyznnnMOiRYs455xzAFPI/t577/Hiiy/Svn173n33XT755BNmzpzJtddeW2d9f/jDHygsLOTf//43//73v3n66adZsWIFb7/9NrNnz+Zf//oXn376KTfddBNnnXUWQ4YM4fnnn2fRokX4fL6drr9NmzZ88skn3HbbbRQWFrJo0SIAZsyYwSWXXLLb/092hIqNoihNlgEDBvDuu+9y88038/e//53CwkK++uorevXqRZ8+fQC46KKL+Nvf/rbX37Wr655xxhkA/Nd//RcrV67crWuOHj2anJwcwBTIXn755QwYMIAxY8akufKEd955h+eee45BgwZx+OGHs2nTJpYuXcp7773HJZdcQm5uLmCaGu/p+kUAAS677DJmzJhBMplk5syZnH/++bt1PztDEwQURWmy9OnTh08++YS33nqL22+/neOPP36740u2hzd9tz46IGRnZwOQlZW10xiMF+9U4ocffpgOHTrw6aefkkqlCIfDdY53HIfHH3+ck046KW37vHnz9mLldddy5plncs8993DcccfxX//1X7Rp02avr6+WjaIoTZZ169aRm5vL2LFjmThxIp988gl9+/Zl5cqVfPPNNwD86U9/qh3M6KVDhw588cUXpFIpXnvttdrtBQUFVFRU1Dl+d6+7I3Z0XWHr1q106tQJv9/Pn/70p+0G6k866SSefPJJ4vE4AF9//TVVVVWceOKJzJgxg+rqasA0Nd72O/dk/eFwmJNOOolf/OIX9eJCAxUbRVHqkQ55Hfbp9T7//HMOO+wwBg0axD333MPtt99OOBxmxowZjBkzhgEDBuD3+7nyyivrnHv//fdz6qmncuSRR9KpU6fa7eeeey5TpkzhkEMOYdmyZbXbd/e6O2L48OEsWbKkNkFgW6666ir++Mc/MnDgQL788ss0S0OssMsuu4yDDjqIwYMH079/f6644goSiQQjR45k9OjRDBkyhEGDBtXGjC6++GKuvPJKBg0ahOM4e7T+Cy64AL/fz4gRI3b7HndGg/RG21u0N5qiNA6++OIL+vXr19DLaNZ8/PHHXH/99XzwwQf79HunTp3K1q1bue+++7a7f3v/73f2bNaYjaIoSiOltLSU888/f593wz/99NNZtmwZCxYsqLdrqtgoiqI0UoYMGcLXX3+9z7/XG8OqLzRmoyiKomQcFRtFURQl46jYKIqiKBlHxUZRFEXJOCo2iqLUHx0BXz2+OmZmmQsXLuTUU08FYM6cOfs82wtg8uTJ9O7dm759++6yA8C1117b5KcYazaaoij1R31PBNiD6zmOg+M4+P179jf06NGjGT169B4ubO9YsmQJL730EosXL2bdunWccMIJfP3112RlZdU5trS0lLKysn26vkyglo2iKE2WlStX0rdvX372s5/Rv39/vv32W37xi18wZMgQSkpKuOuuu2qPnTt3LgceeCCDBw/mL3/5S+32Z599lvHjxwOkjRMAO4bgu+++45hjjmHQoEH079+fv//973u17tmzZ3PuueeSnZ1Nr1696N27N//7v/9b5zgZKfDggw/u1fc1BtSyURSlSbN06VL++Mc/csQRRwAwadIkiouLSSaTHH/88Xz22Wf06dOHyy+/nAULFtC7d++0Dse7wwsvvMBJJ53EbbfdRjKZrO1B5mXChAm8//77dbafe+653HLLLWnb1q5dW7tegK5du7J27do65/72t79l9OjRae10mioqNoqiNGl69OiR9uB++eWXmTZtGolEgu+++44lS5aQSqXo1asXBxxwAABjx45l2rRpu/0dhx56KD//+c+Jx+P89Kc/ZdCgQXWOefjhh/f6XrysW7eOWbNmsXDhwnq9bkOhbjRFUZo03oaVK1asYOrUqcyfP5/PPvuMn/zkJ3s0PiAQCJBKpQBIpVLEYjEAjjnmGP72t7/RpUsXLr74Yp577rk6506YMIFBgwbVeW0v+aBLly58++23tZ/XrFlDly5d0o75z3/+wzfffEPv3r3p2bMn1dXV9O7de7fvpbGhlo2iKM2G8vJy8vLyKCws5IcffuDtt9/m2GOP5cADD2TlypUsW7aM/fffnxdffHG75/fs2ZOPP/6Ys88+mzlz5tS28l+1ahVdu3bl8ssvJxqN8sknn/Czn/0s7dw9sWxGjx7N+eefz/XXX8+6detYunQphx12WNoxP/nJT/j+++9rP+fn59eOB2iKqNgoilJ/dKB+M9L2cGLBwIEDOeSQQzjwwAPp1q0bRx11FGDGA0ybNo2f/OQn5ObmcvTRR293tszll1/OaaedxsCBAxk5cmSt1bRw4UKmTJlCMBgkPz9/u5bNnlBSUsLZZ5/NQQcdRCAQ4IknnqjNRDvllFN45pln6Ny58159R2NDRwwoivKj0REDLZc9HTGgMRtFURQl46jYKIqiKBlHxUZRlL2iCXrilb3kx/w/V7FRFOVHEw6H2bRpkwpOC8JxHDZt2kQ4HN6j8zQbTVGUH03Xrl1Zs2YNGzZsaOilKPuQcDhM165d9+gcFRtFUX40wWCQXr16NfQylCaAutEURVGUjKNioyiKomQcFRtFURQl46jYKIqiKBlHxUZRFEXJOCo2iqIoSsZRsVEURVEyjoqNoiiKknFUbBRFUZSMo2KjKIqiZBwVG0VRFCXjqNgoiqIoGadexeaVV17hzDPPpEePHuTk5NC3b19uvfXWOrO+y8rKuOyyy2jbti15eXmccMIJfP755/W5FEVRFKURUa9iM3XqVLKysvjv//5v5s6dyy9+8QuefPJJTjzxRFKpFGBmIYwaNYq5c+fy+OOP8+qrrxKPxxk+fDhr1qypz+UoiqIojYR6HTHwxhtv0K5du9rPw4YNo7i4mIsuuoiFCxdy3HHHMWfOHD788EMWLFjA8OHDARg6dCi9evXiwQcf5LHHHqvPJSmKoiiNgHq1bLxCIxx66KEArF27FoA5c+bQuXPnWqEBKCwsZNSoUcyePbs+l6MoiqI0EjKeIPDBBx8A0K9fPwAWL15M//796xxXUlLC6tWrqayszPSSFEVRlH1MRsVm7dq13HnnnZxwwgkMGTIEgM2bN1NUVFTn2OLiYsAkDyiKoijNi4yNha6srOS0004jEAgwY8aMvb7etGnTmDZtGoDOO1cURWliZMSyqampYdSoUSxfvpx58+bRtWvX2n1FRUXbtV42b95cu397jBs3jtLSUkpLS7cbG1IURVEaL/UuNvF4nLPOOovS0lLeeustBgwYkLa/pKSExYsX1zlvyZIldO/enfz8/PpekqIoitLA1KvYpFIpLrjgAhYsWMDrr7/OEUccUeeY0aNHs3bt2trEAYDy8nLeeOMNRo8eXZ/LURRFURoJ9Rqzufrqq5k1axa33XYbeXl5/POf/6zd17VrV7p27cro0aMZOnQoY8eOZcqUKRQVFTF58mQcx+Gmm26qz+UoiqIojQSf4zhOfV2sZ8+erFq1arv77rrrLu6++27AxGduvPFGXn/9dSKRCEOHDuU3v/kNAwcO3K3vGTJkCKWlpfW1bEVpVDiOg+M4pFIp6vHXs97w+XxkZWXh8/kaeilKI2Nnz+Z6FZt9hYqN0pxJJpMsXryY//znP0QikYZeTh06duzI4YcfTseOHRt6KUojY2fP5oylPiuK8uNIJBL861//4rHHHqvN0mxMHHbYYXTu3FnFRtkjVGwUpRFSVVXF999/z8aNGxt6KXXYuHEj8Xi8oZehNDF0no2iKIqScVRsFEVRlIyjYqMoiqJkHBUbRVEUJeOo2CiKoigZR8VGURRFyTgqNoqiKErGUbFRFEVRMo6KjaIoipJxVGwURVGUjKPtapQWiXRWbox9aJPJJKlUqqGXoSj1ioqN0iKprKxk0aJFrFy5stEJTiKR4OOPPyYajTb0UhSl3lCxUVokZWVlvPrqq8yZM6dRWhHl5eVUVVU19DIUpd5QsVFaJPF4nA0bNjRKy0ZRmiOaIKAoiqJkHBUbRVEUJeOo2CiKoigZR8VGURRFyTgqNoqiKErGUbFRFEVRMo6KjaIoipJxVGwURVGUjKNFnc2csrIyVq5cSWVlZUMvpQ7Z2dl0796dDh064PP5Gno5iqJkEBWbZs7SpUt56qmn+PLLLxt6KXVo3749l156KaeccgpZWVkNvRxFUTKIik0zZ+vWrXz22Wd8/PHHDb2UOnTp0oVTTz1V28UoSgtAYzaKoihKxlGxURRFUTKOio2iKIqScVRsFEVRlIyjYqMoiqJkHBUbRVEUJeNo6rOiKEp9Ewe808YDQAsvJVOxURRF2VtSwFZgM7AFiACOuz0LCAF5QCFQDOQ0yCobFBUbRVGUH0sS+AFYC2zCCEyW+9MBfJhgRQQjRuswQlMEdAMK9v2SGwoVG0VRlB9DFfAFRkDAiEoKqHE/+7BiIy/Z9h1GnHoAnYDgPlt1g6FioyiKsqd8D3wKVGAsmSRGaFIYMfFaNQ5WbLKABFZcvsa43g4Ewvtu+Q2Bio2iNDJ8Ph/t27enc+fOBION70/efv36kZ+f39DLaDjWAP/ECEvC3SZCs702f1kY4Qm4x4s4Jd33G4HFQAnNWnBUbBSlkREIBDjqqKO44IILKCwsbOjl1KF169Z07969oZfRMGwE/geIYYQliREQH3XFRlxmsi2OzUrLco8PuPs3A18CA2i2WWsqNorSyPD5fHTr1o2jjz6adu3aNfRyFCEG/AMT6A+4n8GKjLjO5Kcg1YwiIgn3/NQ2536HSRzokbE7aFBUbBRFUXaHT4HVGFdXBOsK257QiDUjohNyt4nQgK3DkWODwHJManQzzFJTsVEURdkVW4F/YayUGEY0RGQgXXQgPSFAznGwT9wEVoBCnu/xYwStJEP30YBouxpFUZRdsQRYj4m7RDBiEfe8RGy8cZokEAWq3eP9nm1gRSvmbo+7739wv6OZkVGxGTlyJD6fj9tvvz1te1lZGZdddhlt27YlLy+PE044gc8//zyTS1EURflxxIG/Y9xnCdKFJoYRBvlZ43lFsRlnSazo4O5PudcQwZHrVmISBpoZGRObF198kU8//bTOdsdxGDVqFHPnzuXxxx/n1VdfJR6PM3z4cNasWZOp5SiKovw4VmCC9w5GFGJYkZC4izcTTeprcI+rcc/xu+dEsK41r+BIrU4Sk/XWzMiI2JSVlTFhwgR+85vf1Nk3Z84cPvzwQ/70pz9x3nnnMXLkSObMmUMqleLBBx/MxHIURVF+PP+LFRYRhRjGcpHXtpZODbY/mqRFR7BFnzXuzyjW5eYVsDK2X7PThMmI2Nx8883079+f8847r86+OXPm0LlzZ4YPH167rbCwkFGjRjF79uxMLEdRFOXHUY6p8g9gxECExdspQKwRsXLcxIB3s97lweSD/FDzg9nvw1pGPoz4yDZxz4mg1bjXbEbUezbaP/7xD5577rntutAAFi9eTP/+/etsLykp4bnnnqOysrJlVycritJ4+ALTkkbcXT7SxQbPT28KNPBQ7kPMC8wj25fNL+O/NCKSjRWRELbQU2puvO4274iCZkC9WjaxWIwrrriCG2+8kb59+273mM2bN1NUVFRne3FxMWBccNtj2rRpDBkyhCFDhrBhw4b6W7SiKMr2iGLEBmzwXgo5xTUmHQREQNyU5+VZy5mXNY9sJ5ux0bG2ZY1YM+I2E8tIBMx7zWZGvYrNgw8+SE1NDbfddlt9XhaAcePGUVpaSmlpqVZVK4qSeb7FdGaW5pmSIBDButOksFNSot14zVP+pwA4O3k2bZJtjFtMxg+I4IjYiBUj6dNiQTWzKsh6u53Vq1czadIknnnmGaLRKNFotHZfNBply5YtFBQUUFRUtF3rZfNmk+u3PatHURRln5LE1NbIQ1+sGm8djbi5ZJtrvVQ71TwTegaA8dXjbZuaCMZ1FnDfZ2NES3qtxrFZark0uyrIehOb5cuXE4lEGDt2bJ19U6dOZerUqfznP/+hpKSEd955p84xS5YsoXv37hqvUfYJ2dnZdO/enYMPPhjHaVxpP6FQiC5duhAINLM/bZsSP2CKOKUTgFgg4i7z7eA84M/5f6bMX8ZhicM4LHaY2ZiNEZ24e5DEZbxCE8IIWBToUG930miot3/NgwYN4v3336+zffjw4YwdO5ZLL72U3r17M3r0aGbMmMEHH3zAsGHDACgvL+eNN97g/PPPr6/lKMpOKS4u5pxzzuHoo49udGLj9/vp0aMHubm5Db2UlkkSk4Hm7QrgYEQgm7opyWLZYOoIH8l5BIBrq6611olYMNLAMwdb8Cmi443dqNjsmNatW3Psscdud1+PHj1q940ePZqhQ4cyduxYpkyZQlFREZMnT8ZxHG666ab6Wo6i7JTc3FwGDhzIwIEDG3opO8Tn28mfz0rm2Iwp4hSRCQB52Kr+7f1t4rrR5uXO44vgF3ROdmZM1RizLxvrHsMcRwwjMJISLUWh1RihUbHZe/x+P2+++SY33ngjV111FZFIhKFDh/L+++/TrVu3fb0cpQWjD3OlDg7wDbbYUjLEJJssyfZHOLuFmQ/lPATANVXXEMoK2WJOrxsty3NdmeIphZ3lwAkZurcGJuNisz0XRXFxMdOnT2f69OmZ/npFUZTdZytm5LM0zUxhYilhjOurDBO8hzqJAYuyF/Feznvkp/K5csuV5hoyLC3mXke6BmRj3WciahXuteuWITYLNALZAvD7/fj9jS+1xe/3q3WhNB4czDyZKup2CHAwrjTpAJBNevcA4MFi027rsqrLaO1rnS5WfozI5HjO8V4/jhGys7Fi1sxQsWnmdOrUiZNPPpkDDzywoZdSh+LiYvbff38VHKVxUA6sxTwVoxjLI8v9LJX/Oe6+Gneb23RzRWAFL+e/TMAJMGHTBNuMU7LL5FixcLzzbBIYq6YLcMi+udWGQMWmmbP//vtzxRVXEIvFdn3wPiYrK4vWrVs3SqtLaWGIVSMTOLfXIUBcZnkYd1sFtbGYKW2mkPQl+VnFz+ge726Hokl8Rqwhbw81yXCrBloDRwKtMn6nDYaKTTMnJyeHnJychl6GojRuKkiP1cjfZgFsXEWslSBGRKqAGvgu+zumtzLx55s332wD/pJxFsCKltTXBDBzaxyM0PQABmX2FhsaFRtFUVo2DmZmjbSgka4B3tEB3pdYLW4CwG8Kf0PUH+WMLWdwUOVB5tyAu1+6Asj7EMaSycK45NpjLKWDMKLTjFGxURSlZVOJ6RgANq5Sg7VAxO2Vhc0sA0jCxvBGnmzzJAC3lt1qBCrinhdyj6vwXCcG5GPcZQXuqzVQkplba0yo2CiK0nJJYWI10lQzihGcILZLM9jMMamxca2Xh0MPU+Wv4uSakxkSHALtsBYQ2MLNMCbLzIcRmBz3czbQHWiTyZtsHKjYKIrScinHWDXS0l9SlKXxphR3ivtMxCgFm4KbeDzncQDuiN1hCz8lvVnqaES4RGzyMVZPgfvzIJpd083toWKjKErLJAmsxIiCjGoWF5hkowXc7bnY/mautfNw1sNU+CoYkRjB0MBQc4xcK4ytoZG6mSysNZPjXrsbJm7TAlCxaeZUVVWxYcMGIpHIrg/OED6fj8LCQtq0aUMwuL1eH4rSAGwGNmBjKRKTSWHiOGCEBqyVEgPCsCm5iUf9jwJwV/QumzQQwoiYH5vqLO/9GJEJmmsQBvpiRxA0c1RsmjnffPMNzz//PMuXL2+wNfj9fo4//njGjBlTO5FVURqUJGY4mrjHwCYFRLHpy5K2LPvd/mZTs6ZS6avkJOckjsw6Mn3UM9g052yMeInYhLHp1O1pMVYNqNg0e9avX8/7779PaWlpg60hEAhQVFTEqFGjGmwNipLGBswUTrDTN7Owrf6ljiYHKzKuZfMDP/C4z8Rq7nXuNQIi15H2NAGstSOiJSIjmWoH0KKewC3oVlsujWVeS2NZh9LCiQOrMNaHuMekPU2lu18SA6StjKQ758LkmslUOVWMckZxWOow21kghLWUpNGmY86p/SmutnY0yzECO0PFRlGUlsV6TLsZaclXhSm0FGtExCELWzfjus++jX7Lk35TV3Nf4D5zvrSyycaKjLefmnR+FqsmgLFqWlj4UsVGUZSWQwRj1YibDEwsJRfbvyyKsT68DTTdjs33VN9DzIlxjnMOA7MG2phMjPR+aGDca3FsdpvMtGnnvloYKjaKorQc1mFiMDLELIkRoBRGfAJYKyeB7e4chq8iXzHDmUEWWdwXvM+6zKRfmtTqBLH7crExmqB77P60OKsGVGwURWkpVGAKOKXZZgSbiSbpyClMsaWIjN9974dfJX9FihTjssZxQNYB1oKRPrcy9yYb2zsti/TU5/ZA20zeZOOlBdStKorS4klhUp0lBhPHiIsPmwAgFokUZUpyQCv4p++f/CX5F3LI4a6cu8x+sU4qsMWc0jlg21RnieH0pEVaNaCWjaIoLYFyYCM2YC+utHKM9SGdmFOY5AHPCGcn4HBT8iYArg9cT+eazuYa0g1ALJpc972kTntTn4OYhpst1KoBFRtFUZo7CcwIARGCaoyFE8DWyIjrLBebheYHfDC7ejZ/T/ydtr62TGw10YhHxHMNH9YiysFaSxKjkfk3LTRWI6jYKIrSvFmPEZgYtn1MGNuipgqbKRZ33wNEIR6Mc3PVzQDcFbyLwnihbTsjbrZsjAAlsSOfE9jkAD8m+6yFN89QsVEUpfkSBdZgYyp+jPB4s88SGOGRZIAIRkxy4Knyp/g69TUH+A/gipwrbHNOsM07wbrgfJhhaDKATWpsetJieqDtCBUbRVGaJw6wGtsNoBLb80wSANxpm1S6PwswYlQOZYEy7o7cDcCD4QcJErQTN/MxgpR0r5eHTQ4Q15zU3HSi2U/h3B1UbBSlEZNMJtmyZQvl5eWkUqldn5AhQqEQRUVF5OXl4fP5dn1CY8CbFCDZZgGM5ZLACEEE6wqTGIzr/rpvy31sdjZzbOBYTis4zVwziU0skPk0Uo8jn8XFJhlo3dC8X1RsFKVRU1NTw7x583jnnXeIx+O7PiFDdO7cmTFjxnDooYc22Br2iCTGfRbBPuhjGAsm4W6XkQHSaDPlvg/DV/6veDz+OD58PBR6CF+lz1gzMhog7p4v8Rqpr4m63yWpzx2AwgzfaxNBxUZRGjHRaJRFixYxa9Ysampqdn1Chujbty9HHHFE0xGbH7D9zyIY15gf25pGUqALMHUy3lk2W+GG2A0kSHBZ3mUMbjXYiEsltm4GbLwmgNmf674k4ywX6ILtwdbCUbFRlEaO4zikUqkG7ZrtOE7T6dpdgxEb6d7sHc3sdgOo7fScjYm3VGHEJgfmOnP5a9VfKaCAX4d/bYUoG5utJl0I/BiLR9xyuNd2MLGa/IzfbZNBxUZRlOaDg+l/JgF/sWzKSXebBTBiI21pXBdYLBHjl+W/BODO/DvpkOhghCjk+Y44Ji7jd68h3s0sz3EFQGfUqvGgYStFUZoPZZjBaGLFyHhnSUHOw2agFWCzy2LmnEeqH+HrxNf0DfTl2sJrjWUiiQVh0mtqgtguAgXu94gV1Rlbr6MAKjaKojQXYpikAAn0SzaYtPePed5LxX8+tdbHWtZyX5WZUfNYwWOE4iHrHpM06bB7jrczgHR4Druf8zEuNCUNdaMpitL0cTBxmips239v002fu0+SBGow4iPiUQM3bLyBSqeSn4Z/yojsEbb6P4kRmwpswWYc4zILYzsKyPjn7uiTdTvofxJFUZo+FZhYjR8jKpIpFsS6vPKwCQM+jIvNrb+Z78xnZnQmOeTwSP4j1r0WxrjKcrDpzlLM6U00kNHQrWnxbWl2hLrRFEVp2iQwQiPFlT5sgaVkhqWwM2ak5Uwr8zMaj3L1hqsBuL3odnrk9bC1M5XY4WpiLcXczzLRMw+brdYDfaruALVsFEVp2mwAtrjvvR0CyrE1MBXYgH0E23gzH6asn8JXya/om9WXG0I32HRmaT8j3QDAdnSWdjeSbRbENNvUVOcdomKjKErTpQJYi+1vJtaN9CWTZpjSJFPiOVuAXFjmW8avK34NwFNFT5GdyjYiVYARkJDnvBz3OknPz6DnuG5oqvNOULFRFKVpkgC+w7izpCGmWBySqiwxmhxMFwHJIAuAU+Hwi62/IOpEubDgQo4tOtb2UavEuOLEJebtQCDfI5aSH+iKpjrvAhUbRVGaJhsxFopMxJQMM+kGkMKIRja2VibmHhuA57Oe5934uxT7ipkanmonbOZgizNz3J8J970ImMR0gpjYT5uM3mmzQMVGUZSmRwWmpiYLIyDV7kvcZ5KGHMbGcMBYLjWwKbCJCRsnAPBQm4doH2hveql5B57JsDWxhryjo8NYl1w3WvQEzt1FxUZRlKaFZJ/FsTUwMnkzgLFApF1N2D0GbI+zGrj+u+vZmNzI8JzhXNT6Ils7Iw06JfhfhQn6iwDlYsQG93N7jGWj7BIVG0VRmg4Oxn22FTuGuQYjDpKWLDNmxLrJwYiGO6lzLnN5LvocYcL8vuD3+FI+I0JBz3dIVpl0c5a+apIcINlsndCkgN1ExUZRlKZDJcZ9FsC4tSIYl1oQY2nInJosrHXjx4hSFCqo4Ir1VwBwT5t7OCB0gBEU71w6mW8j7rgq7CROmcKZwNTU5KDsJio2iqI0DeKYNGdxd0WxwfwARmTiWKHAPUbiL8Ctm25ldWI1g7MHc33R9cYqEfdbCFtbI6MEQu7nfPc7fe6rGGib0bttdmitq6IojR/pfVaBeeiLG0tSnmPYppkyLTNEWruaDxIf8ETlEwQIML1oOoFEwHYWiHvOyXV/yrhoKQxNYIWtM1bQlN0iI5bNW2+9xf33388nn3yC3++nT58+PPjggxx33HEAlJWVMXHiRF5//XVqamoYOnQoDz/8MAMGDMjEclo0xcXFHH744RQVFTXYGrKysujXrx/Z2VqIoPxIyoDvMeJRjXGRVWCD+VJDI24vGYzm9kGrqqni5z/8HDAtaQaGB1pLRro2exttyjXD2PY3KffVGTtSQNlt6l1sfv/73zN+/HjGjx/PHXfcQSqVYtGiRVRXVwNm4t+oUaNYuXIljz/+OEVFRUyePJnhw4ezaNEiunbtWt9LatEccMABXH311bX//RsCn89H27ZtadVK03aUH0ENRmgSmJhMBOs+k8B+HDssrRVGjKQeJgC3VtzK8sRyDg4dzK1tbjXbJfgvnQG87jTHcy3XBVc7PqAjmhTwI6hXsVm5ciXXXXcdU6ZM4brrrqvdftJJJ9W+nzNnDh9++CELFixg+PDhAAwdOpRevXrx4IMP8thjj9Xnklo8rVq14qCDDmroZSjKjyOF6RJQhREbmUsjYiCuM6mnkeLNHPt5QeUCHt/yOAECPNvhWUIJt2JTBqx5G2mmsF2hZQqnuO2SGKvGO7VT2W3qNWYzffp0/H4/V1555Q6PmTNnDp07d64VGoDCwkJGjRrF7Nmz63M5iqI0ddZjUp2DGCGowvQuK8eIyVaM+6saIxw12NTkMJRHy7lk4yUA3Fl4J4fkHmKsE/HoRt1riqjESJ+Bk4NNDmiHGSGg/CjqVWz+8Y9/cOCBB/LSSy+x//77EwgE6N27N0888UTtMYsXL6Z///51zi0pKWH16tVUVlbW2acoSgukHNPRWeIpNe77LGwgXywZV1yowYpPAK6ruI7VidUMCQ3hlna3WGtFRjkXYS2jXIyw5GLcZ7nuOhz3fRc0pWovqFc32rp161i3bh0TJ07kv//7v9l///2ZNWsW48ePJ5FI8Mtf/pLNmzfTs2fPOucWF5uJQ2VlZeTn1+3TPW3aNKZNmwbAhg0b6nPZSgvBcRzi8TiJRGLXB2cQn89HMBgkKysLn0+d/9sljqmnkVYzkjEmKc7iRvO6z0LUTt0kCa+tf40ZW2YQ9oX5Y+c/EkwEzXk12MFnfuxTUD5L7Ea+NwV0QBtt7iX1KjapVIqKigqeffZZzjjjDACOO+44Vq5cyeTJk7n22mt/9LXHjRvHuHHjABgyZEi9rFdpWUQiEf75z3/y8ccfN6jgFBcXM2zYMPr06dNga2jUpDBC41onta6tSuwAM8k2k7HNPmxwH/i+8nvGbTLPiweKH+Cg/INsS5oo6V2dZUia1NA4mDiOdAsoQmtq6oF6FZs2bdqwdOlSTjzxxLTtI0aMYO7cuXz33XcUFRVRVlZW59zNmzcDNGiKrtK8iUQivP/++zz99NNEIpEGW8cBBxxAx44dVWy2h4OJ05RjHvQV2EJNsG4z6XcmfzNsxcRXssEJOly65VI2pjZyYvhExuePN9aMt37GHQdda63EsG65BLajQA6m0aa6z/aaehWbkpIS/vnPf+5wv9/vp6SkhHfeeafOviVLltC9e/ftutAUpT5IpVLU1NSwZcuWBhWb8vJyYrHYrg9siVRgijdlFLNkhrkNNMH9nI2dVSMtaSqBGPy25re8VfkWRVlFzOg8A3/Kb9Og5fEibrkc7KhosN0DJEu/A7ZFjbJX1Kten3766QDMmzcvbfvcuXPp2rUrHTt2ZPTo0axdu5YPPvigdn95eTlvvPEGo0ePrs/lKIrSlIgB32KtFj+2uFIyxsTSCWBnykBtvObz+OdM3DARgGc6P0OX/C4mEaDAvW61e768arC90aTuRgSpEHWf1SP1atmccsopDB8+nCuuuIKNGzey3377MWvWLN555x1mzJgBwOjRoxk6dChjx45lypQptUWdjuNw00031edyFEVpKiQxfc/E4NyC7bQcx1owktos50QxApEFNYEaztt8HlGiXJZ3GWcEzjDHSOFnK/daee75Kay1Ix2iJfEgG+iOus/qkXoVG5/Px+uvv86tt97KXXfdRVlZGQceeCDPP/88559/PmBcaW+++SY33ngjV111FZFIhKFDh/L+++/TrVu3+lyOoihNAYnTbMUOQJOssyxs4aYUXoLNIqvGCFMuXL/pehZHF9Mn1IdHOj9ihKgcIzJZ2ASApOc6Uk8j1o3EdDT7rN6p93Y1rVq14oknnkirrdmW4uJipk+fzvTp0+v76xVFaWpsxVg1Uj8j0zAlrCWDzGRks2Sl+TBWSgBmbZjFU5ufIuQLMbPHTPJy8mzdjfQ4g7qZZ9LAM4ztg9YKdZ9lAB0xoChKw1GFERpJYd6KEZUI1qWVwrrVvCOb3TTnFb4VXL7lcgAeKnyIQcFBZoc00JREAK+IbW98AO52zT7LCPqfVFGUhiGOGe8cozaTrNa6kSyxbTsFOBhhcOtuYskY56w6h62prZzW6jSuLr7aCJaIFVjxkkLOELVTO2vn1/jc7dr7LGOoZaMoyr5HEgK2YB76XjeXFGmKWGyvU0AAKIeJqyby75p/0yPYg+ldp+ML+GyzTm/dbtw9X2p0Ilhhy3ePL8IMRVMygoqNoij7FhmEthUjHhXYQkoZ8SxNN8WikVYyKfenH17lVR6rfIwgQV7u8jLFAVcppDZHija91ou331lrbOpzPsaq0e5BGUPFRlGUfYeDGYS2ERO4B5sRJpM1ZS6NDyM4MolTrJ4wLI0t5edrzDC0qe2ncljiMCMc0sJG2tyIFSSfg57ridsuB+iKPg0zjP7nVRRl31GF6XvmDcjLpEywVo1YJpLyLIkCSajaUsUZ68+gPFXOWYVncU2Ha2zgX4aigbFmajBi4mCHr/nda0ryQDE6eXMfoGKjKI0Yn89HIBAgOzubVCq16xMyRCgUIisra9cH7owaTIcA6QAgBZtV2E7LUqgp2WO5WHeaH5yww7jvx/F/0f+jb7CvidP4fLZw04/NLkt6rivile/5njjGldZ+725L2T1UbBSlEZOdnc3QoUNJJBLE4/Fdn5AhOnTowH777ffjLxAHVmOD847705uCLBZMlfsS11qA2i4Cv930W16oeIE8fx5/6fAXCmIF1gKS4xKku+PkvdTtxLB1NV2wTT6VjKJioyiNmJycHI477jiOPPJIHMfZ9QkZIisri7y8vF0fuD0k86wC2xZGamXkQS8xmizsTJogdoJmCj6o+oAJ6yYA8Ieuf+CgVgfZa0jmWQqbdYb7fdKEM+F+b7a7vxPaZHMfomKjKI0Yv99Pfn5+0+2GnsLU0mzBPOSr3G1RTIKAZI5JtphknonIuMH9b6u/ZcyaMSRJMrHtRM5pfY65ftD9ngL3uilqh6fVxmayMJ0GpFNADNOORqeZ7FNUbBRFyQwpzFjncoy14XPfi7tMBMHBdgkQt5oIkx9qnBrOWHsGG1IbODH3RCYXT7ZxnyxsXEZ6mYn7LYxt2iluNAeTENABTXPex6jYKIpS/zgY8ViDbUWTg42viCB43WfiChO3VxCcmMNl311GaU0pPYM9ebHbi2T5suyQM2lpEyG9M4CkPUuYK4lJNghj3Gf65Nvn6H9yZbdxHIfy8nLKyspIJpO7PiFDZGVlUVRURKtWrUwmktL42IJtrilNsWSGjKcws3Z8gA8jRhKrcVOYH9j0AC9sfYF8fz5zes6hTXYbIxwOdkaNpDR7YzUxd3+Y9OLODtjCTmWfomKj7DaJRIKPPvqI2bNnU1FR0WDraNWqFT/96U85/vjjCQT0n3CjowITp5HMs6j7ysIOLBP3WSXp45olmywAb9S8wa82/AofPv7c5c8MyBpgzhHXmTTU9HYYECGRQWgyzyaFsWhaZ/TOlZ2gv6nKbpNKpfjqq6947bXX2LBhQ4Oto3379hx00EEMHz68wdag7IBqTC1NDBNzkbhJCpuKLIkBYAsvvXGXGvi06lPOW30eDg6T2k/itFan2WFqDkZYakh3nUmSgcSAJMkgDyM87dA4TQOiYqPsMalUqkHTcBvyu5WdIEWbEWzjTLfqvzYZYNs+8znUWjLSD+07/3ecuupUqlJVXND6Am7tcKs5Jol1nYmFJG43SG+26XePjbqfO6P1NA2Mio2iKHtPFJMMEMdYHxFsU804xpoREZCiTnF95VA7obOKKkYtG8WaxBqOyj2KP7T/Az589jregs0Q6WOdExiBCbjvE+4xXdF6mkaAio2iKHtHDNMdoBIbj5H2MZJ9JokAIjLl7s8wtfGaZCzJBesu4OPIx+wX3I/XerxGdm62uaYYszVYd5zEbryzaaSIU+prOmHcaEqDo2KjKMqPJ4axaMoxcRGJvXiba0qcRNKUpfkmGGGIgZPtcN3a65hdPpuirCLe7PUm7WhnBERcZzGMBeR1nSWw4iIxG0mxboWpqdE4TaNAxUZRlB9HHJPeLJZHJXasc8r9HMLGaSR7TObKVGJEIQkPr3mY3276LSFfiNe7vE6/UD9bPxPwvMR1luu5Zo57XRnxXIMRms7UjREpDYaKjaIoe04CO2lTYiniuhJBEItDkgQq3eMkXTkM1MDM6pncsP4GAP7Y448c0/YY23IGcwzSrUc6AXjrdyQWJNZPAabBpj7dGhX6v0NRlD0jgXGdbcIIhgiIuMnAxlTAipCIgQTus+G98ve4cPWFADzQ8QHODZ9rzsl3j4th4zQSq5HJm1IUKsPXCjCWUmc0IaARomKjKMruk8CkN1djHvAxjOtMijQrMA96sTykbQykpznH4JPyTzh91enEiXNd0XVMbDPR1uHkYxMM5PxsbBq1fA5iREZErgM6CK2Roh5NRVF2D7FoKjAFm9XYGTEST/EOQIu6x0axLWpygDh8k/qGk1efTGWqkvOKz+Oh/R4yKc7uOAGinu+VZIAQJlaT514nTHornA6YhAClUaKWjaIou0aSATZhLAoRDtz3YlkEsBX+YARKEgHctjRrIms4YekJrE+u54S8E3i2w7P4s/zGmoljhMbt+FzbN026AogFFce66UKYcQFt0cyzRoyKjaIoOyeOsWhkTEAS4zoTYZG2NNLyP4oVm1xsSnIVbPBt4MTlJ7IqvorDw4fzWo/XCBEycZk8bI80uZbMuhFrSdrTyLEpjCB1QjsENHJUbBRF2TEiNOUYl1kU83CXOTFidYgQiQtMBqFJmnMVbM3aysnLTubLyJf0z+nPW33fIj+Wby0VKfwE21NNCjLj2BTnOHaUdD6mQ4CcpzRaNGajKMr2iWI6A2zC/lmag7U6pNdZNrZjgLjYtmBiOq7lURms5JTlp9R2B3in5zsUh4tNMF8y2SqwXQDEgvKKmmShxdzvCGNSnDXzrEmglo2iKHWJYHudSUflSqzrTKwXsWC8MZQ80tKca8I1jF41mo9qPqJroCvv7fcenehkLZkwdjKnd0yS9FnztruRRIQsoCPaiqYJoWKjKEo6NRihkdYwKWzsRIh6Pku9i7jNPK6zKFHO+OoM3q96n47Bjiw4YAG9nF5GsKoxlo0kGOS47/OwgiaxmTimK4CITztMUoDSZFA3mqIolipMHY00yvRhp11mYYsrJSFAAvZJoAwrQEGIBqOMWT2GuVVzaZvVlvl95nNAqwNs8WXC/T7poSZdAMA21xQhSniu3RFNcW6CqGWjKIrNKluLTV2W6n1pmikuNT/myRHBdnjOw2Souf3QYtkxzv72bN6ofIPirGLe7fkuBzkH2fTlPIxgVZNuMUljTbGWJJNNXG0FQBv0z+QmiIqN0mIIBoMccMABHH/88USj0V2fkCG6detGhw4dGuz76yBNNNdgHvQSm5G4i+O+ZKKm1L8ksVlgIiA1EIvFOHvl2cwpn0NRVhHz95/PoKxBdky0NNHMwghILraHWhxrSYUwrjNxzeVgrBoVmiaJio3SYsjNzeWUU05hyJAhpFKpXZ+QIcLhMF26dGmw76/DJuB7bFdmaRMjrWXkKSGuNLAD0pLYWEsQotEo56w6h9mVZlTA/H7zGZQ/yBxXjbGe5PpgRwPIIDUHW2cj/4uimILNLmgtTRNGxUZpMQQCAbp27UrXrl0beimNgxRGaDa7n8U1JiLiuD8l8C/WjqQ552NSnJNALkT8Ec5ceyZvVb5lXGfd3+WQrEPMtbPc4yVzTZDOANnuZxn5LCnQIYzFpF2cmzz6v09RWiJJYCOwHvNgl4SAmPsSl1YVRnzEqpFsMDBPD3d+THVFNT9d91PerXiXtoG2vNfzPQYGB9qqf+kGEHavKxlnKff6YAVNxjzLd2rRZrNAxUZRWhoJYB0me8zBzqCRzgBizYi4SHxGJmX6sA//bKiIVDB69WgWVi+kfaA98w+aT//c/ub4KoyQtcbGXgS5hg8jMJJ1FsR2fu6KtXqUJo2KjaK0JKShZhQjNAGMIMgY5wTpVfsSR5GZNA7GdZYPhKEsWcbJ357Mv6r/RadAJ+Z3n0+/7H7mfBGwSuwgNREbETSw7jpJe05gEgO0O0CzQsVGUVoKNcB3GEtDAvYiBjKbRtKd3eFmtZMxPZaMZJWtj61nxKoRfFr9KT1CPZjffT77+/Y3bjGp7JcssgDpFlINNqssha3hkWSDztiu0kqzQMVGUVoCFRjXWSXmIV6DfbCL1SJuLpmCKd0DYqR3BwjD6urVjPh2BF/FvqJPuA/v9XuPbqFuRmiq3OPF/SUZZ7nYTDSZrClWVD52rEBn7BhopdmgYqMozRkHU2z5g/vZ2+cshK3al0r9LM9xMiEz6l6jwOz/MvYlJ64+kTXxNRycfTDv7PcOHbLduiERsPg210xhCzq9a5M2NzUYMeqCCk0zRcVGUZorKUwSwHfu+wqsdSLpzWCEZ9uuzdJ5GYzIbAXKodRXysnfnMzGxEaOyjuKN7q8QVGiyNbkgLVocrCdmqUzgDd9Oul+Ryv3+1RomjUqNorSHElgRGaL+17iL97Kf4nDyICzFEZ4xLUlwXm3O8CC9Qs4bd1pVKYqObn1ybxywCvkkmtETDLO/J5zHM81ZKRzEDubJowRPRGagnq8f6XRUa+NHz788ENGjBhB+/btKSgoYPDgwUyfPj3tmEgkwsSJE+nUqRM5OTkMHTqUv/3tb/W5DEVp2cQwrWekZb8fkwwQwXZr9jZQkGp9SYEOYERHhAB4ueJlRq4dSWWqknNbncvrvV8nNyvXnFPonhPFZrWJu07YtrGmtL8JoULTQqg3sfnss8844YQTiMfjPP300/zlL3/h0EMP5dJLL+XJJ5+sPe7SSy/l6aef5t577+XNN9+kU6dOnHTSSSxatKi+lqIoLZdqTGrzJszDvBwjGtLXrAYjQhXuS+bSOJ5rBDAP/wpzvce/e5xzl55L3Ilzbdtreb7984QiIXu8jGnOxlgsksocwU7glKaacWyLm1ygOyo0LYR6c6O99NJLJJNJ3njjDfLzjeP1xBNP5LPPPuO5557jF7/4BZ9++ikvvPAC06dP55JLLgFg2LBhlJSUcOeddzJnzpz6Wo6itDy2YHqcVWMe5jHsKAAZPia1MpIRVuOeK8WckiCQDU6Ow21rb2Py5skATO42mZs73Ywv7jNCJDEeSB9wFiJ9Hg3uWrxNNUFjNC2MerNsYrEYwWCQnJz05PjCwsLapodz5swhGAxyzjnn1O4PBAKce+65zJs3r0E78SpKkyWJsWTWYWMlMYxVE6V2YmadYk0f6Z0DpP4GiKViXPTdRUzePJksspjRfQa3dLkFn99nBEYGmcXsObUWjXyH1M6IKEktTwDTGUCFpkVRb2Jz8cUXA3Dttdeybt06tmzZwtNPP838+fOZMGECAIsXL6ZXr17k5uamnVtSUkIsFuObb76pr+UoSssgjulv9i3mQb7R/RnFxmeqsK6zKmxLGK8w5GDEYStsjW7llC9P4U+b/kSeP483ur3BxeGL00c2S9GnjAcQN5kIm/clmW9+jMusGyo0LZB6c6P179+fhQsXcvrpp/O73/0OMPNDnnrqKc4991wANm/eTFFR3VmuxcXFtft3xLRp05g2bRoAGzZsqK9lK0rTJYKJz0QwgpGNEZggtsWM/Ib7MO41SYGW+hrv/nxYs2ENP1nyEz6LfkaHYAf+2vev/Ffuf5mEgQpMMoDPc46DERxxm8mIgiS2Y3MCI2Y+jOss/W9NpYVQb2KzdOlSzjzzTEpKSnjqqafIyclh9uzZXHnllYTDYS644IK9uv64ceMYN24cAEOGDKmPJStK08Q7VRNs1+QajKBIRpl3PID4MKRbQBI7ktn1fP+n5j+cuuZU1sXX0TfUl7f7vU2vnF5mZwHpPc4C2IwzcZHJ7JtsjKUj2yXTrQvagqYFU29i86tf/YpgMMibb75JMGgS+I8//ng2bdrEL3/5S8477zyKiopYtWpVnXPFohELR1GUHeBg5s9swHZglhTiBHYeTARjicSwcRkvMsp5i/n4ZuRNzl16LlWpKo7JP4bX2r5GseP5ffT2OMvCiI60sgm7+2UGTtzzvSlM/U1ntKlmC6fexObzzz9n4MCBtUIjHHbYYbzwwgusX7+ekpISXnvtNaqrq9PiNkuWLCEUCtG7d+/6Wo6SIbKyssjOziYUCu364AwRCoXIymqBIxulUFNqYPIw1kk26dlgYnlINwAZiObzHIP7swB+u+a3/HLjL0mRYmzbsTyz3zNkJ7JN14AAtm2NNOVsjRUS6QqQ8hwTxrrQghiLpuH+uSiNhHoTm44dO7Jo0SJisVjag+hf//oX4XCY4uJiRo0axV133cWsWbO46KKLAEgkEsycOZMRI0aQna2DKxozWVlZHHzwwVx88cVUVlY22DoKCgro378/fn8LGkYfwaY1y8CxBFYQAljLRnRY0py9qcgRanucJZwE1313HU9sfAKAuzvdzZ3d78Tn85lzCrGFmeI2w/Md0uJG4jGS3ixxoyA6+Eyppd7EZvz48YwZM4ZRo0Zx1VVXkZOTw5w5c3jxxReZMGECoVCIQw45hHPOOYfrrruOeDxOr169ePLJJ1mxYgXPP/98fS1FyRBZWVkceuih9O/fvzadvSHw+/3k5ua2HOtmC8ZtVo4RAfnp87ziGCGKu/ukviaCTXMOYwRhK2zN28rZy8/mna3vEPKF+EOnPzA2f2x6TzQRqRxsQaZkmHnHA8gcnKT70wcUA+3RhlhKLT7HcZxdH7Z7vP322zzwwAMsXryYSCTC/vvvz7hx47jiiitqHww1NTXcdtttvPDCC2zZsoWBAwfywAMPcOyxx+729wwZMoTS0tL6WraiNE5SGJEpwz7gHUwsRtxYMs4ZrOBIppnEUbyxEgeWrV/GqLWj+CL2Be0C7Xit72sclX+UsZIkPVkEJ4Z1h6Uw8aFsz3c4GLdaCjsyoAhohwpNC2Rnz+Z6FZt9hYqN0uyJYYRmM+bBvgXzwJfWMzIewDuXJomJ54j4yOcQtVlg7299n7O+PovNyc0clH0Qb/Z7k15hN+MshRErcctJ1lrQnk8ck7osCQnSYFMGsbUBOpA+/llpMezs2dyCnN6K0kSoAFZjZtBIfEYEQOppZCBZBGPd1JDe3wxsxlkVEIUnv3+SEV+OYHNyM6e0OoWPOn9EL18ve7zMsMnBiomMBpBri5tNuhRIGnYI6IgKjbJDVGwUpbGQwrSdWYMNwgcxD3X5TZWOyj53n2SLxTFWDO57IQDx3DhXLbuKq1ZeRcJJcFOnm5jTbw6FrQvNOd7OACJiYUywP9/9DklpFgFKYkSvADv0rBgVGmWHqFdVURoDcUyrmfUYMdmKzSorx2aDRbB1M9J/zMEKgmSctTLHr4+vZ8yKMfyt4m+EfCGe6fkMF3a40Fw3GysiKazrLOZ+rwiaxHFknZKlJjGhzmjnZmWXqNgoSkNThWmiKa4wecgHsX3MpAWNDDgTi0bqa8TFFqZ2jPMngU/46dKf8m3sWzoHO/OXzn/h8JzD62acpTznJbGFofKdQtI9Voo2WwOd0PYzym6hYqMoDUUKY8H8gA3wBzHBdsk+82aYS5dmMCIjbWq8Pc4ACuCFVS9w6fpLiTgRhuYP5dU+r9Ip2MlktklSgbSxkZHOEqeR68rsGW+jzdbuOYWY+IyWxim7iYqNojQEcUy22Xr3s0y5DGISBHzYws0YJnYihZRimYQwYiBta8IQT8WZuHoij/7wKACXFl3KEwc8QbbfVYVWpNfKiKsu5X6WzgMSq4lhLJdsbKJCDsZ1pk8PZQ/Qfy6Ksi+R7K11GHHxdmuW7sl+bPqyiE4lRhi2tSQk42wr/JD4gXNWncMHFR8Q9AV5rOtjXBG8Al/KZxMMpEHntoWacfdakmkmbjYp2pSU6FaYYs0WUk+r1B8qNoqyr0hi3GbfYcREBES6NYfdz17XmbctjNTBiEjJb28Q/sW/OOuLs1iTXEOnYCde6fMKRxYcaY6X0QAiOCIkIm4yrdPbSFO6AfixiQSdqE08UJQ9RcVGUfYFUYzLbBM2a0we5pJKHMF2CJDW/V4LQupgEpgMtdbg+Bye/OFJrlt1HXEnzpE5R/JK31foFO5kzsnFiItkj0nGmRRkijtO6mskCUAyzsTCkhHOmtqs/EhUbBQlkzgYYZACTbEUtmJb80uzTGlHI1ZMBTbFWc4FIwpRqN5azRUbr+DPm/4MwLUdrmVKqymEEtu0WA54ru/NOJMkgW3dZhKrkaFnHTGuOkXZC1RsFCVTJDDtZn7AWBNlmAd+FUZssrHNMqWORjLERJQkQcDBPvB98HXoa8766iw+j31Orj+XZ/Z7hvPanmfEYgt2aiZYS6YAWwAawxwrqczZnu357vd1wPQ40/EASj2gYqMomaAaMxLAW6Gfhc0gkxqZBLa+JhsrQAnSJ2Judj+HYdamWVy6/FIqkhX0CfbhL73/QklhifkOP0aU/BjhkPPjpNfw+DHxF2k708pdoxSKFmDERhMBlHpCQ32KUp+kMBbMamymlzTQTHleYGMo2aS7ziRAL7gV/LGKGNctu46zl55NRbKCs4vP5t99/k1JvCQ9qUBiMRJjiXvWAnV7qIkLrQY7HqAjKjRKvaKWjaLUF1FM7Yy4zSQJIIYREWk3s22dS4D0KZtRjKutFbW/oSudlZy77lz+VfMvgr4gD/V4iPEdxptBZzIaWpIBvDGePGwWmwiPFI9u6zYrxGSc5aGJAEq9o2KjKHuLg4nBfI95sAcx1kUUE2B3sOnLcnwV9qG/7W+hxGq2Aq1h9tbZXLzsYrYkt9At0I2Xu7/MEe2OSE9hFhFxPNcTwZH4jxSGRjGC4l1jFmaqpnYEUDKEutEUZW9IYCyZb7HtZyKYGEul+14aXQoSN/F2AIiRTi7EiHH9suv56dc/ZUtyC6OKRrFowCKO8B+RfrwkFuRiMtykRiZBusvM5/kp1pAPIzbdUaFRMopaNoryYxDr5AeMwASwxZHeKZbiSpNEAUkMEKTuJYpxtblxluXR5Zy79lz+Xf1vAgR4oMcDTOg4wbjN/O71vJ0GZE3Z7nfUuNdOYVOdk9hxBTIfpz2m35nGZ5QMo2KjKHtKElOcucn9LLGXKmymVwobqBdRkPiNJAMIPoxbazMQgJerX+by5ZdTniynR7AHL7Z/kaHthlrLJIixYmQcgGScSTKCJB7kYmMzWRghkzRnB9PfTAs1lX2Eio2i7AnV2E4AQeysmUqM2MiDvxrzsJfW/2B/2+IYSwbSamGqc6uZsGIC08qnAXB60en8Yb8/UFRTZK7f2rMOETAZDZDACpy41YQUtpGmrKMTdtSzouwDVGwUZXfwWjMxrEjIrBnvDBoplKzAdkmW7gBynCQVFJljPqv6jPO+OY8lNUsI+UL8pttvuKrTVcZtFsCOfpauA2LJSF2OzKWR2p2Y+71SECrv2wFtSHe/Kco+QMVGUXZFBFug6cNYLSGsmICxLsSa8MZEpHbG8WyD2n5kzlaH30V/xw3f3kDUiXJg+EBebP8ig1oNSg/oS/cAqZXJom4tTtA9zsHOnhG3nYOpnWmDpgUpDYKKjaLsiCSmQHMjxkUWwrrNZJqlJAFIHYu4zmRMs3RtjlDbPFMe9htDG7l09aXMqZoDwGXtL+ORHo+Ql8qzvdPkN1QsowL3eyPYGTgiPNJWRroPiHstF5MIoKOblQZExUZRtodYM5KWLG4qsGMApCATrOuqCpsw4G2emY1xg1UC+fBu+bv8bNnP+D7+PYX+QqZ1m8bZnc6218/Hus0k6SDuXiuEddnlkF5j452omcB0A2iHpjUrDY6KjaJ4kUaW32MEx4cRiCDm4e/tZSZWhRROihWT9BxbgK1ryYPo1ii3rb+NhzY+BMD/K/h//Lnzn+mR7GFHMIMdLxDCiJi3K7McI61uJN250F2XvNpghEbTmpVGgIqNogg1GJGpwTzg8zCuL2kDE8E82OW9tOuXDDARgiyMxbEJY+m47V8WxxdzwdoL+DTyKVlkcXfXu7m1y61kkWW+R1rUgG39L0IiCQfeAlEZES1xHLGuCoG2pGevKUoDo2KjKF5rJoWxZMCIThU2dhJ334N1ocnsF2mw6R3nXGCu5fgcflvxW25adRMRJ8J+wf14vtPzHNHB03LGPbY2oO/tcSaFn36M8IEd0+y4xxRjhK8dJj4j61SURoKKjdKyqcGMaa7APLS9w8ykJYwE5Cvd9zJ0DGwqsyQT+LAP+hB853zHJcsvYV7VPAAubXcpD3d5mILKAmMZiXj43fPcwWi1IrJth2aJ34iYySgBB2PJ6FgApZGiYqO0TJLY5plga1YkvVncU/Jw97aGkVYxSc+2LIy7rMr9HIZZm2dx5Yor2ZzcTJusNjzd62lOb3u62S+xoBDpv4UiIgn3WiJ43lhMDNt+JoJxvbV3f2o3AKWRomKjtDyqMF0ANpJeLxPHuNMkhbgSY2l4J1V6kwBEmCTTKxuIwZbqLVyz+hr+vNmMax6ZP5I/tPsDnXM62+tkYywXaZYZJD2FWVrSyCC0uOc4MFaMWDPqNlOaACo2SsshgQnab8G4qiSwL1lfCeyDXoi4rxDpLi2xZCrcz9nmWvOj87lk9SV8m/iWXH8uD/V4iCvaXYGvxmdcdtJNAOx4AT822cBrmUjcRopDZUSArKMQdZspTQYVG6X5Ix2av8NkfYEt0pS5MhGs60z6mXldZ1JD4/Nsk3kwNVDtVHPzdzfz2x9+C8Bh4cP4U/c/0ae4jzlWZs54h5yJKy4X27tMpmqCzTyLYS2gKqzISFq1ojQBVGyU5k0M4zIrxzzMc7APfGmYmYOdZilV+eIak35mYvmUYywMqYMJwv9U/g8XLb+IpbGlBH1B7up0Fze3upkAAVs7I2Oat53SKcIiIpbjrk06FEjHAInHFGLaznhde4rSBFCxUZonDkYYvsMIjoiIjFwOY2Mk3iQAEZka91ip4IfamIwMHYsEIty14S6mfj+VFCkGhAfw3AHPMShvkPmuraRnnEmqcp57HRnLLJ0GJHVaEhS87f992G4A2ttMaYKo2CjNjwjGminDpjNLtpk0zIxjRKea9PoZ6WcmUzS3YqwLsWRcK6V0UykX/XARSyJL8OPnlja3cHfbu8nOdtUqiLFGKth+xlmu+13SU03azIhFE3OPSWCsmXZobzOlSaNiozQfti3OjGIe+lKkKZMqvdaDN51ZXGYScPfEZADIhmgoyn2r7+P+TfeTJEnfcF+e3e9Zjsg6whwbJb2zc777Pua5ruP5me0eI+1vWrk/C7Gut/boSAClyaNiozQPvOnMQWzAP4URC+mCXI6xYsLYh37WNvtbUceSoQZKI6VcvPJiFtcsxoeP64uv59fdfk1OTo69ljTPFGERKwasGCWw3QGk/b8kJoh148O0nClGkwCUZoGKjdK0SQAbMCOVpTGmbM/GBujloS4/K7E9xoKenyJUuOeHIVIZ4d5N9/LgxgdJkuSA8AFM7zCd/5f//6wLTkQlhU1EkEr/JHbImYxrFhdaNjZpoADbcqYdWjujNCtUbJSmifQwk3TmLIx1I92ZJRlA0obzsYF1sVgkiA+1dTK1YuQKzj+j/+TnK3/OF9EvjDXT7nru63kfueRa11sSmy6dgx0vIK3/vUgSgtTPFGKz0/wYa6YNWjujNDtUbJSmRxQTl6nAuq2qsUWSMgYZzAPfj632j2MtGbE0pKAyFxNnqYZqfzV3rLqDhzc/jINDn1AfpnedzlHho2yNTD5GrGqwwXtxj+VjuwzIGiRZIYkVmJj7knEAEuNRlGaGio3SdEhiEgDWYK0GSWmuwDbErME8tL3TMmW6ZjVWjLyWjOzLhYXVC7n8u8v5JvYNfvzc1Okm7mp/FzmxHBvIl5hOIcaiimOtG0k0EJdZHjYmFMRaNmLVdMCIjf42Ks0Y/eetNH68HQCqsW1lKrE1KxJv8R7vTXmWLLMwtjJfKvdd99vWmq3ctO4mpm2aBkD/cH9mdJzBkDZDbAZbDXauDZ5rSrdmsWJEcOQYETxpsimWVxe0gabSIlCxURo3MeAHTKYZmId9AGPJxDAPftnmjcmIxSJjnaWvmPQZg7TBZm9sfYMr117JusQ6gr4gt7e/nVuKbiGUFbJiFna/Yyvp7jjc60qqdAI730ayy2LuubKvrfvSTgBKC0HFRmmcJDEZZhsxgiEB/QDmIS9tZsAG6mWui2SdSUdmmUUj3QCkFiYJ31d8z7XfX8usLbMAODzncP7Q9Q+UFJdYKyqFzWoLYadpSvabuM7ATunM8aw37F5Hstakr5l2AlBaELv1z33NmjVcc801DB06lNzcXHw+HytXrqxzXCQSYeLEiXTq1ImcnByGDh3K3/72tzrHpVIpJk+eTM+ePQmHwwwcOJBXX311r29GaSZUAsuAle77ave1GWONyE9xh0nsRTozV2IHkIkYBDCi4wbmnZTD9K3T6fd1P2ZtmUWeP4+HOzzMh70/pCRQYt1sUvsio5fBDjqThppxzzEiSt7amZjnnO6YWI0KjdLC2K1/8t988w0vv/wyRUVFHH300Ts87tJLL+Xpp5/m3nvv5c0336RTp06cdNJJLFq0KO24O+64g7vvvpvx48fz9ttvc8QRRzBmzBjeeuutvboZpYkTBVZjhGYLRkBiWItABEUyvqqwDTbFsvBmmFVj/4V7BOfr5Ncct/w4Ll1zKVtSWxiZN5L/K/k/rmtzHVmOm3MshZe5GCslgnW/CUGMG64A46YTl5g36y3knt8V6IbWzigtFp/jONsOnq1DKpXC7ze/tc888wyXX345K1asoGfPnrXHfPrppwwaNIjp06dzySWXAJBIJCgpKaFv377MmTMHgPXr19OtWzduueUW7rnnntrzjz/+eDZs2MBnn322y0UPGTKE0tLSPbpRpREjWWbfYtv9+7BpwQGMtSJxkyjmwS/1LJsxD/Vcd1u5e6wIhuvmivliPLj+QX694ddEnShts9rySOdHOD/vfHw5PnOOzKfxY9OZJQNNrpnAiEwYK0AS+A+4+2qoLQqlI9blpyjNmJ09m3fLshGh2Rlz5swhGAxyzjnn1G4LBAKce+65zJs3j2g0CsC8efOIxWKMHTs27fyxY8fy+eefs2LFit1ZktIcEJfXMmAFdmYL2EB+mPSU4kqMmGzbml9qaWKeYyX1OQkfVnzI4KWDuWP9HUSdKBcXXcyX+33JBa0vwBf02QadEksRQRP8GBHJxyYfxLHdBuS9D5uG3R7jNlOhUZT68xwvXryYXr16kZubm7a9pKSEWCzGN998U3tcdnY2vXv3rnMcwJIlS+prSUpjJoJxmS3BPJwlBrPJ3VeGyfqSbDKwAXqZQ1OFjdmI6MjD342xlFHGuO/G8f9W/z8WRxfTO9Sb93q9x4yOM2jTqo2NxUitjRRryjgBrwDKGsJAESb2kocZzRxyt+Vgamb2RzsBKIqHestG27x5M0VFRXW2FxcX1+6Xn61bt8bn8+30OKWZIr3MNmDEItvzU9q+SOxDrBvpFNAKIyjyAJeWNeJOk9TmGDgJhxcrX2TCdxNYn1hPkCA3t7mZX3X8FTlZOUbYZLaMTOv0tp3xNuuswQb8vQ02ZRaOxJBCmMaZxajIKMo2NJnU52nTpjFtmim227BhQwOvRtljRDS+xVgl3hqUasy/xCps2rKIh1gzUc9xkgYtD3pxX+WYn1+nvuaqdVcxv2Y+AEfnHc3vO/yefrn90vuQxbGusSr3OpKA4O08IBltkkYt45xlFICDqZlpj7rMFGUH1JsbraioiLKysjrbxVIRy6WoqIgtW7awbV7Ctsdty7hx4ygtLaW0tJR27drV17KVTCPV/N9gYjNbsQIjQiEZZJIeDMZi8cZgJL1ZzpV4ijS2jEAkFuHu7+9mwDcDmF8znzb+NkzvMp2F+y2kX14/c47Uv0iBpYhKHnb0c5z0eI20t5FOAR0wyQiF7po6YbLNVGgUZYfUm9iUlJSwYsUKqqur07YvWbKEUChUG6MpKSkhGo2ybNmyOscBHHTQQfW1JKWhiWL6mC3BNqyUehfZLy6ycmxDTK9FUeO+5OEvwlSFjbdkwTvJdxjwzQDuWX8PMSfGJUWX8GXPL7kk7xL8+NOtlTxsVplc14ct2JT6GbFeRHwk/VmSAQqBHpgGmuo2U5SdUm9iM2rUKOLxOLNmzardlkgkmDlzJiNGjKgdlzty5EiCwSDPP/982vl//vOf6d+/P7169aqvJSkNRRLTYuZLjNhIBb/3Je1cpKeZDyM2UpAJNugvA9BEXKQqvxLWxtZy9qqzOWndSXyT+IaSUAkf7PcB07tNp212WyMC3iC/xFlakd7xGc93BjCutSJsAkABNvgfAg5ArRlF2QN2O2bzyiuvAPDxxx8D8Pbbb9OuXTvatWvHsGHDOOSQQzjnnHO47rrriMfj9OrViyeffJIVK1akCUv79u25/vrrmTx5MgUFBQwePJiZM2eyYMGC2locpYmSwlgo32FqX6T6PoRxh+VirYOI571YEt6CTImfhDzbKzEP/SyIh+I8uv5R7v72bqqcKnJ9udzd7m6uC11HMM9tWiadniXWAumNOcU1JuuR9YoIyvF52NY04kbT4kxF2SN2q6gTqJM9JgwbNoyFCxcCUFNTw2233cYLL7zAli1bGDhwIA888ADHHnts2jnJZJLJkyfz9NNP8/3339O3b1/uvPNOzjrrrN1atBZ1NkKqManMW7FxFulplsBOpZQizSDWFSYdklPYbspRd3+h5xoVQAg+SH3A1euuZnF0MQCnF5zOI10eoXuou/keqE0WqBULsOnVMmpZEgRE4GScc7XnHBGYENrTTFF2wc6ezbstNo0JFZtGRARjyWzAur/iWLdYNlZ0HEz9jFgqUtcimWHlmId5yN1X4Z7ndgZYt2UdEzdO5IXqFwDYP7Q/j7d6nJMLT7bikMSIlmS1JdzzxR1XjU1pTmDETPqXiZDI8DMZJdAKIzTaoVlRdsrOns1NJvVZaWRIAeYqzMNZOilXYx7KUrsSw7i/5IEvVk3SPSaE7RIQwMRmwLrPHIhXx3ms5jHuXn83lalKwr4wt7S9hZs73Ew4FTbWlFglYnXkkN61GWz9jLSWEStImnbKSAIRmnxMplk+Om9GUfYSFRtlz5DW/2swloi4o6QxpvQzi2KD51IXE3VfUj8jVo/EbbzJAH4gBPPL5nPN5mv4Iv4FAKPzRvNIq0fo1aqXtYpySW/YKV0FCrCuMzlWeqXJ/gLPWuVaAYzF0x79DVGUekJ/lZTdw8E0y1yLsWhEZPyYB302dgKliE3SPU+q66W3WZV73LbjmqXdTABWV6zmhq038Eq5SUzpHejNo10e5ZRWpxj3mrcAU9xb8n2yXqnBkYQAdyJnbTpzLuk90KKYeE5HrFtOUZR6QcVG2TniWlqDmZYpAlODdZf5MFaOuM6knkXEQzoDZGOLN6VFDVgB8EFNqoYp5VO4v+x+apwacn253F54O9e3vt6kz/swbq0yjLhJ2rSDsVLk+6S1jHctPmoncxLHxGLi2Amc3TBpzlozoyj1joqNsmNqsCITxQbyxdUlLWTyMA/1ENadJq4sedDHsQkBkubsiZU4AYfXtr7GDWU3sDKxEoCzc89matepdKObOTaGbcSZj627kbk3ks6Me1x8m+8F69ILk954U9OZFSWjqNgodYliMszWYiyFGOYhLQF9mdUiKctiTUjmmGSByfAyEaIkNpFAEgCi8H+V/8cvt/6SBTULABgQHMDj7R5nWPYwc67UwkgnAXG/eSdwbtuZWVKfIxgxFLebjB6QpITOGItIEwAUJaOo2CiWGLARk2FWiY23SCqx9BOLYQsh5cEvs2Mq3WtJL7MYRiSkW7PUsQRhk7OJu7bexZMVT5IiRZG/iPta38cVba4gEA/Y7wPb00yC+RLoD7vXrsR2chYRTLrHZmOD/3Fsd+Z22OJNRVEyioqNYjPMpFFmFtaakcC9TL+UWhqxEqRxZRwb9K92ryk1M1UYwXEf/PHqOE9tfIq7yu+iLFWGHz9X51/NPe3voY2vjR2aJmnQYs3IqCQpBBWhkDiOpCynsGnXYomJ26wQk86sCQCKsk9RsWnJpDAZZksxYiMxGak/8TaglDYvcp70MJOAu7dyPxsjTiIwudS62eYm5nLD1htYEjeNV4/POZ6Hix9mgG+AbRMjacw5mMwzCfZLDCiMTWkWa0YyzmQss8RopGtBPqavmc6aUZQGQcWmJZLCWDDLMMH/FFYwZAqmFGjmes6pwohMK8wDuxJbkS8P9WqMSEhKs1uF/4XzBTd8fwNvx94GYP+s/Xmo1UOMbjPatEKSAL93cmYImwggiQW47+U7vHNwYtgOAjGs660jxmUmYqkoyj5HxaalsQVYiQn+S4FlDDsWWSruJZ1Ygv+Stiz1KiHsULEaz3s8n4GN0Y3cU34PT5Y/SZIkrXytuKPNHVzT6hqyt2RbFxkY0fJmkImYZGMTFKBux2gw7jGxtGRujWSZaQcARWlwVGxaCuXAckwqs6Qcg3mAe9vMiOtLugFIR2bv/JdsrCiIa0sEy01zjhHjt1W/5b6q+9jibMGPn3E547gv/z7at2pvA/be6n0RCdzt3piMWCVSwClTPqWrtKRmS+1NZ9RlpiiNCBWb5k4Fxl22mvTZLfJwlhYy4qoS0YhjG1TWYK2DGmwWmNTZFGAe8BWmXuYv8b9w89abWZY0A/JODJ3IQ20eYkD2ALMeicmEPN8lo5ZFWGSfJCp4OwLI9+e5ayjAdjEoxLjN1GWmKI0KFZvmSgVmFPMKrPtJssdEWCLYgLy4qWLYIkxpPwN2REAO5gEvoiCtY3Lgf33/y40bbuTvyb8D0C+rH1Pyp3BK7in48Jnr5mKzw7wdlqtI76cWwM6/CXjWk8KODYi414lgKv87k54coChKo0HFprlRCXwNfIWtefGKjFTQS+YZ2NYzUk9Tg51oWYNt+SJpz95+aEFYGV3JrVW38lLkJQDa+tpyb+G9XB66nEAwYIP+SWwKsrTvF4slz72mrDPP813SoUC6EUjjThkf0NZ9qctMURotKjbNha0YgfkMY20IIjTiEgNb1S9Fm15rRirsxYoQS8b7HiAbyiJlTIpP4vGax4kRI5tsJuRM4JbALRTmF5pryGhnES2wEzhFXMC6xnKxWXESW5I1Si+zHPe89qjLTFGaCCo2TZ0NwP8Cn2KaU/o8L8keEytGxCKMtXKkANIbz5G4jAxBC2GsJLfNTKQiwhPJJ5gUmUSZUwbA2OBYJrWeRPfs7rYGR1rU5GHb1xRgBU3ccJJ9Jp0Bgu5xMtIZ7ETNEOmFmZplpihNAhWbpsoa4G/Ax9hUZG97Gak5kW7IMufF69ISl5QkC0iwXgLuYMUoAKloiheTL3Jb4jZWxVcBcFzWcUxpNYXBicFWrKT1v7dmJg8bd5HjwFgyBVhrJoJtNZMgvTlmECMymmWmKE0OFZumRhnwd4y7LAIUYYLj8iCXqv8AtnllObYzgDd1WI6TB7u4uaRpZSWQDU7c4V3e5ebozSyKLgKgv68/D+Y8yMjgSHwBny2ulImZIgbSPFN6peVg+5iJ4HmtGYnDSGsZERyZM6OjmRWlSaJi01RIYtrK/B1TmJmHdYtJY0ywlo0UZUoTSukMUO7ZL8SxDTUl5dmtVymtLuUW/y3MT80HoCtduTf3Xn6W9TOyElk24UBcZdKPLIUtsJTstyC2+l9qbLKw1owIoIhTAtNipgu2k4GiKE0SFZumQAL4BFiEfYhL639voF9ERB7W8hNs2/1KTB80STGWh7q4vADisJSl3M7tvMzLkIJCCvlV4Fdc41xDjj/HCoq46qS9jMR6xLIJYdvGSHNMsJZXgeeeZM5MAhuXKURTmRWlGaBi09hJYIL/SzBWSoT0B7xXJKQoUlrAOKQjwX5ppClpx5LWnAXr/Ou4l3t5hmdIkiTbyeZaruWW3FsoptgWWrppz7XuMxlEJrNipFGmfEcQk03m7V0m9+dNRsgCumMsGv3XqSjNBv11buysxNTNSHt/eVh7hWR7lsz2ENeZZHWVU2t5bE5u5kH/gzwWfIwaXw1+x8/PfT/n7uDddKvuZr8vGzt2Wa4lc2K8s23y3WNl3IDEYvwYa0WGoiWxFlEHdGKmojRTVGwaM1sxFo20cvG6zLa1aHYlMknSm2W6fdAqqyp5tPWjTMmfwlb/VgDOSJ3Br2t+Tb/cfra+pgbbJy3Hsx4wQihjmKV7s1g9rTCi4021FmGKu/taY+Iy+Xv0X0dRlCaEik1jJYkRGnEzeeMq8pDfNtC/Ld54TcKzLQURf4SnujzF5OLJrA+uB+CE2AlMSkzisKzDbBGo9DDzuZ/FJSZFoFJP48dOzfT2X8vGCpYMOQNr/XTFjixQFKXZomLTWNkKbMLGYCB95DHbvBe8n7fjWosH4szInsF9be5jTWANAEdUH8GkmkkclzrOdmMW0RDBCWCLQ6VYVOI2UWwLHJnWKdlp4iqTsdC4+zphOgCoyChKi0DFpjHiAKuoKzKQ7j7zio33p4iLZJplQSIrwfO5z3Nv4b0sDywH4ODowdy34T5GrR+Fr8hnq/tFHMQqkbqbELYQNO75LJluMtFT1inrkN5m2RiR0RYzitLiULFpjMQwlo24vyQhQARHREZeYEVGsr/cGE2SJDPDM7m3zb18FfgKgL7xvtyz8R7GVI/Bj9+6zKRljMSEJLMMbHxFYjFi0XiLQfMxAiQNNsX9FsRMyuyCdacpitKiULFpjESwDS8l/uF9QEvBpvz0zntxuwIkE0lmBWdxb8G9fBH4AoD9Evtx59Y7uaD6AgLxgHWxyfAx+S6xaOJYCyfk2ebDutq87jEROelploXpcNANk4GmIqMoLRYVm8ZIJVZIvMjD2usmk1iJa4kkI0lmZc/ivvB9LAksAaBHogd3VN3Bz2p+RjAStK36JbNN2st43WNigYiFI9skMcDbKSDbc0zYvW4roAdGbDQuoygtHhWbxohYNV43mSCuMrDpwwFIxBO8FHiJSXmT+DLrSwC6J7tzW+Q2Lq66mFAiZEUmhhUHb8NOEQ2Ju4SwdTPSpFOC/2LxSHZawN0XxohMW+xYZ0VRWjwqNo0RERMRGz/pBZmSDp1lj/vB/wM/9/+cuC9Oz1RPbo3fysXVFxNKhdKtGK9wiOCIC83B1szIMSHPy9vfTGJIUruTg5mU2QUN/iuKUgcVm8aIuNCkgaY3GUDiMmKhuG6tLsEu3Jm4ky6+LoyNjCXoBM2+iHtNERURFGkRIzEbsXCk0j+XdPeazKCRpAFvbU1nTFxGm2UqirIDVGwaI1Krsm1nABEMsBlkEkPJgtsTt9v2L9XYAWXSXVneu/NpyHKvIYkAudgGndJxIIxNEJBMM8kw6wz0wnYWUBRF2QEqNo2RPKxFIdaMtP8Ha4mI0Mhn6UUmFkeEdMHxu+/j2PiLtJIRC0p6nW0rMt74TQeMyGhHZkVRdhMVm8aIN9VYmlt6a18kRVnERralsCIjVomITJj0gWUBz2cZVJaHraWRmFDQ82oP7IcJ/muGmaIoe4CKTWMkhJlMuQ6bECCjAMC2ganBiouMH8CzTdrHRDFCFML2WJPYjYwXCGMtn7B7nmSnich0QkVGUZQfhYpNY8SHebCvp651IwWT0gBT3GgiGBGMkORgg/5i1UhBZrbnWtKKJh9r3UhyQBHQFxOb0XHMiqLsBSo2jZUCzMN/E7YfWQIjFDXY/3MyQE1cZhKDkaLLBDbrLEz6eAJp8tkO0+Zf3GiFQD9MhpmmMSuKUg+o2DRWsoDeQIX7WcY+ey0aQdr/h7FjAMSaEdcYpLvPHPfarTAWjIhMifu9OsBMUZR6RMWmMZOPyfr6CutGg/Q2Nn6s0ESxQhInvZjTm+7sYKwjH8aiaQ8cjLFmtFZGUZQMoGLT2OmMEZFV2C7KYCdiSjdmcZuJW01cZPISkUlheq+VAz2BI4FDMG47RVGUDKFi09jxY0TBB6zADi6T+htpximjn6UQVKr+ZZsIjSQdjASOwWS9KYqiZJjdKslbs2YN11xzDUOHDiU3Nxefz8fKlSvTjiktLWXcuHEceOCB5Obm0r17dy644AJWrFhR53qpVIrJkyfTs2dPwuEwAwcO5NVXX62XG2qWZGHcaQOxI5Slh5l0Yw5jxzLLe6mZkULOCkxM5gbgp6jQKIqyz9gtsfnmm294+eWXKSoq4uijj97uMS+99BKLFy/m2muv5e233+b+++/nk08+YciQIXz77bdpx95xxx3cfffdjB8/nrfffpsjjjiCMWPG8NZbb+39HTVXfJhiykEY4ZHOyzLITMTHW5gpsZsU0Af4OXAxxjWnKIqyD/E5jrPt1JQ6pFIp/H6jS8888wyXX345K1asoGfPnrXHbNiwgXbt2qWdt2rVKnr16sXtt9/OvffeC8D69evp1q0bt9xyC/fcc0/tsccffzwbNmzgs88+2+WihwwZQmlp6W7dYLMlBmzEuMW2YuplpMZGikBbYYSlEybjTFEUJYPs7Nm8WzEbEZqdsa3QAPTo0YN27dqxdu3a2m3z5s0jFosxduzYtGPHjh3Lz3/+c1asWEGvXr12Z1ktmxBGSDpjYjLSeka6RUsvM0VRlEZARtsofvHFF6xfv55+/frVblu8eDHZ2dn07t077diSkhIAlixZksklNU+kD1oeJl06FxUaRVEaFRkTm0QiwZVXXkm7du249NJLa7dv3ryZ1q1b4/Ol96QvLi6u3a8oiqI0LzL29+/48eP56KOP+Otf/0pR0d4HDKZNm8a0adMAEx9SFEVRmg4ZsWxuueUWpk2bxvTp0xkxYkTavqKiIrZs2cK2eQli0YiFsy3jxo2jtLSU0tLS7caHFEVRlMZLvYvNpEmTeOCBB3jssce48MIL6+wvKSkhGo2ybNmytO0SqznooIPqe0mKoihKA1OvYvPYY49x++23M2nSJMaPH7/dY0aOHEkwGOT5559P2/7nP/+Z/v37ayaaoihKM2S3YzavvPIKAB9//DEAb7/9Nu3ataNdu3YMGzaMl156ieuuu46RI0dy3HHH8c9//rP23FatWtVaLO3bt+f6669n8uTJFBQUMHjwYGbOnMmCBQuYM2dOfd6boiiK0kjYbbEZM2ZM2uerrroKgGHDhrFw4ULmzp2L4zjMnTuXuXPnph0rxwiTJk0iPz+fRx99lO+//56+ffvy8ssvc+qpp+7FrSiKoiiNld3qINDY0A4CiqIojY+dPZszWtSpKIqiKKBioyiKouwDVGwURVGUjKNioyiKomQcFRtFURQl46jYKIqiKBlHxUZRFEXJOCo2iqIoSsZRsVEURVEyjoqNoiiKknFUbBRFUZSMo2KjKIqiZBwVG0VRFCXjqNgoiqIoGadJjhho27YteXl5tGvXrqGXkjE2bNjQrO8Pmv896v01bfT+9pyVK1eycePG7e5rkmIDzX+mTXO/P2j+96j317TR+6tf1I2mKIqiZBwVG0VRFCXjNFmxGTduXEMvIaM09/uD5n+Pen9NG72/+qXJxmwURVGUpkOTtWwURVGUpkOTEptvv/2Ws846i8LCQlq1asUZZ5zB6tWrG3pZe8wrr7zCmWeeSY8ePcjJyaFv377ceuutVFRUpB1XVlbGZZddVpvqfcIJJ/D555830Kr3jpEjR+Lz+bj99tvTtjf1e3zrrbc45phjyM/Pp1WrVgwZMoQFCxbU7m/K9/fhhx8yYsQI2rdvT0FBAYMHD2b69Olpx0QiESZOnEinTp3Iyclh6NCh/O1vf2ugFe+YNWvWcM011zB06FByc3Px+XysXLmyznG7ez+pVIrJkyfTs2dPwuEwAwcO5NVXX90Hd7J9duf+SktLGTduHAceeCC5ubl0796dCy64gBUrVtS5Xkbuz2kiVFVVOb1793ZKSkqc1157zXn99ded/v37O/vtt59TWVnZ0MvbIw4//HBnzJgxzp///Gdn4cKFzsMPP+wUFhY6hx9+uJNMJh3HcZxUKuUcddRRTpcuXZwXXnjBefvtt51jjjnGadOmjfPtt9828B3sGS+88ILTsWNHB3Buu+222u1N/R6feuopJxAIONddd53zzjvvOHPnznXuv/9+54033nAcp2nf36effuqEw2Hn2GOPdV5//XXnnXfeccaNG+cAzu9+97va484//3ynsLDQmTZtmvPee+85p59+uhMOh53//Oc/Dbf47fD+++877du3d04++WRnxIgRDuCsWLGiznG7ez+/+tWvnFAo5EyZMsVZsGCBM27cOMfn8zl//etf980NbcPu3N8NN9zgHHnkkc4TTzzhLFy40Hn++eedAw880CkuLnZWr16ddmwm7q/JiM0jjzzi+P1+Z+nSpbXbli9f7mRlZTkPPfRQA65sz1m/fn2dbX/84x8dwJk/f77jOI7z+uuvO4CzYMGC2mO2bNniFBUVOddcc80+W+vesnnzZqdDhw7OCy+8UEdsmvI9rlixwgmHw87DDz+8w2Oa8v3deuutTjAYdCoqKtK2H3HEEc4RRxzhOI7jLFq0yAGc6dOn1+6Px+NOnz59nFGjRu3T9e4K+SPOcRzn6aef3u7DeHfv54cffnBCoZBz5513pp1/3HHHOQMGDMjMDeyC3bm/7T13Vq5c6fh8PueOO+6o3Zap+2sybrQ5c+ZwxBFH0Lt379ptvXr14qijjmL27NkNuLI9Z3tVu4ceeigAa9euBcz9du7cmeHDh9ceU1hYyKhRo5rU/d58883079+f8847r86+pnyP06dPx+/3c+WVV+7wmKZ8f7FYjGAwSE5OTtr2wsJCUqkUYO4vGAxyzjnn1O4PBAKce+65zJs3j2g0uk/XvDP8/l0/6nb3fubNm0csFmPs2LFp548dO5bPP/98u26pTLM797e9506PHj1o165d7XMHMnd/TUZsFi9eTP/+/etsLykpYcmSJQ2wovrlgw8+AKBfv37Azu939erVVFZW7tP1/Rj+8Y9/8Nxzz/HEE09sd39Tvsd//OMfHHjggbz00kvsv//+BAIBevfunXavTfn+Lr74YgCuvfZa1q1bx5YtW3j66aeZP38+EyZMAMz99erVi9zc3LRzS0pKiMVifPPNN/t62XvF7t7P4sWLyc7OTvvDV44DmtTz6IsvvmD9+vW1zx3I3P01GbHZvHkzRUVFdbYXFxdTVlbWACuqP9auXcudd97JCSecwJAhQ4Cd3y/Q6O85FotxxRVXcOONN9K3b9/tHtOU73HdunUsXbqUiRMncsstt/DOO+9w4oknMn78eB599FGgad9f//79WbhwIbNnz6ZLly4UFRVx9dVX89RTT3HuuecCu76/zZs379M17y27ez+bN2+mdevW+Hy+nR7X2EkkElx55ZW0a9eOSy+9tHZ7pu4v8OOXqtQHlZWVnHbaaQQCAWbMmNHQy6k3HnzwQWpqarjtttsaeikZIZVKUVFRwbPPPssZZ5wBwHHHHcfKlSuZPHky1157bQOvcO9YunQpZ555JiUlJTz11FPk5OQwe/ZsrrzySsLhMBdccEFDL1HZS8aPH89HH33EX//61+2KbH3TZMSmqKhou38J7uivkaZATU0No0aNYvny5XzwwQd07dq1dt/O7lf2N1ZWr17NpEmTeOaZZ4hGo2m++2g0ypYtWygoKGjS99imTRuWLl3KiSeemLZ9xIgRzJ07l++++65J39+vfvUrgsEgb775JsFgEIDjjz+eTZs28ctf/pLzzjuPoqIiVq1aVedcuT/5S7ipsLv3U1RUxJYtW3AcJ+2v/6Z037fccgvTpk3jj3/8IyNGjEjbl6n7azJutJKSEhYvXlxn+5IlSzjooIMaYEV7Rzwe56yzzqK0tJS33nqLAQMGpO3f2f12796d/Pz8fbXUPWb58uVEIhHGjh1LUVFR7Qtg6tSpFBUV8fnnnzfpexT/9Y7w+/1N+v4+//xzBg4cWCs0wmGHHcamTZtYv349JSUlrFixgurq6rRjlixZQigUquPzb+zs7v2UlJQQjUZZtmxZneOARv88mjRpEg888ACPPfYYF154YZ39Gbu/H53Hto95+OGHnaysLGfZsmW121asWOEEAgFn6tSpDbiyPSeZTDpjxoxxwuGw89577233mNdee80BnIULF9Zu27p1q1NcXOyMHz9+Xy31R1FWVua8//77dV6AM3bsWOf99993KioqmvQ9vvnmmw7gzJo1K237iBEjnK5duzqO07T/Hw4bNszp1auXE41G07afd955TjgcdqLRqPPJJ584gPPss8/W7o/H486BBx7onHrqqft6ybvNjlKDd/d+fvjhBycYDDp333132vnHH3+8079//4yufXfY0f05juM8+uijDuBMmjRph+dn6v6ajNhUVlY6+++/v9O/f3/n9ddfd2bPnu0cfPDBTq9everUAjR2rrzyytqak//5n/9Je0mxXzKZdIYOHep07drVefHFF525c+c6w4YNc4qKiuoUYDUV2KbOpinfYyqVcoYPH+4UFxc7Tz75pDNv3jznsssucwBnxowZjuM07fubNWuWAzgjRoxwXn/9dWfevHnO1Vdf7QDOhAkTao8755xznNatWztPP/2089577zlnnnmmk52d7Xz88ccNuPrtM2vWLGfWrFm1v3+/+93vnFmzZqX9MbC793PzzTc72dnZzkMPPeS8//77zpVXXun4fL7agt6GYFf39+KLLzo+n88ZOXJknefO4sWL066ViftrMmLjOI6zatUq54wzznAKCgqc/Px857TTTtuuejd2evTo4QDbfd111121x23atMm55JJLnKKiIicnJ8c57rjjnEWLFjXcwveSbcXGcZr2PW7dutW56qqrnPbt2zvBYNAZMGCA8/zzz6cd05Tv76233nKGDRvmtG3b1snPz3cGDhzoPPHEE04ikag9prq62pkwYYLToUMHJzs72znssMOc999/v+EWvRN29Ds3bNiw2mN2934SiYRz3333Od27d3dCoZAzYMCAOlbuvmZX93fRRRft1n8Dx8nM/WnXZ0VRFCXjNJkEAUVRFKXpomKjKIqiZBwVG0VRFCXjqNgoiqIoGUfFRlEURck4KjaKoihKxlGxURRFUTKOio2iKIqScVRsFEVRlIzz/wGESwCck6aTTAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -707,7 +696,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAGQCAYAAAB4X807AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAB82ElEQVR4nO2deZhcVZn/P7VXb+kl+0oCkQCdmBCaJToQCRBQSdhlCwMqBkTkJw64gbgNgwIzjjiIJk5QFBADCmELDCQsgooRAzFB2RKykYV0d3qt/f7+OPftc6q6EzqkK92dfj/PU09X3fXcW13ne9/lvCfgeZ6HoiiKohSRYG83QFEURdn/UbFRFEVRio6KjaIoilJ0VGwURVGUoqNioyiKohQdFRtFURSl6PSa2GzYsIGzzz6byspKBg0axJlnnsn69et7qzmKoihKEQn0xjibtrY2pk6dSiwW49///d8JBAJcf/31tLW18eqrr1JWVravm6QoiqIUkXBvnHThwoW8/fbb/POf/2TixIkAfPjDH+ZDH/oQP/vZz/jyl7/cG81SFEVRikSvWDYnnHACiUSCF154IW/5zJkzAXj22Wf3dZMURVGUItIrls3q1as57bTTOi2vra1l8eLF77v/kCFDGD9+fBFapiiKonxQ1q1bx3vvvdflul4Rm/r6eqqrqzstr6mpoaGh4X33Hz9+PCtWrChG0xRFUZQPSF1d3S7X9YrYfBAWLFjAggULANi+fXsvt0ZRFEXZE3ol9bm6urpLC2ZXFg/A/PnzWbFiBStWrGDo0KHFbqKiKIrSg/SK2NTW1rJ69epOy9esWcNhhx3WCy1SFEVRikmvuNHmzp3LNddcw9tvv82BBx4ImMDSCy+8wPe///3eaJKiKB+AdDrNxo0bSSQSvd0UZR8Sj8cZM2YMkUik2/v0Supza2srU6dOpaSkpGNQ5ze/+U2am5t59dVXKS8v3+3+dXV1miCgKH2AtWvXUlFRweDBgwkEAr3dHGUf4HkeO3bsoLm5mQkTJuSt213f3CtutLKyMpYtW8bBBx/MRRddxIUXXsiECRNYtmzZ+wqNoih9h0QioUIzwAgEAgwePHiPrdley0YbN24cDzzwQG+dXlGUHkKFZuDxQb5zrfqsKIqiFJ1+M85GUZS+z4hbR7C1dWuPHW942XC2XLOlx473sY99jFtvvXW3gw8ffPBBDj744I7M2BtuuIHjjjuOE088ca/OvXLlSjZv3swnPvGJPdpv8+bNXHXVVdx///17fM5f/OIXzJ49m1GjRu3xvj2NWjaKovQYPSk0xThed3jwwQdZs2ZNx+fvfve7ey00YMTmscce63JdJpPZ5X6jRo36QEIDRmw2b968R/tks9kPdK73Q8VGUZR+S2trK5/85CeZOnUqkydP5r777gPg6aef5vDDD2fKlCl85jOfIZlMdtrXTUa6//77ueSSS3jxxRdZsmQJ1157LdOmTeOtt97ikksu6ejsd3Xc8ePH861vfYvp06czZcoU/vGPf+SdK5VKccMNN3Dfffcxbdo07rvvPr797W9z0UUX8dGPfpSLLrqIdevWceyxxzJ9+nSmT5/Oiy++CJhhIZMnTwaMEFx77bUceeSRfPjDH+ZnP/tZxzl+8IMfMGXKFKZOncrXvvY17r//flasWMGFF17ItGnTaG9v3237v/rVrzJ9+nS+//3vM3369I7jvvHGG3mfPygqNoqi9FuWLl3KqFGjeOWVV/j73//OKaecQiKR4JJLLuG+++5j1apVZDIZ7rjjjm4d7yMf+Qhz587llltuYeXKlRx00EEd697vuEOGDOHll1/m85//PLfeemvecaPRKN/97nc599xzWblyJeeeey5gBrI/9dRT3HvvvQwbNoz/+7//4+WXX+a+++7jqquu6tS+//3f/6WyspK//OUv/OUvf2HhwoWsXbuWxx9/nIceeog///nPvPLKK3zlK1/h7LPPpq6ujrvvvpuVK1cSCAR22/7Bgwfz8ssvc91111FZWcnKlSsBuPPOO/n0pz/d7e9kV6jYKIrSb5kyZQr/93//x1e/+lWef/55Kisr+ec//8mECRM4+OCDAbj44ot57rnn9vpc73fcM888E4AjjjiCdevWdeuYc+fOpaSkBDADZD/3uc8xZcoUzjnnnDxXnvDkk09y1113MW3aNI4++mh27NjBG2+8wVNPPcWnP/1pSktLAVPUeE/bLwIIcOmll3LnnXeSzWa57777uOCCC7p1PbtDEwQURem3HHzwwbz88ss89thjXH/99ZxwwgldTl/SFW76bk9UQIjFYgCEQqHdxmBc3FmJf/jDHzJ8+HBeeeUVcrkc8Xi80/ae5/HjH/+Yk08+OW/5E088sRct79yWs846i+985zvMmjWLI444gsGDB+/18dWyURSl37J582ZKS0uZN28e1157LS+//DKTJk1i3bp1vPnmmwD86le/6piY0WX48OG89tpr5HI5fv/733csr6iooLm5udP23T3urtjVcYWdO3cycuRIgsEgv/rVr7oM1J988snccccdpNNpAF5//XVaW1s56aSTuPPOO2lrawNMUePCc+5J++PxOCeffDKf//zne8SFBio2iqL0IMPLhu/T461atYqjjjqKadOm8Z3vfIfrr7+eeDzOnXfeyTnnnMOUKVMIBoNcfvnlnfb9/ve/z6mnnspHPvIRRo4c2bH8vPPO45ZbbuHwww/nrbfe6lje3ePuiuOPP541a9Z0JAgUcsUVV/DLX/6SqVOn8o9//CPP0hAr7NJLL+Wwww5j+vTpTJ48mcsuu4xMJsMpp5zC3LlzqaurY9q0aR0xo0suuYTLL7+cadOm4XneHrX/wgsvJBgMMnv27G5f4+7oldpoe4vWRlOUvsFrr73GoYce2tvN2K/561//ype//GWeffbZfXreW2+9lZ07d/K9732vy/Vdffe765s1ZqMoitJHWbFiBRdccME+r4Z/xhln8NZbb7Fs2bIeO6aKjaIoSh+lrq6O119/fZ+f141h9RQas1EURVGKjoqNoiiKUnRUbBRFUZSio2KjKIqiFB0VG0VReo4RQKAHXyOK08xnnnmGU089FYAlS5bs82wvgJtuuomJEycyadKk960AcNVVV/X7WYw1G01RlJ6jp2cE2IPjeZ6H53kEg3v2DD137lzmzp27hw3bO9asWcNvfvMbVq9ezebNmznxxBN5/fXXCYVCnbZdsWIFDQ0N+7R9xUAtG0VR+i3r1q1j0qRJ/Ou//iuTJ09mw4YNfP7zn6euro7a2lq+9a1vdWy7dOlSDjnkEKZPn87vfve7juW/+MUvuPLKKwHyphMAOw3Bu+++y3HHHce0adOYPHkyzz///F61+6GHHuK8884jFosxYcIEJk6cyEsvvdRpO5lS4Oabb96r8/UF1LJRFKVf88Ybb/DLX/6SY445BoAbb7yRmpoastksJ5xwAq+++ioHH3wwn/vc51i2bBkTJ07Mq3DcHe655x5OPvlkrrvuOrLZbEcNMperr76a5cuXd1p+3nnn8bWvfS1v2aZNmzraCzBmzBg2bdrUad//+Z//Ye7cuXnldPorKjaKovRrDjjggLyO+7e//S0LFiwgk8nw7rvvsmbNGnK5HBMmTOBDH/oQAPPmzWPBggXdPseRRx7JZz7zGdLpNKeffjrTpk3rtM0Pf/jDvb4Wl82bN7N48WKeeeaZHj1ub6FuNEVR+jVuwcq1a9dy66238vTTT/Pqq6/yyU9+co+mDwiHw+RyOQByuRypVAqA4447jueee47Ro0dzySWXcNddd3Xa9+qrr2batGmdXl0lH4wePZoNGzZ0fN64cSOjR4/O2+Zvf/sbb775JhMnTmT8+PG0tbUxceLEbl9LX0MtG0VR9huampooKyujsrKSrVu38vjjj/Oxj32MQw45hHXr1vHWW29x0EEHce+993a5//jx4/nrX//Kpz71KZYsWdJRyv+dd95hzJgxfO5znyOZTPLyyy/zr//6r3n77ollM3fuXC644AK+/OUvs3nzZt544w2OOuqovG0++clPsmXLlo7P5eXlHdMD9EdUbBRF6TmG07MZaXs4Y8HUqVM5/PDDOeSQQxg7diwf/ehHATM9wIIFC/jkJz9JaWkpxx57bJdzy3zuc5/jtNNOY+rUqZxyyikdVtMzzzzDLbfcQiQSoby8vEvLZk+ora3lU5/6FIcddhjhcJjbb7+9IxPtE5/4BD//+c8ZNWrUXp2jr6FTDCiK8oHRKQYGLns6xYDGbBRFUZSio2KjKIqiFB0VG0VR9op+6IlX9pIP8p2r2CiK8oGJx+Ps2LFDBWcA4XkeO3bsIB6P79F+mo2mKMoHZsyYMWzcuJHt27f3dlOUfUg8HmfMmDF7tI+KjaIoH5hIJMKECRN6uxlKP0DdaIqiKErRUbFRFEVRio6KjaIoilJ0VGwURVGUoqNioyiKohQdFRtFURSl6KjYKIqiKEVHxUZRFEUpOio2iqIoStFRsVEURVGKjoqNoiiKUnRUbBRFUZSi06Nic//993PWWWdxwAEHUFJSwqRJk/j617/eaa7vhoYGLr30UoYMGUJZWRknnngiq1at6smmKIqiKH2IHhWbW2+9lVAoxH/8x3+wdOlSPv/5z3PHHXdw0kknkcvlADMXwpw5c1i6dCk//vGPeeCBB0in0xx//PFs3LixJ5ujKIqi9BF6dIqBhx9+mKFDh3Z8njlzJjU1NVx88cU888wzzJo1iyVLlvDCCy+wbNkyjj/+eABmzJjBhAkTuPnmm7ntttt6skmKoihKH6BHLRtXaIQjjzwSgE2bNgGwZMkSRo0a1SE0AJWVlcyZM4eHHnqoJ5ujKIqi9BGKniDw7LPPAnDooYcCsHr1aiZPntxpu9raWtavX09LS0uxm6QoiqLsY4oqNps2beKGG27gxBNPpK6uDoD6+nqqq6s7bVtTUwOY5IH9mhyQAhJA0n+v07crirKfU7RpoVtaWjjttNMIh8Pceeede328BQsWsGDBAoD+N995Ctjpv9qBjL88gJH7CFACVAHl6GTdiqLsdxSlW2tvb2fOnDm8/fbbPPvss4wZM6ZjXXV1dZfWS319fcf6rpg/fz7z588H6LCS+jwJYBNQjxGcEMayCTjbBDDfQjOwHSgFBgNDUNFRFGW/oce7s3Q6zdlnn82KFSv4v//7P6ZMmZK3vra2lieffLLTfmvWrGHcuHGUl5f3dJP2PTmMcLyNsWJEXJLki41YNln/bwBj+awH3gPGARXki5OiKEo/pEdjNrlcjgsvvJBly5bx4IMPcswxx3TaZu7cuWzatKkjcQCgqamJhx9+mLlz5/Zkc3qHDPBPYDVGXNIYC6cdY91k/FfWX5fyt5P1KYwgtQNvAFvRmI6iKP2eHrVsvvCFL7B48WKuu+46ysrK+NOf/tSxbsyYMYwZM4a5c+cyY8YM5s2bxy233EJ1dTU33XQTnufxla98pSebs+/JYERmK8YayfrLcv6rK8S6ifnbpjExnAjG7bbBP84o1MJRFKXf0qOWzeOPPw7AjTfeyIwZM/JeP//5z80Jg0EeeeQRTjrpJK644grOOOMMQqEQy5cvZ+zYsT3ZnH2Lh7Fo3sGIQ8J/iaWSwwiJvLJYofGANv8l2yWc7TZj3GqKoij9lIDnef3OSVNXV8eKFSt6uxn5bAb+jLEVxYoRywaMsBRaJjlnXczfN4uxaGL+uri/PAoc6n9WFEXpg+yub9Z8p56gHXgZIxSe89fDCIm40kTWAxhBkVcAY8mAFZM2TGZaAiM8OUziwIdQd5qiKP0OnWKgJ3gT2IEN+mcw7rN28sfVBLF3PI0RlGZ/G0mBbscITNBf7/nbev452ot+NYqiKD2Ois3ekgZWYSwUEQapCiBWSwaTcSZVAyQdWtxjOaAVIyTiShMBSmATBzLAln1zWYqiKD2Jis3esg4TvPcwQpLFpi63YqwTNyNNhKcVaMG6z6L+vq1Yd1sCK2Bpf1m9815RFKWfoDGbvUXmfMtghCGFjclIppnEawLOOkEsoQg2KaANU74mgBUWV8Rke0VRlH6Cis3e0IJJdY5jBABsRQCpFgA2oF+YICBjacTVlsGITAQjKmX+sjA2DhTCiFFZka5JURSlCKgbbW/YCDT578Xd1YYRmgB2cGbYfzmDNf+t5d/4XdPvyLZkjYiEsUkBaWyyQADrnpNMN00SUBSln6Fi80HJAm9hrZYExpIRayWHTQqQDLOU2e/V9Kv8V/K/uLj9YloCLbZcDRiRkaQAsMkGHtb6kXWKoij9BHWjfVB2YoL1YMQhRL77zC22CdYqScHtqdsBuDhyMZWhSlvaphUztkYEpxzrRkujjwaKovRbVGw+KFuwyQBgXV6S0rwLmrwm7s7dDcAX+ILZL4aN3chgziBGcCLY0jZi0cRQFEXpV6jYfBDSmHlqpAJAE0Yg3OKbkj0mBM22d3t300orM4MzOTR6qNmmDZuN5iYAZDAp0WLVSPq0JgcoitLPULH5IDRiXF5ixcg4GEl/FgvHdXv5CQQLvYUAzA/MN8IhVQVcqyWIccfFsGnO4oaTWT0VRVH6ESo2e4qHKboJRhSimEGdZVhXWFcE4GXvZf6W/Rs11HBm9kxjwUgBTklvBpNKLVMNSCUCP97DENSNNkDxPK/j1ZsEAoGOl6J0FxWbPSWJqVEGdtxMHBtXybJLF9qi4CIA5gXmEQ/FbdWBDFZ0pDRNCCMuUaxV0wIcXKwLU/o6LS0trFy5knXr1vWq4AwbNozp06czbNiwXmuD0v9QsdlTmjBBfZkKoAwjAu9h3FsyvbNbJcCDZCbJPZF7IACfznzautmkFloCI1ohjACVkj+2JuWvH170K1T6KA0NDTzwwAMsWbKEXG5Xs/EVnyOPPJKhQ4eq2Ch7hIrNniAuNA8bsJeMMQnod1VGJgCP8AgNgQamelOZlp1mt5VxOSI4UqZGYjXSp+wAZu/i+EqP43ke2WyWdDrd626rSCRCOBwmnU6zffv2Xrdsxo4dSzKZ7LXzK/0TFZs9IYWZEkBK0kh5Galh1oAN+gt+AsBd4bsAuNi7OL9CdBabhSYWjEwRLVZPEzAIqC3q1SkOnuexatUqXnjhBVpaWnqtHfF4nBkzZjB9+vRea4Oi9AQqNntCPcbF5cZqWjGiEcDEV3Zi4y8AWXgv8B6PRR4j6AU5P3O+dbV15UKTUjUBbFp0EjgO41pT9gm5XI5XXnmF22+/nS1bem9eh+rqakKhEFOnTu21NihKT6BisyfIVAJS0VliN5KOHMLc0SbsGBlgcXgxmUCGUzKnMCI5wgqTjNMRd1zcP64kBjRjth2NmRJa2Wd4nkcymaSpqYnGxsZea0cwGCSRSPS6K09R9hYtgNJdEpjOX7LE2jCCEMdOghb2P5djRKjN/L0ndA8AF2YvtOnRSWzdM3f2Tqkc0OJvNxyYgHGjKYqi9FNUbLrLTuzAzRzGpRVxPrf7f7MY0fErCmxo3cAfQn8g7sU5LX2aOZZkq6WxbjmxlMQqKgdG+H8nkp/dpiiK0s9QN1p3qceWi5Fgfgs2W6wMO1VAEmPpxOC3ud8CcGriVCp2VtipBmQ8XJL8wZ1lQLX/eZD/WTNMFUXp56jYdAdxm4lFIkH7GLbCs8RoUpj4jV+k87eZ34IH50bPNaP/ZW4aSXkW27IMm9lW5qwfiZanURSl36Ni0x2asVWdWzB3LYQRlyb/vcxXAx2Tp70TeoeX0i9RSimfiH3CiJMM1szSYf10VB6QApsSCyoBxrDrEjiKoij9BBWb7tCIsUBaMIIg49masHPYSB0zGXuTgfvb7gfg1MCplEZKjWjIRGhgrKIw1kICqMBsF/PfVxXvshRFUfYVKjbvRxojMjLiP4exdGQsjEx2lqRDZEiYZb8L/Q4ycHbkbGv1RP2XKzwydbRYO0F/2XC06KaiKPsFKjbvRzsmRhPCDOCU4D+YTLFWbAmZdoxQlMK7yXd5MfMiMWJ8PP5xc6dzGPECKyo5jBCV+e89bBr1kCJfm6Ioyj5Cxeb9aMQKjYz6j/nLJdW5GSs4CSADD2UfAmB2dDbl0XI7z43MvJnCuMmk0nPG/yxiUw5UFvviFEVR9g0qNrsjh3GhyZQBpZj6Z0nsqH9JWW7HClEGluxYAsDpnG4z1yTbzMOITcI/Zgm2MoFUg65Bvx1FUfYbtDvbHUk6LBVKMAkBMrCzFJuFFnXep6El0MLT6acJEODUylOtuEhatAz6FIER60bG34SBofvqIhVFUYqPis3uaMVYNTK6X1xfrdhxNVIsM0JH4P/JlidJkeIjkY8wLDzM7B/Hut1kKmj8Y5Zjx+bIQM7yfXKFiqIo+wQVm92xE2NptGHuVAm2HI2skzEwUjQzBI8mHwXg1NiptnqzpDbL7JzuIM527MDNICZWo/PWKIqyH6FisyvSGBGQeItMI9CIdYMlMG4wqfqcgFwqx2PJxwD4ZOyTtrxNKdaaEcFJ+/tKMU/8bQYX99IURVH2NSo2u0IqAnjY7DMZVyNTAIQxVo+IRgmsZCVbclsYHRzNlNAUKyztGFGRuIz8lZpqEgcqwbjqFEVR9iNUbHZFK9YqkakFRCRyGAGRqQVS/vYheLz1cQA+Uf4JAoMCduyMVBcIYcvSJPz9apx15dhxPIqiKPsJKjZd4WEEBowgiAXSjBEFmV2zMIMsBU82PwnAKcFT7NTOku4sc+E0Y6wcER3P3y6IqfisKIqyn6Hz2XSFpCnLOBgwrjIRiiAma8xNX45Bc1kzL2ZeJEiQWSWzjNXSiHGhZcgvbxMnvyZaBDutgKIoyn6GWjZdIbNoBjECIVaMPyFah0UjY2bazW7Lk8vJkGFGfAZV5VVmoaQ7i5hIiRqZibMS60KL+y9FUZT9DBWbrpBxNJLiLBaIX/eMVmwmGhiByMDTO54G4KTYSWZ/sRtlwKdYSmFMbEb2l3E3g+j30wm0tLSwYcMGmpqaerspnQiHw4waNYrhw4cTDKpRryj7EhWbQjyMmMhATin3L4M3cxghSWOLcPoxmWWJZQCcEDvBCo2IRylWsMqwc+OUYeM1VUW9sn3Chg0b+PnPf87KlSt7uymdqKio4Pzzz+f0008nFtNy2oqyL1GxKSSNLVMTxcZqUtiqzlFnXQLwYCtb+Xv675QESji6/Ghr2cTIzy6TuE8ZxoUmtdBK2C9caE1NTaxcuZJly5b1dlM6UVNTw0c/+lFyudz7b6woSo+ivoRCRFgk1TmHrfxc7f/N+NtG6Cg182zbswB8NPZRYl7MZqG1YWqqySDOEDY+E8GIlcRqVPoVRdlPUbEpROI1MpATjBUiUwSUY+6aX3STrFn+XOY5AD5W8TE7OZpYQSFs1egK/2+Tv6zMP181/T5eoyiKsiv0WboQmSjNnVkzjBGeNFZgJKMsaLZ/rtmIzXGR46zIuOKR9Y8dxxbm9BMLiGNTrBVFUfZDimrZnHLKKQQCAa6//vq85Q0NDVx66aUMGTKEsrIyTjzxRFatWlXMpnSPDNaNBkYEJFaTw1g9YISkFDPyvwzqc/WsSq8iFohxZPRIs12Lv68kFEgKdAZbhLMFm52m8WpFUfZjiiY29957L6+88kqn5Z7nMWfOHJYuXcqPf/xjHnjgAdLpNMcffzwbN24sVnO6hyQHgE1HbsKOsRmEFQ3ZJgYvBl8E4Kj4UcTDcTuWppmOMjaUYlxlEYwIZbGTpsWxadCKoij7IUURm4aGBq6++mr+67/+q9O6JUuW8MILL/CrX/2K888/n1NOOYUlS5aQy+W4+eabi9Gc7iNiU4YRiST5RTEj/ueAv84vXfNimxGbj5R/xIpSJaZ6cym2eoDgViYIYFKeNV6jKMp+TFHE5qtf/SqTJ0/m/PPP77RuyZIljBo1iuOPP75jWWVlJXPmzOGhhx4qRnO6j8RgJN1ZCm2GsYMypfRMBmO5NMIfm/4IwIzwDLPcc44pWW2N2MyzCuf4YvUoiqLsx/S42PzhD3/grrvu4vbbb+9y/erVq5k8eXKn5bW1taxfv56WlpaeblL38LCTpLVjrBMpuimFN1v97aIY66cKMhUZXkq9BMCMwAxTcaDR3zaFTXeu8P/KmJsUtnyNxmsURdnP6dFstFQqxWWXXcY111zDpEmTutymvr6e8ePHd1peU1MDGBdceXnnOZEXLFjAggULANi+fXvPNVrIYoRB6pSFMK6yJEYgKjGCk8RWDQjAmuwa2rw2JkQnMGzwMBvTcSdNk3hMGiNGVRiByfrH1QT0PkcgEKCsrIyRI0cSCPSej7O6upqKiopebYOi9AQ9KjY333wz7e3tXHfddT15WADmz5/P/PnzAairq+vx45PFuNHiWHdZ2F8uBTndwpv+tAAr2lcAcFTJUR3TQneISxbjaivBCopUH5DjlqPxmj5IMBjkiCOO4Mtf/jJtbW291o5YLMbUqVMJh3WUgtK/6bH/4PXr13PjjTfy85//nGQySTKZ7FiXTCZpbGykoqKC6upqGhoaOu1fX18PmCe5XqEdG19J+MtkTEwbNsNMqgf4tdH+0vAXAOoiddYqwt9WqqI0YzLRyrFZatXYgZ5KnyMQCDBp0iQ+9KEP9XZTCAaDatko/Z4eE5u3336bRCLBvHnzOq279dZbufXWW/nb3/5GbW0tTz75ZKdt1qxZw7hx47p0oe0T2jAWRxNGANqwVQM8oAHjPgtha5mVwIptxrKpi9TZAp4x7JQCImCSVIC/LIxNe1b6HIFAgEAg0KeqQ8diMcaNG8eHP/xhPM97/x2KxMSJEykt1ackZc/oMbGZNm0ay5cv77T8+OOPZ968eXz2s59l4sSJzJ07lzvvvJNnn32WmTNnAqZ448MPP8wFF1zQU83ZMzxMLMbDWhtpTKBfZuGsxlZ9jpjd0l6aV5OvAjC9ZroREYnXQL5LDYyQDcNWKKhEx9co3aampoZzzz2XY489tlfFpqamhgMOOKDXzq/0T3pMbKqqqvjYxz7W5boDDjigY93cuXOZMWMG8+bN45ZbbqG6upqbbroJz/P4yle+0lPN2TNy2HEzUhxTqghI+X8wGWWSNAD8M/NPUl6Kg6IHMSjkT7EpAiPxmqh/TJlsLYcRsAjWTaco3aC0tJSpU6cyderU3m6KuvWUPWafRx2DwSCPPPII11xzDVdccQWJRIIZM2awfPlyxo4du6+bY8hiBESsDAnqR/z3YCtAS/pyGl7ZaSokTI1ONeLU1e9Pqg+I16EZGO6fs5c8hkr/RTt5pb9SdLHpytyvqalh0aJFLFq0qNin7x4ypUASIwJyVyQ2U49xq8ly//f+StaIzYejH7ZWkVgyUu4G/7hB53hB/zwar1EUZYCgThwwbjPJOothBmwmMVZIG8YqkTpmYfuSeM3UiqlmmyBGuPwJ1QCbZCDWkpTCkQKciqIoAwDt7sBOHRDFJgnIWBqxPsLYeI4fd1mTXANAbbzWbOPGa5qwlk4cIzJps19HCRy9+4qiDBC0u/OwVZhLgR3Ykf3tGIHws8863GNZaE40syG9gWggyoTABLOdi1QZkBToANaiCWFL1SiKogwAVGxkoGYQO5+NCEEppqqA1ERzqjf/o/0fAEyKTiIcCFvLx81ewz9em7+uFGs5laCVAxRFGTDos3UOY5V4GEumCjvZWYL8igEhOtKYX8u+BsCh8UPN8oy/fzt2vhuJ17T7+5X7x4yixTcVRRlQqGUjUwJIqRkp+1+PFYUYxhJJ0OEuezPxJgAHxw7OzzzLYIpthrFTP1f4+yWwIiPVnxVFUQYAKjYyxiaKcXe1YQQjjrVQwLrVPCANb6aM2EwMTcyP1wT8fQP+PlFsXbU0xroJYuNAiqIoAwAVG6lZVoHJIGvHWDFRbCUBqY8m7rUcvJV6C4CDyg6y0zpLHTT32C1Y6yjqLytBy9QoijKgULGRGEortg6ajJGRGTqbMdaIBP8DjmUTnGirRIvrzBUSSakuxc7UqZloiqIMMFRskpjOfyd2oGUTdpbOMDAYWxMtC800U5+tJx6IMzw23FozMr5GUptjGLdZBiM0EexMn4qiKAOIgf187WFjNmFnWRrjPotiXWNxzFTRJbAhswGAsZGxBDIBOyg0V7CPxGtCGHdaKVqmRlGUAcnAtmxkKoAMZoR/PUYMpLqzWCMSs/ErB2zwfLGJjTX7yUyegYJjS7wmjBkkmsSKkKIoygBiYIuNBP2DWIsmirVkghi3mBTSxKzb0GLEZlxwnI31SGmakN0ODyNYw7Dxn8FocoCiKAOOgS027kRn7Rjro8X/nMJOOxDDpjeHYJO3CYDRsdE2DiPjaGQKgjAmXhPyjy1jdTIM9LuuKMoAZGB3e64bTSo6RzH10cTdJa4xEZQ0bE1uBWB4YHj+GBuJ1XjY0jUBbMabpEfvx5GyvjzfSl9um6Ls7wxssRE3Whhj5aQx1kwJHbNxdiDiE4WtAV9syoebmI0M4HSFSebGiWC2CWHEza02sB9SU1PDzJkzGTJkSG83pRPl5eVMmjSJUEj9mIqyrxnYYiPTQZdi3GY7/PcyAVobdhpnSYXOwLbENgCGZ4bbTDYpc4O/vUzGJtM/p7BCsx/3dWPGjOEzn/kMbW1tvd2UToRCIaqrqwmHB/a/vaL0BgP7VyfFNSV247rNZIBnE7aKgG/ZbMsasRkaHWoLdoobTuqrhYFqjEhJ7Ee22Y+Jx+OMGTOmt5vRp8nlcmSzWXK53Ptv3AuEQiFCoZC6HZUeZT/v+t4HGfPSgLE4KjAJAlmMgAT8ZWATBtLQkG0AoIYaG/cJYMfaSCUBqTrQBIz012lNtAFPY2MjL774Im+++WZvN6UT4XCYadOmUVdXRzyuA8KUnmNgi40IRRY79sXDTuHsxlb8igBezmNnbicAVWVV1iUmyQHicmvGuOQCmCy3FNbqUQY0O3bs4IEHHuDRRx/F87z332EfUlJSwuc+9zkmT56sYqP0KAO765NAfgUmPiPusmr/swT4ZUBnDhKZBCkvRTQQJR6I2+QAV5jC/nGbgKEYK6cFM1dODyYHeJ5He3s7iUSiz3VaANFolJKSEo2RFJDNZmlubmb79u293ZROlJSU0Nra2if/n5T+zcDuBbL+qxxTG00y0cAKUDM2tgPszPpWTbDKFuAEO52AWDcxjMi4Y3U8ejQ5IJlM8vzzz/P888+TTBamz/U+hx12GB//+McZMWJEbzdFUZReZmCLTQ7T+bdhZ+GU7DOZKE3Gy6TMLq3ZVgDKgmU26C9TS0s9tQqMCw3/uM3AGEy1gR6846lUipdeeomf/exntLS0vP8O+5hPfvKTHHXUUSo2iqIMcLFJYyyZrdiU50aMNVJYndmfTC3hmzMlwRLrQpMpA8RqkTE24vIuwwiam+3WU5eQTpNIJEgkEu+/8T4mlUr12YwrRVH2Lfvx8MJuEMBaN/jvnYKbnbYNQyJoOvVYKGbERCZak2oB4kJLY5MESjBiU1isU1EUZYAwcC0bGc3fhnF77cS4ztxYi1Rp9jAusiwkWo3YxL24cYtJHCaMrRAts3G6A0NLULFRFGXAMnDFRpCKzVLjTGy9KNY6ydAhKKmgCd5Eg1E7q2cWKzwy74240FKYQpxV2ArRA5hsNsu7777Lli1byGazvdaOeDzO6NGjGTx4sA5eVJR9wMAVG9eF1oKxPFIYgQlgLBIPM0ZGaqhl6BibE/ACdlvJNpM06XZszEcqD0jl5wFOIpHgqaee4v7776e9vb3X2jFy5EguueQSZs2apWKjKPsAFZs4JimgHCMWO7Di48xhI6Vq3KkGGETXlopMK9AODMe60wb3/GX0N7LZLG+//TbPPvtsr2bQHXjggXz84x/vtfMrykBj4IqNh42vSMqzzEdT4b8PYwVHxuQknc8t2JI0MnWAlK0RS6cdK2qZIl+ToihKH2Vgi00IIyqVwHsYN5q4uiKYGEs71l0GHW40L+BZ60hSnaWY5yDs4NA0xqoZ5R9PURRlADJwxQbyKzwXVueQzzJw049lRz0z+CaVS3UsMyuw2Whi/UjVAEl9jnZxHkVRlAHAwBUbEZg4poaZjJdpxbrLZC4aIQclvsnSTrsZQ+MW4HRJYARmmH+MVlRsFEUZsAzcQZ0iNlI0U6aElkw0N17j7FMaMnVo2nJtxm2Wxk6sJkIitdTKMaIj00L7xTwVRVEGGgPXsoH8AZhpbKZZDTZWI260hNm2JO1bNtl2W9bGPVYYIzJlzrJmYDQ2WUBRFGWAMXAtGzBusgQmoJ/FxlWCGBdZ3F/WQEc1gfJIOQDNuWabfQY2NhPDCIxUDshhhKcVI1yakaYoygBkYFs2blqzDM7M+suTGCEqwQiPn/pclakiQICduZ1kyRKKhcx+ErsRMkA9xkoqxYhNCSo2iqIMSAa2ZSMj/2W8TCXGEmnCCE0EO37GTxYIlYeoClXh4dEQbrAFON3Av+e/yjDi0o4dENp7FVoURVF6jYEtNlIXLYN1iUWcda6AyHiaVqgJ1gCwo2mHEaoWTFxmJ3YStjJsMc4mrGhl0Iw0RVEGHANbbMIYa6MUKyYpjIUjAf4kRkia/Pc5GBIZAsB7gfds9QCw2W1gEwwyWAtHstcURVEGGCo2kkEWw1glYWedO3lakI65bkaFRgGwKbHJxntKsSIV95c1YURHpheQKgOakaYoygBjYCcIyDw0OYwQlGMsmwg2QSCCLWHjx2LGloyFZtgQ2mDqqEmdNTdBQErXxDGWUQwjSAnyJ2xTFEUZAKjYBDFCk8JYJVFsnbTSgu39WmjjwuMAWN+83rrbRHAk9hPDiFfAP1YCI0ziWougKIoyYCiKG+2xxx7juOOOo7y8nEGDBlFXV8eyZcs61jc0NHDppZcyZMgQysrKOPHEE1m1alUxmrJ7JN1ZrBv8vzHsQE9JVU5j0pdbYGxgLAAbshuMaISdY0jRzhxmrI18LsdYOGGM+CiKogwgelxsfvazn3HaaadxxBFH8Pvf/57Fixdzzjnn0NbWBoDnecyZM4elS5fy4x//mAceeIB0Os3xxx/Pxo0be7o5u0emB5AqAlLPLIqxWMoxYtSIieekgAAcGDsQgDeTb9rKAzJ4swpjEUl5mgazT4cYSTUCRVGUAUSPutHWrVvHl770JW655Ra+9KUvdSw/+eSTO94vWbKEF154gWXLlnH88ccDMGPGDCZMmMDNN9/Mbbfd1pNN2j3i7mrECEULxqUmiQEyQ2cZRpj82M6k4CQAXk+9TrY0SygU6izbfjIBg/z3OzHilUHFRlGUAUePWjaLFi0iGAxy+eWX73KbJUuWMGrUqA6hAaisrGTOnDk89NBDPdmc90csDjDWSRRjlcj00C0Yyybi/I1DRVkFYyJjSHpJ1jWvM+6xRv/V7O/XZrcnghGxNOaOS5KAoijKAKFHxeYPf/gDhxxyCL/5zW846KCDCIfDTJw4kdtvv71jm9WrVzN58uRO+9bW1rJ+/fp9P1VwBFtORlKY4xhLRIL+QhYjFE1wSPQQAF5LvGaOIfPZZDHWSwgjWq3+PiI67VjhURRFGSD0qNhs3ryZN954g2uvvZavfe1rPPnkk5x00klceeWV/OhHPwKgvr6e6urqTvvW1JhR+Q0NDV0ee8GCBdTV1VFXV8f27dt7rtHiMpNxNB5GJKowwpPBCEM7xmrxpyM4LH4YAK8mX7XbZLHjbeL+sbOY8TZg06NTaJKAoigDih6N2eRyOZqbm/nFL37BmWeeCcCsWbNYt24dN910E1ddddUHPvb8+fOZP38+AHV1dT3SXsBYGx4mdiOuM4/8LLMmrAvMj+McET0CgBXtK4yoSCUB1xKSuE0Ndnrooc77ip67DEVRlL5Mj1o2gwcPBuCkk07KWz579my2bt3Ku+++S3V1dZfWS319PUCXVk9RCWHEIoO1ZMTCkfTlICbQ77yOHHokAH9p/4vZrh0jSo0YF1wzxoUWx6ZXi2stgBE1RVGUAUKPWja1tbX86U9/2uX6YDBIbW0tTz75ZKd1a9asYdy4cZSXl/dkk94fCfyLe6sMIzRtGAGB/AGY/oRok3KTqAhWsDG9kS2JLYyIjbATrUkqdBwTrxGBqfLPl3SWuyVxlAFBKBSisrKSYcOG9XZTOlFSUkJ5eTmBQOE854qyd/So2Jxxxhn87//+L0888QRnn312x/KlS5cyZswYRowYwdy5c7nzzjt59tlnmTlzJgBNTU08/PDDXHDBBT3ZnO4hlZ7LgG0YgZDqzK3Oexkn024+B4NB6krqWN66nD8l/8TpsdNt0L8EO8U02GmjExgxkknZkqjYDECGDBnCWWedxbRp03q7KZ0Ih8NMnTqVeDze201R9jN6VGw+8YlPcPzxx3PZZZfx3nvvceCBB7J48WKefPJJ7rzzTgDmzp3LjBkzmDdvHrfccgvV1dXcdNNNeJ7HV77ylZ5sTvcpxbjAYhhRcJMEpCpAK0YgoEN4jis5juWty1nWtIzTy083x3HjNp7zGuQva8YKTBMatxmAVFVVcdJJJ3HiiSf2dlO6JBgMmrFjitKD9KjYBAIBHnzwQb7+9a/zrW99i4aGBg455BDuvvvuDqslGAzyyCOPcM0113DFFVeQSCSYMWMGy5cvZ+zYsT3ZnO4Tx4hMHGOFNGBrnIWwhTMr/e39+Whm1cziO+99h2Xty8ydTPr7i9jIWBqZlC3on0MqPzf759Xf9YAiEAgQiWhxPGVg0eOFOAcNGsTtt9+eN7amkJqaGhYtWsSiRYt6+vQfDHeKAZkOIOe8WrFxHSEHx5QcQ0mghNWJ1Wxt38rw6HBjtUjlgbB/vBwmISCDyUwTAWvDuNbKin+JiqIovcnAns9GEIsjiLFOSjBurxxGgMTKETJAC0RTUY4tOxaAp9qfMttI8c44pjyNpE8H/OOK5RRxjq8oirKfo2IDtnJADJMAEMSmK0vqshTclHI0fqmbT5R/AoAHGx80QiJTC7jz5EjigBTolBlAM5i4jVSWVhRF2U9RsRHEspGYSgabCl2GDeTLgE/f0jm96nQAHm99nPZIe4fV0/FqwlgvWf+ziFmJf/w2jJtOURRlP0bFRohiM8kqMKLgFstMYas4y/QDZXBAxQEcUXIErblWnqp/ymwbwY7NCWHiNDJVdKt/rCas9fMeHUkHe0ogEOiTYyL6YpsURek9BvZMnS4hjIg0YuuagXWBJcgfEyPp0Qk4o+IM/tr+V+5vvZ85NXOs+0ymhXaz00r886QwghbBuOba6Twz6PsQDoepra3ljDPOIJHoe/MWHHHEEVRWVr7/hoqi7Peo2LiUYwQigbVwUsB2rIBImnIbHRlnn6r+FNdvu54HGh/gf4b+DxWxCiMqUp5GxtpkMWN3JEZThh3o+R4wlvxEhPchHo9zwgknMH36dHK5vjdnQVlZGUOGDOntZiiK0gdQsXGJYwL8GezgS0kekCQBCepn6Zjl80PBD3Fs6bE83/Y8ixOL+UzsM7bUjZDGiFkbVnii2NlCtwPD/fN3k2AwyODBgztq0imKovRVNGbjEsF09jLuRqYWCPkvSSIowcRhpDBnJXxm2GcAWLR9kbGCJG4jd7gK654LYqwaETUpZ7OtyNenKIrSS6jYFFKFSUuWVOiksy7tf45h56YBaIezY2dTHiznhfYXWJNeYwtyBjHuuDDWogErajIINIUZf1NoESmKouwHqButEBEZmda5AiMQKfLrmkFeYc7yWDnzqubx0/qf8sNtP2ThyIXmODINdBY75qbcPxbkZ62lgHeB8ey3jwGBQIDS0lKqq6uJRnuvCmllZWWvnl9RBhoqNoXINNFJjODIwM4gNv05jZ2GQGI3abi66mp+Vv8z7tp5F98b+T1GJEeYY0oFggDG7SZxmaS/rhXjShuCsW6qMG66/ZBoNMq//Mu/UFJSQirVe9OVVlVVUVtbqynairKPULEpJIApnNmKHeUfxghNKXa2TnditIBZfvCggzltx2k8uPNB/mfb//Dvo/7drBOXWglWaDx/X/kspXIAtmAsqv2wVmM0GuXoo4/miCOO6NV2BAIBwmH991eUfYX+2rpCss/cUf5iwYB1h7lTfviWzjVV1/Dgzgf5SeNPuGbENVR5VWZdKR3Za2Sx42pk8Kic08NUGtgMjGOPUqH7A1LxWKseK8rAYj+NDOwlYYx1k8aIQDnWfSZC4cq041L7yKCPcFzZcTRkG7hlyy1GQEqxddVaMWIi00RnMRZN0lkfxAwu7Tx7tqIoSr9ExWZXSGxFXFtVGNHxMAF/ER+phZY06wKZAD8Y+gMAflj/Q95Nv2uESNKhA5gkgzKM2AT9zyUYARJ3WgLYhGanKYqyX6BisyuiGMEJYzp8v8ozYazwuDGcMv9zBRwz/BhOrzyddq+d7239nhGZEHZitXJsLEeSBNIYgQlhRSkFrMeWzFEURemnqNjsiiDGlSYToGX8VxorHuIGK8dYQTKIMwH/Mfg/CBJkQcMCXm171ewXxg7mbMG4ytowoiLTTrdjK0VLIsIm8ouCKoqi9DNUbHZHGXbE/yBsVpkMzJTMXfcuJs3yQ8sP5YrBV5Aly/yN88nGs0acmrEla0TQRKgi2CoDYWx8aAcmQ00FR1GUfoqKze4IYsa+eJiOXqYWkAGYrdiqADlskB8gDTcOvZFRkVH8OfFnfrblZ8ZNJq64LDZ1Gv9zBJvp5tGRUk0EIzZ7MRWBoihKb6Ji836UANVYF5q4wiRmIynNEmORZRUwqGoQPx73YwC+vvXrbPQ2mmO6Y27EemnCiFGr/z6FnXytzd9nK8bKUcFRFKWfoWLzfkgatJSeEatDLBHJJJMBmqXY2E0GzgifwZyKOTTlmvjX9f9KNp21AiVp0G3+MeJYd5rrWpPkgjSwFhUcRVH6HSo23aEC0/mXYIQigxEIQQppuuMUc0ArBCIBFoxcwLDQMJa3LecHzT+wAzdz2OyzuHMsMN9M1j+XxGoC/rbvYqYkUMFRFKWfoGLTHYLAMKwbTSwdSRhox1o8MsmaM3XAiPgIfnnQLwG4YdMN/LH+j3ZMTRbjlpNU6HZ/WRNGkFzrR6pCt2FiONvQpAFFUfoFKjbdpQwTuxFRiWJEZxB2+ucgdtxNyFlfCqdUn8K/Dfk3smQ5d/O5bE1vNWJUjh3IuRMjJCH/mFIyJ+q/xL2W88+xAZMWLTN/Koqi9FFUbLpLEFOJuQybMSbLwSYGlGKsFKkI4Mx58x9D/oMZpTPYkN7AGe+cQaIsYda1YJIDIL8Ap9RjkxhRBuOuy2AFrQkjOu68O4qiKH0MFZs9IY4RHJmGIOW/slhRkcGfIWe/tNkuGojy+9G/Z2xkLH9s/yPz356P1+wHXiTF2Z1iRQRmJzYrTV5SR60ZqMdUGmjt4etVFEXpIVRs9pQa7BTRFRgLRiwdmckzhxWdFEYoMNsOrxnOkkOWUBos5Vf1v+I/6v/DrJPK0AFszCaJzXqTSgYR5+VaUc3AO5ixOBrHURSlj6Fis6eEgeHYDLQYNjYjAz6lCoCkL5dj6qlFgQBMi0/j7lF3EyDA9duu5yf1PzHbgBGYJmw8x3XFSTxIxK0NOxZHRO5d/6X11BRF6UOo2HwQyjHZaTKpGpg7KdMGlGIER4L5bkq0XzX69EGn89MRPwXgC+9+gbveu8tkmknRT6kKLfuIuDVjXWhp//iSQr0TKzjrMCKk6dGKovQBVGw+CAFMZppUEZBSNRK4F0sk67/cu5ygQ1Dmj57PLeNuAeDTb3+aB3Y8YEXLjd1IBYEkNlMthi19A1bogv66FGYCti1otpqiKL2Ois0HRdxpGWyWWggbuxFxcOM5Kf/vIDqyzq4ZdQ3fHPFNcuQ4d9O5/Hrnr+24mxzGTdaOTYEWIXNrqkm5myZMskCr/zeJEZv12JptiqIovYBOC703lAFDMW6rHMbSkUy0HMYikVH/QWzgviDj7DuV3yGXznHjjhu5aNNFNEWauGLoFdZVNgj7WCDVojMYKymJTbOOYSdnCzjvJaZT4bc31sP3QVEU5X1Qy2ZvqcZUhgYbQ5GJ1mQWTncGzlDB/q0Q8AL8+7h/5+axNwPwhXVf4KZ3bsLLerZemiDjbFqxQibTIEgmm8Rpmsm3sHZiMtYa0Yw1RVH2KSo2e0sQGIzJSBNhSWDnvQk428pnca0lMMLgl7+5dvS1/HTCTwkQ4BvbvsHlWy8nHUvbY6QxbjURMfn2gs7x2zGiImNwZLCnJAs0Y2I5a7H12RRFUYqMik1PEAFGYDruSox7rQRzdyVO40+q1pE5JlWe3awz4LKay7hvxH3EA3EWNC7glNdPoSHTYKyZRmxV6UJEXKR+m2vxSOVo/HOmMMLzDmbagkThwRRFUXoWFZueogQYgy3GGceOv5G/8irFCEGafLdaDmiCcwafw7OHPcvwyHCWNS3jmL8fw+s7Xrc12IQM5hts8d9L7bRCa0ometuKESRJJJA06bXARqylpSiK0sOo2PQkZRgLJ46d+tlNhS4UAVkn1aMTdFQmOKriKF6a/BIfLv0wrydep+6dOhanFucfQ6wlmaYgh035kArS4lILYNOmy7DFREWckpistfdQS0dRlB5HxaYnCWAsl+EY0ZDstHTBX7egpiQViLXjWC7jYuP4w8Q/cE7ZOTTnmvnUW5/iqnVXkcqljJCksNWmwRbnzGAsmBR2zE4YWy064GzTjhGYRv/9ekxhzy2opaMoSo+hYtPTBDDjbioxnbsM/qzAVhWI+e9LsWNuRAxct1oKKtoruG/Sfdw2/jYigQg/3vJjjl19LG81vmX2FUtHRCGNEZHCWI1sk8BOZdDsL5P6bnH/vSQirMdM0taOio6iKHuFik0xCGDcaYP8zymMdVGKFRqZn8atNuC+T/mfyyEQDfDFEV/k+cOeZ1x0HC+1vsTUDVNZ8N4CPM9XAakSkKDrTLUMdoCoVBkAI0biypP6as3+tinMfDkbMDGdVjR7TVGUD4SKTbEIYOqnDcN0/tKRJ8mP1eD/FZdaGvOtyKRqzrDboyuO5m8T/8anBn2K1lwrl629jDn/nMOW5Bbroos6x5aBnQlsBQEZYCrb5PxztmKsmBZ/u3ZsUdEERng2YKsRaKFPRVH2ABWbYhLCuNSGYERA5sIBG7uRmE0QY/lUYNOhs+QX40xDTaSG+ybdxz0T76EqVMWjjY8y+dXJ3LXjLryolz+vTgwjGmLtiBUjyPTVLf5yGb8jgiTWkp8lB9iBoesx01KLiCqKouwGFZtiE8JYN9WYzj2GEZPBmGkHqrDp0NLJg61EIJlqElMJmdf5Q87n71P/zuxBs9mR3cHFmy7mpH+exBvtb9hzi2tMyuO4YpPAiIxkpcmMoO5rO0ZckpgYj0ypIAVGmzDVpbdi068VRVG6oEfF5oUXXmD27NkMGzaMiooKpk+fzqJFi/K2SSQSXHvttYwcOZKSkhJmzJjBc88915PN6HuIS20IplNvxXTWYK2CQreaVBkQC6WC/DRqYHRoNEsPWsovxv2CweHBPN30NFNencK/r/93koGkEZTCKabBWjtu1WhBkgPanH0iGKFLYq0fEZcMttinDBJtd65PURSFHhSbV199lRNPPJF0Os3ChQv53e9+x5FHHslnP/tZ7rjjjo7tPvvZz7Jw4UK++93v8sgjjzBy5EhOPvlkVq5c2VNN6ZsEMNbMKIxwSJC+HWu5ZMgvcyPZanFsmRv5xvyYSSAe4OKhF/OPqf/g4iEXk/SSfHPzN6ldVcuDTQ/iiYJ5GNGQ4p1u7EZIYufEkUy2bMH6en+bBNDgH0Oy2YIYt9wGjOg0YmNUiqIMaAJeRzrT3vGNb3yDW2+9lfr6esrLyzuWz5gxA4A//vGPvPLKK0ybNo1Fixbx6U9/GoBMJkNtbS2TJk1iyZIl3TpXXV0dK1as6Ilm73s8jGWzCdOht/h/xS0lgyzFwnArRDdhpx6QFOpm8jLKltUv48qNV/Ja+2sAzBo0i/8e999MKZtitpfzSfXoUv/YCf/4NVhrJ4MRujDG0klixw/ht7HMb2MKW4FaBLMUawlVY4uKqvNWUfZLdtc399jPPpVKEYlEKCkpyVteWVlJLmd8RUuWLCESiXDuued2rA+Hw5x33nk88cQTJJNJ9nv8dGbG+Z+lGnQEKwKynTuGRuqrgeng49hsMie2M2vYLF457BVuG3cb1aFqljUtY9rfpzH/nfls3LnRCpPrVpMJ3WLk/0cEsHPl5JxzCiF/3U6MiCUwolSCEZo0Vjy3+C+xeFKoxaMoA4geE5tLLrkEgKuuuorNmzfT2NjIwoULefrpp7n66qsBWL16NRMmTKC0tDRv39raWlKpFG+++WZPNafvUwKMxcRxZNK1ENatlsMW8cxirIMK7ABQ6JxE4M9rE/EifHHUF3nz8Df54tAvEiDAwi0LmfjqRP5t47/xXvo9s38EOy+OWFCFbrU2f7sw+VMYZDEWmghR1D+/xHGkXe9i59N5DyNM2zH12DZjhCeBZrQpyn5Oj4nN5MmTeeaZZ3jooYcYPXo01dXVfOELX+CnP/0p5513HgD19fVUV1d32rempqZj/a5YsGABdXV11NXVsX379p5qdu8SwUxmNhLTmQ/Gpj5XYKoQyF9xSblIEkEWYy3FyOu0a4I13HbAbaw+ejWfqv4USS/Jf737X0z42wS+vfXbNKYb7XgasIICVmjc2UGFFPki4xLAuPakSkEO644rx4pqHCNWWzCC9A4mlbodO722oij7DT0mNm+88QZnnXUWtbW1PPzwwzz11FNcfvnlXH755dx99917ffz58+ezYsUKVqxYwdChQ3ugxX2EEEZkRmA6eEktjmBEx33id+ubFWaquXEWmRXUF6FJsUncN+E+Xp7yMh+v/DgtuRa+s/E7HPDHA/jG+m+wPbfdVo0GOy9OV9lqKWzcRyaFSxfs14iN1ciUBmIRSaXpRmzxURnn04RJLtiGsYKkvpsKj6L0e3pMbL7xjW8QiUR45JFHOPXUUznhhBO47bbb+NSnPsX/+3//j1wuR3V1NQ0NDZ32FYtGLJwBRwAz3mYcJvsshLEKwLrS0thxM2AsnUpsppogWW05bNabn912eNnhPHbQYzw35TlOqD6BpmwTN229iQP+dgBXb7iaTblN5hht2NiO+x+SwYiJW2ZHjp/GTtDmxp6EndgsNnHfhbEWW6tzjncxrrYtwNsYq2cHdppsFR9F6Xf0mNisWrWKqVOnEonkz+x11FFHsWPHDrZt20ZtbS1r166lra0tb5s1a9YQjUaZOHFiTzWnfxLHVIweia0mMBhrvVT7f8ux9c/cjldKz8j2bl00sUAicOzQY3lqylP8cdIfObXqVNpz7fz3tv9mwh8ncNHfL+Ll5pc711bLYUWo8L9GMudcS0gssqy/307sVAhh8isotGNTqiWBQoqSDvKPsd1/bcJOheDGtxRF6dP0mNiMGDGClStXkkql8pb/+c9/Jh6PU1NTw5w5c0in0yxevLhjfSaT4b777mP27NnEYrHCww48wpj041Hku7aC2AoCnrNM6qpJ4U6ZJbTQ2pHss1K77JjyY3h40sP87dC/cc7Qc8h6WX697dcc8Y8jOH7N8SxpXUJOenIpSxPu4titWJeatEvcfG5NNlcYgxiBacZOsSDuuIC/fT3GpSbVC+qdbRoxCQbb/W3q/e3EqlMUpU9R6JH/wFx55ZWcc845zJkzhyuuuIKSkhKWLFnCvffey9VXX000GuXwww/n3HPP5Utf+hLpdJoJEyZwxx13sHbt2h6J6+w3yNP9eOyMmpIVFsS6smTbKLb2mVudAKzrrVCEHGtn2pBp/Hbkb1nbspYfr/sxP9/xc55pfoZn/vEMB647kMtGXsanyz/N0PjQzlNSS2ynMGVaBDCIzbYTayWLsYSSmGw8V6Ta/WuRCgZpjEUnwppw3svkcG4tubB/72Ra7BidBVJRlH1Ojw3qBHj88cf5wQ9+wOrVq0kkEhx00EHMnz+fyy67jFDIpDy1t7dz3XXXcc8999DY2MjUqVP5wQ9+wMc+9rFun6dfD+rcUzxMx7sdO6iyEeuyaseO08F/LwIgtcoyGKFxccfOyIRtfvXnplwT/9vwv9y29TbWJdYBEA1EOaf6HC4fezkfrfkogUDAZqWVkz9dtbjOSrGZbpL0IKVu5NrKnLZLwU8ZsCrFQEVAMqZ9JDDxKjGEU1jXokwq59eQ6yhmWoatPycvRVF6lN31zT0qNvuKASU2QgYTJG/0P7diOk/poMVNlcRWHpB5c5rIL8LpYWIeMqGbIB01wCDIkmXpjqXc8c4dPLbzsY7SN4eVHcYlIy7hooqLGBEYYS0JQdxZg5xlMiZIrC4RQxmfI/PopDBC4qZUSwFQqc2Gfz0V/nupXi0iIpaVCEzW39cd0Brwz1uCtX66ikcpitJtVGz2J9owgiNuKKlHJlZKyF/nVgNoxVoIMoYljY3fCE3+8kHkp0E3w7rUOhY0LuB/t/4v29LbAAgR4uOVH+eSMZcwZ+gcosGo2b7BP4YrGDKXT9g5tvznlWFnDQ1gLRHZphFr3Yhgpp1tZDxPACNUct0JrMDIINkwJvNPBEmqabvjgWRGVXFbFk7NoChKl6jY7G9IzGMHdtqCndgBmFLHTDp1GcsirrdS8muqgenUG/x1rrWTwbq2SiHtpXlsx2PcufFOHm14lIzvq6sOV3P2sLO5oPoCjg0eS6gmlD8ltbj3qpxlMu4mjBECsc6yGNHwsNWlg/4y9x5IGrU73sdvZ8eEcElsirhcj0yFLfXcslgrSGJLYiVl/c9iAcn5xE2nKEoHKjb7K2lMAkEjtvONYot6imUhwXo3HVoSCSSukcN2sq4rSYSqpmB5M2xr38bd7Xdz55Y7WdW6qmPVqMgozh1+LuePOJ+6ijoT32nAdNiukImFBflWUBojEBKPijrLpAxOq79+cEG7ZApusWLEbTYIGwNq9Letws7jk8LGmKTGW8Dfz41/SSKGK1rihpN712NpN4rSv1Cx2d+RqQHEDRbHpguLa22nv23I2acVm2ZcinVHubODtvqf3QQDD2NVldnlf2/5O/e+ey/3bLmHdel1HZuOi43jzCFnclb8LD4y+iMEw44ySNq0TIEtiIuvFStCaX87qUAtsSU3wcDDjueReI7sK1afuNbEWnGTI0QQRXQkZVzmEhJLKeqfVwa0es7xJQVdkhzEQhJrSCxJdcsp+yEqNgMBiYm8h+kUY1ihCGE6QQmiS5WBNuyTu3TEEleRGIa8d5/WM5hOvYb8TjMNXqPHn8N/5t7t97J422LeTb3bsXpEdASnDz2d04eczseqP0YsFTOdvCsMYDtsN2DvxmgkAaJw7FAbVkxcl5skH0gsBuz4pAr/fG5KtVRxwL8fknEncbA0Nj09Tf4spoPIjwdFsYNtxRKSqbdFgMQNKJW+1T2n9FNUbAYSEudoxHSgzVgxEUvGrw7d8dnt0Jv9z0FM5y5pzK71kPDfd5VO7QT3c16OPzf9mQc2PMADOx9gXXJdx6ZloTJml8/m1CGn8okRn2BEbIQ9jgwSdcf4SlVrKRwqwpDDdPDu/D+uyw2//a0Yt5mbNSc120JYC0omgSvHxr4CdE5QaPXXV2CnURDXXQwrYFm/3RXONmnyKzNIiZ8SrNUl46cku87NlpNrV+tI6WOo2AxEcpgOsRVjhcQxnVQD+Z2jdNDy9L0Tm3osT+hSeFOKe0qn73bcYj2U0TlmsR28Go+VbSv53fbf8ch7j7CyZWXeJkdWHMnJg0/m5OqTOTpwNJFBkc6uNYmVFMZ3BmGFTiwPcblJooBklZU5+4pgDKHz1ApiZcg1ithF/f1cd5kcU9LQM/49lH1l3E8YO3OpTIAnApZw2lniHE9ER74LqSohk9q5lpFrCWoWndILqNgMZKQS83ZMpyfVCKTDltk/JcYg2VlujTOpWSbWThBjOckxxCXljoERkv7LHXMDbGjewKNbHuXhtod5uuFpkjk7cd6g0CBOqDmB2TWzOan6JA4sOZBAOmA76ALXXUe7XWGQqgJNzrVIlpu0q91/X+5s42ELilY555EkArlGV0gk5tSCTeeWrDiwSQkBbDUEaac71bdU6w5g40SuCA3CVgWX77LQQpKxVdJeiSdJYoNrHYkYBZzPcq046xSlm6jYKLYSQTP5yQOev0w6cUl1lg5L6ptJUFw6n53YOIPEXZLYOI+cU2IVhWXvnKf41mwrzzY8yxP1T/DEe0/wz8Q/8zYdGxvLrEGzmFU1i+OHHs/Y+Fh7fMkSc0vSSIKBFPoMO8sryR8IK+NspH0ya6mM2XFTw+uxCQTufZUBo26HncIWEZXYmYhlKbbcjqSkVxe0X8ZKRf31kqwg025LirY8AMSxlbfFCivFZuNJnEnGHMm04G5KeAabDCJZetImsaBEmILOe5z37v2iYJli8Qpe8h1JmSawySXyANEP7qOKjWKRRIIG7FgbicvEsOIj5WVEkKRmmdCGLYtT7h9HrAUZL5Ohc1YZ2GKZrpsKOjK+3uEdntz5JE/WP8nyxuXsSO/Iu4SDSg7iuKrjOHbQsfxL+b8wMT6RQMz5JUpGXoLOIjQIO0GbJD9IsD+LHa+UId/ikfiNVKJ27+cOrNXhLpfzu1MyiIsvgc2Sc8cHidtSLB4ZpCpWzk7/XCJ4sly+L3fMkZxbZkKV1HZx3UksK4itJiH/C1IaSdynck1B57PnnENcrJJMUoJ1F0rFBmmfa5GJQHvO30LhChS8l3MXVnso7IzfL65VuN4rWOaKMlgRKBQKuR8ZZ1na+SsuarFIxdoXN3Yj5iEhgb3n8rcE8zAxCBiGKdArDxF9EBUbpTPyQ9iJHc8iGVVSlUBcL5JSLB2A/Ggkm8vtSCW4L+ViwnTtcusq7iM/TIlFYJIMVjWuYlnDMpY3L+fZxmdpyjblXcqI6Aj+pfJf+Jeqf2FG5QymxaYRjUbzq2bL8cuda5P2iHtNOnmJ9ZRixUCsv8Lkgxbs2J5y51wZjCVUQ34MS9yakhbttk0EUjpgsTQkWUEGsUo6thuTEtehiFAOc98zmLFIYnFJFmKAfDERN6iInLyXenYi0FKpQpJHmrEJDxLrk1iY1L6LYcd6yf+YWzNPzinLRBhdq0keCsCKr7yCzjY58oVKhE5e8n2LuMk9ke/djY3J52TB9pLNWfh7kHNIWr7nrJPrSvr3S4YrSIaoJJGIhSy/AfkNyv9KCeZ/6kA6Z3H2AVRslN0jM2buxCYDBMjvlCWzTWI70qm4rpQcJvVagubSyRa63KRTluQE2VeeKt0ftrTPn4I642VY2bKS5xuf5/mG5/lD0x/Ynt6edzmxQIzpFdM5puIYjqk6hqMHHc24+DgCmYDpKF0rzU2BdgfCumnVUkpHqleLxZPCZuoVDjptwrq93Kw9uY81XVxjE/kxHbAdlWsFyr2K+ed3rRmJVUmb5ViDsJmKbuq2uEtb/XUyj5J03k1+G6rJj1O5rlURJrGwYgXb4tw/EVG5T+5feWWdZW6HLpmD7nYyLsztxdwpJtw4mCRqiMBKmFBcyFLTT65JHj7E1Sjbu+d3i762O20Ui1NES4YVyHew3fkOwtj5qQLO+6jzuXDQcBRTFX4UfSpVXsVG6R7yA9yJ/eHJU3gM+3Tr/vgktiA//DSdqyp3NQjTzXJzO/x28geWyo9VrAfBf2r0sh6vZ17n+Z3P8+LOF/nTzj/xWttrnS5tSGQIdeV1HDnoSOoq6qirrGNUbJR9+oxhLQe5F0F/uSu6YvFEMB2xWAHiogtiLUWJtUhSgrjp5LgiQtIBpTBJCW7n0Y4RgsHku07ku3DTsSV+JFaCHEe+E/mO3Hteju0kRTRjmO9Yau5JvEmSFiQRwrVcpOqCm2UnGZFyX93704K1hiLY8UwetqK3/H/JuWWZCKnU3xNLSly6YP9/xTKThArIFziw/5vSyYvIVGIfAsQ1KJaJmyko/9+l2NR29/9WYoBS8WMnNrNR/hcKXZJi/QXJFx8RGhGiYcBB9Jkq5io2yp4hLrZ2zA9JpgSQjldcXfLkWzga37UQwD7NV9M5y006uDLsD1fiDdIhVjrbCq7byV2ehcZMIy81vsQf2/7In3b+ib80/6VT3AdgeHQ408qmcXjF4Uwrnca0QdOYWDaRUCCU745xkwxEbIOYTq4wAy7stzXs7CsWj9t5F2bGtWE7FBEhSc4A6zaTeyf33U0s8DCxuDD5cSVJbpBEAkFcaiUF91CewKWWnn9fOywqsaTk/0SuRyzitLMerOhKB+1bqXlZjLK/3Etptyvy0oHLdiK40n65LxKDkpTyndj6eCJqMvA3iR03JgOFRYjEapX/s2bnvrY590uutclvi7jZ5P9DHqxasG5mcZ3JvXVjcFKpXMQF7Pcmrk8ZzxXAWMkH0ycEZ3d9s1ZxUjojT2wSh6jGutii2Ke7cswPRtxrblqwuGo8Z53rHpLPSUzHEHX2lSdNOYfrb3f/SvDbJQtV5VXMDsxm9vDZAHiexzst77CifQUrGlewonUFK5pXsDW1lSdST/BEwxMdu5cGS5lcPpnJJZOZUjmFybHJTBk0heHh4fnnER99IRIYdtdJ3MAdIySWAeTHrlLYTqgdK3hiKeFcc5D8uJSMD3JdkrIcbOaeew0SlHaR77emYHkj1vUG1pXURL7lFcSIm/x/yDKpx1fl7J+is+Um2XgipJ6znVgzEgNyEyMS2IC93It2TOctU4hLpp6HcWVFMf+fOYxQSwKFZFbKd5TAulRzGOF2Eykk2aMem2gRwJZPSmESSeR8knQjmX9t2MB/m398+R+T8VliWcnvQb77RmAjxq3WRxMHQMVGeT/EHRPHdAhSU60d21HJoEqxRiLYH5L8mGQ/6ajkKTVMvhXkPjG7T9xhZx9JtS7MRhKrocCHHQgEGB8fz/ia8ZxdfTZEjACtS6xjZeNKViZXmr+tK1mfXM9LTS/xUtNLsNUeY2hkKIeWHcqh8UM5tOpQDg0fyqEVhzImNMYUGhWSnc/faYyOIE/RrjC4qbAiTmIByD5Sn006VXGRiWhJyrc8qUumoQT4RaSkA5UCrtJ+iTtIMB/n2EnyJ7aT8kDSqYO1CNxt5bgB57hpbAp+O6aDlWXSmYuIiMvPPV8Q+8AhQX25DnG1SQcewAhBFbajdschyblkHJpYzmlMHLIa+3/p3qcY1moUa0TcZOJua8Y+LEjcz/3+pH6hfB9ZZ3nCP3ahFRjA/p/FMVOjV9L5AaEPoWKjdB8RB3EVtGOeBuVJz43vSGchP4goNkgqnUQF+fPYgP0xFbp8xOKRTkD+c91MJcnSKny6k6dfp7MPBAJMiE9gwpAJnFF2RofLoz5dz99b/s6qplWsSq7i701/Z1XrKrant7O9cTvP8RxssccpD5VzcOnBHBw/mIMHHczB4YM5uOJgDi49mMpwpd1Q3E2FJLpYniNfnOTpXmIy7r2Szs/NhnJjXCJ+bqZUHOvOkfsmHZlbmkhESDIPxWKVzlLGD4Wc44q7S6yPdmxhWBEC+b+QNsh1yP+HuOOCWHehiF4EYyHEybewJPMP8lOOZUyTuFtFFEWAJaNOXHtZ/1iSUCH3NUl+/Koe07nLcWW8FNjCt3IPWv1zVJHvlhXBdlPgRYjdZIZ2rNCKxeNaO/LdbSDf8uxjqNgoe464wEQwJL4jAd0ENmNNnhjF7eWRP37F7Yik4xyCdaUJbiZYoQiJ60qeEF3ErVLmfBYydKpIUBOp4biq4ziu4riOMUJe2GNDcgOvtb7Ga82v8VrqNV5reo3X2l/jvfR7vNz8Mi83v2zcMg6DI4M5KH4QB5UdxEGRgzio/CAOjB/IhJIJjAqOIuSF8mMVgohN4XLJfir81cqTsCvAafKtIPceyhO8LJfO3s0Ik3vlWi/4+0rA2z0G2PEjrjUq7XBL54h7STpc2VYsBFdMd5JfYkiuyR3TJO0TwRN3mlhUsp/8j0nMRs4tFg9YkRerXR5uJEYjriwRMEm+kNiaPPiIpSVJM/LAIL8dtyK7fNdh571YhuItSDvr49iHCUlbFwuvCfP76YOo2Ch7hxvfyWF+tJJUIALjZgWJOy1EvgCJGyWO/bGKy8cVDHeAJP7nVuy8MoIblJYCl4XuKrD+ehcZjCqXGAgwLj6OcbFxnFx1sjmebwm9l3qPN9rf4PXm13k98zqvN73O64nXeaPtDXakd7AjvYOXml/qdNvCgTDj4uMYHx3P+NLxjI+PZ2x8LOPC4xibG8tYbyzxSEEwRWIIhZabuNgKlxfGleS+inUpiAhJ8N/dXjpW18oC+x12XBD5RV8FEQd3DJKIyGBnmXSahdclLkVBHmRERCUl2i1ZJB22JAi4aeNiLYkVJBZnyvkrFolrmct6aWcc8z8u8RmxQETQ5H5QcEwROff/W9rhJkNIXEdS8OXa5B7Jg5KIjwj6NjrPPdVHULFReg7Jpopi00YltiPjOCQTR9KeI8BQ7LQI8iMpJT+rSzordzynuJYidB5VLecodLfIE7mMgZEAvIiP5+zvdnLQSYQAhkSHMCQ8hBmDZpj2+0kUnufxbupd3mp+i7dyb/HWzrd4O/U2b7W/xbrEOramtvJ2+9u83f62nWuogKGRoYyNj2V0bDSjw6MZXTqa0aHRjCodxejYaEbGRlLj1ZjxQ10hT9SFFFpNbgaZ2yOIq6swgUA6eNeqEWEqLEsk97qwXXKcsLPMfcoH68YTIZSO3nXtiQgIMphUrlsEK+J8lr+uMLluTvl/SGBLDsn/jWtxiyjIvZNju9UUpP6exBzFnesmjIjYi3WTLlgu1o20Q9oq4iX3UlzbEvvpY6jYKMXBtXgqsU/UkhVUTn7l5Aj5gz/xl8kIelkmP25Jt5UkBBl5754/QL5bRo4psSVXhMSCEkGRAOyuRMh1x0mMSY6FsYZGRUYxavAojo0dayw+JxOtLdXG+sB61jWsY11mHeva17EhuYEN7RtYn1rPpuQmEydKbzcuul0QCUQYER1hXjHzd3h0OMOCwxgWHsaw0mEMiw5jaHQoNeEawrlwZ/eXXEOhMImAlNGZdMFnGb1fOJBCOntXANzvT3og9+nfTZIQi1k6UzmGdLauRRDCZnW57XLFTtyQIhAy7kgGpbr/Q65lJQIk1otYJRIbEktdBqy6yRCuGMp+Ik5R59hiQXrOMUVoce6HGxOT/1G5RhFgFRtlwCLJBWVYf7aMeWjG/OBENCQJoQo74l06FAlMR7FjTySrR/zlsn01+R2atEMGIxaKkDxJy1OwK0JpZx+383DHkhR2tlmMUBZ2wDkojZVySPQQDuGQzqVz4pBty7LV28qGxAY2JTexuX0zm9Kb2JTYxKb0JjYnN7MltYXGTKMRqeQG67bZDdWhaoZEhhiLLDqEweHB1ERqqMnWUF1STU28hppwDVWRKqqCVVSlq6jKVRENOerUlTDlCv7Ke/lO3LR16eDFFSTbyffkOftB5yQGsHEPl67EUb4Tz/nsWhmCDDaVfeVcOfLPKwkPIlYS43ETMCSDUCwhsQwl+UWs9UIRlrI90k75P/Ow4iyC5m7vZi0GML+ZKvocKjbKvkeEJ46twixWj2QwSVxBLBlxu8UwJTpkECT+31JMZlwUO6pdRuzLj1CeqKvI/zFLm2RwXXdFKFewj2uVyTnFz18Yx5AsKQqW+316KBBiVHSUrXIgnaQ7wBRoT7SzNbOVd9PvsiWzhS3JLWxLb2Nb+za2pbexPbudbSnzvj5dT0O2gYZsA28k3mBPKAmWUBmupDJcSQUVDAoNYlBsEIPCg6gIVVBBBeXZcsqbyimPl1MeKqeMMkpTpZQGS837SCmlXinxdJySYAmxXIwAgc4xs0JrRDpUiUtA/vfp7ud24O54I1dw5LNYIUIK6651XWdyXrddbkePc2z5ruS9vz5DhvZAO21eG2200UorrYFWWrOttAZbaaGF5kwzzV4zTdkmmtqaaAw28pPYTyjJlliBpOB80ha5fjcpoo+hYqP0PkGsO0x+0CI+SUzA083QkvEKO7GdPBjhkkGk+NvIQDwZcR3HjjR3S+IEMSJUKAAS+6kiv2OKYeNMrjvO7ZTEEnJH08tTqoibi4z5KLSQZJR8F51ySayE8RGTZNBxH6STc0fgA9lclsbmRt7jPd7z3mN7ejv16XrqM/XUN9dTHzRitCO9g8ZMIzvTO2lMN9KYa6Q91057qp0tKSfvuxuW1O4IECAe9IUnECMWjBEjRixs/kYDUaLBqPkbiBIhQjgYJhKMECZMOBMmFA4RCoUIESLkhQilQoRaQgQCAYJekEA6QJAggUb/yxO3Vha8gIeHZ/56HrlEzrzIkU1myQayZBozZLNZMsEMmVyGdCpNpj1DOpsm7aVJ5VKkvTTJQJJkNknSS5JM+X9DSdpHtpMIJMgECrMfyC88CtZViP17Y/RGSijpbEm6wpkrWF74f9JHULFR+hZuWnU51n0iyQbN2AF9g7AWkHTsbi0ueToVoSl1ziEpsmATDGQAnht0BWsJFWZwZTCuOpeofwwpK4LTBulMyp1jSCcilsuuiiq6cQVBBE2C5UFnuWT+5TU5xODSwQz2BjMpOsmuyGEEtbzgGv1R+16VR1uujcZMI82ZZpoam2gKNtEUamJnZict2RZaki20JFpoCbWYp/RsM22ZNlpTrbTl/Cf5XCvt2Xbas+0kvAQpL2VELNee185efTJvef9NOrnvdoWTRh70gpRSSolXQkmghDLKKPPKKA+WUxYoo9wrpzxQTkW4ggqvgspgJdXRaioCFbs+NnTOTnQfvvoYKjZK30YGDUpxx6HYTlc6WSlWCTbDTQbvSUn2ZvLHJogFEie/8xcRkh+tDO5rIt89AyZ11/WzyzGgc4A2jikrIunbgsQuPGzJeEmPlRhOhHzrCOe9xKBSBevc4qiuCEmKsIskWhQKqp9IEAgEKAuVURYqs+m2peRnnkmBzGryLUZJgR+EjTe0mG2ywSyJeIJEMkGyJUkynCSRSpAsSZJIJkhn0qQDaVLZFGnSpDIpY2GQIZ1Lk0lkyIQzZINZsl6WbDZLNpElG88aayXnkUvlyHk5m0rsWzZe1iMQDBAgQCAQIOAFCCVCBEuDhAIhggnzNxwOE8oa6ylChHBbmHBZmEgmQjQbJZKLEAlEiIVixFIxoqko8WCceC5OrD1GfEeckkgJkVjE3hM3LiQFN+V/Ur43eUBy68QVioog91vceoXZg30EFRul/xHC/GDLsMFlycJJYC2iNmzCgRv7EeGqxCYgyHgf+eHLNvKjllHnrghBZxHyMCLkJjWAdbEVdgQyTUA5+VaNVNmWxAmwVp+bul34JCsZTeKqkwC2O66osJ4c/rHaCpbt6gm5K+vL7fAEiY0UDujEXEMoFjIiFi2zmYshzL2V71LSkiV5JOQcV6xauc9ZTNxO6qyJxSZC7mFjfzJYU86Rw7hlxVJtxSaFuPXucn775CHHtZ7lwUBEtdBS9eh879yEgIjzvvABRixf94HDvb/y2R0m0MdQsVH6N9IBS8JBBbYzFjeb1M4Sq0gGKgYwItKEHTRX6u/XSn7GknTY0hm6ItRKvgjJoEXpNMQdN4T8OmSCm3wgRPx2VZE/oFIGE8ogWbAj8UV0y53lIizyFC2ds3SGu3LfFcaW3MyoKJ2FqFBUcNrkXluoi/fusSXJwk07l2O5FoCkb7uhENkv4OxTmFLsnqdQCNyU5hD50zWIaEv2XID89jous47/SWmPG8Av7HEL71dX7yUbTzLO3O/NvRZZVzjWqY+gYqPsX8gPPIT5cYo7S+IlUn8qge2Ia7DpzbJ/OXYmxSjmyVrqU7lWi9vZuCJUhhGLAKazLcMKj1hSklk2lM6xghz5lpUgnX9lwbq4fz7XTSfut6yzDeSXBpIYkitY4o6RjLl28l1jUryzkDj5T+UiwIVCJvEudzvp0N24GliBEOET60YqQ7hiI25RVxwLO23J6IsVrBNrVtrfVUcubkg3nV7+1yQzzhUreZiRatduJQZXnOUagwXv3TRpOZefGt9xre61BTHfpYqNovQirgC5ddJkzE8amwEnMZsqfzu3KGIIOzZILCEZoFpotciTsggN2MoIUnurFJuwILWwZNzEIGyRSHewn8SKXEQsCjuaONY9FHC2lTEpblFTqQEmlo5bSsjNfpLOTqwjsRLLyZ8FVa69MMNPOllXLKUqgGtJigCJu1DO5Q6wlcQJEYRS8itvF7qeotjCliIqci9FGNxt3fZKyrq4UyW2JpUIpI0iiuIClTFl8j8IVrjkPrnuNxno6Qqg+zDglq2RbeU7HE7nB5Q+goqNMnARqyNC/tTNYuW4IpTCju2pwFgW0sG47hWpGVaGEYs0+ZOsuU+mUi4HbIHHdn8/KRBaSkdAnZz/WTLepLOXp+bh5NfzkmssHMAqgtFUcN3SEaexllMAKwRgrS13mbjuZGCkiE/Gv1etzjJx9QScZdIm6byFEmwFZrACmMSObZISQeK6kiKVbgIFzrlC5Hf6MeyUACIUklhRjnWlimjJNmKVyvcvri2xrHDWxzHfl3wPrrUGnQe0ishLe9P+9Yor1E0CcF2OZfTZeA2o2ChKZ6QzLYytFFpCKaxFI0/VFdhJvcQNInEWcbWJxdOMzWbLYuNN0gbInxisymlTmb+/BLgrsG4WtySLDJzdSX6QO4hxHxaOpHez9QSxeKRDlnaJOJU6y0uwiQ1iNbmVvUWYcs4yaVcV1sUIVlxdpJK4WAVihSWxbkw3CcJ1BUrhzkry64+Jiw7sbLTyACKWpVg3Ym1ItQGxEMXCkYQPsWqcqhB5ZWfEkpH3Iiri+hSLLuesd7+XoLOt3IMD6NM9eh9umqL0MXZlCUF+OXkRowQ2JiJPyWK9hLAds3Sq0jm1YQs4BrETd0n2kzzJSodVSn7KtVhhldgn4DKsi0gSGQIY60YEL40tPOm6tKSDdkfkg3Ufua47t7ONO8tElGX8kaQhy32TuFETNgAvgiiWi1gFhSIp2WSutSJ1zkTMUthK0WItigVThbWGXPGRyhQ7nfa1+H/FshILTwYmiytUhFbWDfWPI6It90DS1OW+StZkFOtSLXX+5pxzi+AEgDHkTwXeB1GxUZSeQH5JXVlD2YKXCJKk5EqatiQJSKBX3GRupeBmrBUlKb4tWJeeh+10xL3mxhLEspCOuQKTLiz7SceXc44pCQ5J7ORq0tkPw4iYtM8tSlooTIXun1LMLJjlWOGQig9iBbqiLJ1xCVYkwXb+bsxMziNtKMGMc4o5n5uwdfiCWGuokvzyOLJPGGtZVWOzHKXtcn9lLI18x3J8z79esV7d++FWiXAzBuNY95lbHUMs3gDGfTqSPo+KjaIUE7ejL0Q6dTfoLy954heLQNwtQ/x9ZaIy6YBTWLeZPPm2YTPiSvx9XXES910V1ropfMKW+JObGCBZb262nMRlJLEhix3jIq4nGdcENtg9hPzBp5LEIU/uYAeiSpxLkhEase43EVqxaCr940q8TGJaYkkGnGOBjfXIObJYF5qkrIvVImIkghXHut8kNR5sDEcsnBKMKDT62w7CCpQrjiXOMhH7YMFfiaeNAcax68oTfQgVG0XpLdyANXQea1NYMcAVIckGyxRsJ9aHiMZgf7lsK6IhAiY16cR9J7GlCuzgRRES6ehG+ucRy0vESVx7EqyXmIdUaZDjNvrtr8SKWit2rJMIkFhMnr8tWPeeuN7ACrGbTi6uMGm/nCuEseQiGHeciIqcQ1xuYMVIREOuVyytNmzGosSExMUpLjsZsxX2vwuJp7X5r4xzbdJmOZ/cbxFgeWiRJJWJWOu2H6Bioyh9lcIMMul8ukLiKe7ARcmqk0GuaWe5lMaR+I5YYIOd5VKDTjpa6Qzlbyt2llQZzNqK6bwl3iEZeQlsXEXSsF13osRypDOV88r8NNLxy/FlCgqpCtCCtRykUoTEN6qwlkkAI2Yi1uLOAxtsdwP0If+cKWzHvtNfPgKbqShiKqIu7rwE+YkEEs+RFPtGbFagJCHIvq5wS6WCUowlM5Y+W5ZmV6jYKMr+QOGIfqEwhiSIOLmIC08Eya1ALJ8l0y6MdellsGIigiWZe9LBu64f110ngzQlyUFEDqxQuNaaZNf5RUI7LDVX1MCObRKhFatDrElZLmNnRPxEZMqxrkpJY0/621T755DxVzKWSBIMJCnBrfwtlo7cP3F9VvjX24Ktoi1xKYnNSU3AUf4939V32sdRsVGUgUhX4rQnfn+JxbiDPcG6+LwutvMK1nvOPmLhxLAWi2SrScVusTjEbSYWkohG4XQPhQNfJa7jZtWJm0xSjCUtW2aTleNI3MmlcPySe0x3vAwF790xO7K9O+bGFa0Ynasd9FNUbBRF2XPcDtKlJwLVrsUlHbe8ArtY1tW+u1vmHrurv7varvDzrt4rnVCxURSlb9FVZ9/Vsr5CYWxN6ZL9wDhTFEVR+joqNoqiKErR6ZbYbNy4kS9+8YvMmDGD0tJSAoEA69at67RdIpHg2muvZeTIkZSUlDBjxgyee+65Ttvlcjluuukmxo8fTzweZ+rUqTzwwAN7fTGKoihK36RbYvPmm2/y29/+lurqao499thdbvfZz36WhQsX8t3vfpdHHnmEkSNHcvLJJ7Ny5cq87b75zW/y7W9/myuvvJLHH3+cY445hnPOOYfHHntsry5GURRF6aN43SCbzXa8X7hwoQd4a9euzdtm5cqVHuAtWrSoY1k6nfYOPvhgb86cOR3Ltm7d6kWjUe+GG27I23/WrFnelClTutMc74gjjujWdoqiKMq+Y3d9c7csm2Dw/TdbsmQJkUiEc889t2NZOBzmvPPO44knniCZTALwxBNPkEqlmDdvXt7+8+bNY9WqVaxdu7b7SqkoiqL0C3osQWD16tVMmDCB0tL8CShqa2tJpVK8+eabHdvFYjEmTpzYaTuANWvW9FSTFEVRlD5Cj4lNfX091dXVnZbX1NR0rJe/VVVVBAKB3W6nKIqi7D/0m0GdCxYsYMGCBQBs3769l1ujKIqi7Ak9ZtlUV1fT0NDQablYKmK5VFdX09jYiOd5u92ukPnz57NixQpWrFjB0KFDe6rZiqIoyj6gx8SmtraWtWvX0tbWlrd8zZo1RKPRjhhNbW0tyWSSt956q9N2AIcddlhPNUlRFEXpI/SY2MyZM4d0Os3ixYs7lmUyGe677z5mz55NLGZKpp5yyilEIhHuvvvuvP1//etfM3nyZCZMmNBTTVIURVH6CN2O2dx///0A/PWvfwXg8ccfZ+jQoQwdOpSZM2dy+OGHc+655/KlL32JdDrNhAkTuOOOO1i7dm2esAwbNowvf/nL3HTTTVRUVDB9+nTuu+8+li1bxpIlS3r48hRFUZQ+QXcH65Bf1LvjNXPmzI5t2travKuvvtobPny4F4vFvKOOOspbvnx5p2NlMhnve9/7njdu3DgvGo16U6ZM8RYvXtwjA4cURVGU3mF3fXPA87xdzfbQZ6mrq2PFihW93QxFURTFYXd9s1Z9VhRFUYqOio2iKIpSdFRsFEVRlKKjYqMoiqIUHRUbRVEUpeio2CiKoihFR8VGURRFKToqNoqiKErRUbFRFEVRio6KjaIoilJ0VGwURVGUoqNioyiKohQdFRtFURSl6KjYKIqiKEVHxUZRFEUpOio2iqIoStFRsVEURVGKjoqNoiiKUnRUbBRFUZSio2KjKIqiFB0VG0VRFKXoqNgoiqIoRUfFRlEURSk6KjaKoihK0VGxURRFUYqOio2iKIpSdFRsFEVRlKKjYqMoiqIUHRUbRVEUpeio2CiKoihFR8VGURRFKToqNoqiKErRUbFRFEVRio6KjaIoilJ0VGwURVGUoqNioyiKohQdFRtFURSl6KjYKIqiKEVHxUZRFEUpOio2iqIoStFRsVEURVGKjoqNoiiKUnRUbBRFUZSi0y2x2bhxI1/84heZMWMGpaWlBAIB1q1bl7fNihUrmD9/PocccgilpaWMGzeOCy+8kLVr13Y6Xi6X46abbmL8+PHE43GmTp3KAw880CMXpCiKovQ9uiU2b775Jr/97W+prq7m2GOP7XKb3/zmN6xevZqrrrqKxx9/nO9///u8/PLL1NXVsWHDhrxtv/nNb/Ltb3+bK6+8kscff5xjjjmGc845h8cee2zvr0hRFEXpe3jdIJvNdrxfuHChB3hr167N22bbtm2d9lu3bp0XCAS8b37zmx3Ltm7d6kWjUe+GG27I23bWrFnelClTutMc74gjjujWdoqiKMq+Y3d9c7csm2Dw/TcbOnRop2UHHHAAQ4cOZdOmTR3LnnjiCVKpFPPmzcvbdt68eaxatapLt5uiKIrSvylqgsBrr73Gtm3bOPTQQzuWrV69mlgsxsSJE/O2ra2tBWDNmjXFbJKiKIrSCxRNbDKZDJdffjlDhw7ls5/9bMfy+vp6qqqqCAQCedvX1NR0rFcURVH2L8LFOvCVV17Jiy++yKOPPkp1dfVeH2/BggUsWLAAgO3bt+/18RRFUZR9R1Esm6997WssWLCARYsWMXv27Lx11dXVNDY24nle3nKxaMTCKWT+/PmsWLGCFStWdBkfUhRFUfouPS42N954Iz/4wQ+47bbbuOiiizqtr62tJZlM8tZbb+Utl1jNYYcd1tNNUhRFUXqZHhWb2267jeuvv54bb7yRK6+8ssttTjnlFCKRCHfffXfe8l//+tdMnjyZCRMm9GSTFEVRlD5At2M2999/PwB//etfAXj88ccZOnQoQ4cOZebMmfzmN7/hS1/6EqeccgqzZs3iT3/6U8e+gwYN6rBYhg0bxpe//GVuuukmKioqmD59Ovfddx/Lli1jyZIlPXltiqIoSh+h22Jzzjnn5H2+4oorAJg5cybPPPMMS5cuxfM8li5dytKlS/O2lW2EG2+8kfLycn70ox+xZcsWJk2axG9/+1tOPfXUvbgURVEUpa8S8Aoj9f2Auro6VqxY0dvNUBRFURx21zdr1WdFURSl6KjYKIqiKEVHxUZRFEUpOio2iqIoStFRsVEURVGKjoqNoiiKUnRUbBRFUZSio2KjKIqiFB0VG0VRFKXoqNgoiqIoRUfFRlEURSk6KjaKoihK0VGxURRFUYqOio2iKIpSdPrlFANDhgyhrKyMoUOH9nZTisb27dv36+uD/f8a9fr6N3p9e866det47733ulzXL8UG9v85bfb364P9/xr1+vo3en09i7rRFEVRlKKjYqMoiqIUnX4rNvPnz+/tJhSV/f36YP+/Rr2+/o1eX8/Sb2M2iqIoSv+h31o2iqIoSv+hX4nNhg0bOPvss6msrGTQoEGceeaZrF+/vrebtcfcf//9nHXWWRxwwAGUlJQwadIkvv71r9Pc3Jy3XUNDA5deemlHqveJJ57IqlWreqnVe8cpp5xCIBDg+uuvz1ve36/xscce47jjjqO8vJxBgwZRV1fHsmXLOtb35+t74YUXmD17NsOGDaOiooLp06ezaNGivG0SiQTXXnstI0eOpKSkhBkzZvDcc8/1Uot3zcaNG/niF7/IjBkzKC0tJRAIsG7duk7bdfd6crkcN910E+PHjycejzN16lQeeOCBfXAlXdOd61uxYgXz58/nkEMOobS0lHHjxnHhhReydu3aTscryvV5/YTW1lZv4sSJXm1trff73//ee/DBB73Jkyd7Bx54oNfS0tLbzdsjjj76aO+cc87xfv3rX3vPPPOM98Mf/tCrrKz0jj76aC+bzXqe53m5XM776Ec/6o0ePdq75557vMcff9w77rjjvMGDB3sbNmzo5SvYM+655x5vxIgRHuBdd911Hcv7+zX+9Kc/9cLhsPelL33Je/LJJ72lS5d63//+972HH37Y87z+fX2vvPKKF4/HvY997GPegw8+6D355JPe/PnzPcD7yU9+0rHdBRdc4FVWVnoLFizwnnrqKe+MM87w4vG497e//a33Gt8Fy5cv94YNG+Z9/OMf92bPnu0B3tq1aztt193r+cY3vuFFo1Hvlltu8ZYtW+bNnz/fCwQC3qOPPrpvLqiA7lzfv/3bv3kf+chHvNtvv9175plnvLvvvts75JBDvJqaGm/9+vV52xbj+vqN2Pz3f/+3FwwGvTfeeKNj2dtvv+2FQiHvP//zP3uxZXvOtm3bOi375S9/6QHe008/7Xme5z344IMe4C1btqxjm8bGRq+6utr74he/uM/aurfU19d7w4cP9+65555OYtOfr3Ht2rVePB73fvjDH+5ym/58fV//+te9SCTiNTc35y0/5phjvGOOOcbzPM9buXKlB3iLFi3qWJ9Op72DDz7YmzNnzj5t7/shD3Ge53kLFy7ssjPu7vVs3brVi0aj3g033JC3/6xZs7wpU6YU5wLeh+5cX1f9zrp167xAIOB985vf7FhWrOvrN260JUuWcMwxxzBx4sSOZRMmTOCjH/0oDz30UC+2bM/patTukUceCcCmTZsAc72jRo3i+OOP79imsrKSOXPm9Kvr/epXv8rkyZM5//zzO63rz9e4aNEigsEgl19++S636c/Xl0qliEQilJSU5C2vrKwkl8sB5voikQjnnntux/pwOMx5553HE088QTKZ3Kdt3h3B4Pt3dd29nieeeIJUKsW8efPy9p83bx6rVq3q0i1VbLpzfV31OwcccABDhw7t6HegeNfXb8Rm9erVTJ48udPy2tpa1qxZ0wst6lmeffZZAA499FBg99e7fv16Wlpa9mn7Pgh/+MMfuOuuu7j99tu7XN+fr/EPf/gDhxxyCL/5zW846KCDCIfDTJw4Me9a+/P1XXLJJQBcddVVbN68mcbGRhYuXMjTTz/N1VdfDZjrmzBhAqWlpXn71tbWkkqlePPNN/d1s/eK7l7P6tWricVieQ++sh3Qr/qj1157jW3btnX0O1C86+s3YlNfX091dXWn5TU1NTQ0NPRCi3qOTZs2ccMNN3DiiSdSV1cH7P56gT5/zalUissuu4xrrrmGSZMmdblNf77GzZs388Ybb3Dttdfyta99jSeffJKTTjqJK6+8kh/96EdA/76+yZMn88wzz/DQQw8xevRoqqur+cIXvsBPf/pTzjvvPOD9r6++vn6ftnlv6e711NfXU1VVRSAQ2O12fZ1MJsPll1/O0KFD+exnP9uxvFjXF/7gTVV6gpaWFk477TTC4TB33nlnbzenx7j55ptpb2/nuuuu6+2mFIVcLkdzczO/+MUvOPPMMwGYNWsW69at46abbuKqq67q5RbuHW+88QZnnXUWtbW1/PSnP6WkpISHHnqIyy+/nHg8zoUXXtjbTVT2kiuvvJIXX3yRRx99tEuR7Wn6jdhUV1d3+SS4q6eR/kB7eztz5szh7bff5tlnn2XMmDEd63Z3vbK+r7J+/XpuvPFGfv7zn5NMJvN898lkksbGRioqKvr1NQ4ePJg33niDk046KW/57NmzWbp0Ke+++26/vr5vfOMbRCIRHnnkESKRCAAnnHACO3bs4P/9v//H+eefT3V1Ne+8806nfeX65Em4v9Dd66murqaxsRHP8/Ke/vvTdX/ta19jwYIF/PKXv2T27Nl564p1ff3GjVZbW8vq1as7LV+zZg2HHXZYL7Ro70in05x99tmsWLGCxx57jClTpuSt3931jhs3jvLy8n3V1D3m7bffJpFIMG/ePKqrqzteALfeeivV1dWsWrWqX1+j+K93RTAY7NfXt2rVKqZOndohNMJRRx3Fjh072LZtG7W1taxdu5a2tra8bdasWUM0Gu3k8+/rdPd6amtrSSaTvPXWW522A/p8f3TjjTfygx/8gNtuu42LLrqo0/qiXd8HzmPbx/zwhz/0QqGQ99Zbb3UsW7t2rRcOh71bb721F1u252SzWe+cc87x4vG499RTT3W5ze9//3sP8J555pmOZTt37vRqamq8K6+8cl819QPR0NDgLV++vNML8ObNm+ctX77ca25u7tfX+Mgjj3iAt3jx4rzls2fP9saMGeN5Xv/+DmfOnOlNmDDBSyaTecvPP/98Lx6Pe8lk0nv55Zc9wPvFL37RsT6dTnuHHHKId+qpp+7rJnebXaUGd/d6tm7d6kUiEe/b3/523v4nnHCCN3ny5KK2vTvs6vo8z/N+9KMfeYB344037nL/Yl1fvxGblpYW76CDDvImT57sPfjgg95DDz3kffjDH/YmTJjQaSxAX+fyyy/vGHPyxz/+Me8lg/2y2aw3Y8YMb8yYMd69997rLV261Js5c6ZXXV3daQBWf4GCcTb9+RpzuZx3/PHHezU1Nd4dd9zhPfHEE96ll17qAd6dd97peV7/vr7Fixd7gDd79mzvwQcf9J544gnvC1/4ggd4V199dcd25557rldVVeUtXLjQe+qpp7yzzjrLi8Vi3l//+tdebH3XLF682Fu8eHHH7+8nP/mJt3jx4ryHge5ez1e/+lUvFot5//mf/+ktX77cu/zyy71AINAxoLc3eL/ru/fee71AIOCdcsopnfqd1atX5x2rGNfXb8TG8zzvnXfe8c4880yvoqLCKy8v90477bQu1buvc8ABB3hAl69vfetbHdvt2LHD+/SnP+1VV1d7JSUl3qxZs7yVK1f2XsP3kkKx8bz+fY07d+70rrjiCm/YsGFeJBLxpkyZ4t1999152/Tn63vssce8mTNnekOGDPHKy8u9qVOnerfffruXyWQ6tmlra/Ouvvpqb/jw4V4sFvOOOuoob/ny5b3X6N2wq9/czJkzO7bp7vVkMhnve9/7njdu3DgvGo16U6ZM6WTl7mve7/ouvvjibt0DzyvO9WnVZ0VRFKXo9JsEAUVRFKX/omKjKIqiFB0VG0VRFKXoqNgoiqIoRUfFRlEURSk6KjaKoihK0VGxURRFUYqOio2iKIpSdFRsFEVRlKLz/wHkUVgLnbfD7QAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAGQCAYAAAB4X807AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAB82ElEQVR4nO2deZhcVZn/P7VXb+kl+0oCkQCdmBCaJToQCRBQSdhlCwMqBkTkJw64gbgNgwIzjjiIJk5QFBADCmELDCQsgooRAzFB2RKykYV0d3qt/f7+OPftc6q6EzqkK92dfj/PU09X3fXcW13ne9/lvCfgeZ6HoiiKohSRYG83QFEURdn/UbFRFEVRio6KjaIoilJ0VGwURVGUoqNioyiKohQdFRtFURSl6PSa2GzYsIGzzz6byspKBg0axJlnnsn69et7qzmKoihKEQn0xjibtrY2pk6dSiwW49///d8JBAJcf/31tLW18eqrr1JWVravm6QoiqIUkXBvnHThwoW8/fbb/POf/2TixIkAfPjDH+ZDH/oQP/vZz/jyl7/cG81SFEVRikSvWDYnnHACiUSCF154IW/5zJkzAXj22Wf3dZMURVGUItIrls3q1as57bTTOi2vra1l8eLF77v/kCFDGD9+fBFapiiKonxQ1q1bx3vvvdflul4Rm/r6eqqrqzstr6mpoaGh4X33Hz9+PCtWrChG0xRFUZQPSF1d3S7X9YrYfBAWLFjAggULANi+fXsvt0ZRFEXZE3ol9bm6urpLC2ZXFg/A/PnzWbFiBStWrGDo0KHFbqKiKIrSg/SK2NTW1rJ69epOy9esWcNhhx3WCy1SFEVRikmvuNHmzp3LNddcw9tvv82BBx4ImMDSCy+8wPe///3eaJKiKB+AdDrNxo0bSSQSvd0UZR8Sj8cZM2YMkUik2/v0Supza2srU6dOpaSkpGNQ5ze/+U2am5t59dVXKS8v3+3+dXV1miCgKH2AtWvXUlFRweDBgwkEAr3dHGUf4HkeO3bsoLm5mQkTJuSt213f3CtutLKyMpYtW8bBBx/MRRddxIUXXsiECRNYtmzZ+wqNoih9h0QioUIzwAgEAgwePHiPrdley0YbN24cDzzwQG+dXlGUHkKFZuDxQb5zrfqsKIqiFJ1+M85GUZS+z4hbR7C1dWuPHW942XC2XLOlx473sY99jFtvvXW3gw8ffPBBDj744I7M2BtuuIHjjjuOE088ca/OvXLlSjZv3swnPvGJPdpv8+bNXHXVVdx///17fM5f/OIXzJ49m1GjRu3xvj2NWjaKovQYPSk0xThed3jwwQdZs2ZNx+fvfve7ey00YMTmscce63JdJpPZ5X6jRo36QEIDRmw2b968R/tks9kPdK73Q8VGUZR+S2trK5/85CeZOnUqkydP5r777gPg6aef5vDDD2fKlCl85jOfIZlMdtrXTUa6//77ueSSS3jxxRdZsmQJ1157LdOmTeOtt97ikksu6ejsd3Xc8ePH861vfYvp06czZcoU/vGPf+SdK5VKccMNN3Dfffcxbdo07rvvPr797W9z0UUX8dGPfpSLLrqIdevWceyxxzJ9+nSmT5/Oiy++CJhhIZMnTwaMEFx77bUceeSRfPjDH+ZnP/tZxzl+8IMfMGXKFKZOncrXvvY17r//flasWMGFF17ItGnTaG9v3237v/rVrzJ9+nS+//3vM3369I7jvvHGG3mfPygqNoqi9FuWLl3KqFGjeOWVV/j73//OKaecQiKR4JJLLuG+++5j1apVZDIZ7rjjjm4d7yMf+Qhz587llltuYeXKlRx00EEd697vuEOGDOHll1/m85//PLfeemvecaPRKN/97nc599xzWblyJeeeey5gBrI/9dRT3HvvvQwbNoz/+7//4+WXX+a+++7jqquu6tS+//3f/6WyspK//OUv/OUvf2HhwoWsXbuWxx9/nIceeog///nPvPLKK3zlK1/h7LPPpq6ujrvvvpuVK1cSCAR22/7Bgwfz8ssvc91111FZWcnKlSsBuPPOO/n0pz/d7e9kV6jYKIrSb5kyZQr/93//x1e/+lWef/55Kisr+ec//8mECRM4+OCDAbj44ot57rnn9vpc73fcM888E4AjjjiCdevWdeuYc+fOpaSkBDADZD/3uc8xZcoUzjnnnDxXnvDkk09y1113MW3aNI4++mh27NjBG2+8wVNPPcWnP/1pSktLAVPUeE/bLwIIcOmll3LnnXeSzWa57777uOCCC7p1PbtDEwQURem3HHzwwbz88ss89thjXH/99ZxwwgldTl/SFW76bk9UQIjFYgCEQqHdxmBc3FmJf/jDHzJ8+HBeeeUVcrkc8Xi80/ae5/HjH/+Yk08+OW/5E088sRct79yWs846i+985zvMmjWLI444gsGDB+/18dWyURSl37J582ZKS0uZN28e1157LS+//DKTJk1i3bp1vPnmmwD86le/6piY0WX48OG89tpr5HI5fv/733csr6iooLm5udP23T3urtjVcYWdO3cycuRIgsEgv/rVr7oM1J988snccccdpNNpAF5//XVaW1s56aSTuPPOO2lrawNMUePCc+5J++PxOCeffDKf//zne8SFBio2iqL0IMPLhu/T461atYqjjjqKadOm8Z3vfIfrr7+eeDzOnXfeyTnnnMOUKVMIBoNcfvnlnfb9/ve/z6mnnspHPvIRRo4c2bH8vPPO45ZbbuHwww/nrbfe6lje3ePuiuOPP541a9Z0JAgUcsUVV/DLX/6SqVOn8o9//CPP0hAr7NJLL+Wwww5j+vTpTJ48mcsuu4xMJsMpp5zC3LlzqaurY9q0aR0xo0suuYTLL7+cadOm4XneHrX/wgsvJBgMMnv27G5f4+7oldpoe4vWRlOUvsFrr73GoYce2tvN2K/561//ype//GWeffbZfXreW2+9lZ07d/K9732vy/Vdffe765s1ZqMoitJHWbFiBRdccME+r4Z/xhln8NZbb7Fs2bIeO6aKjaIoSh+lrq6O119/fZ+f141h9RQas1EURVGKjoqNoiiKUnRUbBRFUZSio2KjKIqiFB0VG0VReo4RQKAHXyOK08xnnnmGU089FYAlS5bs82wvgJtuuomJEycyadKk960AcNVVV/X7WYw1G01RlJ6jp2cE2IPjeZ6H53kEg3v2DD137lzmzp27hw3bO9asWcNvfvMbVq9ezebNmznxxBN5/fXXCYVCnbZdsWIFDQ0N+7R9xUAtG0VR+i3r1q1j0qRJ/Ou//iuTJ09mw4YNfP7zn6euro7a2lq+9a1vdWy7dOlSDjnkEKZPn87vfve7juW/+MUvuPLKKwHyphMAOw3Bu+++y3HHHce0adOYPHkyzz///F61+6GHHuK8884jFosxYcIEJk6cyEsvvdRpO5lS4Oabb96r8/UF1LJRFKVf88Ybb/DLX/6SY445BoAbb7yRmpoastksJ5xwAq+++ioHH3wwn/vc51i2bBkTJ07Mq3DcHe655x5OPvlkrrvuOrLZbEcNMperr76a5cuXd1p+3nnn8bWvfS1v2aZNmzraCzBmzBg2bdrUad//+Z//Ye7cuXnldPorKjaKovRrDjjggLyO+7e//S0LFiwgk8nw7rvvsmbNGnK5HBMmTOBDH/oQAPPmzWPBggXdPseRRx7JZz7zGdLpNKeffjrTpk3rtM0Pf/jDvb4Wl82bN7N48WKeeeaZHj1ub6FuNEVR+jVuwcq1a9dy66238vTTT/Pqq6/yyU9+co+mDwiHw+RyOQByuRypVAqA4447jueee47Ro0dzySWXcNddd3Xa9+qrr2batGmdXl0lH4wePZoNGzZ0fN64cSOjR4/O2+Zvf/sbb775JhMnTmT8+PG0tbUxceLEbl9LX0MtG0VR9huampooKyujsrKSrVu38vjjj/Oxj32MQw45hHXr1vHWW29x0EEHce+993a5//jx4/nrX//Kpz71KZYsWdJRyv+dd95hzJgxfO5znyOZTPLyyy/zr//6r3n77ollM3fuXC644AK+/OUvs3nzZt544w2OOuqovG0++clPsmXLlo7P5eXlHdMD9EdUbBRF6TmG07MZaXs4Y8HUqVM5/PDDOeSQQxg7diwf/ehHATM9wIIFC/jkJz9JaWkpxx57bJdzy3zuc5/jtNNOY+rUqZxyyikdVtMzzzzDLbfcQiQSoby8vEvLZk+ora3lU5/6FIcddhjhcJjbb7+9IxPtE5/4BD//+c8ZNWrUXp2jr6FTDCiK8oHRKQYGLns6xYDGbBRFUZSio2KjKIqiFB0VG0VR9op+6IlX9pIP8p2r2CiK8oGJx+Ps2LFDBWcA4XkeO3bsIB6P79F+mo2mKMoHZsyYMWzcuJHt27f3dlOUfUg8HmfMmDF7tI+KjaIoH5hIJMKECRN6uxlKP0DdaIqiKErRUbFRFEVRio6KjaIoilJ0VGwURVGUoqNioyiKohQdFRtFURSl6KjYKIqiKEVHxUZRFEUpOio2iqIoStFRsVEURVGKjoqNoiiKUnRUbBRFUZSi06Nic//993PWWWdxwAEHUFJSwqRJk/j617/eaa7vhoYGLr30UoYMGUJZWRknnngiq1at6smmKIqiKH2IHhWbW2+9lVAoxH/8x3+wdOlSPv/5z3PHHXdw0kknkcvlADMXwpw5c1i6dCk//vGPeeCBB0in0xx//PFs3LixJ5ujKIqi9BF6dIqBhx9+mKFDh3Z8njlzJjU1NVx88cU888wzzJo1iyVLlvDCCy+wbNkyjj/+eABmzJjBhAkTuPnmm7ntttt6skmKoihKH6BHLRtXaIQjjzwSgE2bNgGwZMkSRo0a1SE0AJWVlcyZM4eHHnqoJ5ujKIqi9BGKniDw7LPPAnDooYcCsHr1aiZPntxpu9raWtavX09LS0uxm6QoiqLsY4oqNps2beKGG27gxBNPpK6uDoD6+nqqq6s7bVtTUwOY5IH9mhyQAhJA0n+v07crirKfU7RpoVtaWjjttNMIh8Pceeede328BQsWsGDBAoD+N995Ctjpv9qBjL88gJH7CFACVAHl6GTdiqLsdxSlW2tvb2fOnDm8/fbbPPvss4wZM6ZjXXV1dZfWS319fcf6rpg/fz7z588H6LCS+jwJYBNQjxGcEMayCTjbBDDfQjOwHSgFBgNDUNFRFGW/oce7s3Q6zdlnn82KFSv4v//7P6ZMmZK3vra2lieffLLTfmvWrGHcuHGUl5f3dJP2PTmMcLyNsWJEXJLki41YNln/bwBj+awH3gPGARXki5OiKEo/pEdjNrlcjgsvvJBly5bx4IMPcswxx3TaZu7cuWzatKkjcQCgqamJhx9+mLlz5/Zkc3qHDPBPYDVGXNIYC6cdY91k/FfWX5fyt5P1KYwgtQNvAFvRmI6iKP2eHrVsvvCFL7B48WKuu+46ysrK+NOf/tSxbsyYMYwZM4a5c+cyY8YM5s2bxy233EJ1dTU33XQTnufxla98pSebs+/JYERmK8YayfrLcv6rK8S6ifnbpjExnAjG7bbBP84o1MJRFKXf0qOWzeOPPw7AjTfeyIwZM/JeP//5z80Jg0EeeeQRTjrpJK644grOOOMMQqEQy5cvZ+zYsT3ZnH2Lh7Fo3sGIQ8J/iaWSwwiJvLJYofGANv8l2yWc7TZj3GqKoij9lIDnef3OSVNXV8eKFSt6uxn5bAb+jLEVxYoRywaMsBRaJjlnXczfN4uxaGL+uri/PAoc6n9WFEXpg+yub9Z8p56gHXgZIxSe89fDCIm40kTWAxhBkVcAY8mAFZM2TGZaAiM8OUziwIdQd5qiKP0OnWKgJ3gT2IEN+mcw7rN28sfVBLF3PI0RlGZ/G0mBbscITNBf7/nbev452ot+NYqiKD2Ois3ekgZWYSwUEQapCiBWSwaTcSZVAyQdWtxjOaAVIyTiShMBSmATBzLAln1zWYqiKD2Jis3esg4TvPcwQpLFpi63YqwTNyNNhKcVaMG6z6L+vq1Yd1sCK2Bpf1m9815RFKWfoDGbvUXmfMtghCGFjclIppnEawLOOkEsoQg2KaANU74mgBUWV8Rke0VRlH6Cis3e0IJJdY5jBABsRQCpFgA2oF+YICBjacTVlsGITAQjKmX+sjA2DhTCiFFZka5JURSlCKgbbW/YCDT578Xd1YYRmgB2cGbYfzmDNf+t5d/4XdPvyLZkjYiEsUkBaWyyQADrnpNMN00SUBSln6Fi80HJAm9hrZYExpIRayWHTQqQDLOU2e/V9Kv8V/K/uLj9YloCLbZcDRiRkaQAsMkGHtb6kXWKoij9BHWjfVB2YoL1YMQhRL77zC22CdYqScHtqdsBuDhyMZWhSlvaphUztkYEpxzrRkujjwaKovRbVGw+KFuwyQBgXV6S0rwLmrwm7s7dDcAX+ILZL4aN3chgziBGcCLY0jZi0cRQFEXpV6jYfBDSmHlqpAJAE0Yg3OKbkj0mBM22d3t300orM4MzOTR6qNmmDZuN5iYAZDAp0WLVSPq0JgcoitLPULH5IDRiXF5ixcg4GEl/FgvHdXv5CQQLvYUAzA/MN8IhVQVcqyWIccfFsGnO4oaTWT0VRVH6ESo2e4qHKboJRhSimEGdZVhXWFcE4GXvZf6W/Rs11HBm9kxjwUgBTklvBpNKLVMNSCUCP97DENSNNkDxPK/j1ZsEAoGOl6J0FxWbPSWJqVEGdtxMHBtXybJLF9qi4CIA5gXmEQ/FbdWBDFZ0pDRNCCMuUaxV0wIcXKwLU/o6LS0trFy5knXr1vWq4AwbNozp06czbNiwXmuD0v9QsdlTmjBBfZkKoAwjAu9h3FsyvbNbJcCDZCbJPZF7IACfznzautmkFloCI1ohjACVkj+2JuWvH170K1T6KA0NDTzwwAMsWbKEXG5Xs/EVnyOPPJKhQ4eq2Ch7hIrNniAuNA8bsJeMMQnod1VGJgCP8AgNgQamelOZlp1mt5VxOSI4UqZGYjXSp+wAZu/i+EqP43ke2WyWdDrd626rSCRCOBwmnU6zffv2Xrdsxo4dSzKZ7LXzK/0TFZs9IYWZEkBK0kh5Galh1oAN+gt+AsBd4bsAuNi7OL9CdBabhSYWjEwRLVZPEzAIqC3q1SkOnuexatUqXnjhBVpaWnqtHfF4nBkzZjB9+vRea4Oi9AQqNntCPcbF5cZqWjGiEcDEV3Zi4y8AWXgv8B6PRR4j6AU5P3O+dbV15UKTUjUBbFp0EjgO41pT9gm5XI5XXnmF22+/nS1bem9eh+rqakKhEFOnTu21NihKT6BisyfIVAJS0VliN5KOHMLc0SbsGBlgcXgxmUCGUzKnMCI5wgqTjNMRd1zcP64kBjRjth2NmRJa2Wd4nkcymaSpqYnGxsZea0cwGCSRSPS6K09R9hYtgNJdEpjOX7LE2jCCEMdOghb2P5djRKjN/L0ndA8AF2YvtOnRSWzdM3f2Tqkc0OJvNxyYgHGjKYqi9FNUbLrLTuzAzRzGpRVxPrf7f7MY0fErCmxo3cAfQn8g7sU5LX2aOZZkq6WxbjmxlMQqKgdG+H8nkp/dpiiK0s9QN1p3qceWi5Fgfgs2W6wMO1VAEmPpxOC3ud8CcGriVCp2VtipBmQ8XJL8wZ1lQLX/eZD/WTNMFUXp56jYdAdxm4lFIkH7GLbCs8RoUpj4jV+k87eZ34IH50bPNaP/ZW4aSXkW27IMm9lW5qwfiZanURSl36Ni0x2asVWdWzB3LYQRlyb/vcxXAx2Tp70TeoeX0i9RSimfiH3CiJMM1szSYf10VB6QApsSCyoBxrDrEjiKoij9BBWb7tCIsUBaMIIg49masHPYSB0zGXuTgfvb7gfg1MCplEZKjWjIRGhgrKIw1kICqMBsF/PfVxXvshRFUfYVKjbvRxojMjLiP4exdGQsjEx2lqRDZEiYZb8L/Q4ycHbkbGv1RP2XKzwydbRYO0F/2XC06KaiKPsFKjbvRzsmRhPCDOCU4D+YTLFWbAmZdoxQlMK7yXd5MfMiMWJ8PP5xc6dzGPECKyo5jBCV+e89bBr1kCJfm6Ioyj5Cxeb9aMQKjYz6j/nLJdW5GSs4CSADD2UfAmB2dDbl0XI7z43MvJnCuMmk0nPG/yxiUw5UFvviFEVR9g0qNrsjh3GhyZQBpZj6Z0nsqH9JWW7HClEGluxYAsDpnG4z1yTbzMOITcI/Zgm2MoFUg65Bvx1FUfYbtDvbHUk6LBVKMAkBMrCzFJuFFnXep6El0MLT6acJEODUylOtuEhatAz6FIER60bG34SBofvqIhVFUYqPis3uaMVYNTK6X1xfrdhxNVIsM0JH4P/JlidJkeIjkY8wLDzM7B/Hut1kKmj8Y5Zjx+bIQM7yfXKFiqIo+wQVm92xE2NptGHuVAm2HI2skzEwUjQzBI8mHwXg1NiptnqzpDbL7JzuIM527MDNICZWo/PWKIqyH6FisyvSGBGQeItMI9CIdYMlMG4wqfqcgFwqx2PJxwD4ZOyTtrxNKdaaEcFJ+/tKMU/8bQYX99IURVH2NSo2u0IqAnjY7DMZVyNTAIQxVo+IRgmsZCVbclsYHRzNlNAUKyztGFGRuIz8lZpqEgcqwbjqFEVR9iNUbHZFK9YqkakFRCRyGAGRqQVS/vYheLz1cQA+Uf4JAoMCduyMVBcIYcvSJPz9apx15dhxPIqiKPsJKjZd4WEEBowgiAXSjBEFmV2zMIMsBU82PwnAKcFT7NTOku4sc+E0Y6wcER3P3y6IqfisKIqyn6Hz2XSFpCnLOBgwrjIRiiAma8xNX45Bc1kzL2ZeJEiQWSWzjNXSiHGhZcgvbxMnvyZaBDutgKIoyn6GWjZdIbNoBjECIVaMPyFah0UjY2bazW7Lk8vJkGFGfAZV5VVmoaQ7i5hIiRqZibMS60KL+y9FUZT9DBWbrpBxNJLiLBaIX/eMVmwmGhiByMDTO54G4KTYSWZ/sRtlwKdYSmFMbEb2l3E3g+j30wm0tLSwYcMGmpqaerspnQiHw4waNYrhw4cTDKpRryj7EhWbQjyMmMhATin3L4M3cxghSWOLcPoxmWWJZQCcEDvBCo2IRylWsMqwc+OUYeM1VUW9sn3Chg0b+PnPf87KlSt7uymdqKio4Pzzz+f0008nFtNy2oqyL1GxKSSNLVMTxcZqUtiqzlFnXQLwYCtb+Xv675QESji6/Ghr2cTIzy6TuE8ZxoUmtdBK2C9caE1NTaxcuZJly5b1dlM6UVNTw0c/+lFyudz7b6woSo+ivoRCRFgk1TmHrfxc7f/N+NtG6Cg182zbswB8NPZRYl7MZqG1YWqqySDOEDY+E8GIlcRqVPoVRdlPUbEpROI1MpATjBUiUwSUY+6aX3STrFn+XOY5AD5W8TE7OZpYQSFs1egK/2+Tv6zMP181/T5eoyiKsiv0WboQmSjNnVkzjBGeNFZgJKMsaLZ/rtmIzXGR46zIuOKR9Y8dxxbm9BMLiGNTrBVFUfZDimrZnHLKKQQCAa6//vq85Q0NDVx66aUMGTKEsrIyTjzxRFatWlXMpnSPDNaNBkYEJFaTw1g9YISkFDPyvwzqc/WsSq8iFohxZPRIs12Lv68kFEgKdAZbhLMFm52m8WpFUfZjiiY29957L6+88kqn5Z7nMWfOHJYuXcqPf/xjHnjgAdLpNMcffzwbN24sVnO6hyQHgE1HbsKOsRmEFQ3ZJgYvBl8E4Kj4UcTDcTuWppmOMjaUYlxlEYwIZbGTpsWxadCKoij7IUURm4aGBq6++mr+67/+q9O6JUuW8MILL/CrX/2K888/n1NOOYUlS5aQy+W4+eabi9Gc7iNiU4YRiST5RTEj/ueAv84vXfNimxGbj5R/xIpSJaZ6cym2eoDgViYIYFKeNV6jKMp+TFHE5qtf/SqTJ0/m/PPP77RuyZIljBo1iuOPP75jWWVlJXPmzOGhhx4qRnO6j8RgJN1ZCm2GsYMypfRMBmO5NMIfm/4IwIzwDLPcc44pWW2N2MyzCuf4YvUoiqLsx/S42PzhD3/grrvu4vbbb+9y/erVq5k8eXKn5bW1taxfv56WlpaeblL38LCTpLVjrBMpuimFN1v97aIY66cKMhUZXkq9BMCMwAxTcaDR3zaFTXeu8P/KmJsUtnyNxmsURdnP6dFstFQqxWWXXcY111zDpEmTutymvr6e8ePHd1peU1MDGBdceXnnOZEXLFjAggULANi+fXvPNVrIYoRB6pSFMK6yJEYgKjGCk8RWDQjAmuwa2rw2JkQnMGzwMBvTcSdNk3hMGiNGVRiByfrH1QT0PkcgEKCsrIyRI0cSCPSej7O6upqKiopebYOi9AQ9KjY333wz7e3tXHfddT15WADmz5/P/PnzAairq+vx45PFuNHiWHdZ2F8uBTndwpv+tAAr2lcAcFTJUR3TQneISxbjaivBCopUH5DjlqPxmj5IMBjkiCOO4Mtf/jJtbW291o5YLMbUqVMJh3WUgtK/6bH/4PXr13PjjTfy85//nGQySTKZ7FiXTCZpbGykoqKC6upqGhoaOu1fX18PmCe5XqEdG19J+MtkTEwbNsNMqgf4tdH+0vAXAOoiddYqwt9WqqI0YzLRyrFZatXYgZ5KnyMQCDBp0iQ+9KEP9XZTCAaDatko/Z4eE5u3336bRCLBvHnzOq279dZbufXWW/nb3/5GbW0tTz75ZKdt1qxZw7hx47p0oe0T2jAWRxNGANqwVQM8oAHjPgtha5mVwIptxrKpi9TZAp4x7JQCImCSVIC/LIxNe1b6HIFAgEAg0KeqQ8diMcaNG8eHP/xhPM97/x2KxMSJEykt1ackZc/oMbGZNm0ay5cv77T8+OOPZ968eXz2s59l4sSJzJ07lzvvvJNnn32WmTNnAqZ448MPP8wFF1zQU83ZMzxMLMbDWhtpTKBfZuGsxlZ9jpjd0l6aV5OvAjC9ZroREYnXQL5LDYyQDcNWKKhEx9co3aampoZzzz2XY489tlfFpqamhgMOOKDXzq/0T3pMbKqqqvjYxz7W5boDDjigY93cuXOZMWMG8+bN45ZbbqG6upqbbroJz/P4yle+0lPN2TNy2HEzUhxTqghI+X8wGWWSNAD8M/NPUl6Kg6IHMSjkT7EpAiPxmqh/TJlsLYcRsAjWTaco3aC0tJSpU6cyderU3m6KuvWUPWafRx2DwSCPPPII11xzDVdccQWJRIIZM2awfPlyxo4du6+bY8hiBESsDAnqR/z3YCtAS/pyGl7ZaSokTI1ONeLU1e9Pqg+I16EZGO6fs5c8hkr/RTt5pb9SdLHpytyvqalh0aJFLFq0qNin7x4ypUASIwJyVyQ2U49xq8ly//f+StaIzYejH7ZWkVgyUu4G/7hB53hB/zwar1EUZYCgThwwbjPJOothBmwmMVZIG8YqkTpmYfuSeM3UiqlmmyBGuPwJ1QCbZCDWkpTCkQKciqIoAwDt7sBOHRDFJgnIWBqxPsLYeI4fd1mTXANAbbzWbOPGa5qwlk4cIzJps19HCRy9+4qiDBC0u/OwVZhLgR3Ykf3tGIHws8863GNZaE40syG9gWggyoTABLOdi1QZkBToANaiCWFL1SiKogwAVGxkoGYQO5+NCEEppqqA1ERzqjf/o/0fAEyKTiIcCFvLx81ewz9em7+uFGs5laCVAxRFGTDos3UOY5V4GEumCjvZWYL8igEhOtKYX8u+BsCh8UPN8oy/fzt2vhuJ17T7+5X7x4yixTcVRRlQqGUjUwJIqRkp+1+PFYUYxhJJ0OEuezPxJgAHxw7OzzzLYIpthrFTP1f4+yWwIiPVnxVFUQYAKjYyxiaKcXe1YQQjjrVQwLrVPCANb6aM2EwMTcyP1wT8fQP+PlFsXbU0xroJYuNAiqIoAwAVG6lZVoHJIGvHWDFRbCUBqY8m7rUcvJV6C4CDyg6y0zpLHTT32C1Y6yjqLytBy9QoijKgULGRGEortg6ajJGRGTqbMdaIBP8DjmUTnGirRIvrzBUSSakuxc7UqZloiqIMMFRskpjOfyd2oGUTdpbOMDAYWxMtC800U5+tJx6IMzw23FozMr5GUptjGLdZBiM0EexMn4qiKAOIgf187WFjNmFnWRrjPotiXWNxzFTRJbAhswGAsZGxBDIBOyg0V7CPxGtCGHdaKVqmRlGUAcnAtmxkKoAMZoR/PUYMpLqzWCMSs/ErB2zwfLGJjTX7yUyegYJjS7wmjBkkmsSKkKIoygBiYIuNBP2DWIsmirVkghi3mBTSxKzb0GLEZlxwnI31SGmakN0ODyNYw7Dxn8FocoCiKAOOgS027kRn7Rjro8X/nMJOOxDDpjeHYJO3CYDRsdE2DiPjaGQKgjAmXhPyjy1jdTIM9LuuKMoAZGB3e64bTSo6RzH10cTdJa4xEZQ0bE1uBWB4YHj+GBuJ1XjY0jUBbMabpEfvx5GyvjzfSl9um6Ls7wxssRE3Whhj5aQx1kwJHbNxdiDiE4WtAV9syoebmI0M4HSFSebGiWC2CWHEza02sB9SU1PDzJkzGTJkSG83pRPl5eVMmjSJUEj9mIqyrxnYYiPTQZdi3GY7/PcyAVobdhpnSYXOwLbENgCGZ4bbTDYpc4O/vUzGJtM/p7BCsx/3dWPGjOEzn/kMbW1tvd2UToRCIaqrqwmHB/a/vaL0BgP7VyfFNSV247rNZIBnE7aKgG/ZbMsasRkaHWoLdoobTuqrhYFqjEhJ7Ee22Y+Jx+OMGTOmt5vRp8nlcmSzWXK53Ptv3AuEQiFCoZC6HZUeZT/v+t4HGfPSgLE4KjAJAlmMgAT8ZWATBtLQkG0AoIYaG/cJYMfaSCUBqTrQBIz012lNtAFPY2MjL774Im+++WZvN6UT4XCYadOmUVdXRzyuA8KUnmNgi40IRRY79sXDTuHsxlb8igBezmNnbicAVWVV1iUmyQHicmvGuOQCmCy3FNbqUQY0O3bs4IEHHuDRRx/F87z332EfUlJSwuc+9zkmT56sYqP0KAO765NAfgUmPiPusmr/swT4ZUBnDhKZBCkvRTQQJR6I2+QAV5jC/nGbgKEYK6cFM1dODyYHeJ5He3s7iUSiz3VaANFolJKSEo2RFJDNZmlubmb79u293ZROlJSU0Nra2if/n5T+zcDuBbL+qxxTG00y0cAKUDM2tgPszPpWTbDKFuAEO52AWDcxjMi4Y3U8ejQ5IJlM8vzzz/P888+TTBamz/U+hx12GB//+McZMWJEbzdFUZReZmCLTQ7T+bdhZ+GU7DOZKE3Gy6TMLq3ZVgDKgmU26C9TS0s9tQqMCw3/uM3AGEy1gR6846lUipdeeomf/exntLS0vP8O+5hPfvKTHHXUUSo2iqIMcLFJYyyZrdiU50aMNVJYndmfTC3hmzMlwRLrQpMpA8RqkTE24vIuwwiam+3WU5eQTpNIJEgkEu+/8T4mlUr12YwrRVH2Lfvx8MJuEMBaN/jvnYKbnbYNQyJoOvVYKGbERCZak2oB4kJLY5MESjBiU1isU1EUZYAwcC0bGc3fhnF77cS4ztxYi1Rp9jAusiwkWo3YxL24cYtJHCaMrRAts3G6A0NLULFRFGXAMnDFRpCKzVLjTGy9KNY6ydAhKKmgCd5Eg1E7q2cWKzwy74240FKYQpxV2ArRA5hsNsu7777Lli1byGazvdaOeDzO6NGjGTx4sA5eVJR9wMAVG9eF1oKxPFIYgQlgLBIPM0ZGaqhl6BibE/ACdlvJNpM06XZszEcqD0jl5wFOIpHgqaee4v7776e9vb3X2jFy5EguueQSZs2apWKjKPsAFZs4JimgHCMWO7Di48xhI6Vq3KkGGETXlopMK9AODMe60wb3/GX0N7LZLG+//TbPPvtsr2bQHXjggXz84x/vtfMrykBj4IqNh42vSMqzzEdT4b8PYwVHxuQknc8t2JI0MnWAlK0RS6cdK2qZIl+ToihKH2Vgi00IIyqVwHsYN5q4uiKYGEs71l0GHW40L+BZ60hSnaWY5yDs4NA0xqoZ5R9PURRlADJwxQbyKzwXVueQzzJw049lRz0z+CaVS3UsMyuw2Whi/UjVAEl9jnZxHkVRlAHAwBUbEZg4poaZjJdpxbrLZC4aIQclvsnSTrsZQ+MW4HRJYARmmH+MVlRsFEUZsAzcQZ0iNlI0U6aElkw0N17j7FMaMnVo2nJtxm2Wxk6sJkIitdTKMaIj00L7xTwVRVEGGgPXsoH8AZhpbKZZDTZWI260hNm2JO1bNtl2W9bGPVYYIzJlzrJmYDQ2WUBRFGWAMXAtGzBusgQmoJ/FxlWCGBdZ3F/WQEc1gfJIOQDNuWabfQY2NhPDCIxUDshhhKcVI1yakaYoygBkYFs2blqzDM7M+suTGCEqwQiPn/pclakiQICduZ1kyRKKhcx+ErsRMkA9xkoqxYhNCSo2iqIMSAa2ZSMj/2W8TCXGEmnCCE0EO37GTxYIlYeoClXh4dEQbrAFON3Av+e/yjDi0o4dENp7FVoURVF6jYEtNlIXLYN1iUWcda6AyHiaVqgJ1gCwo2mHEaoWTFxmJ3YStjJsMc4mrGhl0Iw0RVEGHANbbMIYa6MUKyYpjIUjAf4kRkia/Pc5GBIZAsB7gfds9QCw2W1gEwwyWAtHstcURVEGGCo2kkEWw1glYWedO3lakI65bkaFRgGwKbHJxntKsSIV95c1YURHpheQKgOakaYoygBjYCcIyDw0OYwQlGMsmwg2QSCCLWHjx2LGloyFZtgQ2mDqqEmdNTdBQErXxDGWUQwjSAnyJ2xTFEUZAKjYBDFCk8JYJVFsnbTSgu39WmjjwuMAWN+83rrbRHAk9hPDiFfAP1YCI0ziWougKIoyYCiKG+2xxx7juOOOo7y8nEGDBlFXV8eyZcs61jc0NHDppZcyZMgQysrKOPHEE1m1alUxmrJ7JN1ZrBv8vzHsQE9JVU5j0pdbYGxgLAAbshuMaISdY0jRzhxmrI18LsdYOGGM+CiKogwgelxsfvazn3HaaadxxBFH8Pvf/57Fixdzzjnn0NbWBoDnecyZM4elS5fy4x//mAceeIB0Os3xxx/Pxo0be7o5u0emB5AqAlLPLIqxWMoxYtSIieekgAAcGDsQgDeTb9rKAzJ4swpjEUl5mgazT4cYSTUCRVGUAUSPutHWrVvHl770JW655Ra+9KUvdSw/+eSTO94vWbKEF154gWXLlnH88ccDMGPGDCZMmMDNN9/Mbbfd1pNN2j3i7mrECEULxqUmiQEyQ2cZRpj82M6k4CQAXk+9TrY0SygU6izbfjIBg/z3OzHilUHFRlGUAUePWjaLFi0iGAxy+eWX73KbJUuWMGrUqA6hAaisrGTOnDk89NBDPdmc90csDjDWSRRjlcj00C0Yyybi/I1DRVkFYyJjSHpJ1jWvM+6xRv/V7O/XZrcnghGxNOaOS5KAoijKAKFHxeYPf/gDhxxyCL/5zW846KCDCIfDTJw4kdtvv71jm9WrVzN58uRO+9bW1rJ+/fp9P1VwBFtORlKY4xhLRIL+QhYjFE1wSPQQAF5LvGaOIfPZZDHWSwgjWq3+PiI67VjhURRFGSD0qNhs3ryZN954g2uvvZavfe1rPPnkk5x00klceeWV/OhHPwKgvr6e6urqTvvW1JhR+Q0NDV0ee8GCBdTV1VFXV8f27dt7rtHiMpNxNB5GJKowwpPBCEM7xmrxpyM4LH4YAK8mX7XbZLHjbeL+sbOY8TZg06NTaJKAoigDih6N2eRyOZqbm/nFL37BmWeeCcCsWbNYt24dN910E1ddddUHPvb8+fOZP38+AHV1dT3SXsBYGx4mdiOuM4/8LLMmrAvMj+McET0CgBXtK4yoSCUB1xKSuE0Ndnrooc77ip67DEVRlL5Mj1o2gwcPBuCkk07KWz579my2bt3Ku+++S3V1dZfWS319PUCXVk9RCWHEIoO1ZMTCkfTlICbQ77yOHHokAH9p/4vZrh0jSo0YF1wzxoUWx6ZXi2stgBE1RVGUAUKPWja1tbX86U9/2uX6YDBIbW0tTz75ZKd1a9asYdy4cZSXl/dkk94fCfyLe6sMIzRtGAGB/AGY/oRok3KTqAhWsDG9kS2JLYyIjbATrUkqdBwTrxGBqfLPl3SWuyVxlAFBKBSisrKSYcOG9XZTOlFSUkJ5eTmBQOE854qyd/So2Jxxxhn87//+L0888QRnn312x/KlS5cyZswYRowYwdy5c7nzzjt59tlnmTlzJgBNTU08/PDDXHDBBT3ZnO4hlZ7LgG0YgZDqzK3Oexkn024+B4NB6krqWN66nD8l/8TpsdNt0L8EO8U02GmjExgxkknZkqjYDECGDBnCWWedxbRp03q7KZ0Ih8NMnTqVeDze201R9jN6VGw+8YlPcPzxx3PZZZfx3nvvceCBB7J48WKefPJJ7rzzTgDmzp3LjBkzmDdvHrfccgvV1dXcdNNNeJ7HV77ylZ5sTvcpxbjAYhhRcJMEpCpAK0YgoEN4jis5juWty1nWtIzTy083x3HjNp7zGuQva8YKTBMatxmAVFVVcdJJJ3HiiSf2dlO6JBgMmrFjitKD9KjYBAIBHnzwQb7+9a/zrW99i4aGBg455BDuvvvuDqslGAzyyCOPcM0113DFFVeQSCSYMWMGy5cvZ+zYsT3ZnO4Tx4hMHGOFNGBrnIWwhTMr/e39+Whm1cziO+99h2Xty8ydTPr7i9jIWBqZlC3on0MqPzf759Xf9YAiEAgQiWhxPGVg0eOFOAcNGsTtt9+eN7amkJqaGhYtWsSiRYt6+vQfDHeKAZkOIOe8WrFxHSEHx5QcQ0mghNWJ1Wxt38rw6HBjtUjlgbB/vBwmISCDyUwTAWvDuNbKin+JiqIovcnAns9GEIsjiLFOSjBurxxGgMTKETJAC0RTUY4tOxaAp9qfMttI8c44pjyNpE8H/OOK5RRxjq8oirKfo2IDtnJADJMAEMSmK0vqshTclHI0fqmbT5R/AoAHGx80QiJTC7jz5EjigBTolBlAM5i4jVSWVhRF2U9RsRHEspGYSgabCl2GDeTLgE/f0jm96nQAHm99nPZIe4fV0/FqwlgvWf+ziFmJf/w2jJtOURRlP0bFRohiM8kqMKLgFstMYas4y/QDZXBAxQEcUXIErblWnqp/ymwbwY7NCWHiNDJVdKt/rCas9fMeHUkHe0ogEOiTYyL6YpsURek9BvZMnS4hjIg0YuuagXWBJcgfEyPp0Qk4o+IM/tr+V+5vvZ85NXOs+0ymhXaz00r886QwghbBuOba6Twz6PsQDoepra3ljDPOIJHoe/MWHHHEEVRWVr7/hoqi7Peo2LiUYwQigbVwUsB2rIBImnIbHRlnn6r+FNdvu54HGh/gf4b+DxWxCiMqUp5GxtpkMWN3JEZThh3o+R4wlvxEhPchHo9zwgknMH36dHK5vjdnQVlZGUOGDOntZiiK0gdQsXGJYwL8GezgS0kekCQBCepn6Zjl80PBD3Fs6bE83/Y8ixOL+UzsM7bUjZDGiFkbVnii2NlCtwPD/fN3k2AwyODBgztq0imKovRVNGbjEsF09jLuRqYWCPkvSSIowcRhpDBnJXxm2GcAWLR9kbGCJG4jd7gK654LYqwaETUpZ7OtyNenKIrSS6jYFFKFSUuWVOiksy7tf45h56YBaIezY2dTHiznhfYXWJNeYwtyBjHuuDDWogErajIINIUZf1NoESmKouwHqButEBEZmda5AiMQKfLrmkFeYc7yWDnzqubx0/qf8sNtP2ThyIXmODINdBY75qbcPxbkZ62lgHeB8ey3jwGBQIDS0lKqq6uJRnuvCmllZWWvnl9RBhoqNoXINNFJjODIwM4gNv05jZ2GQGI3abi66mp+Vv8z7tp5F98b+T1GJEeYY0oFggDG7SZxmaS/rhXjShuCsW6qMG66/ZBoNMq//Mu/UFJSQirVe9OVVlVVUVtbqynairKPULEpJIApnNmKHeUfxghNKXa2TnditIBZfvCggzltx2k8uPNB/mfb//Dvo/7drBOXWglWaDx/X/kspXIAtmAsqv2wVmM0GuXoo4/miCOO6NV2BAIBwmH991eUfYX+2rpCss/cUf5iwYB1h7lTfviWzjVV1/Dgzgf5SeNPuGbENVR5VWZdKR3Za2Sx42pk8Kic08NUGtgMjGOPUqH7A1LxWKseK8rAYj+NDOwlYYx1k8aIQDnWfSZC4cq041L7yKCPcFzZcTRkG7hlyy1GQEqxddVaMWIi00RnMRZN0lkfxAwu7Tx7tqIoSr9ExWZXSGxFXFtVGNHxMAF/ER+phZY06wKZAD8Y+gMAflj/Q95Nv2uESNKhA5gkgzKM2AT9zyUYARJ3WgLYhGanKYqyX6BisyuiGMEJYzp8v8ozYazwuDGcMv9zBRwz/BhOrzyddq+d7239nhGZEHZitXJsLEeSBNIYgQlhRSkFrMeWzFEURemnqNjsiiDGlSYToGX8VxorHuIGK8dYQTKIMwH/Mfg/CBJkQcMCXm171ewXxg7mbMG4ytowoiLTTrdjK0VLIsIm8ouCKoqi9DNUbHZHGXbE/yBsVpkMzJTMXfcuJs3yQ8sP5YrBV5Aly/yN88nGs0acmrEla0TQRKgi2CoDYWx8aAcmQ00FR1GUfoqKze4IYsa+eJiOXqYWkAGYrdiqADlskB8gDTcOvZFRkVH8OfFnfrblZ8ZNJq64LDZ1Gv9zBJvp5tGRUk0EIzZ7MRWBoihKb6Ji836UANVYF5q4wiRmIynNEmORZRUwqGoQPx73YwC+vvXrbPQ2mmO6Y27EemnCiFGr/z6FnXytzd9nK8bKUcFRFKWfoWLzfkgatJSeEatDLBHJJJMBmqXY2E0GzgifwZyKOTTlmvjX9f9KNp21AiVp0G3+MeJYd5rrWpPkgjSwFhUcRVH6HSo23aEC0/mXYIQigxEIQQppuuMUc0ArBCIBFoxcwLDQMJa3LecHzT+wAzdz2OyzuHMsMN9M1j+XxGoC/rbvYqYkUMFRFKWfoGLTHYLAMKwbTSwdSRhox1o8MsmaM3XAiPgIfnnQLwG4YdMN/LH+j3ZMTRbjlpNU6HZ/WRNGkFzrR6pCt2FiONvQpAFFUfoFKjbdpQwTuxFRiWJEZxB2+ucgdtxNyFlfCqdUn8K/Dfk3smQ5d/O5bE1vNWJUjh3IuRMjJCH/mFIyJ+q/xL2W88+xAZMWLTN/Koqi9FFUbLpLEFOJuQybMSbLwSYGlGKsFKkI4Mx58x9D/oMZpTPYkN7AGe+cQaIsYda1YJIDIL8Ap9RjkxhRBuOuy2AFrQkjOu68O4qiKH0MFZs9IY4RHJmGIOW/slhRkcGfIWe/tNkuGojy+9G/Z2xkLH9s/yPz356P1+wHXiTF2Z1iRQRmJzYrTV5SR60ZqMdUGmjt4etVFEXpIVRs9pQa7BTRFRgLRiwdmckzhxWdFEYoMNsOrxnOkkOWUBos5Vf1v+I/6v/DrJPK0AFszCaJzXqTSgYR5+VaUc3AO5ixOBrHURSlj6Fis6eEgeHYDLQYNjYjAz6lCoCkL5dj6qlFgQBMi0/j7lF3EyDA9duu5yf1PzHbgBGYJmw8x3XFSTxIxK0NOxZHRO5d/6X11BRF6UOo2HwQyjHZaTKpGpg7KdMGlGIER4L5bkq0XzX69EGn89MRPwXgC+9+gbveu8tkmknRT6kKLfuIuDVjXWhp//iSQr0TKzjrMCKk6dGKovQBVGw+CAFMZppUEZBSNRK4F0sk67/cu5ygQ1Dmj57PLeNuAeDTb3+aB3Y8YEXLjd1IBYEkNlMthi19A1bogv66FGYCti1otpqiKL2Ois0HRdxpGWyWWggbuxFxcOM5Kf/vIDqyzq4ZdQ3fHPFNcuQ4d9O5/Hrnr+24mxzGTdaOTYEWIXNrqkm5myZMskCr/zeJEZv12JptiqIovYBOC703lAFDMW6rHMbSkUy0HMYikVH/QWzgviDj7DuV3yGXznHjjhu5aNNFNEWauGLoFdZVNgj7WCDVojMYKymJTbOOYSdnCzjvJaZT4bc31sP3QVEU5X1Qy2ZvqcZUhgYbQ5GJ1mQWTncGzlDB/q0Q8AL8+7h/5+axNwPwhXVf4KZ3bsLLerZemiDjbFqxQibTIEgmm8Rpmsm3sHZiMtYa0Yw1RVH2KSo2e0sQGIzJSBNhSWDnvQk428pnca0lMMLgl7+5dvS1/HTCTwkQ4BvbvsHlWy8nHUvbY6QxbjURMfn2gs7x2zGiImNwZLCnJAs0Y2I5a7H12RRFUYqMik1PEAFGYDruSox7rQRzdyVO40+q1pE5JlWe3awz4LKay7hvxH3EA3EWNC7glNdPoSHTYKyZRmxV6UJEXKR+m2vxSOVo/HOmMMLzDmbagkThwRRFUXoWFZueogQYgy3GGceOv5G/8irFCEGafLdaDmiCcwafw7OHPcvwyHCWNS3jmL8fw+s7Xrc12IQM5hts8d9L7bRCa0ometuKESRJJJA06bXARqylpSiK0sOo2PQkZRgLJ46d+tlNhS4UAVkn1aMTdFQmOKriKF6a/BIfLv0wrydep+6dOhanFucfQ6wlmaYgh035kArS4lILYNOmy7DFREWckpistfdQS0dRlB5HxaYnCWAsl+EY0ZDstHTBX7egpiQViLXjWC7jYuP4w8Q/cE7ZOTTnmvnUW5/iqnVXkcqljJCksNWmwRbnzGAsmBR2zE4YWy064GzTjhGYRv/9ekxhzy2opaMoSo+hYtPTBDDjbioxnbsM/qzAVhWI+e9LsWNuRAxct1oKKtoruG/Sfdw2/jYigQg/3vJjjl19LG81vmX2FUtHRCGNEZHCWI1sk8BOZdDsL5P6bnH/vSQirMdM0taOio6iKHuFik0xCGDcaYP8zymMdVGKFRqZn8atNuC+T/mfyyEQDfDFEV/k+cOeZ1x0HC+1vsTUDVNZ8N4CPM9XAakSkKDrTLUMdoCoVBkAI0biypP6as3+tinMfDkbMDGdVjR7TVGUD4SKTbEIYOqnDcN0/tKRJ8mP1eD/FZdaGvOtyKRqzrDboyuO5m8T/8anBn2K1lwrl629jDn/nMOW5Bbroos6x5aBnQlsBQEZYCrb5PxztmKsmBZ/u3ZsUdEERng2YKsRaKFPRVH2ABWbYhLCuNSGYERA5sIBG7uRmE0QY/lUYNOhs+QX40xDTaSG+ybdxz0T76EqVMWjjY8y+dXJ3LXjLryolz+vTgwjGmLtiBUjyPTVLf5yGb8jgiTWkp8lB9iBoesx01KLiCqKouwGFZtiE8JYN9WYzj2GEZPBmGkHqrDp0NLJg61EIJlqElMJmdf5Q87n71P/zuxBs9mR3cHFmy7mpH+exBvtb9hzi2tMyuO4YpPAiIxkpcmMoO5rO0ZckpgYj0ypIAVGmzDVpbdi068VRVG6oEfF5oUXXmD27NkMGzaMiooKpk+fzqJFi/K2SSQSXHvttYwcOZKSkhJmzJjBc88915PN6HuIS20IplNvxXTWYK2CQreaVBkQC6WC/DRqYHRoNEsPWsovxv2CweHBPN30NFNencK/r/93koGkEZTCKabBWjtu1WhBkgPanH0iGKFLYq0fEZcMttinDBJtd65PURSFHhSbV199lRNPPJF0Os3ChQv53e9+x5FHHslnP/tZ7rjjjo7tPvvZz7Jw4UK++93v8sgjjzBy5EhOPvlkVq5c2VNN6ZsEMNbMKIxwSJC+HWu5ZMgvcyPZanFsmRv5xvyYSSAe4OKhF/OPqf/g4iEXk/SSfHPzN6ldVcuDTQ/iiYJ5GNGQ4p1u7EZIYufEkUy2bMH6en+bBNDgH0Oy2YIYt9wGjOg0YmNUiqIMaAJeRzrT3vGNb3yDW2+9lfr6esrLyzuWz5gxA4A//vGPvPLKK0ybNo1Fixbx6U9/GoBMJkNtbS2TJk1iyZIl3TpXXV0dK1as6Ilm73s8jGWzCdOht/h/xS0lgyzFwnArRDdhpx6QFOpm8jLKltUv48qNV/Ja+2sAzBo0i/8e999MKZtitpfzSfXoUv/YCf/4NVhrJ4MRujDG0klixw/ht7HMb2MKW4FaBLMUawlVY4uKqvNWUfZLdtc399jPPpVKEYlEKCkpyVteWVlJLmd8RUuWLCESiXDuued2rA+Hw5x33nk88cQTJJNJ9nv8dGbG+Z+lGnQEKwKynTuGRuqrgeng49hsMie2M2vYLF457BVuG3cb1aFqljUtY9rfpzH/nfls3LnRCpPrVpMJ3WLk/0cEsHPl5JxzCiF/3U6MiCUwolSCEZo0Vjy3+C+xeFKoxaMoA4geE5tLLrkEgKuuuorNmzfT2NjIwoULefrpp7n66qsBWL16NRMmTKC0tDRv39raWlKpFG+++WZPNafvUwKMxcRxZNK1ENatlsMW8cxirIMK7ABQ6JxE4M9rE/EifHHUF3nz8Df54tAvEiDAwi0LmfjqRP5t47/xXvo9s38EOy+OWFCFbrU2f7sw+VMYZDEWmghR1D+/xHGkXe9i59N5DyNM2zH12DZjhCeBZrQpyn5Oj4nN5MmTeeaZZ3jooYcYPXo01dXVfOELX+CnP/0p5513HgD19fVUV1d32rempqZj/a5YsGABdXV11NXVsX379p5qdu8SwUxmNhLTmQ/Gpj5XYKoQyF9xSblIEkEWYy3FyOu0a4I13HbAbaw+ejWfqv4USS/Jf737X0z42wS+vfXbNKYb7XgasIICVmjc2UGFFPki4xLAuPakSkEO644rx4pqHCNWWzCC9A4mlbodO722oij7DT0mNm+88QZnnXUWtbW1PPzwwzz11FNcfvnlXH755dx99917ffz58+ezYsUKVqxYwdChQ3ugxX2EEEZkRmA6eEktjmBEx33id+ubFWaquXEWmRXUF6FJsUncN+E+Xp7yMh+v/DgtuRa+s/E7HPDHA/jG+m+wPbfdVo0GOy9OV9lqKWzcRyaFSxfs14iN1ciUBmIRSaXpRmzxURnn04RJLtiGsYKkvpsKj6L0e3pMbL7xjW8QiUR45JFHOPXUUznhhBO47bbb+NSnPsX/+3//j1wuR3V1NQ0NDZ32FYtGLJwBRwAz3mYcJvsshLEKwLrS0thxM2AsnUpsppogWW05bNabn912eNnhPHbQYzw35TlOqD6BpmwTN229iQP+dgBXb7iaTblN5hht2NiO+x+SwYiJW2ZHjp/GTtDmxp6EndgsNnHfhbEWW6tzjncxrrYtwNsYq2cHdppsFR9F6Xf0mNisWrWKqVOnEonkz+x11FFHsWPHDrZt20ZtbS1r166lra0tb5s1a9YQjUaZOHFiTzWnfxLHVIweia0mMBhrvVT7f8ux9c/cjldKz8j2bl00sUAicOzQY3lqylP8cdIfObXqVNpz7fz3tv9mwh8ncNHfL+Ll5pc711bLYUWo8L9GMudcS0gssqy/307sVAhh8isotGNTqiWBQoqSDvKPsd1/bcJOheDGtxRF6dP0mNiMGDGClStXkkql8pb/+c9/Jh6PU1NTw5w5c0in0yxevLhjfSaT4b777mP27NnEYrHCww48wpj041Hku7aC2AoCnrNM6qpJ4U6ZJbTQ2pHss1K77JjyY3h40sP87dC/cc7Qc8h6WX697dcc8Y8jOH7N8SxpXUJOenIpSxPu4titWJeatEvcfG5NNlcYgxiBacZOsSDuuIC/fT3GpSbVC+qdbRoxCQbb/W3q/e3EqlMUpU9R6JH/wFx55ZWcc845zJkzhyuuuIKSkhKWLFnCvffey9VXX000GuXwww/n3HPP5Utf+hLpdJoJEyZwxx13sHbt2h6J6+w3yNP9eOyMmpIVFsS6smTbKLb2mVudAKzrrVCEHGtn2pBp/Hbkb1nbspYfr/sxP9/xc55pfoZn/vEMB647kMtGXsanyz/N0PjQzlNSS2ynMGVaBDCIzbYTayWLsYSSmGw8V6Ta/WuRCgZpjEUnwppw3svkcG4tubB/72Ra7BidBVJRlH1Ojw3qBHj88cf5wQ9+wOrVq0kkEhx00EHMnz+fyy67jFDIpDy1t7dz3XXXcc8999DY2MjUqVP5wQ9+wMc+9rFun6dfD+rcUzxMx7sdO6iyEeuyaseO08F/LwIgtcoyGKFxccfOyIRtfvXnplwT/9vwv9y29TbWJdYBEA1EOaf6HC4fezkfrfkogUDAZqWVkz9dtbjOSrGZbpL0IKVu5NrKnLZLwU8ZsCrFQEVAMqZ9JDDxKjGEU1jXokwq59eQ6yhmWoatPycvRVF6lN31zT0qNvuKASU2QgYTJG/0P7diOk/poMVNlcRWHpB5c5rIL8LpYWIeMqGbIB01wCDIkmXpjqXc8c4dPLbzsY7SN4eVHcYlIy7hooqLGBEYYS0JQdxZg5xlMiZIrC4RQxmfI/PopDBC4qZUSwFQqc2Gfz0V/nupXi0iIpaVCEzW39cd0Brwz1uCtX66ikcpitJtVGz2J9owgiNuKKlHJlZKyF/nVgNoxVoIMoYljY3fCE3+8kHkp0E3w7rUOhY0LuB/t/4v29LbAAgR4uOVH+eSMZcwZ+gcosGo2b7BP4YrGDKXT9g5tvznlWFnDQ1gLRHZphFr3Yhgpp1tZDxPACNUct0JrMDIINkwJvNPBEmqabvjgWRGVXFbFk7NoChKl6jY7G9IzGMHdtqCndgBmFLHTDp1GcsirrdS8muqgenUG/x1rrWTwbq2SiHtpXlsx2PcufFOHm14lIzvq6sOV3P2sLO5oPoCjg0eS6gmlD8ltbj3qpxlMu4mjBECsc6yGNHwsNWlg/4y9x5IGrU73sdvZ8eEcElsirhcj0yFLfXcslgrSGJLYiVl/c9iAcn5xE2nKEoHKjb7K2lMAkEjtvONYot6imUhwXo3HVoSCSSukcN2sq4rSYSqpmB5M2xr38bd7Xdz55Y7WdW6qmPVqMgozh1+LuePOJ+6ijoT32nAdNiukImFBflWUBojEBKPijrLpAxOq79+cEG7ZApusWLEbTYIGwNq9Letws7jk8LGmKTGW8Dfz41/SSKGK1rihpN712NpN4rSv1Cx2d+RqQHEDRbHpguLa22nv23I2acVm2ZcinVHubODtvqf3QQDD2NVldnlf2/5O/e+ey/3bLmHdel1HZuOi43jzCFnclb8LD4y+iMEw44ySNq0TIEtiIuvFStCaX87qUAtsSU3wcDDjueReI7sK1afuNbEWnGTI0QQRXQkZVzmEhJLKeqfVwa0es7xJQVdkhzEQhJrSCxJdcsp+yEqNgMBiYm8h+kUY1ihCGE6QQmiS5WBNuyTu3TEEleRGIa8d5/WM5hOvYb8TjMNXqPHn8N/5t7t97J422LeTb3bsXpEdASnDz2d04eczseqP0YsFTOdvCsMYDtsN2DvxmgkAaJw7FAbVkxcl5skH0gsBuz4pAr/fG5KtVRxwL8fknEncbA0Nj09Tf4spoPIjwdFsYNtxRKSqbdFgMQNKJW+1T2n9FNUbAYSEudoxHSgzVgxEUvGrw7d8dnt0Jv9z0FM5y5pzK71kPDfd5VO7QT3c16OPzf9mQc2PMADOx9gXXJdx6ZloTJml8/m1CGn8okRn2BEbIQ9jgwSdcf4SlVrKRwqwpDDdPDu/D+uyw2//a0Yt5mbNSc120JYC0omgSvHxr4CdE5QaPXXV2CnURDXXQwrYFm/3RXONmnyKzNIiZ8SrNUl46cku87NlpNrV+tI6WOo2AxEcpgOsRVjhcQxnVQD+Z2jdNDy9L0Tm3osT+hSeFOKe0qn73bcYj2U0TlmsR28Go+VbSv53fbf8ch7j7CyZWXeJkdWHMnJg0/m5OqTOTpwNJFBkc6uNYmVFMZ3BmGFTiwPcblJooBklZU5+4pgDKHz1ApiZcg1ithF/f1cd5kcU9LQM/49lH1l3E8YO3OpTIAnApZw2lniHE9ER74LqSohk9q5lpFrCWoWndILqNgMZKQS83ZMpyfVCKTDltk/JcYg2VlujTOpWSbWThBjOckxxCXljoERkv7LHXMDbGjewKNbHuXhtod5uuFpkjk7cd6g0CBOqDmB2TWzOan6JA4sOZBAOmA76ALXXUe7XWGQqgJNzrVIlpu0q91/X+5s42ELilY555EkArlGV0gk5tSCTeeWrDiwSQkBbDUEaac71bdU6w5g40SuCA3CVgWX77LQQpKxVdJeiSdJYoNrHYkYBZzPcq046xSlm6jYKLYSQTP5yQOev0w6cUl1lg5L6ptJUFw6n53YOIPEXZLYOI+cU2IVhWXvnKf41mwrzzY8yxP1T/DEe0/wz8Q/8zYdGxvLrEGzmFU1i+OHHs/Y+Fh7fMkSc0vSSIKBFPoMO8sryR8IK+NspH0ya6mM2XFTw+uxCQTufZUBo26HncIWEZXYmYhlKbbcjqSkVxe0X8ZKRf31kqwg025LirY8AMSxlbfFCivFZuNJnEnGHMm04G5KeAabDCJZetImsaBEmILOe5z37v2iYJli8Qpe8h1JmSawySXyANEP7qOKjWKRRIIG7FgbicvEsOIj5WVEkKRmmdCGLYtT7h9HrAUZL5Ohc1YZ2GKZrpsKOjK+3uEdntz5JE/WP8nyxuXsSO/Iu4SDSg7iuKrjOHbQsfxL+b8wMT6RQMz5JUpGXoLOIjQIO0GbJD9IsD+LHa+UId/ikfiNVKJ27+cOrNXhLpfzu1MyiIsvgc2Sc8cHidtSLB4ZpCpWzk7/XCJ4sly+L3fMkZxbZkKV1HZx3UksK4itJiH/C1IaSdynck1B57PnnENcrJJMUoJ1F0rFBmmfa5GJQHvO30LhChS8l3MXVnso7IzfL65VuN4rWOaKMlgRKBQKuR8ZZ1na+SsuarFIxdoXN3Yj5iEhgb3n8rcE8zAxCBiGKdArDxF9EBUbpTPyQ9iJHc8iGVVSlUBcL5JSLB2A/Ggkm8vtSCW4L+ViwnTtcusq7iM/TIlFYJIMVjWuYlnDMpY3L+fZxmdpyjblXcqI6Aj+pfJf+Jeqf2FG5QymxaYRjUbzq2bL8cuda5P2iHtNOnmJ9ZRixUCsv8Lkgxbs2J5y51wZjCVUQ34MS9yakhbttk0EUjpgsTQkWUEGsUo6thuTEtehiFAOc98zmLFIYnFJFmKAfDERN6iInLyXenYi0FKpQpJHmrEJDxLrk1iY1L6LYcd6yf+YWzNPzinLRBhdq0keCsCKr7yCzjY58oVKhE5e8n2LuMk9ke/djY3J52TB9pLNWfh7kHNIWr7nrJPrSvr3S4YrSIaoJJGIhSy/AfkNyv9KCeZ/6kA6Z3H2AVRslN0jM2buxCYDBMjvlCWzTWI70qm4rpQcJvVagubSyRa63KRTluQE2VeeKt0ftrTPn4I642VY2bKS5xuf5/mG5/lD0x/Ynt6edzmxQIzpFdM5puIYjqk6hqMHHc24+DgCmYDpKF0rzU2BdgfCumnVUkpHqleLxZPCZuoVDjptwrq93Kw9uY81XVxjE/kxHbAdlWsFyr2K+ed3rRmJVUmb5ViDsJmKbuq2uEtb/XUyj5J03k1+G6rJj1O5rlURJrGwYgXb4tw/EVG5T+5feWWdZW6HLpmD7nYyLsztxdwpJtw4mCRqiMBKmFBcyFLTT65JHj7E1Sjbu+d3i762O20Ui1NES4YVyHew3fkOwtj5qQLO+6jzuXDQcBRTFX4UfSpVXsVG6R7yA9yJ/eHJU3gM+3Tr/vgktiA//DSdqyp3NQjTzXJzO/x28geWyo9VrAfBf2r0sh6vZ17n+Z3P8+LOF/nTzj/xWttrnS5tSGQIdeV1HDnoSOoq6qirrGNUbJR9+oxhLQe5F0F/uSu6YvFEMB2xWAHiogtiLUWJtUhSgrjp5LgiQtIBpTBJCW7n0Y4RgsHku07ku3DTsSV+JFaCHEe+E/mO3Hteju0kRTRjmO9Yau5JvEmSFiQRwrVcpOqCm2UnGZFyX93704K1hiLY8UwetqK3/H/JuWWZCKnU3xNLSly6YP9/xTKThArIFziw/5vSyYvIVGIfAsQ1KJaJmyko/9+l2NR29/9WYoBS8WMnNrNR/hcKXZJi/QXJFx8RGhGiYcBB9Jkq5io2yp4hLrZ2zA9JpgSQjldcXfLkWzga37UQwD7NV9M5y006uDLsD1fiDdIhVjrbCq7byV2ehcZMIy81vsQf2/7In3b+ib80/6VT3AdgeHQ408qmcXjF4Uwrnca0QdOYWDaRUCCU745xkwxEbIOYTq4wAy7stzXs7CsWj9t5F2bGtWE7FBEhSc4A6zaTeyf33U0s8DCxuDD5cSVJbpBEAkFcaiUF91CewKWWnn9fOywqsaTk/0SuRyzitLMerOhKB+1bqXlZjLK/3Etptyvy0oHLdiK40n65LxKDkpTyndj6eCJqMvA3iR03JgOFRYjEapX/s2bnvrY590uutclvi7jZ5P9DHqxasG5mcZ3JvXVjcFKpXMQF7Pcmrk8ZzxXAWMkH0ycEZ3d9s1ZxUjojT2wSh6jGutii2Ke7cswPRtxrblqwuGo8Z53rHpLPSUzHEHX2lSdNOYfrb3f/SvDbJQtV5VXMDsxm9vDZAHiexzst77CifQUrGlewonUFK5pXsDW1lSdST/BEwxMdu5cGS5lcPpnJJZOZUjmFybHJTBk0heHh4fnnER99IRIYdtdJ3MAdIySWAeTHrlLYTqgdK3hiKeFcc5D8uJSMD3JdkrIcbOaeew0SlHaR77emYHkj1vUG1pXURL7lFcSIm/x/yDKpx1fl7J+is+Um2XgipJ6znVgzEgNyEyMS2IC93It2TOctU4hLpp6HcWVFMf+fOYxQSwKFZFbKd5TAulRzGOF2Eykk2aMem2gRwJZPSmESSeR8knQjmX9t2MB/m398+R+T8VliWcnvQb77RmAjxq3WRxMHQMVGeT/EHRPHdAhSU60d21HJoEqxRiLYH5L8mGQ/6ajkKTVMvhXkPjG7T9xhZx9JtS7MRhKrocCHHQgEGB8fz/ia8ZxdfTZEjACtS6xjZeNKViZXmr+tK1mfXM9LTS/xUtNLsNUeY2hkKIeWHcqh8UM5tOpQDg0fyqEVhzImNMYUGhWSnc/faYyOIE/RrjC4qbAiTmIByD5Sn006VXGRiWhJyrc8qUumoQT4RaSkA5UCrtJ+iTtIMB/n2EnyJ7aT8kDSqYO1CNxt5bgB57hpbAp+O6aDlWXSmYuIiMvPPV8Q+8AhQX25DnG1SQcewAhBFbajdschyblkHJpYzmlMHLIa+3/p3qcY1moUa0TcZOJua8Y+LEjcz/3+pH6hfB9ZZ3nCP3ahFRjA/p/FMVOjV9L5AaEPoWKjdB8RB3EVtGOeBuVJz43vSGchP4goNkgqnUQF+fPYgP0xFbp8xOKRTkD+c91MJcnSKny6k6dfp7MPBAJMiE9gwpAJnFF2RofLoz5dz99b/s6qplWsSq7i701/Z1XrKrant7O9cTvP8RxssccpD5VzcOnBHBw/mIMHHczB4YM5uOJgDi49mMpwpd1Q3E2FJLpYniNfnOTpXmIy7r2Szs/NhnJjXCJ+bqZUHOvOkfsmHZlbmkhESDIPxWKVzlLGD4Wc44q7S6yPdmxhWBEC+b+QNsh1yP+HuOOCWHehiF4EYyHEybewJPMP8lOOZUyTuFtFFEWAJaNOXHtZ/1iSUCH3NUl+/Koe07nLcWW8FNjCt3IPWv1zVJHvlhXBdlPgRYjdZIZ2rNCKxeNaO/LdbSDf8uxjqNgoe464wEQwJL4jAd0ENmNNnhjF7eWRP37F7Yik4xyCdaUJbiZYoQiJ60qeEF3ErVLmfBYydKpIUBOp4biq4ziu4riOMUJe2GNDcgOvtb7Ga82v8VrqNV5reo3X2l/jvfR7vNz8Mi83v2zcMg6DI4M5KH4QB5UdxEGRgzio/CAOjB/IhJIJjAqOIuSF8mMVgohN4XLJfir81cqTsCvAafKtIPceyhO8LJfO3s0Ik3vlWi/4+0rA2z0G2PEjrjUq7XBL54h7STpc2VYsBFdMd5JfYkiuyR3TJO0TwRN3mlhUsp/8j0nMRs4tFg9YkRerXR5uJEYjriwRMEm+kNiaPPiIpSVJM/LAIL8dtyK7fNdh571YhuItSDvr49iHCUlbFwuvCfP76YOo2Ch7hxvfyWF+tJJUIALjZgWJOy1EvgCJGyWO/bGKy8cVDHeAJP7nVuy8MoIblJYCl4XuKrD+ehcZjCqXGAgwLj6OcbFxnFx1sjmebwm9l3qPN9rf4PXm13k98zqvN73O64nXeaPtDXakd7AjvYOXml/qdNvCgTDj4uMYHx3P+NLxjI+PZ2x8LOPC4xibG8tYbyzxSEEwRWIIhZabuNgKlxfGleS+inUpiAhJ8N/dXjpW18oC+x12XBD5RV8FEQd3DJKIyGBnmXSahdclLkVBHmRERCUl2i1ZJB22JAi4aeNiLYkVJBZnyvkrFolrmct6aWcc8z8u8RmxQETQ5H5QcEwROff/W9rhJkNIXEdS8OXa5B7Jg5KIjwj6NjrPPdVHULFReg7Jpopi00YltiPjOCQTR9KeI8BQ7LQI8iMpJT+rSzordzynuJYidB5VLecodLfIE7mMgZEAvIiP5+zvdnLQSYQAhkSHMCQ8hBmDZpj2+0kUnufxbupd3mp+i7dyb/HWzrd4O/U2b7W/xbrEOramtvJ2+9u83f62nWuogKGRoYyNj2V0bDSjw6MZXTqa0aHRjCodxejYaEbGRlLj1ZjxQ10hT9SFFFpNbgaZ2yOIq6swgUA6eNeqEWEqLEsk97qwXXKcsLPMfcoH68YTIZSO3nXtiQgIMphUrlsEK+J8lr+uMLluTvl/SGBLDsn/jWtxiyjIvZNju9UUpP6exBzFnesmjIjYi3WTLlgu1o20Q9oq4iX3UlzbEvvpY6jYKMXBtXgqsU/UkhVUTn7l5Aj5gz/xl8kIelkmP25Jt5UkBBl5754/QL5bRo4psSVXhMSCEkGRAOyuRMh1x0mMSY6FsYZGRUYxavAojo0dayw+JxOtLdXG+sB61jWsY11mHeva17EhuYEN7RtYn1rPpuQmEydKbzcuul0QCUQYER1hXjHzd3h0OMOCwxgWHsaw0mEMiw5jaHQoNeEawrlwZ/eXXEOhMImAlNGZdMFnGb1fOJBCOntXANzvT3og9+nfTZIQi1k6UzmGdLauRRDCZnW57XLFTtyQIhAy7kgGpbr/Q65lJQIk1otYJRIbEktdBqy6yRCuGMp+Ik5R59hiQXrOMUVoce6HGxOT/1G5RhFgFRtlwCLJBWVYf7aMeWjG/OBENCQJoQo74l06FAlMR7FjTySrR/zlsn01+R2atEMGIxaKkDxJy1OwK0JpZx+383DHkhR2tlmMUBZ2wDkojZVySPQQDuGQzqVz4pBty7LV28qGxAY2JTexuX0zm9Kb2JTYxKb0JjYnN7MltYXGTKMRqeQG67bZDdWhaoZEhhiLLDqEweHB1ERqqMnWUF1STU28hppwDVWRKqqCVVSlq6jKVRENOerUlTDlCv7Ke/lO3LR16eDFFSTbyffkOftB5yQGsHEPl67EUb4Tz/nsWhmCDDaVfeVcOfLPKwkPIlYS43ETMCSDUCwhsQwl+UWs9UIRlrI90k75P/Ow4iyC5m7vZi0GML+ZKvocKjbKvkeEJ46twixWj2QwSVxBLBlxu8UwJTpkECT+31JMZlwUO6pdRuzLj1CeqKvI/zFLm2RwXXdFKFewj2uVyTnFz18Yx5AsKQqW+316KBBiVHSUrXIgnaQ7wBRoT7SzNbOVd9PvsiWzhS3JLWxLb2Nb+za2pbexPbudbSnzvj5dT0O2gYZsA28k3mBPKAmWUBmupDJcSQUVDAoNYlBsEIPCg6gIVVBBBeXZcsqbyimPl1MeKqeMMkpTpZQGS837SCmlXinxdJySYAmxXIwAgc4xs0JrRDpUiUtA/vfp7ud24O54I1dw5LNYIUIK6651XWdyXrddbkePc2z5ruS9vz5DhvZAO21eG2200UorrYFWWrOttAZbaaGF5kwzzV4zTdkmmtqaaAw28pPYTyjJlliBpOB80ha5fjcpoo+hYqP0PkGsO0x+0CI+SUzA083QkvEKO7GdPBjhkkGk+NvIQDwZcR3HjjR3S+IEMSJUKAAS+6kiv2OKYeNMrjvO7ZTEEnJH08tTqoibi4z5KLSQZJR8F51ySayE8RGTZNBxH6STc0fgA9lclsbmRt7jPd7z3mN7ejv16XrqM/XUN9dTHzRitCO9g8ZMIzvTO2lMN9KYa6Q91057qp0tKSfvuxuW1O4IECAe9IUnECMWjBEjRixs/kYDUaLBqPkbiBIhQjgYJhKMECZMOBMmFA4RCoUIESLkhQilQoRaQgQCAYJekEA6QJAggUb/yxO3Vha8gIeHZ/56HrlEzrzIkU1myQayZBozZLNZMsEMmVyGdCpNpj1DOpsm7aVJ5VKkvTTJQJJkNknSS5JM+X9DSdpHtpMIJMgECrMfyC88CtZViP17Y/RGSijpbEm6wpkrWF74f9JHULFR+hZuWnU51n0iyQbN2AF9g7AWkHTsbi0ueToVoSl1ziEpsmATDGQAnht0BWsJFWZwZTCuOpeofwwpK4LTBulMyp1jSCcilsuuiiq6cQVBBE2C5UFnuWT+5TU5xODSwQz2BjMpOsmuyGEEtbzgGv1R+16VR1uujcZMI82ZZpoam2gKNtEUamJnZict2RZaki20JFpoCbWYp/RsM22ZNlpTrbTl/Cf5XCvt2Xbas+0kvAQpL2VELNee185efTJvef9NOrnvdoWTRh70gpRSSolXQkmghDLKKPPKKA+WUxYoo9wrpzxQTkW4ggqvgspgJdXRaioCFbs+NnTOTnQfvvoYKjZK30YGDUpxx6HYTlc6WSlWCTbDTQbvSUn2ZvLHJogFEie/8xcRkh+tDO5rIt89AyZ11/WzyzGgc4A2jikrIunbgsQuPGzJeEmPlRhOhHzrCOe9xKBSBevc4qiuCEmKsIskWhQKqp9IEAgEKAuVURYqs+m2peRnnkmBzGryLUZJgR+EjTe0mG2ywSyJeIJEMkGyJUkynCSRSpAsSZJIJkhn0qQDaVLZFGnSpDIpY2GQIZ1Lk0lkyIQzZINZsl6WbDZLNpElG88aayXnkUvlyHk5m0rsWzZe1iMQDBAgQCAQIOAFCCVCBEuDhAIhggnzNxwOE8oa6ylChHBbmHBZmEgmQjQbJZKLEAlEiIVixFIxoqko8WCceC5OrD1GfEeckkgJkVjE3hM3LiQFN+V/Ur43eUBy68QVioog91vceoXZg30EFRul/xHC/GDLsMFlycJJYC2iNmzCgRv7EeGqxCYgyHgf+eHLNvKjllHnrghBZxHyMCLkJjWAdbEVdgQyTUA5+VaNVNmWxAmwVp+bul34JCsZTeKqkwC2O66osJ4c/rHaCpbt6gm5K+vL7fAEiY0UDujEXEMoFjIiFi2zmYshzL2V71LSkiV5JOQcV6xauc9ZTNxO6qyJxSZC7mFjfzJYU86Rw7hlxVJtxSaFuPXucn775CHHtZ7lwUBEtdBS9eh879yEgIjzvvABRixf94HDvb/y2R0m0MdQsVH6N9IBS8JBBbYzFjeb1M4Sq0gGKgYwItKEHTRX6u/XSn7GknTY0hm6ItRKvgjJoEXpNMQdN4T8OmSCm3wgRPx2VZE/oFIGE8ogWbAj8UV0y53lIizyFC2ds3SGu3LfFcaW3MyoKJ2FqFBUcNrkXluoi/fusSXJwk07l2O5FoCkb7uhENkv4OxTmFLsnqdQCNyU5hD50zWIaEv2XID89jous47/SWmPG8Av7HEL71dX7yUbTzLO3O/NvRZZVzjWqY+gYqPsX8gPPIT5cYo7S+IlUn8qge2Ia7DpzbJ/OXYmxSjmyVrqU7lWi9vZuCJUhhGLAKazLcMKj1hSklk2lM6xghz5lpUgnX9lwbq4fz7XTSfut6yzDeSXBpIYkitY4o6RjLl28l1jUryzkDj5T+UiwIVCJvEudzvp0N24GliBEOET60YqQ7hiI25RVxwLO23J6IsVrBNrVtrfVUcubkg3nV7+1yQzzhUreZiRatduJQZXnOUagwXv3TRpOZefGt9xre61BTHfpYqNovQirgC5ddJkzE8amwEnMZsqfzu3KGIIOzZILCEZoFpotciTsggN2MoIUnurFJuwILWwZNzEIGyRSHewn8SKXEQsCjuaONY9FHC2lTEpblFTqQEmlo5bSsjNfpLOTqwjsRLLyZ8FVa69MMNPOllXLKUqgGtJigCJu1DO5Q6wlcQJEYRS8itvF7qeotjCliIqci9FGNxt3fZKyrq4UyW2JpUIpI0iiuIClTFl8j8IVrjkPrnuNxno6Qqg+zDglq2RbeU7HE7nB5Q+goqNMnARqyNC/tTNYuW4IpTCju2pwFgW0sG47hWpGVaGEYs0+ZOsuU+mUi4HbIHHdn8/KRBaSkdAnZz/WTLepLOXp+bh5NfzkmssHMAqgtFUcN3SEaexllMAKwRgrS13mbjuZGCkiE/Gv1etzjJx9QScZdIm6byFEmwFZrACmMSObZISQeK6kiKVbgIFzrlC5Hf6MeyUACIUklhRjnWlimjJNmKVyvcvri2xrHDWxzHfl3wPrrUGnQe0ishLe9P+9Yor1E0CcF2OZfTZeA2o2ChKZ6QzLYytFFpCKaxFI0/VFdhJvcQNInEWcbWJxdOMzWbLYuNN0gbInxisymlTmb+/BLgrsG4WtySLDJzdSX6QO4hxHxaOpHez9QSxeKRDlnaJOJU6y0uwiQ1iNbmVvUWYcs4yaVcV1sUIVlxdpJK4WAVihSWxbkw3CcJ1BUrhzkry64+Jiw7sbLTyACKWpVg3Ym1ItQGxEMXCkYQPsWqcqhB5ZWfEkpH3Iiri+hSLLuesd7+XoLOt3IMD6NM9eh9umqL0MXZlCUF+OXkRowQ2JiJPyWK9hLAds3Sq0jm1YQs4BrETd0n2kzzJSodVSn7KtVhhldgn4DKsi0gSGQIY60YEL40tPOm6tKSDdkfkg3Ufua47t7ONO8tElGX8kaQhy32TuFETNgAvgiiWi1gFhSIp2WSutSJ1zkTMUthK0WItigVThbWGXPGRyhQ7nfa1+H/FshILTwYmiytUhFbWDfWPI6It90DS1OW+StZkFOtSLXX+5pxzi+AEgDHkTwXeB1GxUZSeQH5JXVlD2YKXCJKk5EqatiQJSKBX3GRupeBmrBUlKb4tWJeeh+10xL3mxhLEspCOuQKTLiz7SceXc44pCQ5J7ORq0tkPw4iYtM8tSlooTIXun1LMLJjlWOGQig9iBbqiLJ1xCVYkwXb+bsxMziNtKMGMc4o5n5uwdfiCWGuokvzyOLJPGGtZVWOzHKXtcn9lLI18x3J8z79esV7d++FWiXAzBuNY95lbHUMs3gDGfTqSPo+KjaIUE7ejL0Q6dTfoLy954heLQNwtQ/x9ZaIy6YBTWLeZPPm2YTPiSvx9XXES910V1ropfMKW+JObGCBZb262nMRlJLEhix3jIq4nGdcENtg9hPzBp5LEIU/uYAeiSpxLkhEase43EVqxaCr940q8TGJaYkkGnGOBjfXIObJYF5qkrIvVImIkghXHut8kNR5sDEcsnBKMKDT62w7CCpQrjiXOMhH7YMFfiaeNAcax68oTfQgVG0XpLdyANXQea1NYMcAVIckGyxRsJ9aHiMZgf7lsK6IhAiY16cR9J7GlCuzgRRES6ehG+ucRy0vESVx7EqyXmIdUaZDjNvrtr8SKWit2rJMIkFhMnr8tWPeeuN7ACrGbTi6uMGm/nCuEseQiGHeciIqcQ1xuYMVIREOuVyytNmzGosSExMUpLjsZsxX2vwuJp7X5r4xzbdJmOZ/cbxFgeWiRJJWJWOu2H6Bioyh9lcIMMul8ukLiKe7ARcmqk0GuaWe5lMaR+I5YYIOd5VKDTjpa6Qzlbyt2llQZzNqK6bwl3iEZeQlsXEXSsF13osRypDOV88r8NNLxy/FlCgqpCtCCtRykUoTEN6qwlkkAI2Yi1uLOAxtsdwP0If+cKWzHvtNfPgKbqShiKqIu7rwE+YkEEs+RFPtGbFagJCHIvq5wS6WCUowlM5Y+W5ZmV6jYKMr+QOGIfqEwhiSIOLmIC08Eya1ALJ8l0y6MdellsGIigiWZe9LBu64f110ngzQlyUFEDqxQuNaaZNf5RUI7LDVX1MCObRKhFatDrElZLmNnRPxEZMqxrkpJY0/621T755DxVzKWSBIMJCnBrfwtlo7cP3F9VvjX24Ktoi1xKYnNSU3AUf4939V32sdRsVGUgUhX4rQnfn+JxbiDPcG6+LwutvMK1nvOPmLhxLAWi2SrScVusTjEbSYWkohG4XQPhQNfJa7jZtWJm0xSjCUtW2aTleNI3MmlcPySe0x3vAwF790xO7K9O+bGFa0Ynasd9FNUbBRF2XPcDtKlJwLVrsUlHbe8ArtY1tW+u1vmHrurv7varvDzrt4rnVCxURSlb9FVZ9/Vsr5CYWxN6ZL9wDhTFEVR+joqNoqiKErR6ZbYbNy4kS9+8YvMmDGD0tJSAoEA69at67RdIpHg2muvZeTIkZSUlDBjxgyee+65Ttvlcjluuukmxo8fTzweZ+rUqTzwwAN7fTGKoihK36RbYvPmm2/y29/+lurqao499thdbvfZz36WhQsX8t3vfpdHHnmEkSNHcvLJJ7Ny5cq87b75zW/y7W9/myuvvJLHH3+cY445hnPOOYfHHntsry5GURRF6aN43SCbzXa8X7hwoQd4a9euzdtm5cqVHuAtWrSoY1k6nfYOPvhgb86cOR3Ltm7d6kWjUe+GG27I23/WrFnelClTutMc74gjjujWdoqiKMq+Y3d9c7csm2Dw/TdbsmQJkUiEc889t2NZOBzmvPPO44knniCZTALwxBNPkEqlmDdvXt7+8+bNY9WqVaxdu7b7SqkoiqL0C3osQWD16tVMmDCB0tL8CShqa2tJpVK8+eabHdvFYjEmTpzYaTuANWvW9FSTFEVRlD5Cj4lNfX091dXVnZbX1NR0rJe/VVVVBAKB3W6nKIqi7D/0m0GdCxYsYMGCBQBs3769l1ujKIqi7Ak9ZtlUV1fT0NDQablYKmK5VFdX09jYiOd5u92ukPnz57NixQpWrFjB0KFDe6rZiqIoyj6gx8SmtraWtWvX0tbWlrd8zZo1RKPRjhhNbW0tyWSSt956q9N2AIcddlhPNUlRFEXpI/SY2MyZM4d0Os3ixYs7lmUyGe677z5mz55NLGZKpp5yyilEIhHuvvvuvP1//etfM3nyZCZMmNBTTVIURVH6CN2O2dx///0A/PWvfwXg8ccfZ+jQoQwdOpSZM2dy+OGHc+655/KlL32JdDrNhAkTuOOOO1i7dm2esAwbNowvf/nL3HTTTVRUVDB9+nTuu+8+li1bxpIlS3r48hRFUZQ+QXcH65Bf1LvjNXPmzI5t2travKuvvtobPny4F4vFvKOOOspbvnx5p2NlMhnve9/7njdu3DgvGo16U6ZM8RYvXtwjA4cURVGU3mF3fXPA87xdzfbQZ6mrq2PFihW93QxFURTFYXd9s1Z9VhRFUYqOio2iKIpSdFRsFEVRlKKjYqMoiqIUHRUbRVEUpeio2CiKoihFR8VGURRFKToqNoqiKErRUbFRFEVRio6KjaIoilJ0VGwURVGUoqNioyiKohQdFRtFURSl6KjYKIqiKEVHxUZRFEUpOio2iqIoStFRsVEURVGKjoqNoiiKUnRUbBRFUZSio2KjKIqiFB0VG0VRFKXoqNgoiqIoRUfFRlEURSk6KjaKoihK0VGxURRFUYqOio2iKIpSdFRsFEVRlKKjYqMoiqIUHRUbRVEUpeio2CiKoihFR8VGURRFKToqNoqiKErRUbFRFEVRio6KjaIoilJ0VGwURVGUoqNioyiKohQdFRtFURSl6KjYKIqiKEVHxUZRFEUpOio2iqIoStFRsVEURVGKjoqNoiiKUnRUbBRFUZSi0y2x2bhxI1/84heZMWMGpaWlBAIB1q1bl7fNihUrmD9/PocccgilpaWMGzeOCy+8kLVr13Y6Xi6X46abbmL8+PHE43GmTp3KAw880CMXpCiKovQ9uiU2b775Jr/97W+prq7m2GOP7XKb3/zmN6xevZqrrrqKxx9/nO9///u8/PLL1NXVsWHDhrxtv/nNb/Ltb3+bK6+8kscff5xjjjmGc845h8cee2zvr0hRFEXpe3jdIJvNdrxfuHChB3hr167N22bbtm2d9lu3bp0XCAS8b37zmx3Ltm7d6kWjUe+GG27I23bWrFnelClTutMc74gjjujWdoqiKMq+Y3d9c7csm2Dw/TcbOnRop2UHHHAAQ4cOZdOmTR3LnnjiCVKpFPPmzcvbdt68eaxatapLt5uiKIrSvylqgsBrr73Gtm3bOPTQQzuWrV69mlgsxsSJE/O2ra2tBWDNmjXFbJKiKIrSCxRNbDKZDJdffjlDhw7ls5/9bMfy+vp6qqqqCAQCedvX1NR0rFcURVH2L8LFOvCVV17Jiy++yKOPPkp1dfVeH2/BggUsWLAAgO3bt+/18RRFUZR9R1Esm6997WssWLCARYsWMXv27Lx11dXVNDY24nle3nKxaMTCKWT+/PmsWLGCFStWdBkfUhRFUfouPS42N954Iz/4wQ+47bbbuOiiizqtr62tJZlM8tZbb+Utl1jNYYcd1tNNUhRFUXqZHhWb2267jeuvv54bb7yRK6+8ssttTjnlFCKRCHfffXfe8l//+tdMnjyZCRMm9GSTFEVRlD5At2M2999/PwB//etfAXj88ccZOnQoQ4cOZebMmfzmN7/hS1/6EqeccgqzZs3iT3/6U8e+gwYN6rBYhg0bxpe//GVuuukmKioqmD59Ovfddx/Lli1jyZIlPXltiqIoSh+h22Jzzjnn5H2+4oorAJg5cybPPPMMS5cuxfM8li5dytKlS/O2lW2EG2+8kfLycn70ox+xZcsWJk2axG9/+1tOPfXUvbgURVEUpa8S8Aoj9f2Auro6VqxY0dvNUBRFURx21zdr1WdFURSl6KjYKIqiKEVHxUZRFEUpOio2iqIoStFRsVEURVGKjoqNoiiKUnRUbBRFUZSio2KjKIqiFB0VG0VRFKXoqNgoiqIoRUfFRlEURSk6KjaKoihK0VGxURRFUYqOio2iKIpSdPrlFANDhgyhrKyMoUOH9nZTisb27dv36+uD/f8a9fr6N3p9e866det47733ulzXL8UG9v85bfb364P9/xr1+vo3en09i7rRFEVRlKKjYqMoiqIUnX4rNvPnz+/tJhSV/f36YP+/Rr2+/o1eX8/Sb2M2iqIoSv+h31o2iqIoSv+hX4nNhg0bOPvss6msrGTQoEGceeaZrF+/vrebtcfcf//9nHXWWRxwwAGUlJQwadIkvv71r9Pc3Jy3XUNDA5deemlHqveJJ57IqlWreqnVe8cpp5xCIBDg+uuvz1ve36/xscce47jjjqO8vJxBgwZRV1fHsmXLOtb35+t74YUXmD17NsOGDaOiooLp06ezaNGivG0SiQTXXnstI0eOpKSkhBkzZvDcc8/1Uot3zcaNG/niF7/IjBkzKC0tJRAIsG7duk7bdfd6crkcN910E+PHjycejzN16lQeeOCBfXAlXdOd61uxYgXz58/nkEMOobS0lHHjxnHhhReydu3aTscryvV5/YTW1lZv4sSJXm1trff73//ee/DBB73Jkyd7Bx54oNfS0tLbzdsjjj76aO+cc87xfv3rX3vPPPOM98Mf/tCrrKz0jj76aC+bzXqe53m5XM776Ec/6o0ePdq75557vMcff9w77rjjvMGDB3sbNmzo5SvYM+655x5vxIgRHuBdd911Hcv7+zX+9Kc/9cLhsPelL33Je/LJJ72lS5d63//+972HH37Y87z+fX2vvPKKF4/HvY997GPegw8+6D355JPe/PnzPcD7yU9+0rHdBRdc4FVWVnoLFizwnnrqKe+MM87w4vG497e//a33Gt8Fy5cv94YNG+Z9/OMf92bPnu0B3tq1aztt193r+cY3vuFFo1Hvlltu8ZYtW+bNnz/fCwQC3qOPPrpvLqiA7lzfv/3bv3kf+chHvNtvv9175plnvLvvvts75JBDvJqaGm/9+vV52xbj+vqN2Pz3f/+3FwwGvTfeeKNj2dtvv+2FQiHvP//zP3uxZXvOtm3bOi375S9/6QHe008/7Xme5z344IMe4C1btqxjm8bGRq+6utr74he/uM/aurfU19d7w4cP9+65555OYtOfr3Ht2rVePB73fvjDH+5ym/58fV//+te9SCTiNTc35y0/5phjvGOOOcbzPM9buXKlB3iLFi3qWJ9Op72DDz7YmzNnzj5t7/shD3Ge53kLFy7ssjPu7vVs3brVi0aj3g033JC3/6xZs7wpU6YU5wLeh+5cX1f9zrp167xAIOB985vf7FhWrOvrN260JUuWcMwxxzBx4sSOZRMmTOCjH/0oDz30UC+2bM/patTukUceCcCmTZsAc72jRo3i+OOP79imsrKSOXPm9Kvr/epXv8rkyZM5//zzO63rz9e4aNEigsEgl19++S636c/Xl0qliEQilJSU5C2vrKwkl8sB5voikQjnnntux/pwOMx5553HE088QTKZ3Kdt3h3B4Pt3dd29nieeeIJUKsW8efPy9p83bx6rVq3q0i1VbLpzfV31OwcccABDhw7t6HegeNfXb8Rm9erVTJ48udPy2tpa1qxZ0wst6lmeffZZAA499FBg99e7fv16Wlpa9mn7Pgh/+MMfuOuuu7j99tu7XN+fr/EPf/gDhxxyCL/5zW846KCDCIfDTJw4Me9a+/P1XXLJJQBcddVVbN68mcbGRhYuXMjTTz/N1VdfDZjrmzBhAqWlpXn71tbWkkqlePPNN/d1s/eK7l7P6tWricVieQ++sh3Qr/qj1157jW3btnX0O1C86+s3YlNfX091dXWn5TU1NTQ0NPRCi3qOTZs2ccMNN3DiiSdSV1cH7P56gT5/zalUissuu4xrrrmGSZMmdblNf77GzZs388Ybb3Dttdfyta99jSeffJKTTjqJK6+8kh/96EdA/76+yZMn88wzz/DQQw8xevRoqqur+cIXvsBPf/pTzjvvPOD9r6++vn6ftnlv6e711NfXU1VVRSAQ2O12fZ1MJsPll1/O0KFD+exnP9uxvFjXF/7gTVV6gpaWFk477TTC4TB33nlnbzenx7j55ptpb2/nuuuu6+2mFIVcLkdzczO/+MUvOPPMMwGYNWsW69at46abbuKqq67q5RbuHW+88QZnnXUWtbW1/PSnP6WkpISHHnqIyy+/nHg8zoUXXtjbTVT2kiuvvJIXX3yRRx99tEuR7Wn6jdhUV1d3+SS4q6eR/kB7eztz5szh7bff5tlnn2XMmDEd63Z3vbK+r7J+/XpuvPFGfv7zn5NMJvN898lkksbGRioqKvr1NQ4ePJg33niDk046KW/57NmzWbp0Ke+++26/vr5vfOMbRCIRHnnkESKRCAAnnHACO3bs4P/9v//H+eefT3V1Ne+8806nfeX65Em4v9Dd66murqaxsRHP8/Ke/vvTdX/ta19jwYIF/PKXv2T27Nl564p1ff3GjVZbW8vq1as7LV+zZg2HHXZYL7Ro70in05x99tmsWLGCxx57jClTpuSt3931jhs3jvLy8n3V1D3m7bffJpFIMG/ePKqrqzteALfeeivV1dWsWrWqX1+j+K93RTAY7NfXt2rVKqZOndohNMJRRx3Fjh072LZtG7W1taxdu5a2tra8bdasWUM0Gu3k8+/rdPd6amtrSSaTvPXWW522A/p8f3TjjTfygx/8gNtuu42LLrqo0/qiXd8HzmPbx/zwhz/0QqGQ99Zbb3UsW7t2rRcOh71bb721F1u252SzWe+cc87x4vG499RTT3W5ze9//3sP8J555pmOZTt37vRqamq8K6+8cl819QPR0NDgLV++vNML8ObNm+ctX77ca25u7tfX+Mgjj3iAt3jx4rzls2fP9saMGeN5Xv/+DmfOnOlNmDDBSyaTecvPP/98Lx6Pe8lk0nv55Zc9wPvFL37RsT6dTnuHHHKId+qpp+7rJnebXaUGd/d6tm7d6kUiEe/b3/523v4nnHCCN3ny5KK2vTvs6vo8z/N+9KMfeYB344037nL/Yl1fvxGblpYW76CDDvImT57sPfjgg95DDz3kffjDH/YmTJjQaSxAX+fyyy/vGHPyxz/+Me8lg/2y2aw3Y8YMb8yYMd69997rLV261Js5c6ZXXV3daQBWf4GCcTb9+RpzuZx3/PHHezU1Nd4dd9zhPfHEE96ll17qAd6dd97peV7/vr7Fixd7gDd79mzvwQcf9J544gnvC1/4ggd4V199dcd25557rldVVeUtXLjQe+qpp7yzzjrLi8Vi3l//+tdebH3XLF682Fu8eHHH7+8nP/mJt3jx4ryHge5ez1e/+lUvFot5//mf/+ktX77cu/zyy71AINAxoLc3eL/ru/fee71AIOCdcsopnfqd1atX5x2rGNfXb8TG8zzvnXfe8c4880yvoqLCKy8v90477bQu1buvc8ABB3hAl69vfetbHdvt2LHD+/SnP+1VV1d7JSUl3qxZs7yVK1f2XsP3kkKx8bz+fY07d+70rrjiCm/YsGFeJBLxpkyZ4t1999152/Tn63vssce8mTNnekOGDPHKy8u9qVOnerfffruXyWQ6tmlra/Ouvvpqb/jw4V4sFvOOOuoob/ny5b3X6N2wq9/czJkzO7bp7vVkMhnve9/7njdu3DgvGo16U6ZM6WTl7mve7/ouvvjibt0DzyvO9WnVZ0VRFKXo9JsEAUVRFKX/omKjKIqiFB0VG0VRFKXoqNgoiqIoRUfFRlEURSk6KjaKoihK0VGxURRFUYqOio2iKIpSdFRsFEVRlKLz/wHkUVgLnbfD7QAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -743,9 +732,9 @@ "hash": "3095d307436ac388e461a5585c0eeaa747818d9658111384e6a455f40a311fed" }, "kernelspec": { - "display_name": "Python 3", + "display_name": "theseus_test", "language": "python", - "name": "python3" + "name": "theseus_test" }, "language_info": { "codemirror_mode": { @@ -757,7 +746,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.8" + "version": "3.8.12" } }, "nbformat": 4, diff --git a/tutorials/05_differentiable_motion_planning.ipynb b/tutorials/05_differentiable_motion_planning.ipynb index 9e83f6088..5bf271b83 100644 --- a/tutorials/05_differentiable_motion_planning.ipynb +++ b/tutorials/05_differentiable_motion_planning.ipynb @@ -206,7 +206,7 @@ "source": [ "init_trajectory_model = theg.InitialTrajectoryModel(planner)\n", "init_trajectory_model.to(device)\n", - "model_optimizer = torch.optim.Adam(init_trajectory_model.parameters(), lr=0.03) " + "model_optimizer = torch.optim.Adam(init_trajectory_model.parameters(), lr=0.04) " ] }, { @@ -240,9 +240,9 @@ "------------------------------------\n", " Epoch 99\n", "------------------------------------\n", - "Imitation loss : 0.125\n", - "Error loss : 0.632\n", - "Total loss : 0.126\n", + "Imitation loss : 0.012\n", + "Error loss : 0.134\n", + "Total loss : 0.013\n", "------------------------------------\n", "------------------------------------\n" ] @@ -270,8 +270,10 @@ " # Step 2: Optimize to improve on the initial trajectories produced by the model.\n", " planner.layer.forward(\n", " planner_inputs,\n", - " verbose=False,\n", - " damping=0.1,\n", + " optimizer_kwargs={\n", + " \"verbose\": False,\n", + " \"damping\": 0.1,\n", + " }\n", " ) \n", "\n", " initial_trajectory_dicts.append(\n", @@ -306,7 +308,8 @@ " print(f\"{'Error loss':20s}: {error_loss.item():.3f}\")\n", " print(f\"{'Total loss':20s}: {loss.item():.3f}\")\n", " print(\"------------------------------------\")\n", - " print(\"------------------------------------\")" + " print(\"------------------------------------\")\n", + " " ] }, { @@ -317,7 +320,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAt8AAAGBCAYAAAC+Zt3eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABW20lEQVR4nO3dd3hUZdoG8PtMySSTOpPeE0gIkEAoARIQQhDBBiiCoIDIumJBV3HFlRURcVF3xfa5ioIKFjouRaRKlU6A0EIL6QmkTXqfmfP9ETIaE0LqTDJz/64rF+TUZzheeOflOe8riKIogoiIiIiI2p3E1AUQEREREVkKhm8iIiIiIiNh+CYiIiIiMhKGbyIiIiIiI2H4JiIiIiIyEoZvIiIiIiIjMWr43rBhAx555BH4+/vDxsYGISEhmDt3LoqLi+94riAIDX7FxcW1f+FERERERG1AMOY835GRkfDz88O4cePg4+ODM2fOYMGCBejevTuOHDkCieT2PwsIgoAnn3wSzzzzTJ3tvXv3hlKpbO/SiYiIiIhaTWbMm/38889wdXU1fB8dHQ21Wo3p06dj//79GDFiRKPne3t7IzIysr3LJCIiIiJqF0ZtO/lj8K41YMAAAEBGRoYxSyEiIiIiMjqjjnw35MCBAwCAHj163PHYJUuW4IMPPoBUKkVkZCTefvttDB06tMn3cnFxQUBAQEtLJSIiIiK6o+TkZOTm5ja4z6g933+WkZGBvn37Ijw8HLt372702GnTpuHBBx+El5cXUlJS8MEHHyA+Ph67d+/G8OHDm3S/iIgIxMbGtkHlREREREQNayxzmix8l5SUYPjw4cjMzMSJEyfg4+PTrPOLi4sRFhYGX19fHDp06LbHLV26FEuXLgUA5OTkICUlpVV1ExERERE1prHwbZJ5vsvLyzFmzBgkJiZi586dzQ7eAGBvb48HHngAJ0+ebPS4mTNnIjY2FrGxsQ32nBMRERERGYvRe76rq6sxYcIExMbGYvfu3ejVq1erricIQhtVRkRERETUvowavvV6PaZMmYK9e/di69atrZo2sKioCFu3bsXAgQPbsEIiIiIiovZj1PA9a9YsrF+/Hm+88QZsbW1x7Ngxwz4fHx/4+PggJSUFXbt2xfz58zF//nwAwOLFi3HlyhXExMQYXrhcvHgxbt68iZUrVxrzIxARERERtZhRw/f27dsBAIsWLcKiRYvq7HvrrbewYMECiKIInU4HvV5v2BcSEoKNGzdi48aNKCwshIODA4YMGYJvvvmGI99ERERE1GmYdKpBY+NUg0RERETU3jrcbCdERERERJaI4ZuIiIiIyEgYvomIiIiIjIThm4iIiIjISBi+TaRSq0NybqmpyyAiIiIiI2L4NpFVx1Nx76cHUVGtM3UpRERERGQkDN8mkpxbiopqPTSlVaYuhYiIiIiMhOHbRLKLKwEA+WUM30RERESWguHbRLKKKgAA+aXVJq6EiIiIiIyF4dtEOPJNREREZHkYvk1AFEWGbyIiIiILxPBtAoXl1ajS6gGw7YSIiIjIkjB8m0DtqDfAkW8iIiIiS8LwbQLZRQzfRERERJaI4dsEamc6cbSRI7+MbSdEREREloLh2wRq205CPOyRz0V2iIiIiCwGw7cJZBVVwE4hg7eTDdtOiIiIiCwIw7cJ5BRXws1BAZXSCgVsOyEiIiKyGAzfJpBdXAE3ewVUSjlKKrWGaQeJiIiIyLwxfJtAVlEl3B2s4WRrBQAoYOsJERERkUVg+DaymtUta0a+1cqa8M0ZT4iIiIgsA8O3kRVXalFRrYebvTVUSjkAQMMZT4iIiIgsAsO3kWXfmuPbzUEBJyXbToiIiIgsCcO3kdWubulmbw31rZ5vDcM3ERERkUVg+Day2gV2aka+a9pOON0gERERkWVg+Day2qXl3R2sYS2XQmkl5SqXRERERBaC4dvIsosrobSSwk4hAwColFZsOyEiIiKyEAzfRpZdXAk3e4XheyelnG0nRERERBaC4dvIsooq4OZgbfhebWvFqQaJiIiILATDt5Hl1Bv5tuJUg0REREQWguHbyLKKKuBm/4eRb6WcK1wSERERWQiGbyMqqdSirEoHd4e6I9+F5dXQ6vQmrIyIiIiIjIHh24j+uLplrdol5gvLOfpNREREZO4Yvo0o6w+rW9ZS3VrlMp9930RERERmj+HbiLKLaxfY+ePId2345sg3ERERkblj+DainFtLy7va151qEABXuSQiIiKyAAzfRpRVVAGFTAIHa5lhm9Otnm+2nRARERGZP4ZvI8ouroS7gzUEQTBsY9sJERERkeVg+Dai7KK6C+wAgNJKCiuZhG0nRERERBaA4duIsoor4P6HpeUBQBAEqJRytp0QERERWQCGbyPKKaqE659GvoGa1hO2nRARERGZP4ZvIymr0qK4UltngZ1aKqUV206IiIiILADDt5Fk31pgx93eut4+lS3bToiIiIgsAcO3kWTfmuP7tiPfbDshIiIiMnsM30aSVVSzuqVbQyPfSisUlFVBrxeNXRYRERERGRHDt5HUjny7NzTybWsFvQgUV2iNXRYRERERGRHDt5FkF1fASiaBo4283j7VrVUuNez7JiIiIjJrDN9Gkl1UCVc7RZ3VLWv9vsolwzcRERGROWP4NpLs4ooGW06AmrYTAJxukIiIiMjMMXwbSc3S8vVftgR+bzvhjCdERERE5o3h20iyiioanGYQ+H3ku4BtJ0RERERmzajhe8OGDXjkkUfg7+8PGxsbhISEYO7cuSguLr7juRUVFZgzZw48PT1hY2ODqKgoHDx40AhVt15FtQ5FFVq4OzQ88m2vkEEmEaBh2wkRERGRWTNq+F68eDGkUineffdd7NixA8899xyWLFmCe+65B3q9vtFzn3rqKSxbtgwLFy7E1q1b4enpidGjRyMuLs44xbdCzq1pBl3tGx75FgQBTko5206IiIiIzJzMmDf7+eef4erqavg+OjoaarUa06dPx/79+zFixIgGzzt79ixWrVqFb7/9FjNmzDCcGxoaivnz52PLli1Gqb+lfl9gp+HwDdxa5ZIj30RERERmzagj338M3rUGDBgAAMjIyLjteVu2bIFcLsekSZMM22QyGSZPnoydO3eisrKy7YttQ78vsNNw2wlQu8Q8wzcRERGROTP5C5cHDhwAAPTo0eO2x1y8eBGBgYFQKpV1toeGhqKqqgoJCQntWmNrZTdl5NtWjgK2nRARERGZNZOG74yMDMyfPx8jR45ERETEbY/TaDRQqVT1tqvVasP+jiyruBJyqWBYTKchKqVVh13hUqcXkVlQbuoyiIiIiDo9k4XvkpISjBs3DjKZDMuXL2+3+yxduhQRERGIiIhATk5Ou92nMbWrW0ok9Ve3rOWktEJBWRVEUTRiZU2z4VQaYhbvR2E5R+aJiIiIWsMk4bu8vBxjxoxBYmIidu7cCR8fn0aPV6lUyM/Pr7e9dsS7dgS8ITNnzkRsbCxiY2Mb7Dk3huziCrg20u8NAGpbOap1IkoqtUaqquku3ShGpVaPG4Uc/SYiIiJqDaOH7+rqakyYMAGxsbHYtm0bevXqdcdzQkNDkZSUhLKysjrb4+PjYWVlhaCgoPYqt01kF1XCvZF+b6Bm5BtAh+z7Ts+v+XOvnTKRiIiIiFrGqOFbr9djypQp2Lt3LzZt2oTIyMgmnTdmzBhUV1dj/fr1hm1arRZr167FqFGjoFA0HmxNLbv49qtb1lLfCt8dccaTVE1N+M4uYvgmIiIiag2jzvM9a9YsrF+/Hm+88QZsbW1x7Ngxwz4fHx/4+PggJSUFXbt2xfz58zF//nwAQN++fTFp0iS8/PLLqK6uRmBgIJYsWYKkpCSsXLnSmB+h2Sq1OuSXVcPNvvG2E5WtHAA63CqXoigawndOCcM3ERERUWsYdeR7+/btAIBFixYhKiqqztfXX38NoCbs6XS6eiteLl++HDNmzMC8efPwwAMPIC0tDTt27EC/fv2M+RGaLccwx3fnbDvJKalERXXNs+DINxEREVHrGHXkOzk5+Y7HBAQENDjjh42NDT766CN89NFH7VBZ+6ldYOdOI9+1bScdbeQ7TfN7nz1HvomIiIhax+SL7Ji72gV2XO/wwqWDjRyCABR0sJ7v2pYTZ1srw2chIiIiopZh+G5nTVlaHgCkEgFONnLkd7C2k9S8mukF+/o5cbYTIiIiolZi+G5n2UWVkEoEONvefnXLWh1xlctUTRk8HKzho1IyfBMRERG1EsN3O8sqqoCLnVWjq1vWclLKO1zbSZqmDH5qJVztFSiu1KK8SmfqkoiIiIg6LYbvdvb0sC74cGKfJh2rtrWCprSDtZ1oyuCrVsLtVs86R7+JiIiIWo7hu511c7fHXcEuTTrWSWnVoUa+K6p1uFlUYRj5BmoWDCIiIiKilmH47kDUtlYdaoXL9Pyaly39nG0MUyVy5JuIiIio5Ri+OxAnpRwV1foO01ddO8d33ZFvhm8iIiKilmL47kBUtxba6Sij37VzfPuqlVDbWkEqETjyTURERNQKDN8dSEcM39ZyCVztFIbpEtnzTURERNRyDN8diEopBwDkd5AZT2qnGRSEmmkS3RwUHPkmIiIiagWG7w5EbdvxRr791ErD92721uz5JiIiImoFhu8OxKkDtZ2Iooi0W3N813K148g3ERERUWswfHcgTh2o7URTWoXSKl3dkW8HBXJLKqHTiyasjIiIiKjzYvjuQORSCeytZR1i5Dv1D9MM1nK1V0Av1gRzIiIiImo+hu8ORqXsGAvtNBS+3bjKJREREVGrMHx3MCpbK+SXmb7tpHaBHR9V3ZFvgKtcEhEREbUUw3cHo1LKkd8B2jpSNWVwtVfAxkpq2Fa7xDxnPCEiIiJqGYbvDqYjtZ38seUE4Mg3ERERUWsxfHcwKqUVCjpE20l5vfBtLZfC3lrG8E1ERETUQjJTF0B1qZRylFRqUaXVw0omQVmVFkcS8rD3SjbiUgvw70d6o5ePY7vWUKXVI7OwvM4c37Vc7RV84ZKIiIiohRi+OxjVrVUul+y/jtgUDY4nalCl08P2Vu/1+zsuYeVfI9u1hoyCcogi6o18AzUznnDkm4iIiKhlGL47mNq+6o9/vYourrZ4IsofMd3dMCBAjR+OpeCdrfE4lpiHyC7O7VZDQ9MM1nKzt8bZ9IJ2uzcRERGROWP47mBiQtzw+eP9EObtAH9n2zr7pgzyw1cHruOj3VexdmYkBEFo0T02nclAaZUWUwb5N7i/sfDtypFvIiIiohbjC5cdjJVMggd6e9YL3kDNC4+zYoJwIkmDo9fzWnyPj3Zfxb+2XkJRRcMvdqZrymAlkxgW1fkjN3sFyqp0KKnUtvj+RERERJaK4buTmTTAFx4O1vj416sQRbHZ52cUlCNVU4byah1+PpvZ4DGpmjL4qmwgkdQfWed0g0REREQtx/DdyVjLpZg1Iggnk/NxKCG32ecfuzVirlLKse5kWoPHNDTHdy3DQjtFnPGEiIiIqLkYvjuhRyN84O1kg492N3/0+1hiHpyUcsyKCcLZ9EJculFUZ78oikjNu334Nox8l3Dkm4iIiKi5GL47IYVMihdGBOFMagH2X81p1rlHE/MwKFCNR/r5wEoqwdo/jX4XllejuFLb4BzfAAx94NlFDN9EREREzcXw3UlN6O8DH5UNPmnG6Heapgzp+eWI7OIMla0VRoW6Y1NcBiqqdYZjGpvpBACclHLIpQJHvomIiIhagOG7k5JLJfjbiGCcTS/E3svZTTrneJIGAAxzhE8a4IuCsmrsis8yHGMI384Nh29BEOBqp+DINxEREVELMHx3Yg/384a/s7LJvd9Hr+dBpZQjxN0eADCkqwu8nWzqvHhZG759VQ2HbwBwdbDmyDcRERFRCzB8d2JyqQQvjgjGxcwi7P7D6PXtHEvMw6BAZ8MUghKJgEcjfHEoIRdpt0J3mqYMLnZWsFXcfv2lmpFvznZCRERE1FwM353cQ3284O1kg++OJjd6XJqmDBkF5Yjsoq6zfUKEDwQBWB9bM/qdqim77cuWtdwcFMjlyDcRERFRszF8d3IyqQSTB/jicEIeUvJKb3vc0cSa+b2jurrU2e7tZIOhwa5YfyodOr3Y6BzftVztFMgrrYJWp2/9ByAiIiKyIAzfZmBihC8kArDmNovmADUtJ2pbKwS72dXbN3mAL24UVmDf5WxkFlTcMXy7OSggikBeaVWrayciIiKyJAzfZsDD0RojurtjfWw6qhsYjRZFEccTNRgUqG5wyfiRPdyhtrXCJ3uuQqcXG33ZEqgZ+QY41zcRERFRczF8m4nHBvoit6QSey7Vf/EyTVOOjIJyRHV1bvBcK5kED/f1xoWMmtUu79zzfWuJ+WK+dElERETUHAzfZiK6mys8Ha2x6kT91pNjt/q9a+f3bsikAb6G399uju9ahiXmiznyTURERNQcDN9mQiaV4NEIX/x2LccwbWCtY4l5cL5Nv3etbu726OvnBLlUgMetke3bcbGzAgBkM3wTERERNQvDtxl59Nbo9brY30e/RVHE0cQ8RHZxhiDU7/f+o7fGhGLB2FBIG+gL/yOFTAonpZwj30RERETNxPBtRrydbDC8myvWxaYZpgFM1ZThRmFFvfm9G9LH1wlTBvk36V5u9gr2fBMRERE1E8O3mZk80A9ZRZXYdyUHQNP6vVvCzd6aI99EREREzcTwbWZGdHeDm70Ca06kAgCOXs+Di50Vghrp924JV3sFe76JiIiImonh28zIb714ue9KNjILynEsUYNBTej3bi43ewVyiishimKbXpeIiIjInDF8m6FJA3yhF4EPdl7BzaIKRLVxywlQM/JdqdWjqELb5tcmIiIiMlcM32bIV63E0GAXbDyTAaDt+70BzvVNRERE1BIM32bq8YF+AGpCcldX2za/fm345ownRERERE0nM3UB1D5G9nSHu4MCQ4Jc2rzfG6iZ7QTgyDcRERFRczB8mym5VIKfX7wLSqv2ecRsOyEiIiJqPoZvM1Y7Ot0eHKxlUMgkDN9EREREzWD0nu/09HS8+OKLiIqKglKphCAISE5ObtK5AQEBEASh3temTZvatWaqTxAEzvVNRERE1ExGH/lOSEjAunXr0L9/fwwdOhS7du1q1vmjR4/GggUL6mwLCQlpwwqpqWrn+iYiIiKipjF6+B42bBiysrIAAF9//XWzw7eLiwsiIyPbozRqJjd7ayTmlpi6DCIiIqJOw+htJxIJZzc0F2w7ISIiImqeTpeEf/75ZyiVSigUCkRGRrLf24Tc7BUoKKtGpVZn6lKIiIiIOoVOFb7HjBmDzz77DDt37sTKlSthbW2Nhx9+GD/++ONtz1m6dCkiIiIQERGBnJwcI1Zr/mqnG8wtqTJxJURERESdQ6eaavCzzz6r8/3DDz+MyMhIzJ07F1OnTm3wnJkzZ2LmzJkAgIiIiHav0ZK4O9RMZXijoBzeTjYmroaIiIio4+tUI99/JpVKMXHiRKSnp+PGjRumLsfihHo5AADOpBaYthAiIiKiTqJTh+8/ao8l1Klxbg7WCHBW4kSyxtSlEBEREXUKnTp8a7VarF27Fn5+fvDw8DB1ORZpYKAaJ5M10OtFU5dCRERE1OGZpOd7w4YNAIBTp04BALZv3w5XV1e4uroiOjq6pjCZDNOnT8c333wDAFi9ejU2b96M+++/H76+vsjKysLnn3+O06dPY/Xq1ab4GARgYKAz1sWm41p2CUI87E1dDhEREVGHZpLwPXHixDrfP//88wCA6Oho7N+/HwCg0+mg0/0+hV1gYCCys7MxZ84caDQa2NraIiIiAjt27MDo0aONVjvVNShQDQA4kaxh+CYiIiK6A5OEb1G8c4vCn4+JjIzE3r1726skaiEflQ08HKxxIkmDaZH+pi6HiIiIqEPr1D3fZHqCIGBgoBonkvKa9EMVERERkSVj+KZWGxioRlZRJVI1ZaYuhYiIiKhDY/imVhtY2/edxCkHiYiIiBrD8E2tFuRqB5VSzvBNREREdAcM39RqEomAAQFqLrZDREREdAcM39QmBgaqkZJXhqyiClOXQkRERNRhMXxTm2DfNxEREdGdMXxTm+jp6QBbKynDNxEREVEjGL6pTcikEvTzVzF8ExERETWC4ZvazKBANa5kFaOgrMrUpRARERF1SAzf1GYGBjoDAE4m55u4EiIiIqKOieGb2kxvH0dYSSU4kZRn6lKIiIiIOqQ2Cd95eQxbBFjLpejj64QTHPkmIiIialCzwveyZcvwwQcfGL4/f/48fHx84ObmhoiICNy8ebPNC6TOZWCgGhcyClFaqTV1KUREREQdTrPC92effQYbGxvD96+88gqcnJzwySefoLCwEPPnz2/zAqlzGRiohk4v4nQqR7+JiIiI/kzWnINTUlLQvXt3AEBhYSEOHDiATZs24f7774ezszPmzp3bLkVS59HPXwWJAJxM0mBosKupyyEiIiLqUJo18q3X6yGR1Jxy6NAhCIKA4cOHAwB8fX2RnZ3d5gVS52KnkCHM2xHHOd83ERERUT3NCt/BwcH45ZdfAABr1qzB4MGDoVQqAQCZmZlQq9VtXyF1OgMD1DiTVoBKrc7UpRARERF1KM1qO3n11Vcxbdo0fPfdd8jPz8f69esN+/bt24fevXu3eYHU+QwIVOPrQ0nYcykb9/fyvOPxcWkFeH/7JaRpyuFgI4e9tQwO1nI42NT8encPN7awEBERkVloVvh+/PHH4efnh+PHj2PAgAEYNmyYYZ+7uzvGjh3b5gVS5xPV1RneTjZ4fuVpjOzhjjmjQxDiYV/vuOyiCvxn5xVsOJUOFzsFhga7oLhCi+KKamQUlOPSjWrkl1VhzclUHHwtBm721ib4NERERERtRxBFUTR1EcYSERGB2NhYU5dhEUortVh+OAlfHUhESZUWD/fxxux7usFXrUSlVoflh5Px2Z5rqNLp8Ze7AvFCTBDsreX1rpOUW4qRHx3Ak4MD8OaDPU3wSYiIiIiap7HM2ayR7yNHjkCj0eDBBx8EULO4zgsvvIALFy5g9OjR+Pe//w2pVNr6iqnTs1XI8MKIYEyN9MeSA9ex4nAyfj6XiYf7euNEkgbJeWW4u7sb5j3YE4Eutre9TqCLLR7q440fj6XgmeguHP0mIiKiTq1ZL1y+/vrrOHXqlOH7OXPmYNu2bejWrRuWLFmCd999t80LpM7NSWmFuff1wMHXYvBohC/+dzoDEomAFTMG4JsnBzQavGu9OCIIWr2IL/cnGqFiIiIiovbTrPB96dIlREREAACqq6uxYcMGfPzxx/jpp5+waNEirFq1ql2KpM7P3cEaix7uhbi3RmHXy8MwPMStyecGuNji4b7eWHk8BdlFFe1YJREREVH7alb4LikpgYODAwDgxIkTKC0tNbSg9OvXD6mpqW1fIZkVO4UMMmmz/rMD8Pvo95ID19uhKiIiIiLjaFYK8vb2xtmzZwEA27dvR1hYGNzcakYw8/PzDXN+E7U1f2dbjO/rjZXHU5HF0W8iIiLqpJoVvh977DH885//xIQJE/DRRx9h6tSphn2nT59GcHBwmxdIVOvFEcHQ60Us2c/RbyIiIuqcmhW+FyxYgH/84x+orKzE66+/jtmzZxv2nT17FhMnTmzzAolq+Tkr8Ug/H6w6kYqbhRz9JiIios6H83xTp5KmKUPM4v2YGumPBWNDTV0OERERUT1tNs93rQsXLuDAgQPQaDRQq9UYPnw4QkMZhKj9+aqVmNC/ZvT72eiu8HDkvN9ERETUeTQrfGu1Wjz55JNYvXo1/jhgLggCHn/8caxYsYKL7FC7mxUThA2n0rFkfwLeHhdm6nKIiIiImqxZPd9vv/021q1bh4ULFyIpKQnl5eVISkrCwoULsXbtWixcuLC96iQy8FUrMTHCF6tOpOLyzSJTl0NERETUZM3q+Q4MDMSMGTMwf/78evsWLlyI5cuXIykpqU0LbEvs+TYfeSWVGPXxQXg52WDj84NbNHc4ERERUXtoLHM2K7FkZmZi8ODBDe4bPHgwMjMzm18dUQs42ynwr4fCcD6jEF8d5LLzRERE1Dk0K3x7eXnh8OHDDe47cuQIvLy82qQooqa4r5cnHujtiU9+vYorN4tNXQ4RERHRHTUrfE+ZMgWLFi3CO++8g8TEREPP93vvvYdFixZh2rRp7VUnUYMWjg2FvbUcczachVanN3U5RERERI1qVs+3VqvFE088gTVr1kAQBMN2URQNs53IZC2avdAo2PNtnn45dwOzVp3Ga/eG4PnhQaYuh4iIiCxcm83zLZPJsGrVKrzxxhs4ePCgYZ7vYcOG4caNG+jXrx/OnTvXJkUTNdUDvT3xy3kPfLL7Gu7p4Y5gd3tTl0RERETUoBYNU4eGhtZbVOfy5cu4ePFimxRF1FwLx4Xh6PUDeHXDOfz0bBRnPyEiIqIOiQmFzIKLnQILx4XhbFoBvj7Ucae7JCIiIsvG8E1m48Henrg31AMf7b6K06n5pi6HiIiIqB6GbzIbgiDg3fG94Olojae/i0VKXqmpSyIiIiKq444934mJTVvA5ObNm60uhqi11LZWWP7kAIxfcgQzlp/E/54fDCellanLIiIiIgLQhPAdFBRUZ1rB2xFFsUnHEbW3Lq52WPZEBKYsO46Z35/C908NhLVcauqyiIiIiO4cvpcvX26MOoja1IAANT58NBwvrj6DORvO4dNJfSCR8IdDIiIiMq07hu/p06cbow6iNjcm3Avp+eX4947L8FXZ4LV7u5u6JCIiIrJwHXc5SqI28Gx0F6RqyvDF/uvwVSvx2EA/U5dEREREFozhm8yaIAh4Z1woMgvKMW/TBQS62CKyi7OpyyIiIiILxakGyezJpBJ8PqUf/NRKzF4bh8KyalOXRERERBaK4Zssgp1Chk8m9UFOcSXmbjwHURRNXRIRERFZIIZvshjhvk54ZVQ3bDt/E+tj001dDhEREVkgo4fv9PR0vPjii4iKioJSqYQgCEhOTm7SuXq9Hu+99x4CAgJgbW2N8PBw/PTTT+1bMJmVZ4Z1RVQXZyz4+SISc0pMXQ4RERFZGKOH74SEBKxbtw4qlQpDhw5t1rlvvvkmFixYgBdeeAHbt29HZGQkJk6ciG3btrVTtWRupBIBH00Kh1wqwUtr4lCl1Zu6JCIiIrIgRg/fw4YNQ1ZWFrZt24aJEyc2+bzs7GwsXrwYr7/+Ol599VXExMTgq6++QkxMDF5//fV2rJjMjaejDf79SC+czyjER7uvmrocIiIisiBGD98SSctuuXPnTlRVVWHq1Kl1tk+dOhXnz59HUlJSW5RHFuLeME9MHuCLrw5ex5GEXFOXQ0RERBai07xwefHiRSgUCgQFBdXZHhoaCgCIj483RVnUic0f0xOBzraYvS4OmtIqU5dDREREFqDThG+NRgMnJycIglBnu1qtNuxvyNKlSxEREYGIiAjk5OS0e53UeSitZPi/x/oiv7Qajyw5goTsYlOXRERERGau04Tvlpo5cyZiY2MRGxsLV1dXU5dDHUyYtyNWPj0IxRXVePjzI9h3OdvUJREREZEZ6zThW6VSoaCgoN7iKLUj3rUj4ETNNSBAjc0v3AU/ZyX+8t1JLNl/nYvwEBERUbvoNOE7NDQUlZWVuH79ep3ttb3ePXv2NEVZZCa8nWyw4dnBuL+XJ/694zJeXhuHimpdu9+XIZ+IiMiydJrwfe+990Iul2PlypV1tv/4448ICwtDYGCgiSojc2FjJcV/H+uLOaNDsOVsJh796iji0gqg07d9QK6o1mHBlovotWAXPvn1qlGCPhEREZmezBQ33bBhAwDg1KlTAIDt27fD1dUVrq6uiI6OrilMJsP06dPxzTffAADc3Nzwyiuv4L333oO9vT369euHtWvXYu/evdiyZYspPgaZIUEQMCsmCCHu9nh5bRwe+vww7K1lGBTojKiuzhjc1Rkh7vaQSIQ7X+w2zqcX4uW1Z3A9pxR9/Zzwya/XsPFMBhaMDUVMiFsbfhoiIiLqaEwSvv+8uM7zzz8PAIiOjsb+/fsBADqdDjpd3dHARYsWwc7ODp9++ilu3ryJkJAQrFu3Dg8++KBR6ibLMbKnOw7MGY5DCbk4ej0PRxPz8OulLACASinHyB7umBblj94+Tk2+planx5L91/HpnmtwsVPgh6cGYmiwKw4n5OLNzRcwY/lJjA51x/wxofB2smmnT0ZERESmJIgW1HQaERGB2NhYU5dBnVRGQTmOXs/DkYRc7Lh4E2VVOvTxdcITUf54oLcnFDLpbc9Nyi3FK+vicCa1AGPDvfDOuDA4KuWG/VVaPb4+lIjP9iQAAF4YEYTHB/pBZWvV7p+LiIiI2lZjmZPhm6gFiiqq8dOpdPxwNAWJuaVwtrXCpAG+uCvIBZqyKuQWVyKnpBK5xVXIKanE0et5sJJJ8K+HwjAm3Ou2103PL8PCn+OxKz4LEgHo76/C3T3ccXd3NwS52dWb516vF5FVXIH0/HIEutjCxU7R3h+diIiI7oDh+xaGb2prer2Iw9dz8f3RFOy5lIU/vpsplQhwtrWCq70C3dzt8Y97u8PD0bpJ1z2XXoBf47Pw66VsxN8oAgD4qZUYHuIKUQRSNWVI05QhPb8cVTo9AMBaLsFjA/3wzLCuTb4PERERtT2G71sYvqk9ZRSUIymnFC72VnC1U0CltGrVi5m1bhSWY8+lbOy9nI3DCbmwlkvhp1bCV20DX7USfmolPByssePCTWw8kwGJIGBChA+ei+4KX7WyDT4ZERERNQfD9y0M39TZ6fVio4E+TVOGLw9cx/rYdOhFEQ/19caMIQHo6elQr2WFWq68Socqrb5O3z4REVGtxjKnSWY7IaKWudNIuq9aiUUP98ILI4Kw9GAiVh1PxYZT6XB3UCC6myuiu7nhrmAXONowNLbGi6vP4EpWEXbPjoa1/PYv2hIREf0ZwzeRGfJ0tMFbY0LxQkwQ9lzOxoErOdhx4SbWxaZDKhHQ19cJ0d1ccVewC3r7OEHaBu0xluJ6Tolh2skfjqbg6WFdTFwRERF1JgzfRGbM2U6BRyN88WiEL7Q6PeLSCnDgag72X8nBh7uv4sPdV+FgLcPgri64K9gFQ4Nd4O9sa+qyO7TvjiTDSipBLx9H/HdfAh4d4Mt/SSAioiZj+CayEDKpBBEBakQEqPH3USHIK6nE4et5OHQtB4eu1cxdDgBdXW0x974eGNnT3cQVdzyF5dXYcCodY8K98NRdgXjgs9+wZP91vH5fd1OXRkREnQTDN5GFcrZTYGy4F8aGe0EURSTlluJQQs20iX/9PhYje7jhrTGhnDHlD9bHpqGsSlfzEquXAx7q443lh5MwfbA/PB25KikREd2ZxNQFEJHpCYKALq52eCIqANv+NhSv39cdR67nYeRHB/DZnmuo1OpMXaLJ6fQivjuajAEBKoR5OwIAXrmnG0QR+GT3NRNXR0REnQXDNxHVYSWT4Nnorvj1lWjc3cMNH+6+itEfH8SBqzmmLs2k9lzKQpqmHDOGBBq2+aqVmBblj/Wn0nAtq9iE1RERUWfB8E1EDfJyssEXU/rj+78MhCAImP7tCUxYcgR7L2fBgpYHMFh+OBneTjYY9ade+FkxQbC1kuHfO66YqDIiIupMGL6JqFHDurlix8tD8fbYUNworMBfVsTivk9/w6YzGdDeWtre3F26UYSjiXmYFuUPmbTuX5tqWys8O7wrfr2UhZPJGhNVSEREnQXDNxHdkUImxfTBAdg/Zzg+ejQcOr2Il9fGYfji/fjhaDLyS6tMXWK7WnE4GdZyCSYP8G1w/1+GBMLNXoH3tl2yyH8VICKipmP4JqImk0slGN/PBztfHoZlT0TA1V6BNzdfRL9/7ca4/x7Ch7uu4GSyxqxGxDWlVdgUl4Hx/XzgpLRq8BgbKylm39MNp1MLsCs+y8gVEhFRZ8KpBomo2SQSAff0dMfIHm44l16I/VdycPBaDj7fl4DP9ibAXiFDVFdnqG2tUKXVo0qnr/OrtVwKJ6UcKqUVVEo5VLZWUCmtYKuQQSoIkEoEyKQCJIIAmUSAl5MNXO0VJvmsq0+kolKrx4zBAY0eN7G/D77+LRH/2XEZI3u4c9VQIiJqEMM3EbWYIAgI93VCuK8TXhoZjMKyahy+nouDV3Nw5Hoeyqt1sJJKoJBJYFX7JZWgqKIaV24WI7+sCmVVd57G0FouwZdT+2N4iJsRPtXvqnV6/HA0BUODXRDsbt/osTKpBC+N7Ia/rT6D/VeycXcPLlJERET1MXwTUZtxVMpxfy9P3N/Ls8nnVGp1KCirhqa0CmVVWuj0gFavh/7Wr1qdiI92X8Vfv4vFR5P6YGy4Vzt+grq2X7iJm0UVeHd8WJOOvy/MAx4O1lh+OJnhm4iIGsTwTUQmpZBJ4e4ghbuD9W2PGdhFjb+uiMVLa86gqLwaUyP9270uURTx9W+JCHBWYni3po24y6USTIvyxwc7r+BqVjG63WG0nIiILA9fuCSiDs/BWo7v/jIQMSFumLfpAj7fl9Dus4psOZuJc+mFmBUTBEkz+rcfG+gHhUyCFUeS2684IiLqtBi+iahTsLGS4qtp/TGujxc+2HkFi35pv2n9yqt0+Pf2ywjzdsAj/Xyada7a1goP9fHG/06no6DMvKdgJCKi5mP4JqJOQy6V4ONH+2B6lD++PpSEv687i+ziija/z9e/JSKzsALzHujZrFHvWjPuCkBFtR5rTqa1eW1ERNS5MXwTUacikQhYMDYUL90djP+dycCQ9/fipTVncDo1v8GRcFEUkZBdjC/2J+CJb0/gyPXcRq+fVVSBJQeuY3SoOyK7OLeoxu4eDojq4ozvjySb1ZznRETUenzhkog6HUEQMPuebhjXxwvfH03BhlPp2ByXid4+jpgeFYD7e3niYmYhdsdnYXd8FhJzSwEA9goZnv4uFquejkS4r1OD11688wqqdXrMva9Hq2p8ckgAnvnhFHbHZ+G+Zsz+QkRE5k0QLWgt5IiICMTGxpq6DCJqYyWVWmw8nY7vjqYgIbsEEgHQi4BMIiCqqzNG9XTHyJ7ukAgCJnx5BCUVWqx/NgpBbnVnI7mQUYgx/z2Ev94ViDce6NmqmnR6EcMX74Ongw3WPRvVqmsREVHn0ljm5Mg3EXV6dgoZpkUFYGqkPw4n5GHv5Wz08XPC8BBXOFjL6xz7w18GYcKXRzHtmxPY8NxgeDvZAKhpT/nXL/FQKa3wwojgVtcklQiYHhWAf/1yCRcyChHm7djqaxIRUefHnm8iMhuCIOCuYBfMH9MTY8O96gVvAAhwscX3fxmIkkotpn1zHHkllQCAXfFZOJaoweyRwXC0qX9eS0yM8IXSSmqR0w6Koogxnx3Cv7bGm7oUIqIOheGbiCxOTy8HfPvkAGQWlOPJ5SehKa3Ce9suIdjNDo8N9Guz+zjayPFIPx9sictE7q2QbynOphfifEYhVp9IRUml1tTlEBF1GAzfRGSRBgSosWRKf1y6UYRRHx9Ecl4Z3nigB2TStv1r8ckhAajS6bHqeGqbXrej2xyXAUEASqt02ByXYepyiIg6DIZvIrJYMd3dsHhiOHJLKjGsmyuGhzRtGfnm6Opqh+hurvjhWArKq3Rtfv2OSKvT4+ezNzCqpzt6eDpg9QnL+sGDiKgxDN9EZNEe6uuNzbOG4LPH+rbbPZ4f3hW5JZX425oz0OnNf4Kpo4l5yC2pxEN9vPH4QF9cyCjCufQCU5dFRNQhMHwTkcUL93Vqs5csGzKoizPeHhuK3fFZeGvLhQYXAzInm+MyYa+QIaa7G8b19YaNXGpxbTdERLfD8E1EZARPRAXg2eiu+PFYKr7Yf93U5TRbeZUOCdnFd/zBoaJahx0XbuLeMA9Yy6VwsJZjTLgntpzNRHFFtZGqJSLquDjPNxGRkbw2OgQ3C8vxwc4r8HS0xvh+PiapQxRFbDiVjl3xWXCxU8DL0RoejtbwcrKBp6M17KxluJZVgouZhbiYWYSLmUVIzCmBXgTeGReKaVEBt7323svZKKnUYlwfb8O2xwf5Y11szSqkUyP9jfAJiYg6LoZvIiIjkUgE/GdCOHJKKvHahnNwtVdgaLCrUWtIzCnBPzeex7FEDbydbFBRrUNeadVtj/d0tEZPTwfcH+aBQwm5WLzrKh7s7QWVrVWDx286kwFXewWiujobtoX7OKKnpwNWHU/FlEF+EAShzT8XEVFnwfBNRGREVjIJlkztj0e/PIrnfjyNtc9EItSraatfVmp1OJtWiKLyakglAiQSAVJBgEQCyCQSeDhYw1dt02C4rdLq8dWB6/hsXwIUMgneG98LkyJ8IZEIqKjWIauoApkFFbhRWI7C8moEudmhp6cDnO0Uhms80NsL9316EB/tvop3Hgqrd4/Csmrsv5KDqZH+kEp+r0EQBDw2yA9vbrqAc+mFCPd1av4fHBGRmWD4JiIyMgdrOVbMGIjxXxzGk8tPYkJ/H3R1tUOQmx26utrC/tbKnDq9iIuZhTickIcj13NxMlmDimp9o9d2sVOgv78T+vur0M9PhTBvR1zMLMTc/53H1awSPNDbE2892BNuDtaGc6zlUvg728Lf2bbRa4d42GNqpD9+PJaCxwf5oYenQ539Oy7eQJVOj3F9vOqd+1AfL7z7yyWsOp7K8E1EFo3hm4jIBDwcrbHiLwPxyro4fP1bIqp1v7/I6O6ggJ9aiatZJSgsr3lJsZu7HSYP8MPgrs7wcLSGTi9CL4rQ6WtCuk4vIjmvFKdT8nEqNR87L2YBAKykElTr9fB0sMY30yNwdw/3VtX9yj3dsOVsJhb+HI9VTw+qM8q+6UwmAl1s0dun/ki+vbUcY8O9sOVsJuY92MPwAwYRkaVh+CYiMpFu7vbY+uJQVOv0SNWU4Xp2CRJySpCQXYLUvDKM6umOIUEuGNzVuc5I9e3cFexieKExt6SyJoin5MPGSoqnh3aBraL1f+U7Ka3w93u64c3NF7Hjwk3c18sTAHCzsALHkvLwtxHBt+3pfnyQH9bGpmFTXCam8cVLIrJQDN9ERCYml0rQ1dUOXV3tMKqNrulip8CoUA+MCvVooyv+7rGBflh5PBX/+uUSYrq7wVouxdZzmRBFNNhyUqu3jyNCvWpevJzKFy+JyEJxnm8iImoWmVSCt8aEIqOgHEsPJgIANsVloLePI7q42t32PEEQ8NhAP1y6UYSz6YUoq9IiNlmDbw8l4ZW1cbjnowN4+IvDrZ4PvLC8Gs/+cApf7E+AppGZXO4kq6gCs1aexrRvjiMpt7RVNRER1eLINxERNVtUV2fc38sDX+xPQD8/FS5kFGHeAz3ueN64Pl54d9slPPHNcZRUaqG/1eruaq9AT08HHErIxey1Z7F0Wn9IJC0bGf9491XsuHgTOy7exKe/XsO4Pl6YPjigybPKiKKI9bHpeOeXeFRp9bCSSnDfpwfx6qgQzBgSWGcmFyKi5mL4JiKiFpl7Xw/suZSNZ36IhSAAY8Nv33JSy95ajldHheBwQi5CvR3Ry9sRvX0c4X6rp3354SS8/XM8PtlzDa/c063ZNV26UYTvjybjiSh/TI30x3dHkvG/0xlYF5uOAQEqPDk4EHf3qGmVaUiapgz/3Hgev13LxcAANd5/pBeUVjK8sfE8/vXLJfxy/gY+mNAbQW72za6NiAgABPFOawWbkYiICMTGxpq6DCIis/HRriv4v70JGBLkjJV/jWz19URRxJwN57DhVDq+nNof94Y1vWddFEVM+uoYEnJKsPfv0XBS1iwEVFhWjfWn0vDd0WSkacohlQjo5m6PcB9H9PJxRLiPE4Ld7bD2ZBre334ZAoDX7+uOKYP8DaPvoihic1wmFvx8EWVVOrw8Mhgzh3aBTMruTSKqr7HMyfBNREQtVl6lw8wfYvGXIYGI6e7WJtesqNZh0tJjSMgqxsZZQ9DNvWmjzJvjMvDSmji8P74XJg/0q7dfpxdxKCEXJ5M0OJdRiHPpBSgoq+kvlwiAXgSGBrvgvfG94KNSNniPnOJKzN98Adsv3ERvH0d8OrkvAl0anx+diCwPw/ctDN9ERJ3DzcIKjPnvISitpNgy6y44KhufF7ykUosRi/fD09EaG58f0qR+cVEUkaYpx7mMAlzIKEIPT3uMDfdq0iwsv5y7gTc2nUeVVo+3x4ZiQn8fzt5CRAaNZU7+exkREXU4Ho7W+HJqP2QWlOOF1aeh0zc+TvTZnmvILq7E2+PCmvyipiAI8HNW4sHeXnj9vu4Y18e7yQH6gd6e2P7SUPTydsScDefwtzVxKGrlLC1EZBkYvomIqEPq76/GO+PC8Nu1XLy77RL0twngCdkl+OZQEiZF+KKPEZeu93S0waqnI/HqqG7Ydv4G7v/0N5xOzTfa/Ymoc2L4JiKiDmvyQD9Mi/THN4eSMPLjA1gXm4Yqrd6wXxRFLNhyEUorKV67N8To9UklAl4YEYx1z0QBACZ+eRSf7blWp0Yioj9i+CYiog7t7bGh+O/jfWEtk+K1Decw/IN9+PZQEsqqtNh58SYOJeTi76NC4GynMFmN/f1V2PbSUNzfyxMf7r6Kez89iH1Xsk1WDxF1XHzhkoiIOgVRFHHgag6+2HcdJ5I1UCnlkEoEuNgpsPXFuzrEtH+iKGLflWy8s/USknJLERPiinkP9kTXRlb+JCLz06FeuExLS8OECRPg6OgIBwcHjB8/HqmpqU06VxCEBr/i4uLat2giIjI5QRAwPMQN656NwoZno9DXT4Wici0WjgvrEMEbqKlxRHd37Hx5GOY90AOxyfkY/fFBvLM1HoXlfCGTiIw88l1WVobw8HAoFAr861//giAImDdvHsrKynDu3DnY2jY+V6ogCHjyySfxzDPP1Nneu3dvKJUNz8n6Rxz5JiIyL9U6PeQdJHg3JLekEh/uuoI1J9OgVlrhnYfCcH8vT1OXRUTtrLHMadTl5ZctW4bExERcuXIFQUFBAGqCc3BwML766iu88sord7yGt7c3IiNbv4oaERF1fh05eAOAi50C743vjSmD/PHGxvN4fuVpTOjvgwVjQ2GnMOr/gomogzDq31pbtmxBZGSkIXgDQGBgIIYMGYLNmzcbsxQiIiKjCfN2xIbnBuPFEUH43+l03P/pbziVojF1WURkAkYN3xcvXkRYWFi97aGhoYiPj2/SNZYsWQKFQgGlUokRI0bgt99+a+syiYiI2pxcKsHfR4Vg3TNR0IsiJn55FB/tvopqHaclJLIkRg3fGo0GKpWq3na1Wo38/DsvTDB16lR88cUX+PXXX7F06VLk5eVhxIgR2L9//23PWbp0KSIiIhAREYGcnJzWlE9ERNRqEQFqbH9pKB7q643/23MNE788is1xGUjNK4MFTUBGZLGM+sKllZUVXnnlFbz//vt1ts+bNw/vv/8+tFpts65XXFyMsLAw+Pr64tChQ3c8ni9cEhFRR7L1XCbmb74ITWkVgJoe8b5+Tujnp0I/Pyf091d1mJlciKjpOswLlyqVqsER7tuNiN+Jvb09HnjgAXzzzTdtUR4REZFRPdjbC/eGeuBKVjFOpxbgTEo+TqfmY3d8FgAg3McRS6b2h5eTjYkrJaK2YtTwHRoaiosXL9bbHh8fj549e7b4uoIgtKYsIiIik5FJJQj1ckSolyOmRfoDAPJKKrHncjYW/hyPBz87hM8e64shQS4mrpSI2oJR/y1r7NixOHbsGBITEw3bkpOTcfjwYYwdO7bZ1ysqKsLWrVsxcODAtiyTiIjIpJztFHg0whebXxgCZ1srTPvmOJbsv86ecCIzYNSe79LSUoSHh8PGxsawyM6bb76J4uJinDt3DnZ2NcvvpqSkoGvXrpg/fz7mz58PAFi8eDGuXLmCmJgYeHl5ISUlxbBtz549GDp06B3vz55vIiLqbEortXjtp3P45dwNjA51x+KJ4bC3lrfJdY9ez0M3d3v4qm3u+K/IWp0e13NKkZxXivT8cqTnlyFNU/NrZkE5eno54LnhQRgW7MJ/kSaL12F6vm1tbbF3717Mnj0b06ZNgyiKuPvuu/HJJ58YgjcAiKIInU4Hvf736ZdCQkKwceNGbNy4EYWFhXBwcMCQIUPwzTffcOSbiIjMlq1Chv8+1hd9fZ3w3vbLGPffw/hgYjj6+Tm1OOSeTSvAS2vOIDmvDADg7qDAgAA1BgaqMSBAjW7u9sgsKMfZ9AKcTSvA2bRCnM8oRHm1znANpZUUviolfNU26Oevwt5L2Zj+7QmEejng+eFBuDfMA1IJQzjRnxl15NvUOPJNRESd2fHEPMxadQa5JZXwd1biwd6eeLC3F7p72DcpiOv0Ir48cB0f774KN3sF3nywJ3JLq3AiSYOTSRrcLKoAAMilAqp1NfHASiZBqJcDwn2cEO7riK6udvBVKeGklNe5Z5VWj01nMvDlgetIzC1FFxdbPBvdFQ/19YaVjDO2kGVpLHMyfBMREXUiheXV2HHhBraeu4HDCbnQi0CQmx0e7O2Je3q6I8TdvsHpCTMLyjF7bRyOJ2nwQG9PvPtQLzgqf29fEUUR6fnlOJGkwaUbRfB3sUUfHyeEeNg3Kzzr9CJ2XLiJL/Yn4GJmESL8VVj1dCQDOFkUhu9bGL6JiMic5JZUYvuFm9h6NhMnkjUQRcBaLkGYlyN6+Tgi3McJvX0ccflmMeb+7zyqdXq8PTYUE/r7tHtftiiKWB+bjtd+Ooe/3hWIeQ+2fFYzos6mw/R8ExERUdtxsVNgWqQ/pkX6I6uoAkev5+FsegHOpRdi9YlULD+cbDg23McRn0zui0AXW6PUJggCHh3giwuZhfj6UBIGBqoxKtTDKPcm6sgYvomIiMyAu4M1HurrjYf6egOomZ3kalYJzqUXQKsXMWmAL+QmWC3zjQd64ExqAV5dfxa/eDrAV600eg1EHQkbsIiIiMyQTCpBTy8HTB7oh6mR/iYJ3gCgkEnx+eP9IAJ4YdVpVGn1dzyHyJwxfBMREVG78nNW4oMJ4TibXoh3t10ydTlEJsXwTURERO3u3jAPzBgSgBVHkrH9/A1Tl0NkMgzfREREZBRz7+uBcF8nvLbhHFLySk1dDpFJMHwTERGRUVjJJPjvY30hCMBfVpzE+fRCU5dEZHQM30RERGQ0vmolvpzWH0UVWoz7/BDe23YJ5VW6O59IZCYYvomIiMioBnd1wa+zo/FohC++OpiIez89iCMJuaYui8goGL6JiIjI6ByVcrz/SG+senoQAODxr4/jHxvOobCs2sSVEbUvhm8iIiIymcFdXbDz5WF4JroLNpxOR8yH+/HRrivIKqowdWlE7YLhm4iIiEzKWi7F3Pt6YPOsIejr64TP9iVgyPt78dKaMziTmt/gOWVVWpxNK8DOizfZM06dCpeXJyIiog4hzNsR3zw5AMm5pfj+aArWx6Zhc1wmwn2dML6vN3JLKnHlZjGuZBUjVVMGUaw5r6+fE76dPgAqWyvTfgCiJhBEsfY/XfMXERGB2NhYU5dBRERETVBSqcX/TqdjxZFkJOaUQiIAgS62CPGwR4i7A0I87FBcocUbmy7AT63E938ZCC8nG1OXTdRo5uTINxEREXVIdgoZnogKwNRB/kjLL4O7gzWs5dJ6x/molJj5fSweWXIEPzw1EEFu9iaolqhp2PNNREREHZpEIsDf2bbB4A0AUV2dseaZSFTrREz48ihO36ZPnKgjYPgmIiKiTi/UyxE/PRcFRxs5piw7jn1Xsk1dElGD2HZCREREZsHf2RYbnh2M6d+ewNPfxeLuHm4IcLFFoLMtAlxs0cXFFq72CgiCYOpSyYIxfBMREZHZcLVXYO0zkXj753icSc3H3svZqNb9PreErZUUw7u7YfbIbghyszNhpWSpGL6JiIjIrNhby7F4YjgAQKcXkVlQjqTcUiTnleJqVjE2ns7A9vM3MKG/D14a2Q3enCGFjIjhm4iIiMyWVCLAV62Er1qJYXAFALw8shu+2HcdPx5LwaYzmZgS6YdZMUFwsVOYuFqyBHzhkoiIiCyKi50C88f0xL45w/FwX298dyQZw/6zDx/tuoLiimpTl0dmjuGbiIiILJK3kw3+PaE3dr8SjZgQN/zf3gQM/2A/VhxOQpVWb+ryyEwxfBMREZFF6+pqh8+n9MPmWUPQzd0eC36Ox8iPDmDL2Uzo9RazEDgZCcM3EREREYBwXyesenoQVswYAKWVFH9bfQbjPj+M/VeyGcKpzfCFSyIiIqJbBEHA8BA3DA12xea4DHy46yqeXH4SvmobTIrwxYT+vvBwtDZ1mdSJCaIoWsyPchEREYiNjTV1GURERNRJVGp12HHhJtaeTMOR63mQCMDwEDdMGuCLEd3dIJf+3kQgiiJ0t0bIZVI2F1iyxjInR76JiIiIbkMhk2JcH2+M6+ONlLxSrItNw/rYdOy9nA2FTAKpRIBWXxO6DcFbImBUqDumRQYgsouaK2pSHQzfRERERE3g72yLOaO7Y/bIbjhwNQeHE2pGwqVSATKJAKlEAplEgKa0ChvPZGDb+Zvo5m6HaZH+eLifD+wUjF3EthMiIiKiNldRrcOWs5n4/mgyLmQUwU4hw/h+3gj3cYKnozU8bn0prRjIzRHbToiIiIiMyFouxaMRvpjY3wdn0grww9EUrDmRhu+PptQ5ztFGDg+HmiBeG8prfrWBh4M1bBVSAMCfh0pVtlYcSe+k+NSIiIiI2okgCOjnp0I/PxXeG98LNwsrcKOwAjeLymt+LaxAZkEFsooqcDGzCLkllU26rkwiYGCgGnf3cMfIHm7wd7Zt509CbYXhm4iIiMgIrOVSBLjYIsDl9kG5SqtHdnGFIaSXV+sAALWvbAqCAFEUcT2nFHsuZeGdrfF4Z2s8gtzscHcPN0QHuyLU2xGONnIjfKI7q9TqcC69EFZSCRRyCRQyKaxkEihkEtgpZLCWS01dotGx55uIiIiok0rNK8Ovl7Kw53IWjidqoL0144qPygY9PR0Q6uWInl4O6O5hD09Ha6NOgSiKIqZ8fRxHruc1uF8qERDm7YhBgWoMDFBjQIAajsqO8UNDazWWORm+iYiIiMxAUUU1TqXk49KNIsRnFiH+RhGScksN/eJSiQAPB2t4OVnDy8kG3k428HKy+UOvuQ1USnmbTY249VwmXlh1Bi+OCEJfPydUVutRqdWjUqtDlVaPG4UViE3OR1xaAap0eggCEOJujyFBLnhxRBCclFZtUocp8IVLIiIiIjPnYC1HTIgbYkLcDNvKqrS4fLMYV28WI6OgvOYrvxynU/Pxy7kbhpHyWlYySU0Yd7BGmLcjBgSoMSBABWc7RbNqKavSYtEvl9DT0wEvj+wGqeT2gb6iWoezaQU4kaTBiWQNvj+ajB0XbuL/HuuL/v6q5v0hdAIc+SYiIiKyQDq9aOgvv1lYgZtFv/eaZxSU40JGISq1egBAF1dbQ2vIqFB32Fs33h7y4a4r+GxvAtY/G4UBAepm1XU2rQAvrD6NGwUVmDM6BE8P7QJJI+G9I+LINxERERHVIZUI8HS0gaejTYP7K7U6XMgoxImkfJxM1uCX8zew5mQaeh5ywOqZkbd9qTM1rwxfHUzEQ328mh28ASDc1wlbXxyK1386h/e2X8bxJA0+nBgOlW3dNpSUvFLsv5KDwwm5KK7QNnit4SGueCa6a7NraE8M30RERERUj0ImRX9/Nfr7q/EcukKvF7ErPgsvrj6NGctP4IenBsG2gbnG3/klHjKJgNfv69HiezvayPHFlH744VgK/rX1Eu7/v9/w4aPh0OpE7LuSjQNXcpCYWwoA8HdWwt3eusHr6DtgfwfDNxERERHdkUQi4N4wD/zf5L6Yteo0Zv4Qi2+mD6gzXeCBqznYHZ+F1+4NgYdjw4G4qQRBwBNRAejrq8ILq0/j8WXHAQAKmQRRXZ3xRJQ/hoe4NTp1Y0fEnm8iIiIiapafTqXj7+vPYmQPNyyZ2h9yqQRVWj3u/fQg9HoRO2cPg0LWdnN4F1VU46dT6QhwsUVUF+cOPz84e76JiIiIqM080t8HZVVavLn5Iv6+7iw+ntQH3x1JRmJOKb59MqJNgzdQM5PLjCGBbXpNU2H4JiIiIqJmmxYVgJJKHf694zIEAdhzKRsxIa4Y0d3d1KV1aAzfRERERNQizw3vitJKLf67LwFyqYD5Y0JNXVKHx/BNRERERC3291HdYG8tg8rWCoGd7OVHU2D4JiIiIqIWEwShw82l3ZFJTF0AEREREZGlYPgmIiIiIjISo4fvtLQ0TJgwAY6OjnBwcMD48eORmprapHMrKiowZ84ceHp6wsbGBlFRUTh48GA7V0xERERE1DaMGr7LysowYsQIXL58Gd999x1++OEHXLt2DTExMSgtLb3j+U899RSWLVuGhQsXYuvWrfD09MTo0aMRFxfX/sUTEREREbWSUV+4XLZsGRITE3HlyhUEBQUBAHr37o3g4GB89dVXeOWVV2577tmzZ7Fq1Sp8++23mDFjBgAgOjoaoaGhmD9/PrZs2WKUz0BERERE1FJGHfnesmULIiMjDcEbAAIDAzFkyBBs3rz5jufK5XJMmjTJsE0mk2Hy5MnYuXMnKisr261uIiIiIqK2YNTwffHiRYSFhdXbHhoaivj4+DueGxgYCKVSWe/cqqoqJCQktGmtRERERERtzajhW6PRQKVS1duuVquRn5/f4nNr9xMRERERdWRmv8jO0qVLsXTpUgBATk6OiashIiIiIktm1JFvlUrV4Aj37Ua1m3ou8PsI+J/NnDkTsbGxiI2NhaurawuqJiIiIiJqG0YN36Ghobh48WK97fHx8ejZs+cdz01KSkJZWVm9c62srOq8xElERERE1BEZNXyPHTsWx44dQ2JiomFbcnIyDh8+jLFjxzZ67pgxY1BdXY3169cbtmm1WqxduxajRo2CQqFot7qJiIiIiNqCUcP3008/jYCAAIwbNw6bN2/Gli1bMG7cOPj6+uKZZ54xHJeSkgKZTIaFCxcatvXt2xeTJk3Cyy+/jK+//hp79uzB5MmTkZSUhLffftuYH4OIiIiIqEWM+sKlra0t9u7di9mzZ2PatGkQRRF33303PvnkE9jZ2RmOE0UROp0Oer2+zvnLly/HG2+8gXnz5qGgoADh4eHYsWMH+vXr16T7JycnIyIiok0/U1Pk5OSw39xC8FlbDj5ry8FnbTn4rC1Hez/r5OTk2+4TRFEU2+3OBACIiIhAbGysqcsgI+Czthx81paDz9py8FlbDlM+a6O2nRARERERWTKGbyIiIiIiI2H4NoKZM2eaugQyEj5ry8FnbTn4rC0Hn7XlMOWzZs83EREREZGRcOSbiIiIiMhIGL7bSVpaGiZMmABHR0c4ODhg/PjxSE1NNXVZ1AobNmzAI488An9/f9jY2CAkJARz585FcXFxnePy8/Px17/+FS4uLrC1tcXIkSNx/vx5E1VNbeXee++FIAiYN29ene183uZh27ZtGDZsGOzs7ODg4ICIiAjs3bvXsJ/P2TwcPnwYo0aNgpubG+zt7dGvXz98++23dY6pqKjAnDlz4OnpCRsbG0RFReHgwYMmqpiaIj09HS+++CKioqKgVCohCEKDU/019dnq9Xq89957CAgIgLW1NcLDw/HTTz+1Wb0M3+2grKwMI0aMwOXLl/Hdd9/hhx9+wLVr1xATE4PS0lJTl0cttHjxYkilUrz77rvYsWMHnnvuOSxZsgT33HOPYU56URQxZswY7NixA5999hl++uknVFdXIyYmBunp6Sb+BNRSq1evxtmzZ+tt5/M2D1999RXGjRuH/v37Y+PGjVi/fj0mTpyIsrIyAHzO5uLcuXMYOXIkqqursWzZMvzvf//DgAED8NRTT2HJkiWG45566iksW7YMCxcuxNatW+Hp6YnRo0cjLi7OdMVToxISErBu3TqoVCoMHTr0tsc19dm++eabWLBgAV544QVs374dkZGRmDhxIrZt29Y2BYvU5j755BNRIpGI165dM2xLTEwUpVKp+OGHH5qwMmqN7Ozsetu+++47EYC4Z88eURRFcdOmTSIAce/evYZjCgoKRJVKJb744otGq5XajkajEd3d3cVVq1aJAMQ33njDsI/Pu/NLSkoSra2txY8//vi2x/A5m4e5c+eKcrlcLC4urrM9MjJSjIyMFEVRFOPi4kQA4rfffmvYX11dLXbr1k0cM2aMUeulptPpdIbfL1u2TAQgJiUl1Tmmqc82KytLtLKyEufPn1/n/BEjRoi9evVqk3o58t0OtmzZgsjISAQFBRm2BQYGYsiQIdi8ebMJK6PWaGglrAEDBgAAMjIyANQ8ey8vL8TExBiOcXR0xJgxY/jsO6l//OMfCAsLw2OPPVZvH5935/ftt99CIpHg2Wefve0xfM7moaqqCnK5HDY2NnW2Ozo6Gv71csuWLZDL5Zg0aZJhv0wmw+TJk7Fz505UVlYatWZqGonkznG2qc92586dqKqqwtSpU+ucP3XqVJw/fx5JSUmtr7fVV6B6Ll68iLCwsHrbQ0NDER8fb4KKqL0cOHAAANCjRw8AjT/71NRUlJSUGLU+ap1Dhw7h+++/x+eff97gfj7vzu/QoUPo3r071qxZg65du0ImkyEoKKjOM+dzNg9PPvkkAOBvf/sbMjMzUVBQgGXLlmHPnj2YPXs2gJpnHRgYCKVSWefc0NBQVFVVISEhwdhlUxtp6rO9ePEiFApFnQHU2uMAtEmOY/huBxqNBiqVqt52tVqN/Px8E1RE7SEjIwPz58/HyJEjERERAaDxZw+Az78TqaqqwjPPPINXX30VISEhDR7D5935ZWZm4tq1a5gzZw5ef/117Nq1C/fccw9eeOEFfPrppwD4nM1FWFgY9u/fj82bN8Pb2xsqlQqzZs3Cl19+icmTJwO487PWaDRGrZnaTlOfrUajgZOTEwRBaPS41pC1+gpEFqikpATjxo2DTCbD8uXLTV0OtYP//Oc/KC8vxxtvvGHqUqgd6fV6FBcXY8WKFRg/fjwAYMSIEUhOTsZ7772Hv/3tbyaukNrKtWvX8MgjjyA0NBRffvklbGxssHnzZjz77LOwtrbGlClTTF0iWQiG73agUqkaHAm53U9d1LmUl5djzJgxSExMxIEDB+Dj42PY19izr91PHV9qaioWLVqEr7/+GpWVlXX6PCsrK1FQUAB7e3s+bzPg7OyMa9eu4Z577qmzfdSoUdixYwdu3LjB52wm/vnPf0Iul2Pr1q2Qy+UAgLvvvht5eXl46aWX8Nhjj0GlUiElJaXeubXPunb0kzqfpj5blUqFgoICiKJYZ/S7Lf8bYNtJOwgNDcXFixfrbY+Pj0fPnj1NUBG1lerqakyYMAGxsbHYtm0bevXqVWd/Y8/ez88PdnZ2xiqVWiExMREVFRWYOnUqVCqV4QuomXJSpVLh/PnzfN5moLaP83YkEgmfs5k4f/48wsPDDcG71sCBA5GXl4fs7GyEhoYiKSnJMM1krfj4eFhZWdXrA6bOo6nPNjQ0FJWVlbh+/Xq94wC0SY5j+G4HY8eOxbFjx5CYmGjYlpycjMOHD2Ps2LEmrIxaQ6/XY8qUKdi7dy82bdqEyMjIeseMHTsWGRkZhhcxAaCoqAg///wzn30n0qdPH+zbt6/eF1Dzxvu+ffsQFBTE520GHn74YQA1Mxz80Y4dO+Dj4wMPDw8+ZzPh4eGBuLg4VFVV1dl+/PhxWFtbQ61WY8yYMaiursb69esN+7VaLdauXYtRo0ZBoVAYu2xqI019tvfeey/kcjlWrlxZ5/wff/wRYWFhCAwMbH0xbTJhIdVRUlIidu3aVQwLCxM3bdokbt68Wezdu7cYGBhYb35R6jyeffZZwzzPR48erfOVlpYmimLNXKNRUVGij4+PuHr1anHHjh1idHS0qFKpxNTUVBN/Amot/Gmebz7vzk+v14sxMTGiWq0WlyxZIu7cuVP861//KgIQly9fLooin7O5WL9+vQhAHDVqlLhp0yZx586d4qxZs0QA4uzZsw3HTZo0SXRychKXLVsm/vrrr+IjjzwiKhQK8dSpUyasnu5k/fr14vr16w3/r/7iiy/E9evXi/v37zcc09Rn+49//ENUKBTihx9+KO7bt0989tlnRUEQxJ9//rlNamX4bicpKSni+PHjRXt7e9HOzk4cN25cvQnfqXPx9/cXATT49dZbbxmOy8vLE2fMmCGqVCrRxsZGHDFihBgXF2e6wqnN/Dl8iyKftzkoLCwUn3/+edHNzU2Uy+Vir169xJUrV9Y5hs/ZPGzbtk2Mjo4WXVxcRDs7OzE8PFz8/PPPRa1WazimrKxMnD17tuju7i4qFApx4MCB4r59+0xXNDXJ7f7/HB0dbTimqc9Wq9WK77zzjujn5ydaWVmJvXr1EtevX99mtQq3CiYiIiIionbGnm8iIiIiIiNh+CYiIiIiMhKGbyIiIiIiI2H4JiIiIiIyEoZvIiIiIiIjYfgmIiIiIjIShm8iIjOwYsUKCILQ4JeTk5PJ6nryySfh4+NjsvsTEXU0MlMXQEREbWf9+vX1wq5Mxr/qiYg6Cv6NTERkRvr06YOgoCBTl0FERLfBthMiIgtR25py8OBBPPTQQ7Czs4OzszNmzZqF8vLyOsfeuHEDTzzxBFxcXKBQKNC7d2/8+OOP9a6ZlJSEadOmwcPDAwqFAl26dMFLL71U77gzZ85g6NChUCqVCA4Oxpdfftlun5OIqCPjyDcRkRnR6XTQarV1tkkkEkgkv4+1TJ06FY8++iief/55nDhxAgsXLkRpaSlWrFgBACgtLUV0dDTy8/Px7rvvwtfXFz/++COmTZuGsrIyzJw5E0BN8B44cCCUSiUWLlyI4OBgpKamYteuXXXuX1RUhMcffxwvv/wy5s+fj+XLl+O5555DSEgIYmJi2vcPhIiog2H4JiIyI927d6+37YEHHsDWrVsN399///1YvHgxAGDUqFEQBAHz58/HP//5T3Tr1g3Lly/HtWvXsG/fPgwfPhwAcN999yErKwvz5s3DU089BalUirfeegvl5eU4e/YsvLy8DNefPn16nfsXFxfjiy++MATtYcOGYefOnVi9ejXDNxFZHLadEBGZkY0bN+LkyZN1vj755JM6xzz66KN1vp88eTL0ej1OnDgBADh48CC8vb0NwbvW1KlTkZOTg/j4eADArl278OCDD9YJ3g1RKpV1QrZCoUC3bt2Qmprawk9JRNR5ceSbiMiMhIWF3fGFS3d39wa/z8jIAABoNBp4enrWO8/Dw8OwHwDy8vKaNI2gSqWqt02hUKCiouKO5xIRmRuOfBMRWZisrKwGv/f29gYAqNVq3Lx5s955tdvUajUAwMXFxRDYiYioaRi+iYgszLp16+p8v2bNGkgkEgwaNAgAEB0djfT0dBw+fLjOcatWrYKbmxt69uwJoKZffOvWrbhx44ZxCiciMgNsOyEiMiNxcXHIzc2ttz0iIsLw+23btmHOnDkYNWoUTpw4gbfffhtPPPEEgoODAdSsSvnpp59i/PjxWLRoEXx8fLBy5Urs3r0bX331FaRSKQDg7bffxrZt2zB48GD885//RFBQEDIyMrBjx44GpyUkIiKGbyIiszJx4sQGt+fk5Bh+/+OPP+LDDz/EkiVLYGVlhaefftow+wkA2Nra4sCBA3jttdfw+uuvo7i4GCEhIfjhhx8wdepUw3EBAQE4duwY5s2bh7lz56KkpATe3t4YN25c+31AIqJOThBFUTR1EURE1P5WrFiBGTNm4Nq1a1wFk4jIRNjzTURERERkJAzfRERERERGwrYTIiIiIiIj4cg3EREREZGRMHwTERERERkJwzcRERERkZEwfBMRERERGQnDNxERERGRkTB8ExEREREZyf8D1XF5BtzdPiQAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtAAAAF9CAYAAAAtPV8xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAzDklEQVR4nO3de5QU9Z338U9Vd0/PDMOlRwSE4RZAiAPiMaNBk4gg4CUBVpREBaN5NIiXqOToKsKikgc9m2hiHo+ikCNoVIijEZRF0AjiSqIuyaIE4y4GEAUE5KJchr5VPX/0dNM9N7qameqZ6vfrOGemq6q7v901Mp/69bd+Zdi2bQsAAABAVsx8FwAAAAC0JQRoAAAAwAECNAAAAOAAARoAAABwgAANAAAAOECABgAAABzw57sAJzp37qw+ffrkuwwAAAB43NatW/Xll182uK5NBeg+ffpo3bp1+S4DAAAAHldVVdXoOlo4AAAAAAcI0AAAAIADBGgAAADAAQI0AAAA4AABGgAAAHCAAA0AAAA4QIAGAAAAHCBAAwAAAA4QoAEAAAAHCNAAAACAAwRoAAAAwAEC9AnYfziiPQfD+S4DAAAALiJAn4CZS/+uaX9Yn+8yAAAA4CJ/vgtoy/YeCuurmli+ywAAAICLXB+BXrt2rcaMGaMuXbqoffv2OvPMM/XUU0+5XUaziMQsRWLxfJcBAAAAF7kaoD/88EONGjVK0WhU8+fP1x//+EedddZZuu666zR37lw3S2kWkbilaNzOdxkAAABwkastHIsXL1Y8Hterr76qsrIySdLo0aP14Ycf6plnntGNN97oZjknLDECbeW7DAAAALjI1RHoSCSiQCCgkpKSjOUdO3aUZbW9IBqJWYrE217dAAAAyJ2rAfraa6+VJN16663asWOHDhw4oPnz5+vNN9/UtGnT3CylWTACDQAAUHhcbeEYPHiw3nrrLV166aV6/PHHJUmBQEBPPPGErrjiCjdLaRaROCPQAAAAhcbVAL1p0yZddtllqqys1BNPPKGSkhItXbpUU6dOVXFxsSZNmlTvPvPmzdO8efMkSXv27HGz3OMK145A27YtwzDyXQ4AAABcYNi27do0EhMnTtTf/vY3ffzxxwoEAqnlkyZN0sqVK7V7926ZZuNdJVVVVVq3bp0bpWZl4MzXFI5Z+t//e7GK/FyTBgAAwCuayp2upr4NGzZo6NChGeFZks4++2zt3btXu3fvdrOcExatbd+gjQMAAKBwuBqgu3XrpvXr1ysSiWQsf++991RcXKzy8nI3yzkhsbglq3bsPsqJhAAAAAXD1R7oW265RRMnTtTYsWN10003qaSkRK+88ooWLVqkadOmqaioyM1yTkj6qDMj0AAAAIXD1QB9+eWXa/ny5fr3f/93XX/99Tp69Kj69eunxx57TDfccIObpZyw9OnrmMoOAACgcLgaoCXp4osv1sUXX+z20za79NAcJkADAAAUDKaOyFF6aI7SwgEAAFAwCNA5yuiBZgQaAACgYBCgc5TRA80INAAAQMEgQOeIkwgBAAAKEwE6R0xjBwAAUJgI0DliBBoAAKAwEaBzRIAGAAAoTAToHDELBwAAQGEiQOcowjzQAAAABYkAnSOmsQMAAChMBOgc0cIBAABQmAjQOWIEGgAAoDARoHPELBwAAACFiQCdI1o4AAAAChMBOkfh2tBcEvARoAEAAAoIATpHkZilgM9QMGAyjR0AAEABIUDnKBKzVOQzVeQzOYkQAACggBCgcxSJx1XkNxXwmal2DgAAAHgfATpHkZilIr+poN+kBxoAAKCAEKBzFI3bKvKbKvLTAw0AAFBICNA5SvVAMwINAABQUAjQOQrHLBX5fQpwEiEAAEBBIUDnKBJP9EAX+RiBBgAAKCQE6BxFYnEFky0ccTvf5QAAAMAlBOgcRWKWAn6DHmgAAIACQ4DOUSSediGVWDzf5QAAAMAlBOgcJeeBTrRwMAINAABQKAjQOYrUzsJR5DMVjdEDDQAAUCgI0DnKmAeaEWgAAICCQYDOUXIauwDT2AEAABQUAnSOIjFLQT9XIgQAACg0BOgcpS6kUtvCYdv0QQMAABQCAnSOUj3QPkOSFOViKgAAAAWBAJ2DWNySZSs1Ai2JEwkBAAAKBAE6B8mwXORPXEhFEn3QAAAABYIAnYNkWE5MY+eTJEUZgQYAACgIBOgcJAN0wG8qUNsDzQg0AABAYSBA5yBcG5aDvmM90GECNAAAQEEgQOcgvQc6WBugaeEAAAAoDAToHKR6oNNn4WAEGgAAoCAQoHOQfhJhwMc0dgAAAIWEAJ0DprEDAAAoXAToHEQbauFgBBoAAKAgEKBzEI7TAw0AAFCoCNA5yLiQCi0cAAAABYUAnYNkWA4yAg0AAFBwCNA5aGgaO+aBBgAAKAwE6Bw0OAsHARoAAKAgEKBzkByBDvhMBWjhAAAAKCgE6BxktHDUjkCHCdAAAAAFgQCdg1QLR9osHPRAAwAAFAYCdA7CadPYmaYhv2nQwgEAAFAgCNA5iMQsBXyGTNOQlGjlIEADAAAUBgJ0DiIxK9W6IdUGaFo4AAAACgIBOgfRuJWa/1lKtHLQAw0AAFAYCNA5iMQyA3TAZzILBwAAQIEgQOcgUmcEOkgPNAAAQMEgQOegwR5oAjQAAEBBIEDnIByzVOT3pW4X+emBBgAAKBQE6BzUbeEI+JiFAwAAoFDkJUAvX75c5513nsrKytShQwdVVVVp1apV+SglJ5FYXEU+I3W7yEcLBwAAQKFwPUA/+eSTGj9+vL71rW/p5ZdfVnV1tSZOnKgjR464XUrO6s7CkZgH2s5jRQAAAHCL380n27p1q26//Xb96le/0u23355afuGFF7pZxgmLxC119AVStzmJEAAAoHC4OgL91FNPyTRNTZ061c2nbXb1RqB9piKxeB4rAgAAgFtcDdDvvPOOBg0apMWLF6tfv37y+/3q37+/HnvsMTfLOGGRBmbh4CRCAACAwuBqC8eOHTu0Y8cO3XnnnXrggQfUr18/VVdX65ZbblEsFtNtt91W7z7z5s3TvHnzJEl79uxxs9xGReN25jzQPlPRGD3QAAAAhcDVAG1Zlg4ePKiFCxdqwoQJkqSRI0dq69atevDBB3XrrbfKMIyM+0yZMkVTpkyRJFVVVblZbqPCDZ5EyAg0AABAIXC1heOkk06SJI0ePTpj+ZgxY7Rr1y7t3LnTzXJyFonFFaw7DzQnEQIAABQEVwN0ZWVlk+tNs21c16XuhVSYhQMAAKBwuJpYL730UknSypUrM5avWLFCFRUV6tatm5vl5CwSszJ7oGtbOGybPmgAAACvc7UH+pJLLtGIESN0ww036Msvv9Q3vvENVVdX6/XXX9eCBQvcLCVnsbgly1adaewSfdvRuK0iv9HYXQEAAOABrgZowzC0ZMkSTZ8+Xffee6/279+vQYMG6bnnntNVV13lZik5S54sWLeFI7kufTkAAAC8x9UALUkdOnTQY4891ubmfk5K9joH6kxjl1oXzEtZAAAAcAnDpQ4lA3TmCHTioipRprIDAADwPAK0Q+HaAB30pU9jl+h7ZiYOAAAA7yNAO9RUD3SYAA0AAOB5BGiHGmrhSF5UhRFoAAAA7yNAO5Tsc647D3T6OgAAAHgXAdqhhkagkzNyRAjQAAAAnkeAdqjBWTh8tHAAAAAUCgK0Q+GmLqRCgAYAAPA8ArRDqRHoBnqgaeEAAADwPgK0Q8kAHaSFAwAAoCARoB1q+EqEBGgAAIBCQYB2KNmmEaCFAwAAoCARoB1qaho75oEGAADwPgK0Q7RwAAAAFDYCtEORhq5EWPtzmAANAADgeQRoh8INTWNHCwcAAEDBIEA7FI1bCvgMmaaRWmaahvymQQsHAABAASBAOxSJWRmjz0lFfpMADQAAUAAI0A5FYlbGCYRJRX6TaewAAAAKAAHaoUYDtM+kBxoAAKAAEKAdisQbDtABn8ksHAAAAAWAAO1QYz3QQXqgAQAACgIB2qFwzFKR31dvOScRAgAAFAYCtEORuKUin1FveZGfHmgAAIBCQIB2KBKLN9oDzSwcAAAA3keAdqipWTho4QAAAPA+ArRDiRYOLqQCAABQqAjQDjV9IRU7DxUBAADATQRoh6Jxu+FZOHymIrF4HioCAACAmwjQDjU2DzSX8gYAACgMBGiHwpxECAAAUNAI0A5FYnEFG5rGzm8oSg80AACA5xGgHYrEGxuB9jECDQAAUAAI0A412QNNgAYAAPA8ArQDsbgly1YT09hZsm3aOAAAALyMAO1AcpaNQEMj0D5DkuiDBgAA8DgCtAPJFo3GRqAlMZUdAACAxxGgHWgyQNeOStMHDQAA4G0EaAfCteE42OBJhImrExKgAQAAvI0A7UA03vgIdCDVA02ABgAA8DICtAORJgJ0clmYEWgAAABPI0A7kOqBbqCFI3l1Qlo4AAAAvI0A7UA2s3DQwgEAAOBtBGgHmgrQybmhmcYOAADA2wjQDoSb6oFmGjsAAICCQIB2oKke6CJ6oAEAAAoCAdoBrkQIAACAZgnQe/fubY6HafWaHIGmhQMAAKAgOArQ8+fP169+9avU7Q0bNqiiokJdunRRVVWVvvjii2YvsDXJZh5oAjQAAIC3OQrQjz76qEpKSlK3f/7zn6tTp0565JFH9NVXX2nWrFnNXmBrQgsHAAAA/E42/vTTTzVo0CBJ0ldffaU1a9ZoyZIluuSSS3TSSSdp+vTpLVJka5HNNHbMAw0AAOBtjkagLcuSaSbu8s4778gwDJ1//vmSpJ49e2r37t3NXmBrkmrhYBYOAACAguUoQA8YMED/8R//IUlavHixzj33XJWWlkqSduzYofLy8uavsBXJ5iTCMAEaAADA0xy1cNxxxx26+uqr9fTTT2v//v2qrq5OrVu9erVOP/30Zi+wNYnELQV8hkzTqLeOWTgAAAAKg6MAfdVVV6lXr1567733dNZZZ+m8885LrevatavGjRvX7AW2JpGY1eDosySZpiG/adADDQAA4HGOArQkffe739V3v/vdesvvv//+ZimoNYvErAZPIEwq8puMQAMAAHicox7oP//5z1q2bFnq9t69e3XllVdqyJAhuuOOOxSPx5u9wNYkqwDNCDQAAICnOQrQd999t/7617+mbt95551avny5Tj31VM2dO1cPPPBAsxfYmkTixwnQPkagAQAAvM5RgP7HP/6hqqoqSVI0GtWLL76o3/zmN3rppZc0Z84cPf/88y1SZGsRiVmp+Z4bEvAxAg0AAOB1jgL0oUOH1KFDB0nS+++/r8OHD+sHP/iBJOnMM8/Utm3bHBdw0UUXyTAMzZw50/F93RZu4iRCSQrSAw0AAOB5jgJ0jx499MEHH0iSXnvtNQ0ePFhdunSRJO3fvz81J3S2Fi1alHq8tiAStxTkJEIAAICC5ihAX3nllbrnnnt0+eWX69e//rUmT56cWve3v/1NAwYMyPqx9u/fr2nTpunXv/61kxLyKhKLcxIhAABAgXMUoO+77z7dddddCofDuvvuuzVt2rTUug8++EATJ07M+rHuuusuDR48WFdeeaWTEvLqeLNwBHwm80ADAAB4nKN5oH0+n2bMmNHguiVLlmT9OO+8846eeeaZNtW+IUnRuK2OTfRAMwsHAACA9zm+kIok/f3vf9eaNWu0b98+lZeX6/zzz1dlZWVW941EIrrhhht0xx13aODAgbk8fd5kMw/0kSMxFysCAACA2xwF6FgspmuvvVaLFi2Sbdup5YZh6KqrrtLChQvl8/mafIxf/vKXqqmpaXQku6558+Zp3rx5kqQ9e/Y4KbfZJeaBbvz1JXqg7UbXAwAAoO1z1AN9//3364UXXtDs2bO1ZcsW1dTUaMuWLZo9e7b+8Ic/aPbs2U3ef9u2bZozZ45+8YtfKBwO68CBAzpw4IAkpW7XvZrhlClTtG7dOq1bt04nn3yys1fXzCLHmcYu0cLh7asxAgAAFDpHAfrZZ5/VzJkzNWPGDPXu3VvBYFC9e/fWjBkzNHPmTD3zzDNN3n/z5s06evSoJk+erFAolPqSpIceekihUEgbNmzI/dW0sDCX8gYAACh4jlo4duzYoXPPPbfBdeeee67mzJnT5P3POOMMrV69ut7yESNGaPLkybruuuvUv39/JyW5KhKLNz0PNCcRAgAAeJ6jAN29e3etXbtWo0aNqrfuz3/+s7p3797k/Tt16qTzzz+/wXW9e/dudF1rkeiBbmIaO7+hKD3QAAAAnuYoQE+aNElz5syRaZqaNGmSTjnlFH3xxRdavHix5syZo7vuuqul6mwVIjFLAZ/R6Poin48RaAAAAI9zFKDvu+8+bd68Wffee6/uu+++1HLbtnXVVVdp1qxZORWRPqNHaxWLW7LsREhuDJfyBgAA8D5HAdrv9+v555/XjBkz9Pbbb6fmgT7vvPO0c+dOnXnmmfrwww9bqta8Sp4cmM1JhLZtyzAaH6kGAABA25XThVQqKyvrXTjl448/1saNG5ulqNYoObLcZICube+Ixm0V+QnQAAAAXuRoGrtClu0IdPq2AAAA8B4CdJaSI9DB41xIJX1bAAAAeA8BOktZtXDUXuabAA0AAOBdx+2B3rx5c1YP9MUXX5xwMa1ZNi0cgVQPNAEaAADAq44boPv375/VjBJen3kiNQLdVAtHbbgOMwINAADgWccN0AsWLHCjjlYvmxaO5GW+aeEAAADwruMG6GuuucaNOlq97HqgmYUDAADA6ziJMEvhrHqgE+vogQYAAPAuAnSWsuqBZho7AAAAzyNAZ8lRCwcBGgAAwLMI0FliFg4AAABIBOisZXUpb3qgAQAAPI8AnaVoNgGaFg4AAADPI0BniWnsAAAAIBGgsxbOogc6wCwcAAAAnkeAzpKTkwjpgQYAAPAuAnSWInFLAZ8h0zQa3SYZrpmFAwAAwLsI0FmKxKwmR58lLqQCAABQCAjQWYrErCZPIJQk0zTkNw1aOAAAADyMAJ2lbAK0lOiDZgQaAADAuwjQWUr0QGcZoBmBBgAA8CwCdJayHoH2MQINAADgZQToLIWzOIlQSswFzQg0AACAdxGgsxSJWwpmMQIdpAcaAADA0wjQWYpyEiEAAABEgM5aJO4gQNPCAQAA4FkE6CxlcyEVKdEDzTzQAAAA3kWAzhKzcAAAAEAiQGct0cLhO+529EADAAB4GwE6S9m2cBT5TYUJ0AAAAJ5FgM5S2EELBz3QAAAA3kWAzlIkFs9qHmhm4QAAAPA2AnSWInFLAZ9x3O04iRAAAMDbCNBZynYWjoDfIEADAAB4GAE6C7G4JcuWinxZzMLh8ykat12oCgAAAPlAgM5CMhBzKW8AAAAQoLOQDMROLuVt24xCAwAAeBEBOgvheFxSlgG69kRDZuIAAADwJgJ0FpIj0MEsL6QiiT5oAAAAjyJAZ8FRC0dtyKYPGgAAwJsI0FlItmNk1wOdmKmDAA0AAOBNBOgspEags2jhSF5shQANAADgTQToLDidhUPiJEIAAACvIkBnwUmADvrpgQYAAPAyAnQWwrWjyQEHs3AwAg0AAOBNBOgspKaxy2IEOhmyowRoAAAATyJAZ4Fp7AAAAJBEgM5CcjQ5m1k4iuiBBgAA8DQCdBZymYUjTIAGAADwJAJ0FhxdSIUeaAAAAE8jQGchp3mgGYEGAADwJAJ0FsIOrkTINHYAAADeRoDOgrNLeTMCDQAA4GUE6CxE4pYCPkOmaRx32+QIND3QAAAA3kSAzkIkZmU1+iwdG6VmFg4AAABvIkBnIRKzsjqBUOJCKgAAAF5HgM5CJGalepuPxzQN+U2DkwgBAAA8igCdhUg8+xFoKdEHHWUEGgAAwJNcDdAvvviiLrvsMvXu3VslJSUaOHCgpk+froMHD7pZhmNOWjikRIBmBBoAAMCbXA3QDz30kHw+nx544AGtWLFCN954o+bOnavRo0fLslpv4IzEsz+JUEr0QdMDDQAA4E1+N5/s1Vdf1cknn5y6PXz4cJWXl+uaa67RW2+9pZEjR7pZTtYiMUtBByPQAQI0AACAZ7k6Ap0enpPOOussSdL27dvdLMURpy0cQVo4AAAAPCvvJxGuWbNGkvTNb34zz5U0LpeTCBmBBgAA8Ka8Bujt27dr1qxZGjVqlKqqqhrcZt68eaqqqlJVVZX27NnjcoUJTi6kInESIQAAgJflLUAfOnRI48ePl9/v14IFCxrdbsqUKVq3bp3WrVvXYAuIG5y2cNADDQAA4F2unkSYVFNTo7Fjx2rz5s1as2aNKioq8lFG1hItHL6sty/ymYoyAg0AAOBJrgfoaDSqyy+/XOvWrdMbb7yhIUOGuF2CY73KS1URKsl6+yK/qSNHYi1YEQAAAPLF1QBtWZYmTZqkVatWadmyZRo2bJibT5+zp//P2Y62L/KbCtPCAQAA4EmuBuibb75Z1dXVmjFjhtq1a6d33303ta6ioqLVt3JkixYOAAAA73L1JMLXXntNkjRnzhydc845GV+/+93v3CylRTELBwAAgHe5OgK9detWN58ub7iUNwAAgHfl/UIqXhTwGwRoAAAAjyJAt4BQaZG+PhpTjDYOAAAAzyFAt4CKUInilq2dXx3NdykAAABoZgToFtAzVCpJ+mz/kTxXAgAAgOZGgG4BFbUB+vN9NXmuBAAAAM2NAN0CTulULNOQPmcEGgAAwHMI0C0g4DN1SscSfbafEWgAAACvIUC3kIpQiT7bxwg0AACA1xCgW0jP8lJ9zgg0AACA5xCgW0hFqES7Dh5VOBbPdykAAABoRgToFtIzVCrblnYcYC5oAAAALyFAt5CKUIkk0QcNAADgMQToFtKzvHYuaPqgAQAAPIUA3UK6dihWwGdwNUIAAACPIUC3EJ9pqHsnprIDAADwGgJ0C+oZYio7AAAAryFAt6CKUAmX8wYAAPAYAnQL6lleqi8PRVQTYS5oAAAAryBAt6DkVHaMQgMAAHgHAboFVYQSU9kxEwcAAIB3EKBbUM/y5Ag0JxICAAB4BQG6BZ1cFlTQbzKVHQAAgIcQoFuQYRi1M3EwAg0AAOAVBOgW1rO8lB5oAAAADyFAtzBGoAEAALyFAN3CeoZKdeBIVAePRvNdCgAAAJoBAbqFpaay28coNAAAgBcQoFvYsans6IMGAADwAgJ0C+uZupgKI9AAAABeQIBuYZ1KA2pX5GMEGgAAwCMI0C3MMIzEVHb0QAMAAHgCAdoFiansGIEGAADwAgK0CypCpfp8f41s2853KQAAADhBBGgX9Cwv1aFwTAeOMBc0AABAW0eAdkFFKDmVHX3QAAAAbR0B2gXHprKjDxoAAKCtI0C7oIKLqQAAAHgGAdoFHYoD6lgSYCo7AAAADyBAu6QiVEILBwAAgAcQoF3Ss3YqOwAAALRtBGiX9CxPXEyFuaABAADaNgK0SypCpToatfTloUi+SwEAAMAJIEC7pGftTBz0QQMAALRtBGiXVCTngt5HgAYAAGjLCNAu4WqEAAAA3kCAdklpkV+dy4q4mAoAAEAbR4B2UQ+msgMAAGjzCNAu6hkqoQcaAACgjSNAu6giVKrtB2oUi1v5LgUAAAA5IkC76IyeHRWN27pmwfvaczCc73IAAACQAwK0iy6s7KZfXna61m3dr0v+33/qL//cm++SAAAA4BAB2kWGYeiHZ/XU0lu+o/bFfk363bt69M1Niltc3hsAAKCtIEDnwaBuHfTqLd/VuKHd9fAb/6trF7yvLw/R0gEAANAWEKDzpF3Qr9/86Aw9OGGI3tuyT5f89j/1p4925bssAAAAHAcBOo8Mw9CVZ/fSkpu+o1Bpka5/Zp1ueu6v2v310XyXBgAAgEYQoFuB07p30Ks/+67uvHCg/vSP3brg12v07LufyqI3GgAAoNUhQLcSRX5TN4/or5W3n6chPTpq5pK/a+KTf9H/7jqY79IAAACQhgDdyvTt3E7PXf9tPTRxqP6555C+///+Uzc//ze9vvELhWPxnB83HItr/+GIolzEBQAA4IT4810A6jMMQ5d/q0IjBp6sR1d9olc+2KH/+HCnOpYEdMmQbho3tIe+3bdcpmlk3C9u2TocienzfTXatPugNu06lPi++5A+3XskNV1eccBU++KA2hf71b44oJPaFal/lzL171KmAV3KNKBre5UF+dUAAABoiGHbtquNtp999pmmTZumN954Q7Zta9SoUXrkkUfUq1ev4963qqpK69atc6HK1iUat7T2ky+1dP0Ordz4hY5E4uraIagu7Yt1OBzTwXBMh8MxHYlkjlD7TEN9TirVgC7tNaBrmUKlRToUjung0agOHo0lvsIx7f76qDbvOaxI2uh0947F6telTL3KS9WrvFQ9k99DpepYGnD7LQAAAHBVU7nT1WHGI0eOaOTIkQoGg3r66adlGIZmzpypESNG6MMPP1S7du3cLKfNCPhMnT+wi84f2EU1kbj+9I9deu3vO1UTiatP53YqC/rUrsivsmK/yoJ+detYrFO7tlefk9qpyJ9dl04sbumz/TXatCsxYv1J7deG7Tt14Eg0Y9uyoF/FAZ8CPkN+n6GAz1TANOX3GfKZhkwj+V0yjcTtULuATulYou6dStS9Y7FOqf3eqbRIAZ8hwzAaqQwAAKB1cTVAz58/X5s3b9b//M//qH///pKk008/XQMGDNCTTz6pn//8526W0yaVFPk0dmh3jR3avVkf1+8z1bdzO/Xt3E5jKjPXfX00qs/2HdFn+2r02b4j2n6gRuGYpVjcUsyyFYnX/hy3FbdtWbZkWbYs21bcshWzLH38xUGt/niPaqL1+7gNQyrymQr6TQUDPgX9pnymIcu2ZVlKfLdtJQbIbUnHwrlR+z35OA0x0oK8kXbbZxq1od+U36y9XXsAYBiJVprk9onviZpsO1GTpNTt5Oc4tmylf6bj9yUeL/n4ya+kup//mKYhX9r2yfsHfKaK/KYCvmM/F/nM2teVuJ9R+7MhI63mxO3a/2rfj7TXVbsw+R6mv6eJMht4r9Pec9u2lXoJduL1p7+ubD/fStaR+p5Wc2p/1NYiI/Fcln3s/bbq1JHcF8d9XhnpNzJ+TP7OmLW/C8nv6e+t0t7r9DqT7236z+m/f8n3Nbkvjv3OHVuWfD+Sj3H813Lsh+QjJGtL/Jy+3xPP70v7fTeNxO9ecj0AoHGutnBccMEFOnr0qNauXZuxfPjw4ZKkNWvWNHn/Qm3h8ArbtvVVTVTbD9Ro54Gj2vlVjb4+GlM4Glc4ZqV9xRW37No/5oZ8ZjJgJP64J35jj4VrW8cCbcNPnAzhadtbiXCfCPjHgn4sbqe2SQTjtJ9lH6tDyghARlpoSQa/5PPEag8mko8ds+z0rJYKR8kgGLcSByLxeGLbmGUrFrcUjScOVrj0O1pa6tOj2k+SfMmDCfPYp0zpAdw0MwN44kDRlM9M3NeXcb/Ez+kHaslAn35Aklzv9yUOHIt85rFPvHymajevd8CYVO/g1Ej7xMxnyG8mvvtMM3UQ6qtTm1Hn8aVErX7TkM+XdqBb+1oz68/8tyH9IDF5O+P+aY+XGhTQsfskpQ4uG3meutsn/03JGNhI/IOWeJ/qvF/J/ZH6FNE8tl+Tz1/3+Cr9IDY5qJCsI3ngmH6QWHdAI/2AzU4bpLDS/t1N/10B3NJqWjg2btyo8ePH11teWVmp6upqN0tBHhiGoU6lRepUWqTK7h3zXU6bFbdsReOWInFLllXnj03aH53k30jbzhwVt9PWS6rzRy/5OMdG/m27oT+QiU8CpIZHOZPLpTqjvA2oN2pdu7yhmpKvr/5ocP2QI6nJZ07PV+njCMkDpuTzWtZx3tvaO9m1B3XJ5VbtimPbKu3gLPMTjOTjJ/dN8v1IP3hr6n2se5/kjfRwdOw5jx3cpR9YJl9nvHb/pkJX7bp4bX3JA7yM+1uZnz6lDgKt5OPYqU+oYpalSLzu72zm+5CsOXnAGYlZilmJg8ho3FI0bh17rXX2SUMHp5IUszL/P0Drkfx/N9uxgeQBXjaPK9Uf3Mj8RMhIHYw1+BiNPnb6QUUDBwGpnzPrqXvQozoHPQ0dNGW8hga3PfYY6Qca6c/X0Oupd2DW2HPXLkj/fzP9/znp2D5JHgybdf5NrieLmtLdesEAjRjYpbFHywtXA/S+ffsUCoXqLS8vL9f+/fsbvM+8efM0b948SdKePXtatD6gLUiM5vlUHPDluxSgTUkefKZ/qmPVCfpW7UFC3U+fpLQDS0uKWVadT7DsegdUyYPP9IOt5MGZXXuwErdqDy6SnzZZVsYBT90gln4A1lCQqVuvr3YEOfVpgmnUCXCZ4SlxIHjsfUi+P8ee+9h2tt3wKHO6hkankweYdW8f+zTi2Oi3lLl98iArbtlNtjbVPSBPvS9p+yN1YN5Iu1dTB1zp+yf9PWmsfaru71PdfZZebd3nzRgAaWLAIfna0t+nhu5b7zGzePzkvq77qUrdT1DTBxsa+2Q48/nSlzf+hgfM1jfrcqufq2zKlCmaMmWKpMRQOgAAuUgefALAiXI10odCoQZHmhsbmQYAAABaG1cDdGVlpTZu3Fhv+UcffaTTTjvNzVIAAACAnLgaoMeNG6d3331XmzdvTi3bunWr1q5dq3HjxrlZCgAAAJATVwP0T3/6U/Xp00fjx4/X0qVL9corr2j8+PHq2bOnbrjhBjdLAQAAAHLiaoBu166dVq1apVNPPVVXX321Jk2apL59+2rVqlUqKytzsxQAAAAgJ67PwtGrVy+99NJLbj8tAAAA0Cxa38R6AAAAQCtGgAYAAAAcIEADAAAADhCgAQAAAAcI0AAAAIADBGgAAADAAQI0AAAA4IBh27ad7yKy1blzZ/Xp0ycvz71nzx6dfPLJeXluuIt9XTjY14WDfV042NeFo6X39datW/Xll182uK5NBeh8qqqq0rp16/JdBlzAvi4c7OvCwb4uHOzrwpHPfU0LBwAAAOAAARoAAABwgACdpSlTpuS7BLiEfV042NeFg31dONjXhSOf+5oeaAAAAMABRqABAAAABwjQTfjss890+eWXq2PHjurQoYMmTJigbdu25bssnIAXX3xRl112mXr37q2SkhINHDhQ06dP18GDBzO2279/v66//np17txZ7dq106hRo7Rhw4Y8VY3mcNFFF8kwDM2cOTNjOfvaO5YvX67zzjtPZWVl6tChg6qqqrRq1arUeva1N6xdu1ZjxoxRly5d1L59e5155pl66qmnMrY5evSo7rzzTp1yyikqKSnROeeco7fffjtPFeN4Pv/8c/3sZz/TOeeco9LSUhmGoa1bt9bbLtv9almWHnzwQfXp00fFxcUaOnSoXnrppWatmQDdiCNHjmjkyJH6+OOP9fTTT+v3v/+9Nm3apBEjRujw4cP5Lg85euihh+Tz+fTAAw9oxYoVuvHGGzV37lyNHj1almVJkmzb1tixY7VixQo9+uijeumllxSNRjVixAh9/vnneX4FyMWiRYv0wQcf1FvOvvaOJ598UuPHj9e3vvUtvfzyy6qurtbEiRN15MgRSexrr/jwww81atQoRaNRzZ8/X3/84x911lln6brrrtPcuXNT21133XWaP3++Zs+erWXLlumUU07RhRdeqPXr1+eveDTqk08+0QsvvKBQKKTvfe97jW6X7X79t3/7N91333265ZZb9Nprr2nYsGGaOHGili9f3nxF22jQI488YpumaW/atCm1bPPmzbbP57MffvjhPFaGE7F79+56y55++mlbkv3mm2/atm3bS5YssSXZq1atSm1z4MABOxQK2T/72c9cqxXNY9++fXbXrl3t559/3pZkz5gxI7WOfe0NW7ZssYuLi+3f/OY3jW7DvvaG6dOn24FAwD548GDG8mHDhtnDhg2zbdu2169fb0uyn3rqqdT6aDRqn3rqqfbYsWNdrRfZicfjqZ/nz59vS7K3bNmSsU22+3XXrl12UVGRPWvWrIz7jxw50h4yZEiz1cwIdCNeeeUVDRs2TP37908t69u3r77zne9o6dKleawMJ6KhKxadddZZkqTt27dLSuz77t27a8SIEaltOnbsqLFjx7Lv26C77rpLgwcP1pVXXllvHfvaG5566imZpqmpU6c2ug372hsikYgCgYBKSkoylnfs2DH1KeIrr7yiQCCgH/3oR6n1fr9fV1xxhVauXKlwOOxqzTg+0zx+HM12v65cuVKRSESTJ0/OuP/kyZO1YcMGbdmypXlqbpZH8aCNGzdq8ODB9ZZXVlbqo48+ykNFaClr1qyRJH3zm9+U1PS+37Ztmw4dOuRqfcjdO++8o2eeeUaPPfZYg+vZ197wzjvvaNCgQVq8eLH69esnv9+v/v37Z+x39rU3XHvttZKkW2+9VTt27NCBAwc0f/58vfnmm5o2bZqkxL7u27evSktLM+5bWVmpSCSiTz75xO2y0Qyy3a8bN25UMBjMGABNbiep2TIcAboR+/btUygUqre8vLxc+/fvz0NFaAnbt2/XrFmzNGrUKFVVVUlqet9LYv+3EZFIRDfccIPuuOMODRw4sMFt2NfesGPHDm3atEl33nmn7r77br3++usaPXq0brnlFv32t7+VxL72isGDB+utt97S0qVL1aNHD4VCId1888164okndMUVV0g6/r7et2+fqzWjeWS7X/ft26dOnTrJMIwmtztR/mZ5FKANOnTokMaPHy+/368FCxbkuxw0s1/+8peqqanRjBkz8l0KWphlWTp48KAWLlyoCRMmSJJGjhyprVu36sEHH9Stt96a5wrRXDZt2qTLLrtMlZWVeuKJJ1RSUqKlS5dq6tSpKi4u1qRJk/JdIgoEAboRoVCowRGJxo6A0LbU1NRo7Nix2rx5s9asWaOKiorUuqb2fXI9Wrdt27Zpzpw5+t3vfqdwOJzR8xgOh3XgwAG1b9+efe0RJ510kjZt2qTRo0dnLB8zZoxWrFihnTt3sq894p577lEgENCyZcsUCAQkSRdccIH27t2r2267TVdeeaVCoZA+/fTTevdN7uvkSCTalmz3aygU0oEDB2TbdsYodHPvf1o4GlFZWamNGzfWW/7RRx/ptNNOy0NFaC7RaFSXX3651q1bp+XLl2vIkCEZ65va97169VJZWZlbpSJHmzdv1tGjRzV58mSFQqHUl5SYyjAUCmnDhg3sa49I9jY2xjRN9rVHbNiwQUOHDk2F56Szzz5be/fu1e7du1VZWaktW7akpjBM+uijj1RUVFSvNxZtQ7b7tbKyUuFwWP/85z/rbSep2TIcAboR48aN07vvvqvNmzenlm3dulVr167VuHHj8lgZToRlWZo0aZJWrVqlJUuWaNiwYfW2GTdunLZv3546uVCSvv76a7366qvs+zbijDPO0OrVq+t9SYkzsVevXq3+/fuzrz3i0ksvlZQ4+z7dihUrVFFRoW7durGvPaJbt25av369IpFIxvL33ntPxcXFKi8v19ixYxWNRlVdXZ1aH4vF9Ic//EFjxoxRMBh0u2w0g2z360UXXaRAIKDnnnsu4/7PPvusBg8erL59+zZPQc02IZ7HHDp0yO7Xr589ePBge8mSJfbSpUvt008/3e7bt2+9+SfRdkydOjU1F/Bf/vKXjK/PPvvMtu3EfJTnnHOOXVFRYS9atMhesWKFPXz4cDsUCtnbtm3L8yvAiVCdeaDZ195gWZY9YsQIu7y83J47d669cuVK+/rrr7cl2QsWLLBtm33tFdXV1bYke8yYMfaSJUvslStX2jfffLMtyZ42bVpqux/96Ed2p06d7Pnz59t/+tOf7Msuu8wOBoP2X//61zxWj6ZUV1fb1dXVqb/Tjz/+uF1dXW2/9dZbqW2y3a933XWXHQwG7YcffthevXq1PXXqVNswDPvVV19ttnoJ0E349NNP7QkTJtjt27e3y8rK7PHjx9eb2BttS+/evW1JDX7de++9qe327t1r/+QnP7FDoZBdUlJijxw50l6/fn3+CkezqBugbZt97RVfffWVfdNNN9ldunSxA4GAPWTIEPu5557L2IZ97Q3Lly+3hw8fbnfu3NkuKyuzhw4daj/22GN2LBZLbXPkyBF72rRpdteuXe1gMGifffbZ9urVq/NXNI6rsb/Nw4cPT22T7X6NxWL2L37xC7tXr152UVGRPWTIELu6urpZ6zVqiwYAAACQBXqgAQAAAAcI0AAAAIADBGgAAADAAQI0AAAA4AABGgAAAHCAAA0AAAA4QIAGgFZg4cKFMgyjwa9OnTrlra5rr71WFRUVeXt+AGiN/PkuAABwTHV1db3A6vfzTzUAtCb8qwwArcgZZ5yh/v3757sMAEATaOEAgDYi2ebx9ttv61/+5V9UVlamk046STfffLNqamoytt25c6d+/OMfq3PnzgoGgzr99NP17LPP1nvMLVu26Oqrr1a3bt0UDAb1jW98Q7fddlu97f77v/9b3/ve91RaWqoBAwboiSeeaLHXCQCtHSPQANCKxONxxWKxjGWmaco0j413TJ48WT/84Q9100036f3339fs2bN1+PBhLVy4UJJ0+PBhDR8+XPv379cDDzygnj176tlnn9XVV1+tI0eOaMqUKZIS4fnss89WaWmpZs+erQEDBmjbtm16/fXXM57/66+/1lVXXaXbb79ds2bN0oIFC3TjjTdq4MCBGjFiRMu+IQDQChGgAaAVGTRoUL1l3//+97Vs2bLU7UsuuUQPPfSQJGnMmDEyDEOzZs3SPffco1NPPVULFizQpk2btHr1ap1//vmSpIsvvli7du3SzJkzdd1118nn8+nee+9VTU2NPvjgA3Xv3j31+Ndcc03G8x88eFCPP/54Kiyfd955WrlypRYtWkSABlCQaOEAgFbk5Zdf1n/9139lfD3yyCMZ2/zwhz/MuH3FFVfIsiy9//77kqS3335bPXr0SIXnpMmTJ2vPnj366KOPJEmvv/66fvCDH2SE54aUlpZmBOVgMKhTTz1V27Zty/FVAkDbxgg0ALQigwcPPu5JhF27dm3w9vbt2yVJ+/bt0ymnnFLvft26dUutl6S9e/dmNUVdKBSqtywYDOro0aPHvS8AeBEj0ADQxuzatavB2z169JAklZeX64svvqh3v+Sy8vJySVLnzp1ToRsAkD0CNAC0MS+88ELG7cWLF8s0TX3729+WJA0fPlyff/651q5dm7Hd888/ry5duui0006TlOifXrZsmXbu3OlO4QDgEbRwAEArsn79en355Zf1lldVVaV+Xr58ue68806NGTNG77//vu6//379+Mc/1oABAyQlrh7429/+VhMmTNCcOXNUUVGh5557Tm+88YaefPJJ+Xw+SdL999+v5cuX69xzz9U999yj/v37a/v27VqxYkWDU94BABII0ADQikycOLHB5Xv27En9/Oyzz+rhhx/W3LlzVVRUpJ/+9KepWTkkqV27dlqzZo3+9V//VXfffbcOHjyogQMH6ve//70mT56c2q5Pnz569913NXPmTE2fPl2HDh1Sjx49NH78+JZ7gQDgAYZt23a+iwAAHN/ChQv1k5/8RJs2beJqhQCQR/RAAwAAAA4QoAEAAAAHaOEAAAAAHGAEGgAAAHCAAA0AAAA4QIAGAAAAHCBAAwAAAA4QoAEAAAAHCNAAAACAA/8fndTcQpS2daIAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -413,7 +416,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAGQCAYAAAB4X807AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACIV0lEQVR4nO2dd3hUZdqH75nMTCa9QOhVEZAAiYgIoiKCyKpg79gVUFlXXV172d3Pta+rrquCgg0bugKyAi4CFqyoCIKutEiVloTUmUxmzvfHe545MwQVJEMSeG6uuTI5bd4T4PzydJdlWRaKoiiKkkDcDb0ARVEUZd9HxUZRFEVJOCo2iqIoSsJRsVEURVESjoqNoiiKknBUbBRFUZSE02Bis3btWs444wyysrLIzMzktNNOY82aNQ21HEVRFCWBuBqizqaqqoqCggKSk5P5v//7P1wuF7fffjtVVVUsXryYtLS0vb0kRVEUJYF4GuJDJ0yYwKpVq/jf//5Hly5dAOjduzcHHXQQTz/9NNdff31DLEtRFEVJEA1i2QwZMoRAIMCCBQvitg8aNAiA999/f28vSVEURUkgDWLZLF26lJNPPrnO9vz8fKZMmfKr5zdv3pxOnTolYGWKoijKb6WoqIitW7fudF+DiE1xcTE5OTl1tufm5lJSUvKr53fq1ImFCxcmYmmKoijKb6Rv374/u69BxOa3MH78eMaPHw/Ali1bGng1iqIoyu7QIKnPOTk5O7Vgfs7iARg9ejQLFy5k4cKF5OXlJXqJiqIoSj3SIGKTn5/P0qVL62xftmwZPXr0aIAVKYqiKImkQdxoI0eO5IYbbmDVqlUccMABgAksLViwgPvuu68hlqQoym8gFAqxbt06AoFAQy9F2Yv4/X7atWuH1+vd5XMaJPW5srKSgoICUlJSokWdd9xxB+Xl5SxevJj09PRfPL9v376aIKAojYDVq1eTkZFBs2bNcLlcDb0cZS9gWRbbtm2jvLyczp07x+37pWdzg7jR0tLSmDt3Ll27duWCCy7g/PPPp3PnzsydO/dXhUZRlMZDIBBQodnPcLlcNGvWbLet2QbLRuvQoQNvvvlmQ328oij1hArN/sdv+TvXrs+KoihKwmkydTaKojR+Wj3Uik2Vm+rtei3TWvLTDT/94jFHHHEEH3/88S8ec/nll3P99dfTo0cP/va3v3Hrrbfu1vnp6elUVFTEbSstLeXll1/mqquu+pW7qMsJJ5zAyy+/THZ29m6dN3/+fHw+H0ccccRuf2ZDo5aNoij1Rn0Kza5e79eEAuCZZ56JllX87W9/2+3zd0ZpaSn/+te/drqvtrb2F8995513dltowIjN7q7319ayt1CxURSlSSNJRfPnz+eYY47hjDPOoHv37px//vlIsu0xxxzDwoULufnmm6murqawsJDzzz8/7vyKigqGDBlCnz596NWrF9OmTfvFz7355ptZuXIlhYWF3HjjjcyfP5+jjjqKkSNHRoXtlFNO4dBDDyU/Pz/aAQVMyy3pIfbSSy/Rr18/CgsLGTNmDOFwGIBZs2bRp08fCgoKGDJkCEVFRTz11FM88sgjFBYW8uGHH1JUVMSxxx5L7969GTJkSHQm2MUXX8zYsWM5/PDD+dOf/sRBBx0U7bwSiUTo0qXLXu/Eom40RVH2Gb7++muWLl1KmzZtGDhwIAsWLODII4+M7r/vvvv45z//yaJFi+qc6/f7eeutt8jMzGTr1q3079+fkSNH/mww/L777uPbb7+NXmv+/Pl89dVXfPvtt9GU4IkTJ5Kbm0t1dTWHHXYYp59+Os2aNYte47vvvuO1115jwYIFeL1errrqKiZPnszvfvc7rrjiCj744AM6d+5McXExubm5jB07lvT0dG644QYARowYwUUXXcRFF13ExIkTueaaa5g6dSoA69at4+OPPyYpKYmsrCwmT57Mtddey5w5cygoKNjrnVjUslEUZZ+hX79+tGvXDrfbTWFhIUVFRbt8rmVZ3HrrrfTu3ZuhQ4eyfv16Nm3aPbdgv3794mpPHnvsMQoKCujfvz9r165l+fLlcce/9957fPnllxx22GEUFhby3nvvsWrVKj799FOOPvro6LVyc3N3+nmffPIJ5513HgAXXHABH330UXTfmWeeSVJSEgCXXnopL7zwAmAE8JJLLtmt+6oP1LJRFGWfITk5Ofo+KSlpt+IVkydPZsuWLXz55Zd4vV46deq027UksVOG58+fz5w5c/jkk09ITU3lmGOOqXM9y7K46KKLuPfee+O2v/3227v1ub+2lvbt29OyZUvmzp3L559/zuTJk/f4+ruLWjaKouxXeL1eQqFQne3bt2+nRYsWeL1e5s2bx48//viL18nIyKC8vPxn92/fvp2cnBxSU1P5/vvv+fTTT+scM2TIEN544w02b94MmGbEP/74I/379+eDDz5g9erV0e07+8wjjjiCV199FTBiedRRR/3sei6//HJGjRoVZ/HsTVRsFEWpN1qmtWzU1wPTQb53797RBAHh/PPPZ+HChfTq1YsXXniB7t27/+J1mjVrxsCBA+nZsyc33nhjnf3Dhw+ntraWgw8+mJtvvpn+/fvH7Xe5XPTo0YP/+7//Y9iwYfTu3ZvjjjuOjRs3kpeXx/jx4znttNMoKCjg7LPPBkyM5q233oomCDz++ONMmjSJ3r178+KLL/Loo4/+7HpHjhxJRUVFg7jQoIF6o+0p2htNURoH3333HQcffHBDL6NJEQ6HadGiBT/99NNuNbLcUxYuXMh1113Hhx9+WC/X29nf/S89mzVmoyiKshfJz8/n8ssv36tCc9999/Hkk082SKxGULFRFEXZi3z//fd7/TNvvvlmbr755r3+ubFozEZRFEVJOCo2iqIoSsJRsVEURVESjoqNoiiKknBUbBRFqTdatQKXq/5erVrV7/qkIecvMXXqVJYtWxb9/s4772TOnDl7/NmLFi3inXfe2e3zNmzYwBlnnPGbPvO5555jw4YNv+nc+kbFRlGUemM3W4nt9evtCjuKzV/+8heGDh26x9f9JbH5pbY6bdq04Y033vhNn/lbxEa6Ttc3KjaKojRZKisrOfHEEykoKKBnz5689tprgGlwecghh9CrVy8uvfRSgsFgnXNltADAG2+8wcUXX8zHH3/M9OnTufHGGyksLGTlypVcfPHF0Yf9z123U6dO3HXXXdHxBDumN9fU1HDnnXfy2muvUVhYyGuvvcbdd9/NBRdcwMCBA7ngggsoKiriqKOOok+fPvTp0yc6t6aoqIiePXsCRghuvPFGDjvsMHr37s3TTz8d/Yz777+fXr16UVBQwM0338wbb7zBwoULOf/88yksLKS6uvoX13/TTTfRp08f7rvvPvr06RO97vLly+O+/62o2CiK0mSZNWsWbdq04ZtvvuHbb79l+PDhBAIBLr74Yl577TWWLFlCbW0tTz755C5d74gjjmDkyJE8+OCDLFq0iAMPPDC679eu27x5c7766iuuvPJKHnroobjr+nw+/vKXv3D22WezaNGiaPuZZcuWMWfOHF555RVatGjBf//7X7766itee+01rrnmmjrre/bZZ8nKyuKLL77giy++YMKECaxevZqZM2cybdo0PvvsM7755hv+9Kc/ccYZZ9C3b18mT57MokWLcLlcv7j+Zs2a8dVXX3HbbbeRlZUVHZ0wadKkemlxo2KjKEqTpVevXvz3v//lpptu4sMPPyQrK4v//e9/dO7cma5duwJw0UUX8cEHH+zxZ/3adU877TQADj300F0ebTBy5EhSUlIACIVCXHHFFfTq1YszzzwzzpUnvPvuu7zwwgsUFhZy+OGHs23bNpYvX86cOXO45JJLSE1NBXY+kuDX1i8CCKZp56RJkwiHw7z22mvRMQZ7gnYQUBSlydK1a1e++uor3nnnHW6//XaGDBnCySefvEvnxg5F291RAjtDxhvszmiD2DEAjzzyCC1btuSbb74hEong9/vrHG9ZFo8//jjHH3983PbZs2fvwcrrruX000/nz3/+M8ceeyyHHnpo3MC334paNoqiNFk2bNhAamoqo0aN4sYbb+Srr76iW7duFBUVsWLFCgBefPFFBg0aVOfcli1b8t133xGJRHjrrbei239udMCuXvfn2JWRBK1bt8btdvPiiy/uNFB//PHH8+STT0ZHJPzwww9UVlZy3HHHMWnSJKqqqoCdjyTYnfX7/X6OP/54rrzyynrrEq1ioyhKvdGynicC/Nr1lixZQr9+/SgsLOTPf/4zt99+O36/n0mTJnHmmWfSq1cv3G43Y8eOrXPufffdx0knncQRRxxB69ato9vPOeccHnzwQQ455BBWrlwZ3b6r1/05Bg8ezLJly6IJAjty1VVX8fzzz1NQUMD3338fZ2mIFXb55ZfTo0cP+vTpQ8+ePRkzZgy1tbUMHz6ckSNH0rdvXwoLC6Mxo4svvpixY8dSWFiIZVm7tf7zzz8ft9vNsGHDdvkefwkdMaAoym9GRwwkni+//JLrr7+e999/f69+7kMPPcT27dv561//utP9OmJAURRlH2HhwoWcd9553HfffXv1c0899VRWrlzJ3Llz6+2aKjaKoiiNlL59+/LDDz/s9c+NjWHVFxqzURRFURKOio2iKIqScFRsFEVRlISjYqMoiqIkHBUbRVHqj1aAqx5f9TxiQJg/fz4nnXQSANOnT9/r2V4A9957L126dKFbt26/2gHgmmuuiWsc2hTRbDRFUeqP+h4JsBvXsywLy7Jwu3fvd+iRI0cycuTI3VzYnrFs2TJeffVVli5dyoYNGxg6dCg//PADSUlJdY5duHAhJSUle3V9iUAtG0VRmixFRUV069aNCy+8kJ49e7J27VquvPJK+vbtS35+PnfddVf02FmzZtG9e3f69OnDv//97+j25557jnHjxgHEjRMAZwzBxo0bOfrooyksLKRnz558+OGHe7TuadOmcc4555CcnEznzp3p0qULn3/+eZ3jZKTAAw88sEef1xhQy0ZRlCbN8uXLef755+nfvz8A99xzD7m5uYTDYYYMGcLixYvp2rUrV1xxBXPnzqVLly5xHY53hZdffpnjjz+e2267jXA4HO1BFst1113HvHnz6mw/55xzuPnmm+O2rV+/PrpegHbt2rF+/fo65/7zn/9k5MiRce10mioqNoqiNGk6duwY9+B+/fXXGT9+PLW1tWzcuJFly5YRiUTo3LkzBx10EACjRo1i/Pjxu/wZhx12GJdeeimhUIhTTjmFwsLCOsc88sgje3wvsWzYsIEpU6Ywf/78er1uQ6FuNEVRmjSxDStXr17NQw89xHvvvcfixYs58cQTd2t8gMfjIRKJABCJRKipqQHg6KOP5oMPPqBt27ZcfPHFvPDCC3XOve666ygsLKzz2lnyQdu2bVm7dm30+3Xr1tG2bdu4Y77++mtWrFhBly5d6NSpE1VVVXTp0mWX76WxoZaNoij7DGVlZaSlpZGVlcWmTZuYOXMmxxxzDN27d6eoqIiVK1dy4IEH8sorr+z0/E6dOvHll19y1llnMX369Ggr/x9//JF27dpxxRVXEAwG+eqrr7jwwgvjzt0dy2bkyJGcd955XH/99WzYsIHly5fTr1+/uGNOPPFEfvrpp+j36enp0fEATREVG0VR6o+W1G9G2m6OLCgoKOCQQw6he/futG/fnoEDBwJmPMD48eM58cQTSU1N5aijjtrpbJkrrriCk08+mYKCAoYPHx61mubPn8+DDz6I1+slPT19p5bN7pCfn89ZZ51Fjx498Hg8PPHEE9FMtBNOOIFnnnmGNm3a7NFnNDZ0xICiKL8ZHTGw/7K7IwY0ZqMoiqIkHBUbRVEUJeGo2CiKskc0QU+8sof8lr/zehWbN954g9NPP52OHTuSkpJCt27duOWWW+oE4kpKSrj88stp3rw5aWlpDB06lCVLltTnUhRF2Qv4/X62bdumgrMfYVkW27Ztw+/379Z59ZqN9tBDD9GhQwf+9re/0a5dO77++mvuvvtu5s2bx8cff4zb7cayLEaMGEFRURGPP/44OTk53HvvvQwePJhFixbRrl27+lySoigJpF27dqxbt44tW7Y09FKUvYjf79/tZ3W9is3bb79NXl5e9PtBgwaRm5vLRRddxPz58zn22GOZPn06CxYsYO7cuQwePBiAAQMG0LlzZx544AEee+yx+lySoigJxOv10rlz54ZehtIEqFc3WqzQCIcddhhAtO/P9OnTadOmTVRoALKyshgxYgTTpk2rz+UoiqIojYSEJwi8//77ANF87KVLl9KzZ886x+Xn57NmzRoqKioSvSRFURRlL5NQsVm/fj133nknQ4cOpW/fvgAUFxeTk5NT59jc3FyAfWJuwy8SAWqBkP2qBTS2qijKPk7C2tVUVFRw8skn4/F4mDRp0h5fb/z48dEurU0uGFkLVNmvIEZkwAiPC/O34AfS7Ffd+UmKoihNmoSITXV1NSNGjGDVqlW8//77cVkLOTk5O7VeiouLo/t3xujRoxk9ejRA1Epq9ISAUqCCeAsmAoTt9xZGgCqBbYAXyAFy0c51iqLsM9S7Gy0UCnHGGWewcOFC3nnnHXr16hW3Pz8/n6VLl9Y5b9myZXTo0KHJz9kGjICUA2sxYiMusxr7FSH+J2/hiE8A2AD8DyhDXWyKouwT1KvYRCIRzj//fObOncvUqVPjBhoJI0eOZP369dHEATBtwd9+++29Pgc8IUSALcBP9nsRGDfGZVaDsXTKMIJUab+qMW42EaMg8ANGeCJ79Q4URVHqnXp11Fx99dVMmTKF2267jbS0ND799NPovnbt2tGuXTtGjhzJgAEDGDVqFA8++GC0qNOyLP70pz/V53L2PiI05RiLJID5CYftbbWYeEwSRngg3p0m2ySmA/CjfV57tLmQoihNlnodMdCpUyd+/PHHne676667uPvuuwETn7nhhhuYOnUqgUCAAQMG8Pe//52CgoJd+pxGOWLAwsRciu3vazBCI0kBXoxYRHBcarU7XEPEJsk+XrbVAAdgBEdRFKWR8kvPZp1nU19UAesxolODEQyxcLwYCyZov8CxcHaGJBBYGMFyYYSpD5CdkNUriqLsMTrPJtGEMe6zHYXGhRGaoP19CPDZryScmpsARqwkfhMrSGIJhYFviHexKYqiNBE0ubY+kAB/GCMQFRihceME/cVCkcwzOV5cZ7GyL1YQOC41F7AVKAIOStidKIqiJAQVmz3FwklRlpqZCE68JoQTf6klXpR8u3D9CMbycQGpwLdAW/u9oihKE0HFZk8JYSwbsVICGBERi0YEJWC/dhQZC8edVhuzzYXTXUCy10IYd9wPQGGC7kdRFCUBqNjsKUGc9OUgxh0WwghLMkY4qu19Phy3mcRigjiFm+6Y/VbMMbJP4j2rgU5osoCiKE0GTRDYUwIYUbAwwpCEsWo8MftrMMIjQiIJA2LpeO1XEuZvRF6x+1w4whYAVuKInKIoSiNHxWZPkRiNpCrX2t8n4Vg44jaLAJVgVcHx/57GuJmLHQEi5jo1GGuo2j4/ZF9bXHA1mJqerYm9NUVRlPpC3Wh7SiTm5cYIhKQsV+EkB9hCgwWPLVnEu6+dzLueara1v4Nn8m8mLZTmWCqumK+STi2I1RPGZKZlY6wmRVGURoxaNvWBWDTgtKSR1GXpGlBpf++B3x/amz6HL4PaFF6dfDSFyw/h88DnjsvMg5MY4MHZ7sURMelCsA5t1qkoSqNHxWZPkd5n4Dz0xRqJjduIaw1w42bWxT3ISquFVcex4uu+HLH+CP6y7S/UWjE9bCRJQF6SpSaJBtUYV1p5om5OURSlflCx2VNScWbV1GJ+ojU4wiBTOcWdZgFVkJcCD59n1Cj1v08Rrk7nruK7OGrtUawoX2EsoQriv5YD2+3riOgEMaMMNFlAUZRGjIrNnpKMsWDE+hCBkb5n1THvbaEhDHjhkqNhYFeoKs/k5E+/pZ27HZ8GP6VwUyETKidgJVmOG02+umKuW2V/XwFsTvidKoqi/GZUbPaUZMxI5xDO3Jkw5icrmWnyU5ZOz7aV43bDkxdDkhumf9CO56uWcV7KeVRalYzePppTtp3C5nCMioi1lGJ/rhcjODLaoDpxt6k0PJZlEYlECIfDDfqKRCI0wf69SgOj2Wh7ihvIwwxLE1GRdjXBmG1SH+ONOTcMvZrB9UPgwf/CjS9n8Pntkzkp5SSuLLmS6YHpfLrpU57NfJaTfCeZ6/nta4mgiVVVBWzEFHvqrxD7JBUVFSxatIiioqIGfdi3aNGCPn360KJFiwZbg9L0ULGpD3IxlkZwh+0xVky0gDN2aFql2XbXKfDal/DVGvjXPPj94HM5MvdILtp+EfNq5zGidARjfGN42P0waf40xx0nYwq8GBHaikmFzk3crSoNR0lJCW+++SbTp08nEmm48a2HHXYYeXl5KjbKbqFiUx94MRbF1xgXF8QH7MMY4Ykt7hSxcENaMjx+Hpz8T7jtLTi9G7TPas+cjDk8EnyEW6tu5emap5mbNJeXXC/Rz9cvPjVa0qr9mNhNOrvW5FP5WSzLIhwOEwqFGtxl5PV68Xg8hEIhtmzZ0uCWTfv27QkGd/zNSlF+GRWb+qINpmfZVoz4xI55riHetRVbg2Mzshec3BOmfQvXToPXLzMp0n9M/SPHuY5jVPUoloSXcMRPR3BH7R3c1vE2PJbHsZyky7QbE79pQ3x3AmW3sCyLJUuWsGDBAioqKhpsHX6/nwEDBtCnT58GW4Oi1AcqNvVFEqYT82yMFRM7AiA2O23HVGjZVg2PnQFzfoApX8PMpfC7fKAGert683mLz7mt4jb+XvF37t56NzMrZ/Jiqxc5yGMPt5GkARcmfpQBZCbqZvd9IpEI33zzDU888QQ//fRTg60jJyeHpKSkXR6ZriiNFRWb+iQTM7r5I4xlI90DJGEAnNiNIIPUkqBDc/jLifDHt+Cq1+DbP0KanX3mD/l5uNnDnJh6IhcVX8Rn1Z9RWFTIP6x/cHnG5bi8LvM5ze3P3WzOixM1ZZexLItgMEhZWRmlpaUNtg63200gEGhwV56i7Cmat1TfdMJM0pTZM7XEJwXEpkJHcOpw7G3XHAOFbaGoGP4yG2MhJQNZ5jrH5hzL4q6LOTfzXKqsKkYXjeaUtaewmc1OV4EqjKuuGG1loyhKo0DFpr5JAnpiYiaZON2bazGxm9g4Smzsxu5A4AnC0yeBywUPfwSLt2EC/hGMleKDHCuHlw94mZcPfJmspCyml06n12e9mFEywwiT2772T2jtjaIojQIVm0SQCRyIiZu0sL9KqnMNRgiqcLoJBHBGFSRBv3y4ehCEIzD6ZQhLjCfZPr8GCMG5nnNZ0m4Jg9MHszm0mRHLRjDm6zFUhiqdepyf0FY2iqI0OCo2iaI1ptgzFeMCawnk2K8UjAWUYr+yMPUxHoxIpMM950HbHPhsJTz5gX3NckxrGmnE6Yb2zdozJ38OD7d7GJ/Lx/j14yn8pJDP1nxmrKUAZvaNoihKA6Jikyh8wAEYayTF/j4FY/VkA2mY4stM+70b4y7LMu8zffDPi8ylbnkN1m3ACEwOTmq13S/N7XJzfcvr+eLQL+iV1osVgRUM/Hwgd397N7WBWiM26k5TFKUBUbFJJGLR+O1XJs6gsx1n1Ej7mYh9TBqcchic2gcqAnD1K2Cl48R3IhjxcmGSEVzQO7U3nxd+zh/b/pGIFeHPRX9m4EcDWb55OWxC3WmKojQYKjaJxIVJFBDLxoXTWiYDY9GkYv4WsuxtUv1fBVTD4xdAZgpM/wre/BQjMiGMIFVjRg5sxyQgVIC/ws9DrR/ivd7v0T65PZ+XfE7hh4WMXzweq1hT0xRFaRhUbBKNH+iAERrbYsGKeUm3aJmHIynTESAD2naA+y80lxo3AUq22scGY87LsD/Hh3GtpcHgZoNZXLCYc1ueS1W4ijFfj2HkWyPZvEVnESiKsvdRsdkb5ADNMIIgsRaxZDwYaybVfonLLYvo/JrRx8KR3WDTdrjhNYyoiPvNTocGnGmgdsPP7ORsXj7sZV4ufJksTxYzNs6g58SevP3d23vnvhVFUWxUbPYGSZjYjbjQkjFWTC0mjiKzaZJwOgyEMVZOCNwWTLgcfB6YOA/mLLb3eTAC5cIITdB+H8C42Oz5Oee2Ppclg5YwOG8wWwJbGPn6SEa/PZqKmobr+aUoyv6Fis3eIhUTv5HWNVk4ri8w4lGFESAw4iOWDtD9ALjzLPP+in9BRS0mFiRut2L7vRSPylC1CmA7tA+1Z87AOTyU/xA+t48JX03gkKcP4bN1nyXwphVFUQwqNnsLF8aVlo6J29RgXGo++/tMjLDk4sRgxEqx+5v96UQo7ARFW+C2VzAiU42TwZaBM0Lajt1E4zg+cAfc/LHlH/liyBf0yu7FiuIVDJw4kLvn301tRFROURSl/lGx2Zt4MMWeMtrZj5NdFsCxaiS1ucL+arvbvBkw8TozRvrx/8CCFZi/QRdGWGJ7sHmIT5OOSbXundabz/t/zh8L7BTp9//MwIkDWb5teaJ/Aoqi7Keo2Oxt0jGdBaSuJhMn3dmDIw7V9v40e38GkASHtIY/nQyWBZf+E6qD9n6p0anBtMWpBUqBMvtVgdMuJ8nMSXmoy0O8d8Z7tM9sz+frP6fw6ULGfzleOwwrilLvqNjsbVwYsUnHWBoyWE2sE3Gz+TAC48MkDIil44K7zoQe7eCHjXDHvzECVY1xq5XhJBv47GunYIQsHHOcPSl0sG8wiy9fzHm9zqMqVMWYGWMY+epINlVs2gs/DEVR9hdUbBoCL9AKIzDp9tcgzggCieeIW0yExt6f7IdJ14PbDX9/Cz7+EuOKszBClUL8GAMZqubGCJB8vx2oguyKbCafMpmXT3uZrOQsZvwwg15P9uLt/2mKtKIo9YOKTUORiclICxNv0bgx1ocUfIZw+pql2+elQr/ujjvt4iehqhojIv6Yz6ixv0qmW2zXaXAGum0EyuDcXuey5MolDO40mC1VWxj5qqZIK4pSP6jYNBRuTO1NOkYAwhirI9Xelo3TpNNrv5eWNxGgEu46HfLbw/KNcMsbGIsG+3plGMtF6nXCOPN0xJUmbW5klHQ1tM9qz5wL5/DwsIfxJTkp0p+u+zShPw5FUfZtVGwaEh9GcHwYi6QGk5UmLjQXjhiIS83CWCkh8HvhhWvAkwSPvQ1zF2JEphojLpJO7cHpLODHSY+WmTcV9ueuN5/ndrm5fsD1LLxiIb1amBTpIyceqSnSiqL8Zjy/foiSULIxAiHP8CDG3SUxmEqMSIRi9geIZrD16QV3nAt3vQSX/AMWPwxZfoyVk4xDECMyQZw+bEk4NTluoMQ+rw3ggl4te/HFFV9w+9zbefiTh/nz+39m5oqZvHTqSxzU7KCd3k5FRQVr166lrKxsj3809Y3H46FNmza0bNkSt1t/z1KUvYmKTUPjxiQLFGEsFh8mluPBCEMt0aJOIvYrtqYmArecCG9/DAtXwTXPwvPXU7eGJ4QRqDDOWAK7nU00tuPFdCLwYwpQgWRPMg8Oe5ATu57IhW9dGE2R/vuwvzP60NG4XLFzrmHt2rU888wzLFq0qJ5+QPVHRkYG5557LqeccgrJycm/foKiKPWGik1jwI9xp63HEQGxNqQYE4yV4yE+S60SvG54cRz0uRle+ABOHAhn9cMREQsn5iPfgxMDwv4ssXrW22tKc5Z4TKdjWHzlYq5+52peXvIyY/8zlhnLZ/DMiGdomd4yelxZWRmLFi1i7ty5e/xjqW9yc3MZOHAgkUikoZeiKPsd6ktoLGRhHu5pmAd9LU5WmhR6hjCuL3BcbHbQv/uB8PAVZteYx2DdTzgi5cMRGqm1kXRqGTUdMNchjBGdIntbDNn+bCafZlKks/3Z0RTp6f+bXl8/BUVR9lFUbBoLbkwrGzDWSzZOcD+C06RT0qHFCsnEFH8mw9jhcFIfKK2EC5+AcNA+P9k+vhynoFMKSQXpWlCGEZxyYC1OLCmGc3udy+Kxizm287FsqdrCya+erCnSiqL8Iio2jQk/pruADEeTZpp2bU00HTp2Do4984ZacFXCs1dDiyyY9y3c97a9vwJn/IDLvoa46cCxlmS/GyNopcCP7HScdPus9vz3gv/WSZH+tvTbevtxKIqy75BQsRk+fDgul4vbb789bntJSQmXX345zZs3Jy0tjaFDh7JkyZJELqXpkAW0wMlAk24CYaJD0aKJArFdAuz2My3S4YWrzeY7X4WPvsbJOpPBbUk4lk4JTgac9E+TbtK1wGZgHTsVnJ2lSI/5bAyrOq7SX2MURYkjYY+EV155hW+++abOdsuyGDFiBLNmzeLxxx/nzTffJBQKMXjwYNatW5eo5TQd3BjrxoPJCPNhBEdm1YiwSEdnqZOR1OgUOH4g3HQKRCJw7mOwrdI+T9rhSIwGnLk5sbU3koQgbrv1GAvnZ+LqkiJ9w4AbiFgRijoWwaWYcQmKoigkSGxKSkq47rrr+Pvf/15n3/Tp01mwYAEvvvgi5557LsOHD2f69OlEIhEeeOCBRCyn6ZGMsW5COKnQaThTOaXQU7LKkjAuNplnE4C/ngn9u8K6bXDRoxCpso+1cDLcpG9aLUbA7F5p0S7RFThCtw6TNPAzNZ2SIv3Pw/5JciAZ2gFjgUP3/MehKErTJyFic9NNN9GzZ0/OPffcOvumT59OmzZtGDx4cHRbVlYWI0aMYNq0aYlYTtMkC8jBsWjsAWj4MaKSgTNawI8Td7FrZ7wp8Mp1kJMG//kK7pH4jSS7SxubIEZgpP5GpoeKICXhpFCvBVbg9FbbCYc2O5R+X/aDxfZ1RgDnEpdGrSjK/ke9i81HH33ECy+8wBNPPLHT/UuXLqVnz551tufn57NmzRoqKjSjCXDcadmYh75koUVwLJod06HDGPeYHe/plAsvXwMuF9z1Bsz62j4uhLFe3Bjx8ca8l3EFsWnRYuHUYJp2fmuf/zNjb7xhL/wbmGJfqxtwlf1VUZT9knot6qypqWHMmDHccMMNdOu28ydLcXExnTp1qrM9N9c4+EtKSkhPT6+zf/z48YwfPx6ALVu21N+iGzM+oDmmSWYW5uEurW3EnWbFfJXYjMywicDwAvjz2SZZ4Lx/wBd/hQOlw7R0iJZ+azKATVKik3GSEqTVjQfjbluKcZW1wqnn2ZGlGGvoFOAAjIXzJTAbx1pqpLhcLtLS0mjdunWdLgl7k5ycHDIyMhp0DYpSH9Sr2DzwwANUV1dz22231edlARg9ejSjR48GoG/fvvV+/UZLJkZEgpgHf2zacgXxw9WS7Zcbp3jTC7edAZ+vgBkL4aT74ZN7IFuERo6rwQhabNGohbGUpLhURA37uNWYbLYO9rp2ZieXAS8ChwNDMTGcTsBbmDhQI8XtdnPooYdy/fXXU1VV9esnJIjk5GQKCgrweLTZh9K0qbd/wWvWrOGee+7hmWeeIRgMEgw6jv1gMEhpaSkZGRnk5ORQUlJS5/zi4mLA/CanxODCJAvUANtw6mAkniLCU0187UyAaOGm2wWTR8PAjfDtejjjUZh5O3ilkFOKQ0VogjjZbfILtXyefLbsqwS+x1hgrdi5a80CPgVWAafZx10KfGC/GmH3GJfLRbdu3TjooJ03HN2buN1utWyUJk+9ic2qVasIBAKMGjWqzr6HHnqIhx56iK+//pr8/HzefffdOscsW7aMDh067NSFtt/jwQiOTPOUsFYE529QujhjHyNJBXacJ9MPM26Hw2+B9xbDlU/ChAttLZGx0WLJVOFktsWKh1hBksEms3i8wBagBHzrfPhDfly4sHZUns3ABOBY4AjgGOAgTHxn2x78fBKAy+XC5XI1qu7QycnJdOjQgd69e2NZPxMw2wt06dKF1NTUBvt8pWlSb2JTWFjIvHnz6mwfPHgwo0aN4rLLLqNLly6MHDmSSZMm8f777zNo0CDANG98++23Oe+88+prOfseqZi6m80Yd5eL+CC9jBAI42SXSezGbuzZMR2m3QzH3AHPzoOcZHhgFLh8xPdMk2w0cPqyleMUlsq/Gh9GdFJwulNXQl5VHu1oRwklVFIZLzph4L/AcuBUoC0wBngXWFhPP6t9lNzcXM4++2yOOuqoBhWb3NxcOnbs2GCfrzRN6k1ssrOzOeaYY3a6r2PHjtF9I0eOZMCAAYwaNYoHH3yQnJwc7r33XizL4k9/+lN9LWffpBlGELZggvtZOK1lwsSnNSfjJBGEiYrH4V3gjavhlMfhoVmQmQ13nI4RKPHUpOA05aywz/XbnxXbU01qcGT2ThA8AQ/eiJdsskkjjRpqKKGEcsqpjS3SKQKeBE4AegMnAV2BaRjXnFKH1NRUCgoKKCgoaOilqFtP2W32uo/A7XYzY8YMjjvuOK666ipOPfVUkpKSmDdvHu3bt9/by2lauDDxjmyMJSNta8TakD5psYIQxPlbtoAKOLEnTP49uN0mS+1vr9kGklg1HuItpBScpIOkmH3SuSCCsbwsiPgiJLmSCBLEjZsIEZrRjDa0oRnNSI6d6BYgPkW6K5oi/SuIe6+hX4qyuyQ8xWVn5n5ubi4TJ05k4sSJif74fQ8vZvZNECMMpfZ2sWxif9yxdTgiCi4gB846GipDcNm/4LY3YEsZPDwK3Mn2tSrta4mVQ8znBGI+z0NcRwNXxEVSJIlccgkRIoMMyigjjTT8+MkmmyBBtrOdaqqNtdOEU6QVRdk1Gk/0U9l10jAJAxFMID8NZxSBJBFIdwBJIkjFuML8RMXjkmPglTHgTYJ/vAsXPgPBGuJHEIghIsWeUmsj9TciRLYIJW1Pwmt5SSaZWmoJEcKLlwoqSCKJkJ3m1pzm5JJLDjnG2pEU6VkY8ToU0+6mXf3+6BRFaRhUbJoquZgYTg3mwZ+KM34g036l2d9LtlmIeFs2AGf3hf/cCGl+mPwBHHUb/LgVp25HGn5W2F8lFgRO9lutvd+uw6l11xIhggcPtdTiw4fH/uA88sgggxRSaEUrssmmnf0nw8rA+6kXxmMKWXMxKdKD0X+pitLE0f/CTRWpv8nDCEMtRnjEIpFRBLFjCIjZHrRfGXBcP/jgr9AxD75YBX3uhJlLcaZ7Sqsa6W9mxXyGjCdwA8ngspVIxMaNGx8+mtGMFFIA8OIlSJBqqvHhowpTNNmMZmSTTe7mXFImpMAC+zMGAZdhxFVRlCaJik1TxoNJGEjBJA1Iu5nYLLEwzqhn2e7CCIkMXwP6HAhf/QV+1wuKK+GEB2H0U1BahhGT2Gaf4poL4hSTyj6bMGFSSSWDDFy4cOOOc6slkUSECC5cZJCBDx/JJNOGNmSSSatwKzr/tzOZz2fiKnU5KdL7UfMIRdmXULFp6iRjHsRS2Z+DEZE0nMwyr/1epn6KhRIrELWQmwQzboR7zgOvByb8F3pcC1MXgRUT64laTIGY68diQQoppJJKiBBhwlHBMbstfPjw4yeNNJrRDD9+aqmlkkr8+AnYf3KLcmnxVAuSFyebezgJOA/tIq0oTQwVm32BNIzgyAROER5ptunHGRkQG9CXeEwIIxyp4E6HW8+ARQ/DgK6wsRRO/ScM/Qt8uZL4IlJJg5Y4kL0vOZyMFy811ETdahZWVGxcuGhOc5JJJkSIaqrx2opl2X/SScePn2SSaRloSad/d6LZlGa4q93QFVxXuUjrlkYKKSTtaFYpitLoULHZV8gA2mMsHQ9OzzMpuIxNX5aU6Fr7lYxxxcWUwPRoDx/eDI9fCDnpMHcJ9L0Rzvs7rNiEU88DjmUTAavWwm254ws4bdy4SSWVNNIIEyZiB5Ji4zsePKSSSnOak0Za1Npx4yZjaQbNnmxG8qpkrDSLynMrSRqZRAdfBzrRiRa0IJNMUkjBhw+3/ceF1oUoSkOjYrOv4MLEbVpghCMV404T6yOME7ORTDPJYJPamtiYTBCSPDDuFFj5L7jxFEj2wisLoNsf4PzHYclq4pt/BsFluYi4nc6asa1qUknFg4cau3jGHfPPT6yZDDKwsKiiKmrtANRQQyaZ5JXl0enFTuTNysNV66KiTwVrxq6hol0FWWTRjGa0pCXtaEdHOtKSluSSSzOakRPOwVvpNZlzVRhrLjaWJQIcjnk1wiahitIU0b7l+xIuTPdlgDUY8cjAiEEapr+ZD6ffWYxFEnWp1drvUzEPY4xl88D5cPUw+PMb8OL78PKH5jXycPjTWXBEd3BVg+Wx7KW4opYLgB8/ESLRzDMLK2pxuHCRSioWFuWUR89x4yaJpOj+JJLw4GG7tZ3MTzNJXpXMltO2EGwVZOulW7E+tGjxfgtqI7XRup5MMkkmmUoqybAySK1MNT8bsQClLY/L/nnJaAVi9svLi2MBeohPA1cU5RdRy2Zfw4VJEZY+iRLIj32Ixj4gRWBqMA9dP8Yiij3G9oh17AwTx8LKJ+D3w8Hvg+mfwZF/hMOugRc+hhr7RDfuaAGnBw9+/NHvnaWaP+mkx4mPszSLNNKi1o7EgMTiydicQY8JPWi1oBW4YNugbay6bBWRZhHa0jbOSkommdRIKu6w2xFbsWwkW287RpCleLUY2ITpSF0CbAB+iHl9j5nJI0PrFEX5WdSy2RdxYwoiI5imnVJ7I8Ijv8EHMJaOpEHH/qYuD08ZIZBKdCR1h+bw2KVw24Xw+HR4+h2TPHDRE5Cb3pWuqceTzCYi/Bi1SkKE4iwdMGIitTdhwnFuMzD1OH78lODMPwoTJhmTgODDRygcovV/W5O2PI0fT/mRYNsgq8esJvRuiKyFWdRQExW7DDJIqk1yui1U2V9jG4/K1FKxZMCISa39M3DZ+8EIcwVGhDIxVmU2+r9KUXaCWjb7Km5M/KYVTs+0FhhRycJYP+n2SxptitBYGJGRB6w8ZMUiCANp0DIX/u9iWDMBnh0LvTtDcYWHTzcP432eZyn/RzkDATcWVh2x8eDBh48w4TrL92Ja3uy4L0Ik6hoTSylMmOyibA5+6mByF+cS8UVYc9Ia1py3huT0ZDLIIEyYKncVnpDHCHAQJ0tvK8aqceMUsFbZ20SQXPb3MjVVum9Ls9JtmE7WK+3jGm4CgKI0SlRs9nVygc44c22k6DO2EzSYh2kApxA0BfPbug9HhCS5QBIP7PNTPHDpCbDoXzDp6tV0y/wGFxYlDOJbHuQDJrKcMwnGtABw4yaZ5GiyQCyStSZus1j3mqQ67yhcySSTGcik3b/b0WFKB5Kqk9jedTvLr1zO1u5bTeq15TZutKB9TyGMZeLHCKu06QFHcII4A+Vk5IKFE7MJ4gyqC2BcbysxcaG6CXmKst+iYrOv48IkCXTCiEc2RkCk75mkRidjHrqx/dREiCSF2m3vS9phu89sc7ngsAOqOKnjixzCSDryFH5+IkBrVnM5XzGV73mIYgbhthMGYpHMtRRSovtiYzkePNEGn7G1NV680dRpFy6yl2Zz8JMHk70qm1BaiKJzilg7ci1ejxfLZZl7LbNf4lILYAQmgLFaJGGiFCdpQqyezfa5lfbxm+3jpAFqCBPrWYkRI0VR1Lu835CCSRrYiHlgWhhXWhXOxM1ynH8R0kNN2tuk2Nur7a/iTku3t9luNrflpiapBh8ldOQVujOdTRSyhuMo4UhKGUgpA1lNKc2YRR7/IZUVJNkJBR480YJQswxXVHAk9uPCFRWbWCtI2uCECZNVlkX6i+lsPHwja4auoaRPCR93/pgBkQFm/RUY9yAY0fDYP5dSjOBKvzcPxuJJw5kblITTK05iOyGcFPIqjEVZhhGcAzBCrij7MSo2+xNeTMv+TEwWlbh5pL+ZJA2I0SAp0zJOoBZHgNw47jQpGg1Bal4qBYcUkJmdSXIomaRIEtXeaiz3e1TWfMLSTQV8s7Evm6ta8hPn8BPn0Dx1M/l539Kz1dc0TykmKZIUrdVxR9xUe6tJiiThC/uIuCO4LGPpBLwBfLW+6PHuiJtQUgiX5cIb8RJ2m3hP8cJi/p3/bzblbOIe7iG8OszdLe/GW+t14jGxfeTKMOIgLjI3zsweGdsgjUyTcWJZtfbPNgUjWhkYAf8RIzg7tvVRlP0Il9WQw8x/I3379mXhQh1Yv0cEMFaOxCW8ODEJyc6SLCwRoqC9P4P4WE4Z0aSBAAG2b99OVaAKd4kbK8XC8sf8E6sFKwRL1vmY8lEG73yaRkmF4xLL7xDkpCMq+d3hlXRoXgsWWGkWrgqXM5ba9r5Zfgt3hRvLZ1/frpdxhV1YXuczXWUugp4g/6j+B08XP42FxWFph/FS25fo6u9qBKPCPrgCR1zBcZ9V4cwNkrobsezECqzBWEtS6Joec2x7jNCr41rZh/mlZ7OKzf5MBJM5tQnzkPXhBMLFNVRhv3djftuvJL7HWsjetkO7m+j2LOKz3GoxD3O7c3SoFuZ+Aa/Mg7c+hLJK5xJd28HvBsDvjoRBXcEvzTelH5tYGrHFqTLfJ3Zbqb32VHh/0/tcuPxC1tSsIcWVwt/b/J0xOWNwhV1OPVI5xkKBeLeh3/4Z2SngBO379uGMzfbbPwdJpmhlH5cKHAjkQCQSIRwOE4k0zuKcpKQkkpKSdPyzstuo2Ci/TAgTlyjGPKgr7a/yPrbmpIr4Uc1i4dTgWEBiDYWIFyaJcwSI761WA2RAoBJmfQSvzodZn8P2iuinkJIMgw+BoX3h8K5wSG9IiRBvhUTs9abFXDtor1kak5bDdms744rG8dK2lwA4Ie0Enm3xLK0irZzWNeIeFFGrxUmXjk2ciI1niTutuf1zqcERqGRzjxwMxduL+fjjj1mxYsVO/zoaEo/HQ2FhIX379sXv10CTsnv80rNZYzaKeRC3wmSqbSI64jnatkbqRkQgQpjf/L0x3wdwkgbkt/1y4uI50QevJBQQs90Dfg+cchSccgzUhuDTpTBzEcz8EL5eDu98al4AniQoOBAO72Feh3aDLi0h2SLeVSWWlAhBBLJ8WbzY/kVG+EcwZuMY3ql8h14/9uKZnGc42XOy0x8tzT4/EHN+rLiJsMbGYkTcZPyCrEFaAhXDttJtvPnmm/znP/+hsf2ul5KSwhVXXEHPnj1VbJR6RcWmCWNZFtXV1QQCgfp7aMU27yzHiZNILEcytCS2AeY3eAmqp2DEpBp8tT5S3Cl43B4ntRriLRFXzPYYr5IHOLIfHDkQ7hllRh3M/gI+WgyfLYOlRfDlD+b1r6nmHLcbOrWEbh2cV+dMaN0cWuVAc1+MDoXhrOyzOCJyBBdvv5j3qt7jlG2ncFnyZfzD+w/SvenmPkSsRFSlj5q40kI44xbcMS+x7MoxWX/2CAd+gnBSmPLycrZs2bK7fzsJJyUlhcrKykYngkrTR8WmCRMMBvnwww/58MMPCQbrt6DDZblIqkkirToNb9iLFbbwRrxEkiK4wi6Sa5JNtpcLwp4wRDDFljEdnw9seyADCwbSvHPz+N/+JXXYhbGQRHykS4HEZGLOad0MLv4dXDwUSIHyalj4NXz2A3z2HSxZBas3wir7NfOzuvfkSYKW2dAqF7KTITMVMj3tODj1v7j4gnmRGTzr2840398Y57+Ew3MOIi8L8tKgZRokSyZa7OjtEEaURHglwy8dY8UFcOJhdv85l19jIcr+h4pNE6ampobPP/+cp59+moqKil8/4TeSHE4m3Uon3UrHi5eAK4DXMn3Lgm4jcklWEulWOrXU4sGDCxf9j+5Pfn4+zb3N6140jJkqGuvyEosBzMN6R+SXbS9kuGFwIQzu5+wLlsHKzfDDT/C/Nea1ZgNsLDaWUUk5rN9mXvG4gH72y4Sv7t7hCI8bCltD/wPgwv5wmDQ6lRHZsYWuNTiJFWLxVGKsuwC4Qio2yv6Hik0TJxQKEQgECAQCCfuMAAG2sx0vXtJJJ4ccggSppZbUcCpBgkSIECBgRgCwnRpqqKCCiDcSnz4txY+SgBCLB/NQziVehCTdWZpmSubXDp2pk7OgRwr0OMjeFsG491xAOgQq4KctsKkUyrZBWQWUldtfK6AqCGWBWj6s/oolwVVQnUtqVUfSqw5gS7mXheth4Xr454dw/qHw1NmQHrsWsXjEKpNYlrgmq829u8pc2jtN2e9QsVF2mRAhSiihlFLSSItW7nvwECBAKaVkkhkd7QyYehdJA07CPHi9xCcdgDOoTGpZYvHidDrw2duknQwxX8VVJYhbzo6j+H3QqQV0aoWxPKRoU1rUWEDIA+F+vB+p5sLwhaxhDRYpPBx5jIIfL+M/q1w88QlM/tJ83MRTiHerSQabrFsy5MQlGAZ3tRu3pQU3yv6F/otXdhsLiwoq2MIWfuInSinFhy/aTiaFFPz4SQon4XK7TGDcj6m5kVTpFJy+bNKRIBunIn9HIjjdpyHeKpLu1B7irR15L58pfdBEFMQakfY90ponAIOSBrE4bTGjkkZRTTXXu6/g4U4nceNJP/H5NZDsgUlfwhc/2dcXl5nMxqmwr+uzP7eKqEXmqnHhiejvecr+hf6LV34zFhZB+08xxaSTjh8/1VTjx0/AEyCcEYY8jCUTgbAVZvOWzWzZsAXXdhdWkkXEHzEWkAtcQRfuGrcz8TPsimZ+WRusODFxVbtM/CMJIqkRcIG70v79ybZ83NVu48qzrQx3lRs8kFyTTE52DrnJubgiLscVJpaRF7Jqs3gx/CIjGMFYxvKO6x16VffimRbPcOlhJ/PkJzBrBRx2sCwIIzgyDbUCY6n57e32/CArbJEU3tGHqCj7Nio2Sr0gI50rqIhaOW7LjavS5XSGLoNAKMAn73/CzP/OpCpQhc/yUZvk9OJ3WS7SatOiiQZhd5iAO4A34o3rdwbgiXhIDaVS4asg4jKZBZ6wh+RIMrXuWjwRDzWuGvMZbtP6JqU2hYgrQuvM1gweMpicA3Nw1bqcwWkBjNUlLrYkOMt1FgNrB3Kx62LmWHM4JXAKx7b/F3xyJQtW4VgtYj25Yt6L6MhgurARUBUbZX9DxUapV2Ktnc2pm6ltUWse3vYcnPBPYVZuWcm8L+dRWVVJGml48UYHoUkXZz9+trM9uj2JJDLIiBs1LceHCEVjRC5c0bhRLbVUUUUGGUSIYGHhw0c66WxqvonCwwuNxbFjg1Ep4Iwpymxb05bZvtk8zuPcxE3MzX0SuJL/ba8CUo1Y1WDuNVZc/DhdCezrRiIRvBHtyqnsX2jMRkkcbtNEk5aYFi5+IB2SapNIjaRGRUYExocPC4tiiimhJG7eTZhwNNvNi5daaimjjEoqo8IDRuzChHHhotpubFZNdXTkdK1dCBN0B82/fh/GipGYjcRdpH9bgGj7HrfHzR88f2Bh0kLyM7MBKCqt5Y7QHUYEY+cElRNfBOojmijgxh03j0dR9gdUbJTEIw/bHCAPynLK2OraSogQNdSwmc2UUEIllVRQQYgQFVTgtv+YS7iIECGJJAIEqKQSC4saaqJzcMBYPJVUUkVV9ONrqY0e48FDMcUkuZIIe8NOCnZsRwQRnGqc/mYxTUZ7Rnryhf+/4IpATSb/F7iXgYGB/M/zPyemlIzTskcam8akSSfVqtgo+xcqNsrexQ2RpAjlSeVsYhPFFEfdXSFCUQvHjZsAgWhmmxs3FVSwnvWECUdFCIzlImOmAwSosP94Y1oQBAniwxcVoggRM7VT+rjJsDQRBGkW6sHp9BzCxGfKIYVkspLNGtoGe/CF9QWHlB/Ck2VPYgUtI1ByPcw5pJprWJ74RAdF2R9QsVEaDLFMSu0/W9jCRjZSTTVhwlRRxTrWUUIJAQKECBEhQjnlJNl/xFopp5xqqqMxnVpqqaQSHz48eLCw2MSm6GdXu6tNrUsSphuzzPOR0QGSHi1utmr7q8yw8UGGXfMzs/YjLvBcQDXVXFVzFSdVn8RP1T85XaJjB9P5zDUsl1Z1KvsXKjZKoyBChFpqqaaaLWxhE5sopzwaqwkSJJVU0kiLutJctnmw3f5TQglu3FGLRsRM6oLE/ebFi8tymZ5ubkzHa8lAkw7PYtXs2A8thWjiQLLtCfN7Mnkh+QVe97xODjm8E3mHXqW9mFo11Uk+kA7SSeByuUiKqBtN2b9QsVEaJREiVFPNdrZTTDFb2cpa1rKRjVRQQRllbGFLXEGpuN4iREghhRpq2GL/EREKEyZIEDduwslhIzTJmIJSMO6u2NEAsZ0KpFWO3YYm2T6uxrZ6zvSfyZLsJQxNGspWtnJq1alctvUyysPlzuiFGrCSnA4LirK/oGKjNAnChAkRoooqiimmlFLKKKOUUjaxia1sJUiQAAGKKWYzm6PdDJJJjvZv8+Chmmo2J20m5AuZBAAvxt2Vab/KcYo7JQXag3GllROd9eOx//eEasz3BKBtRVtmZ8zmH+n/IJlkJgYnUrixkE8qPolaS5bbitYFKcr+gtbZKE2SiP1HUpmrqaaMMly4olls8l7iO7LNh482rjamlU4mxlKRnm2lOO40SQ4Q15oXx7oBolOTZRqp3SnAHXLzh6Q/MLTFUEaVjGJRaBFHrj+SW0O3cucBd5rxDZa60ZT9C7VslH0KqbORtGqJ04gVVEIJm9jEeu96KltWQkegE9Aa874tUAD0xNQGgRGdFIyoxL5ie6/FZp+lm+Pzw/l82vJTbsq5CQuL/9v8fxzx7RGsDq2OqyFSlP0BFRtl/0RayiRhxCQd879BXGkeTE+3ThgByrW3+4ifXQNY0tXaS3zH52xIdidzX/Z9zO8yn46+jiysWMiI9SNY0npJgm9QURoXKjaKIsLjxtTC2B1oot2qpaO0hZOp5oOIbdkkSePNAE5SgQunG3UKHM3RfHPIN1zQ/AICVoAPu3wI57HzIXGKsg+iYqMo0gvNjyM0bhxXWRXRAWzkYOpyUp2hou4UjNWTjbF8anHGFcj1syCrOosXCl7gsZaPkRxKhq7AlUD3hN+hojQ4KjaKAk4vNGkrk4pjqWRjhCZ2Ho4LwrbauMGpp0nGCE+6/X0VzuA0e3rnCZkncNY3Z8FKTP3NOcBInMFwirIPomKjKGAEREZWyyTRFJxiTHCGpNljqiN2zMYd64aLYNKmxYWWhRGcGoxFFDTHpQfT4SVgpn1sH2As0D6xt6koDUVCxOadd97h6KOPJj09nczMTPr27cvcuXOj+0tKSrj88stp3rw5aWlpDB06lCVLNGCqNBBSX5mMKb4M4YxFkEyzWpwaG7sTQFRsJGGgxn5Jp2fsY6XrQDlGcGpN1hwW8BnwNLARk4RwCTAY/TVQ2eeo93/STz/9NCeffDKHHnoob731FlOmTOHMM8+kqsp04bUsixEjRjBr1iwef/xx3nzzTUKhEIMHD2bdunX1vRxF+XUkoC9fw0QD+5TbL+lanY1xkfnBsgXFLUkEWfYrDSNU5TixILF67M+I6422BXgG+Mj+/EHAZUCzxNyuojQE9VrUWVRUxLXXXsuDDz7ItddeG91+/PHHR99Pnz6dBQsWMHfuXAYPHgzAgAED6Ny5Mw888ACPPfZYfS5JUX4dEYEajLWRjtNFIAVj8ezYI80NETtm47IwAmWPr47Oycmwt5ViRCgTKDNdn11R08cmDMwBlgOnYtKtxwLvAl/U/y0ryt6mXi2biRMn4na7GTt27M8eM336dNq0aRMVGoCsrCxGjBjBtGnT6nM5irLriJDIS4QjCSM2afb2aqDMfolxIgPWAjguNPk1TjpHi3suGVwR188Xdf4IPAl8g4kPnQicj6ZIK02eehWbjz76iO7du/Pqq69y4IEH4vF46NKlC0888UT0mKVLl9KzZ8865+bn57NmzRoqKirqc0mK8uuIOFgYYdmOcYtl4rjDKuz9aRh3Wg647FiNlYFT9Clp0+UYiyYJIxRJmEQBP1i1O7FsYgkCbwGvY8TtIOAqNEVaadLUq9hs2LCB5cuXc+ONN3LzzTfz7rvvctxxxzFu3DgeffRRAIqLi8nJyalzbm5uLmCSB3bG+PHj6du3L3379mXLli31uWxlf0fiNG5MQF8SBYQknO7PMvPGFVNGE8GxXGQUdBrGdRbGCJXMwakAl88VN/ztZ1kG/AuTIp2KpkgrTZp6jdlEIhHKy8t57rnnOO200wA49thjKSoq4t577+Waa675zdcePXo0o0ePBqBv3771sl5FicODcY/ZosA2nA4CFkaIaoimMksSWljSpD04HaRjBUpSqm1Rs6zdGC9QjkmR7gcch0mR7oSxfNb+xvtUlAagXi2bZs1M+sxxxx0Xt33YsGFs2rSJjRs3kpOTs1Prpbi4GGCnVo+iJBTJRAtjREGsk0wckbFn2BDGiEkWJCeb04OpOG40P8b1VgmU2O+z7euXARngCrlwRX7BjbYjP5cifSyaIq00GerVssnPz+fTTz/92f1ut5v8/HzefffdOvuWLVtGhw4dSE/XSKiyl5GYjbSq2YARHWm6WYozciCm27Pf7gwQlEacYrBE7PP89vfVGFFIMe+TvEmkZ6TTIq8FvxS62RnWNIvKfpVUHVIFR4Onu4fMOZl4Suvnv3JKSgrp6em4XLu5MEX5FepVbE499VSeffZZZs+ezRlnnBHdPmvWLNq1a0erVq0YOXIkkyZN4v3332fQoEEAlJWV8fbbb3PeeefV53IUZdeQmI0XE5xPt7/WYkTGjxGKEMaNFjL7ku3ncaAEI0gu+xoiVB57WyBmWxCysrMYftxw2g1q95stkxWhFbxU+RLFLYopP6+cU1JP4cjkI/dYJDweDwUFBfj9/l8/WFF2g3oVmxNOOIHBgwczZswYtm7dygEHHMCUKVN49913mTRpEgAjR45kwIABjBo1igcffJCcnBzuvfdeLMviT3/6U30uR1F2jSQc91gpTprxFpyGnNLtWY5PgvRU822FB5Oh5sLpDB3ExH08mESBZPvaOZDtyubI/kcy8OCBe+QGuz1wO9f/93pe+vYlplRNoaxVGeNPHE+r9Fa//aIYD0RSkg53U+qXehUbl8vF1KlTueWWW7jrrrsoKSmhe/fuTJ48OWq1uN1uZsyYwQ033MBVV11FIBBgwIABzJs3j/bttTGU0gCIG03a1ATsVw5OQkDAPlYsFiDbFqXSSuKz18Sd5scIlYyY9gC14PK48CZ5zb49eKbn+fJ48fQXGdl9JGNmjGH2qtn0eaYPE0ZM4NSDT/3tF1aUBFDv4cXMzEyeeOIJNm3aRE1NDYsXL67jHsvNzWXixIkUFxdTVVXFe++9R0FBQX0vRVF2DXF/BTBWTQ3x3QJcGMtEUqODQDVk2zGbkhJM1liZ/bWauBTpuDEFkmIdgPoa1nlm/pksuXIJxx1wHNuqt3Ha66dx6bRLKQ+W188HKEo9oLksiiLWhRcjFMn2qwIjCj6MxZOKIxi1kJNmTisO2PsycNrS+DFiU2Zfx3a5EcBxtUk36XqgbWZbZo2axaPDH8Xv8TNp0SQKnipgwZoF9fchirIHqNgoitTDpODMn/HiZJhZOO40F1Fhad3cnL5hO04yQSXGuqnECJeMnK6xt0kSQi3xrrf6uA2Xm2sOv4YvR39JYatCVpeu5ujnjub2ubcTCofq98MUZTdRsVGU2DqbFIwwVGNEIh0jIuKRkuOqob1trazdZu/z4PRVk/HQln0tsWhsqygqTgmgR14PPrv8M24aeBOWZXHPh/cw4NkBfL/1+8R8oKLsAio2TRyXy9UoayIa45p+liScQL5k/IohUGPvy8a40yowvdMC0N6uP15XjBEUsWgk3iPjpmNn3IjoBO1jE4Qvycd9Q+9j/sXz6ZjVkS83fkmfp/vwxOdP7F4HA0WpJ+o1G03Zu3g8HvLz8zn11FMJBBL0a/IecOihh5KVldXQy/h1XBjBkYw0Nyb+Ukp8r7RajBilm/cd88zpK7eC5QFXrGUjMRlxy4nFJKOjLYxoJZijOx7NN2O/4ZpZ1/DCNy8wbuY4/rP8Pzw78llaZ7RO/AIUxUbFpgnj9/sZMmQIffr0IRKpp9SmeiQtLY3mzZs39DJ2DR9O8D+C+Z/hsd8HMEIhFpCdkdY8DVpmwqYy+LEEOknjzdj5NjI4LYSxZDIwFlAapp1NLQn/X5jlz+L5U55nRNcRjJkxhpkrZtLryV6aIq3sVVRsmjBut5tmzZpFe9Ipe0AKRiTEOqnCCJAPKCa+R1qtc1zP1kZslqyGTj1xREYspbD9qsFYNJJoIL8blGF6ne0FzuhxBke0P4JLpl3Cuyvf5bTXT+OSwkt4dPijZCRn7J1FKPstGrNRFIjrykwqJqYS22omg/gOAjXAdujVwmxatA6ngaf0TxMLR4o+Q8BmTNxnM7AeMz5gL9Imow0zz5/JY8Mfi6ZIFz5dyMdrP967C1H2O1RsFAWMFeLDGQmQRbR4E4/9Xoan+YjGdY442Jz+/iqMy0y6RgcxQiVD1yCurxrbgXXAG5hx0D9i2uOUYiwf6VpQg5MmHSG+4edvxO1y8/vDfx9NkV5VsoqjJh2lKdJKQlE3mrJXcblcpKamkpOTg8/XcFPAsrKy4j9frJE0YJP91WN/lYd/Co6IeIEwDGpnTv+4CIKVTnPOqEhI5+hwzHlBjFj5MWL2PkZscjFiJc08xRXntt/LtVwxx3lw5udI+xuZpfMrSIr0XfPu4v4F93PPh/cwa8UsXjrtJbo317GgSv2iYqPsVXw+H0ceeSQpKSnU1NT8+gkJIjs7m/z8fCdF24N5gAdwijutmG2pGGGoso+tMdtbZEF+K1j6E3y8HAYfgLFeRDCkU7TU3YARnthebDJGWsRNri/WlrS4ie2lVhvzfRhneqfLfp+MM/jNh1OoKi14bHxJPu4dei8nHHQCF7x1QTRF+sHjHuSqw65qWinsSqNGxUbZq/h8Pg4//HAOPfTQBl2Hy+XC44n55y+dAbbhCIzUyMiDPoSJ3YRwOjrXwoiuRmxeWwqDD8QIhlgy2MeLcEnCgFyz1rkO1fZXuw1OtOtAmr0WuU4SJv06ZJ8j1xFRKY9ZnyQ9iBWUbN+nH6dRqBuO6ngUi69czDUzr+H5b55n3MxxzFg+g4kjJ2qKtFIvuKwmWOHVt29fFi5c2NDLUPY1tgM/YERCBqJtxhEasU6kbU0EqIYlm6H3vZCbAhvvBJ8UbbpwBELqbAIY8ajFyVoTqyQV01fNh1OPI8diHyvus3Ic60UsGykeTccRMHHbuXCsqAiOlePF6euWYr5/4/s3GDNjDMXVxTRLacb4EeM57eDT9vSnq+wH/NKzWRMEFEVIwamvkeLONMyDWqr9pQOAZKolQa9W0LMlFFfDlK8xYgSOuywVxwqRFGvJcpPkA6ESkw4tqdGlxNf5VAJbcayZGvv8LTiCIv3ZAphaHonriBswSLQLAlX29dYCy4EVcEb2GSwZtYRhnYexrXobp79+unaRVvYYFRtFETyYh7UE2SUTzYdjLYjYVOBYOxVw7RHmEvfMhYgPJ2gvFkZVzLXlvTT4lA4GksUmYwnKcKwVqfeRZLFa+5gt9v40e73Sh63SvmaKfZ0SnBY5bowABmKOL8HJnvsJ2pS0YWbfmTx22GP4k7SLtLLnqNgoiuDG9ECrJX6cQBCnDifD3ifBfNsVdcEA6JAN322Fl5bixHrCOOLiI2oNyYho3DixlSBOAkA5RliSMFaOfC/CIxaQHyctO4iJOXljjqnGSeH22sdvxxGfCpwsPBG2sNnvrnbz+1a/58sjv+SQ7EOiXaRvm30bNaGGS+5QmiYqNooSSxZGTCTgLi4wySqTrgCS3WXHY3zJ8Oeh5hLXTrfHDkhQX+pvJCstBeehLhllsRaNfJZsBydGI/ukZicJp89abJYbGCGR88QFJ1NIY8Wnwt5XhWM9+Z3r98jpwaf9P+WWrrdgWRZ/+/RvDHhyAN9/970zKE5RfgUVG0WJJRkndbgWJ/NLkgRCmIe1WC1gBCIIF/WF33WFkmo4702olkwwCfgHcNxrMqRNijSlHxv2cdKBQFx28nlJGAGJTaOO4GSfeXBiM7FNQd0YQaq21+DCEb9Ke580DA3gtNjZaD7Ph4+/dfwb7x/1Ph1TO/JVyVcc8sYhPDH7Cawiy7jzqtnjglNl30XFRlFicQN2N+doEScYwZAJnGJNyDiBoHm53PDMmdAqHd7/EU57BaqlMaeMKhARk3oY7GuIVSOzcMSCkp5sInYiWlK4GbA/Xywa1w7bwJnPI5+Ffb6Ms5YmpCJMlZgsPJnvI+vxwFHuo1jcfzEXtbmIQCTAuG/GccLsE9i4ciMUYV6lOFl4imKjYqMoO5KDU7kvNTPi5nJjHs5pmAdxJsbVlma+tsmB90abjtCzfoC+T8Oi9TgdA6QdjrTGEetDhEfSnMWSqY05TgauyXuxclw4iQiSUi0Peg/xoxJiBUtcdW77VRlzPVfM9hAmFmTHjTIjmTx36HNM6TOFXG8us7bMotfcXry18i1jYa0CVmB6v1WgbjYFULFRlLp4ALvBJhYmKSCJ6GiBqItLqvHFvYV536MVzLsMujWDZVug73i4YCos2YQjEjK+wL3D+ZEd3ov4xE75lKSBCE6BqIiCzM8RkZI1x5ZvV+LEZSTOH8G40lz2+eDUBUnGmsR47ILVM3LOYEmvJQzLGca20DZO+/I0Lv38Uso95eYzyzAp1UUYsapBrZ39GBUbRdkZeRiLRcRACh+lC0AQJ4YTxHmo2w/Unu3hq2vgajsl+qXF0PsJ6P4vuGEOTFkCP2yHsNTseIl3p7livhfETSZrkrRpsRxiuxOAY8F4Yo6xC1GjveBEwKQNj4iBuNkCOI1HYwVsq/n8NlltmNVjFo/3eBy/28+kdZMomFXAR5s+MgIjWXNFGGtnDcZCUmtnv0M7CCjKz/EjsAHnt3uxJOQ39ArMQ1kC+BIvsZt0Sp3O6g3w0Afw8rdQusNA1SQXtMqAtlnQLAWyUyArBTLSIcNlvmYmQ2Y2ZEYgNweaZ0OzNEj3gSuCEUIvxjKRFGtx1cV2D/DgJBek2wuQ9GuxliQ5ospefzPiBY2Y97EWXxi+C37H+d+dz9eVX+PGzc1dbuauA+7Cl+VzPksy8VIwjUfTcCwppcnzS89mFRtF+TlqgG9xCiG34lg1HhyXlYiNBNfFjSXNNe1mmSE3fLwS3l0K32yDbzbCuj0YDZ3ihXY50DYX2jeDAzPhoI5wUBvolmdEKip8koEm65P+a2UYgfHjWFLikpORChIPKsOkhksBqj/m5xAEcqDGVcPdK+/mvrX3YWHRJ6MPk7tOpnted8cyysRJOpBZQdLxWvt+NmlUbBTlt7IV4/4Rt5mFcS9FMA9uedjK/yJ5mEu8JRXHdQVO8N4O1geD8FMQ1pdASS2UlkKpBeVBqKiG8looC0BZDWwvh+IgbK0wr+pfGT3TqTn07gC928Jh3eHwjmaMdbSIM4xJHsjGybCTa4p1JK7ECnvt2cRnzYFjFYmFFYYPN33IBasv4Mfgj6S4U3iw24NcdeBVuGpd5t6TcdK/sT87237JZypNDhUbRfmtRIDVOBM2wYmDbMc8FKtxCj6rMA9QCycOEraPlXb/Ik4iSjJqQCyPLJyHvqRIi5ssm2hcpqwC1pfCugCs2QIr1sHyUli+Cf63AYIiBjF0ag79u8DRveGYLtA9B1zZOIJRgXGxiXWTgpPBFsFYIW6cBIDmOG426SxdZX4eZellXLPqGp7/6XkAhucNZ2K3ibSubW0+Q1xw4tKLFazmOFaV0mRQsVGUPaEG+A6nAl+mb4pbKDboHmvllOEMO5MHNxjRENeVHJ+GeYBH7OMiMeeJy6saZ8SBdHnG3iYtaXLMptrt8EMJLN4IX6+Cz4tg4Sqo2CFm1CITBveC4wtheD60TsGIHfbnxHaPlhELYtVZ9rGSnSdp2bGuu2R4c9ObjP5+NMXhYpp5mjG+63hOa3WauS/5OcrIBOnzVoMRnmz7MzSu0yRQsVGUPaUc+B7zQE/CCEnI3i5JAl6cLszyXjoIVBE/1lnqW2L7o7lwCj6lu0AQ87CVan9pnyMD3qTDQRXmQZ1hX19cVBJf8UE4CMvWwcdrYP4ymP8t/LRDzKigA/yuL5x8GPTrAG5ZiwhfOkZoxJUmbrmg/bNoRnwmndesZUP1Bi7dcCmzS2cDcHHLi3m016NkWpnmetLSJ4wzOqEGp4g2GyOkkkWnNEpUbBSlPigGVmIejtIRQDLSqnCEQlxpMhBNZuDIrJnYTDZp/S9xFEk2SMPpMJ0Sc21wBGy7fT1fzPXE7SWtckTYpPWNCFIIrEr4XzG89wPM/BLmfQtVMf01W2XByL5w6gAY0hu84vqT4H4IIzZhHEsn2z45NlnCbtdjuS2eKHmCG1fcSCASoFNyJ17s/iJH5h5prhErXBK3qbbvUXrVZdsv/y78fSl7HRUbRakvtmESBuQBG1voKa40aWMDRgRi59ZInEKGqLkxVpIEzSXOI64oqcOROFA15qEMJrifa78XC0nEQAQm1i0l7jCxioIY4bFdZYGt8OFPMONLmPoZrNnq3HZuOpx6GJx9BAwuBI90PogVyDCOC04sneb29+Ju9MF3xd9xftH5fF1tp0h3vJm72t2FL9Xn1AaJ+Mq5mTgC78EIUB5Oqx2lUaBioyj1SQnGwpHW/tL5WKwb+Y1cOidL7ENm4EisQkRKXG7gdIe2MA/UgH3NTJyi0cyY60pFv8RW5Brg9FATN1usuFTiWBPgDIezH/BWABatgKnfwhufwLK1zu3nZcK5A+GCY+HQA8El9yfn2zN+cMdcH5w+bD6oidRw97q7uW+jnSKd0oeXDniJg5sdHG81ue17ts+jGmP1iAjnYiydFJRGgIqNotQ3VZgstW04ghM7cE16j0mGmRsjAmLdSNGnzMaR2E9qzPEpOC42P46YSIcBSUjw2cdKtlwGTlpzDk5MSVrvQLw1Jd/7cXq0ifvP3r90Fbz2Mbz2KfywwfkxdG8DFxwDFx0NbVvhuPRkjbHFo7GWDkAIPqr5iAv+dwFFNUX4XX4ePOhBrm57tUmRlvhMEMf9J50MpFZHrL40TIshrdVpUFRsFCURhDAdBn7CcVPF1t+I8EjMRlxpVThpvZKx5seJ0YhFJG1ypCWOxEfKiWadRetk3DiWgwxUq8FJGJB07dhx0rEJBLGzdeQ+RNAkY8wFVhJ8tQpenAuvfAyb7QQDtwuGHwqXHQsnFYDPG7MWKXBNIt7SsccilCWV8Yc1f+C5Lc8BcHzO8UzsOJE2rjbxXQqk24CM7JZxCHIfEUyCQg4a02kgVGwUJVFIsH8tpgBUss0khlKFk50lcRoJnktcJXZomohNDU4atNS5+HBaxbhjzpXgv6RDSxdoiZNEcARI3G0iblIHJA9rsRykqNODI0wSM7H31wbg3cXw3DyY+jmE7LXlZcKlg2HMSdC5HUZoJLkg1V7/jtlrwJub32T0mtEU1xaTm5TL+I7jOb3j6c7PT34GMjwuHcflJqIqP7MMjBWlls5eRcVGURJNBGOlbMBkiUm7f0lvlmPEPSW/rSfhWEXp9rEBnIB4FU4hZwUmAG/Zn5WBeYCXYB6wqRhLx4XjZtpuv/fZ58TGacrtrxk4SQtS8yM94CB+KFvsw13SvUOwNQgvvQ/Pvgvf2vEdlwuOPwSuHAIn9oGkNBzBFItuB0tnAxu4dO2lzN5up0i3uphHuzxKZijT+bmIYKbgpIhLpl/Q/gwRz+b2zy8ZZS+gYqMoe4sIRiC2YERAAvGyT0Y9WzHbpDVLFU4Ps2qczgGVOA0yZcyzD6f3mqRPg2OBiMUTwXGFiWUj9SylmIe3WCvbMUIjVpDU8WTgjBsApyeaTAettY+pBisMn/wPnnoPXl8AQbsTQqc8GDcSLj0ecqTjgB/H3SWWTi5YLosnNj3BjT/eSMAK0MnXiRc7v8iR6Uc66dHi2pO1BnDEV6wesYhSMILTDCcmpSQEFRtFaQgkLboE85u8ZKNJoF9ESERBEgggflKnvI91I0l/Nck4i3WlBezPycJplZOCeTBLooDMwIkVwNjWMTX2miXBoAYnjTsVJ/Ub+9rSTkfWlwFbS+C5WfDkf2HVJnNoajJccBRcewJ0PwgnxVu6UcdYOsu2LWPUulHRFOmbWt3E3Qfdjc/jM/dYiSOWch87diUQ159Yk80wwqNtcBKCio2iNDTyAAxhHoCVMe8l20r6pMWOaI4dkCazZzwx34u7SOISsenQUlwqfc7EpSc9ziIY68aDERCxXGI7HYjlUY3TDkfiS2JlSbNRKeyUDgB2vVG4FmYug8dmwH+/dn4kJ/aD60+FwQfaoxJ2tHTKoCanhj9v+DP3bbiPCBH6pPXhpU4vcbD/YHOc9FiTc1KJjumOSygQEZWU8uY4HayVekPFRlEaM9ZOXmLVgDMUTYRHOlBLnCUc872ImghSTcxXSUWuxHGpiZCJRVKKESI/zohoETNpJYP9uVU44iNxGCm4dNnfg5PSHYbv/gePzoTnP4CAHRMq7AQ3joCzhoDHz05jOh+VfcQFyy+gKGRSpB/o+ADjcsfhSneZ48TSEVcaMfcrPxNxB8rPJhmTLi3Ftcoeo2KjKPsqseOhxW1XidM01MIRHAn6xw5Xc+MkFYgVIDN4quyXPMDLY46RzxbxCWHcaOJ2i+AkIIj1UU00425LGJ6aCf+c7qRPd2oJfzwNLj0KUkUMpFizBspKyvhD+R94butzAAzLHMakgyaZFGnp2BA7jK0GJ5tPMgEl/VzqjVwYt1oLjCBq5toeoWKjKPsbYh2Jm64MIxxSswOOCHlxsrgkcUAyuoI4SQtlOM1AJbtNzhEBEjdYLU4CggTly2POt3vHBUrgpQ/hwRlOsWjzDBPTGXcqZGXjWDpuIAv+Xfxvrlh1hZMi3Wk8p+ed7szfkaLaSozASEubWEtHikSlaapk8Gm69B6hYqMoivntX7LKtuNYP+JKk07RsZle1TgpzuBkkYEjPtKJoALzYJciUnFdYW8rJd7NFiAqfOE0mPop3P8KfLHSbMtKg3Ej4NrjobmMu7brdDZUbOCSlZfwbvW7AFycdzGPtn2UzJRMp15J0rhl7RLTkXiWzM6RVG5xEzbHJBLoWIPd5peezeqpVJT9BTdGKLKBjkA3oLv9Ph2nY3Ns1wNphZOGk8UlfdnE1ZUWc47UF4n1IkhXgjQcq0FiUamQ5IHT+8Nn98Cc282Mne2VcM+r0HEs3PASbKpwzmsTbsOsDrN4vOPj+F1+ntvyHAVLC/ho00eOtRZbDFqNsawqcERFsvfE1SbZa9swve+KcTIGlT2mXsVmwYIFDBs2jBYtWpCRkUGfPn2YOHFi3DGBQIAbb7yR1q1bk5KSwoABA/jggw/qcxmKouwKErhvAXQFugAHYLK0MnBiLRJYF1ebTNRsjvPbvzzUwUkwEMTFlo7zxBHrR6wLgFqjD0MKYO4DsODvcMIhUBWEh2dA5yvghvGwyXa3uXwuxrUex1e9v6JPSh+KQkUcvepobll3CzWRmvisOUkMSIp5iZVXjRGWrfa2Env7amAVxoJrcv6fxke9ic3ixYsZOnQooVCICRMm8O9//5vDDjuMyy67jCeffDJ63GWXXcaECRP4y1/+wowZM2jdujXHH388ixYtqq+lKIqyu0izz2YYwekCtMdJD87CWANZGJGJHQInLXma2ddw48RIRKDEdSaEMCKzo/VjEQ3UH9EV/nMzLLwXRvaD6iA8/G/ofDXc8CJssQtZD/YczCcdP+HWZrfiwsV9G+6j/7f9WVayzGkLJLU2EftzKom3dEREpbu0pH2XYVoR/Uj8FFZlt6m3mM2tt97KQw89RHFxMenp6dHtAwYMAOCTTz7hm2++obCwkIkTJ3LJJZcAUFtbS35+Pt26dWP69Om79Fkas1GUvYTEecowcZ7tOK12wCkUlYf5duJHWrtwMsokyC+914I4YhPBWBexCQXVGAvDjtV8tQL+8jxMs//rp/nhDyfDDcMgx06RXsACLlhxAauDq02KdLsHGNdmHC6Xy7GwRCSlu4B8nlhaYZzWOFLLJN0cWmLGGmhR6E7ZKzGbmpoavF4vKSnxgyWysrKIRIx9PX36dLxeL2effXZ0v8fj4ZxzzmH27NkEg0EURWlESJynBXAg0MN+L92YpYi0CqdaX1xvuThFk1KgKrGRFBxLJzYhIbadTKyguaBPJ5h6I3x5L5zYFyoD8LfXoPPv4a9ToCICAzMGsqjbIi7OupiAFeCatdfwu+9/x4bABmemj6xR2t6Iq60cI3DSjUCmpLpwBHY9Jp6zDY3n7Cb1JjYXX3wxANdccw0bNmygtLSUCRMm8N5773HdddcBsHTpUjp37kxqamrcufn5+dTU1LBixYr6Wo6iKPWNG/Obf1uM8ByIcav5MMIimVzpOPEbic1EMJaCpCbLA1yakMZaGOBYVLEdAuw2PX26woy/wscPw9BesL0K7nwdDhgNj/4bkqsymdR+Em+0e4NmnmbM3j6bXkt68WbJm/FpzdLcVNruSN2RxHQqMAJVDWzGiFIFRpR+xMR05FzlV6k3senZsyfz589n2rRptG3blpycHK6++mqeeuopzjnnHACKi4vJycmpc25ubm50/88xfvx4+vbtS9++fdmyZUt9LVtRlN+CFyM0ne1XDs7gNOlV5sKITwpGaCQTTawJsSBiXWfgWEDSc03YwdIZ0AX+ezvMuxP6d4Mt2+Ha8dD1WnjuPTgl93SW9FrC8PThFIeLOeOnM7j4x4spqy1zhEMy0pJiPkPSvStwOi/I/lScDg0lmASCtTgdspWfpd7EZvny5Zx++unk5+fz9ttvM2fOHMaOHcvYsWOZPHnyHl9/9OjRLFy4kIULF5KXl1cPK1YUZY+JtXa6YpIL0nG6M8skzSqcep4gRkhycQpG5SUPbZlVI0jh6I690NxwTC/4+BGYdgf0bA9rtsIlT8Ih18PXC1vzn7bv8M82/8Tv8vP81ucpWFzAh1s+dBIHwOm0IM1SZdCcJDvICIkKTFyqFKfYdDOwHONaE4tOqUO9ic2tt96K1+tlxowZnHTSSQwZMoTHHnuMs846iz/84Q9EIhFycnIoKSmpc65YNGLhKIrSBPFiBKQzJpOtBc5ETRldkIdjyUjWV2wHAp99bGyDTGlgKvU8EN+oNBVcbhhZCIsehOevgg55sKQITvwrDPk/F/22XM3X3b+mT2ofimqKGLRmELdsuYUaV40zFkLm9YibL7Y+R1r3YN9P7GRTSShYZb/EYlLiqDexWbJkCQUFBXi98WW3/fr1Y9u2bWzevJn8/HxWr15NVVVV3DHLli3D5/PRpUuX+lqOoigNhYwKaAcchDO8TAo+JV06tmt1GkaopBhTJpGG7GNiLRpwBEqEye4Nl+SBCwfD/56Bhy6CnDSYvxT63QZ/fbI7r6R8wq15dor0tvvov6w/3xV/Fy8e2OuswBnhIN2zZV8Vxo0mX2swwlQC/IBJJBABVYB6FJtWrVqxaNEiamrinZefffYZfr+f3NxcRowYQSgUYsqUKdH9tbW1vPbaawwbNozkZB2npyj7DFK70w5Tt9MRZ6Jopr2vJY7FIrUuYsnEdigQdxbs3NKJ7ZadCn4v/PEEWPUU/GkkJHvh5fnQ6zofof/ew4y8j+js68zXVV/TZ2UfHi99HMuynMF1ldTtRCA95mQgngymk+F0MsjNAtZhXGsyKlypP7EZN24cq1evZsSIEUybNo13332XcePG8corr3DllVfi8/k45JBDOPvss7n22mt55plneO+99zjnnHNYvXo1f/7zn+trKYqiNDZ8mGSBA3AERkYkeHAe4JIRtmPqtBRkSjwlg7quNltooinZQHYq3D8K/vc0nH8k1NTCg1PhwpsHcPWqpVyUcZlJkd5wDcPXDmdDxYb4gWtSFxRr5UjNjXSTlmw1SZ0ux2lougqTKi2TVPdj6rUR58yZM7n//vtZunQpgUCAAw88kNGjRzNmzBiSksy/jOrqam677TZefvllSktLKSgo4P777+eYY47Z5c/Rok5FaeLIA3wb5uEuLieZ+CkTPKWI1MI8sCVFOoQzLls6AvhxikRFvKQZpx1XWfgjXD8RPvzeHHZwOzj9rAU8mXMy28LbTBfpduM5Pet0p8uBuPKkU7SsJYix0HbcJ409ZYyDjGJohYlj7cMFodr1WVGUxonMvSnGWAIS9JcO1FWYh7kfp5O0x/4qA9Y8OK4qsXakk4FktZU7+6xaeOsLuPFFZ1z1kIIAwePG8VH6swBclH0Rj+U8RmZyppOWLfNxAjiWVpa9ZlmnTEWVnm/S+Vqaf6YAHXCy9fYxtOuzoiiNE3tGDR1wkglS7W0pmOw1CdzHzs4JYx7WqdSdtCkxnXScmh8hBC4/nHYYLHsMHrwQMlPgvW/8fPrIBAZ/9DXJgZY8X/o8BWsL+DD0oTkvghEZcfuJtSVxHBmp7cPpKA3xI8Cr7GO/x7jX9rPaHBUbRVEaHsk464xJKBA3lF1LE63UFytHOlOLS0omkUo/ttjx0NKRWiwOm2Qv3HAyLH8IrhgC4YiLeXMKSfvXOjp882eKan5k0MpB3LLxFmrKa+ITBmQqqoiPJAnIpNRSjHUmdUXyVWbpbAQWYxII9pO2Nyo2iqI0HmRiZqylk2G/0jBJBlLR78OJ90g2mlg6O3aYjp0wWktcanWLXBh/JXz5IBx1MBSXeVjz1p20fm4NrO3PfVvuo/+G/nzn+s5cT1x4IjJSjFpOvOUTO+KgDCM+Mq6gCiNKyzCp0vHVIPskKjaKojQ+pJlnJ6CN/V5iNuBYDWDcbVk4UzmlG4EE60XAfDHbJMtM6mfccMgB8P6d8PIV0DYXNq5ph/Xsx6RPm8LXJevos6oPj29+HKvCMudIrKjSXo9kqYVxRhjI58eO3xZ3XA1GZH4CFgEb2KetHBUbRVEaLxLT6YRph5OOE8/JxqRHu3FSpmX6p9TrSF1P7NA2K2Zf7BPQAlcVnDsEvn8cbjkVfB6o+PoMfP8sIvDp5Vyz/jqGbxnOhsgGZ5qp1NvIaO3Yxp4y00fGcAdx+q3J5FFp+LkM+DZm+z6Gio2iKI0fadgZW6cjhZchzANcUpCTcRp/igiJyMT2XtvRpVZDtI1Oegr87WxY8mcY3htqAqkw83GSJnzFuz+U0WtDL97Y8oa5llg41TjpzuC4ysI4saUgTj1OpX1MAGf8wQbgU0xH6X2sA4GKjaIoTYcknGminTDJAjk4fdcycFKMRWDACEkYp0+bpEhLppoMdIvtPh2Erq3hnTvgrRugYzMI/9Qbnv2E4rce4MzVY7loy0WU1ZQ51orU5QRxLB4ZZVBFvLBJQWgtTkJBOUaEFgOfY1LC9xFUbBRFaXp4cToSNMPJWEvCcWPZ/dKiY6lFiAR56Fs4vddiW+LUAGngSoJTCmDZ/XDrSeBNsuDry+Cf/+OF+V56/1jIh5EPnc4F5ThuNbFY5ElbjeN6s+y1iujIaAOxiNYDH2Dca/vAXEkVG0VRmi4+jFutq/1VkgVS7O9TMUKSjDNjB5yhbX4coZHaHRncJvN0bNFKTYZ7zoQl97gYmg9UN4O3n+HHZ1/k6MXjuGXzLdRU1zjD12LHKoi1IwJXFfNVREYKW9cBmzCJAxuAj4F3MenSTRgVG0VRmjaxDT87YiwYERNpLZOEU+fitY+XZqCCFXNOMo4VFI756oNuLeHdW+CVq6BlhgVrB8LTX3LfG9kctvEYloWXmc8SYRNLRkYZhO21iNtsO0ZoNuPEccL2/oC9/wfgdeBDmux0UBUbRVH2DVyYeEwnnMy1NJzMNSkEzcHpIu3BKQaNtXRiu0yLRSI91pLA5YJzesP3f3Vx9XHgIgkW3MTiR1+m8JNbeazqMSKRSHz/tgBOMoNkqG3HiIsIYCpG5Lz2Vz/O+IU04CvgDWBFvf7k9goqNoqi7FvIPJ0DgNaYh7bUwVThWDASr7EHsEVrcaRGJzamI12mZR5PjTkvuzn88wL49E8uerULw/ZOhF6eyh+ebcHg1eeyIbzB6V4Qts+rwcy9kf5vfuo255QMtghOHzYvxjXoxbjWPqdJZayp2CiKsm/iwWSodcUUhvowgpKMsRRSMVaOFINKHzURB6nF8ePEdGILRVOIdg/o1xm++lMSD50Kyb5aWHoOHzz6FAd9+ABTgm840zwlPiOuup11gJansrTFkZiPfC+tfYqAL2gyyQMqNoqi7Nt4MWJzAMaVJg/sCE5SQADHkhF3XAaOpQNOoaiIhFzDtnI8Xvjj8fD9nR6O7R6AQA5Vb/+Ds55szqlr/kRZRVn8TByL+GLTn3sax/blj+0w4MeMaFhMk7BwVGwURdn3kQ7RHTGWThpO0WcORkCy7FcqTp0OxLvB0ojPbJOOBclEe7Z1yoQ5l/l5+TyL9LQq+PEYpv7rL3T8/GnmeT+Kt2Zi631ihSeW2HXIvdTaX32Y5IKVOzmvkaFioyjK/oO0vzkAY+3IbBwZyOYl3soRKygFZzYOOO42SZH24MR/guDywrl9XRTdkMophdsh7Kd03o0c+0I6l2x8nJpwjdPHLXZtsHMrR4pBJTVbjrMTFtgIbNmjn0zCUbFRFGX/w4uZmtkdUxwqHaHlazomvpOBEScZjCZWTg1GYFKIt3Sk67PdDLRZMrx1QhbvnFxLVnYJbCrkuWevpP38yXwZWWbWIhZJ7Jjr2CezCJKFk6QgRGKOX0+jnpGjYqMoyv5LMiZVuhNGYCIYV5nEZuThLVaObM/ACI0g+9yYWIrEg+zx1b/r6mH9mBzOOnwDWG42f3wJhz3p4drVU4iEIz9v5bDDdqgrOmLxVGNSqRspKjaKouzfyAiCrpiYTjLOxE2xXmIHtkmqsrjNQjiD2cSqAWecgF0zk+aD14a2Yc5F1WTnrcfa1pVHnz2dzjOnsiJstweQolNJv5YWOrHdD4jZL4jgbCJ+MmkjQsVGURQFzIO9JdAFkzINxsqxMIIj8ZsA0dhMNAVamntK0oDU5+w4XycCQw5M46er23La0d+DK8Kaz06j2yPV/HX5fKeehpjPi10fxLvV5L2kZUvBaCNExUZRFCWWVMx46oNwMtYkBVpiOjKsLTaeIzU4MqogNpYjbjV7hk6yB94c2p1ZY0pIb7maSMkB3Pn00fSYPpufQmXOWrzO22iqtSQpuHbyVXqwNUJUbBRFUXbEhUmJPggzojoJx00mHZ1juwzE1uBIfU5sBwKIH9Zmd30+/sA8tl7bid8N/gJcEb775Hja37uVf32/yHyWJCWIey62o0Cs1SNrlk7TjRAVG0VRlJ/Dh0mRzsd0HZAYjnz1YkQoG2cgG8R3IZCWNPK0lcC+3YEg2evinWGH8eY16/C3WEnttgO4+oleDPj3fMprapw4jhBr4eyYJu2m0WakqdgoiqL8GmmYWM6BOIkDPsyDP2YMQbTvWgRniFtsv7UQjlDJ09ee7nnaQZ3YcnMHjhj0AQCfzjuGl5Z/7zQMFYGR82K/SuPQHRMHGhE768yjKIqi7EgSpjYnC1iLGQkARmwkWUAKRL0Yd5a4viR248exUqyY4+1xBukuLwvOOJqnD13CtB+2cWXXY5webNKrTawZsXCsmGvaXQwaIyo2iqIou0MyxsLJBVZhalvE8qjFaWEjlo5ks0m2moiMZLLJU1isHj+M6dGLMQdhhEjGIHhwOh5Idlwy8SnS0uCzEaJioyiKsru4MGKTjrFyfrK3u3E6SNsdoeMaf0oNTGyGm4iPzLCRrDIPjpjIGAT5bG/MOZI0IFlxclwjQ8VGURTlt+LD9FlrhhlothUnK0zGQ1fYXyXOI5llEsMBx722Y1wHnKFuMmogjfgUaHGhieUjSQqNDBUbRVGUPcGFyUbrjWmIuZJ4t1YNzkwccbXJeTKVM7YWRzoYgOMqk0ahyTitamRyaErMtVNRsVEURdmn8WHa3WQB/8O41lLsVzVOlwEvjssLnOp/T8wxYYx4+InvSJ2ME7MRYZJzXZimojv2UmskqNgoiqLUJ9nAoZhJmt8BlRixENcaxGeoiWtNrBNxo6XixG98GOEJ4VhJ4LjOwBSTNtJ4DajYKIqi1D8enB5rXwPfY0QnF6ceJraXmoiPiEzsGGrpXCBC443ZLjU4Hkxft0aa9gxa1KkoipI4soCBwJEYoaigbvGlD6eZp7jFpP4m0z5GYjQiJiI0khyQZ+9vxKhloyiKkki8QE9MQehsoJx4C0eQ2IskAcT2W5PWNLHZbNKjLQ8Tq2nkqNgoiqLsDVoAZwKfYOI5MidHmnru2OPMF7PNFXOsJ+Zrnn3dJuCjUrFRFEXZW/iBwRixWYZpaSMZZ2LpxPY5k1odEZgknHhNG0xRaSPNPtsRFRtFUZS9TSegNbAOWI8ZyAZOVpo014xNkU7CWEO59iu2E3QTQMVGURSlIZAea52AMqAUE88JEd+FwI8RmUzikwSaGCo2iqIoDUkSZlBbDsZFJinPEJ8i3cRRsVEURWksSN3MPkgTyGFQFEVRmjoqNoqiKErCUbFRFEVREs4uic26dev4/e9/z4ABA0hNTcXlclFUVFTnuEAgwI033kjr1q1JSUlhwIABfPDBB3WOi0Qi3HvvvXTq1Am/309BQQFvvvnmHt+MoiiK0jjZJbFZsWIFr7/+Ojk5ORx11FE/e9xll13GhAkT+Mtf/sKMGTNo3bo1xx9/PIsWLYo77o477uDuu+9m3LhxzJw5k/79+3PmmWfyzjvv7NHNKIqiKI0UaxcIh8PR9xMmTLAAa/Xq1XHHLFq0yAKsiRMnRreFQiGra9eu1ogRI6LbNm3aZPl8PuvOO++MO//YY4+1evXqtSvLsQ499NBdOk5RFEXZe/zSs3mXLBu3+9cPmz59Ol6vl7PPPju6zePxcM455zB79myCwSAAs2fPpqamhlGjRsWdP2rUKJYsWcLq1at3XSkVRVGUJkG9JQgsXbqUzp07k5oaP70nPz+fmpoaVqxYET0uOTmZLl261DkOYNmyZfW1JEVRFKWRUG9iU1xcTE5OTp3tubm50f3yNTs7G5fL9YvHKYqiKPsOTaZWdfz48YwfPx6ALVu2NPBqFEVRlN2h3iybnJwcSkpK6mwXS0Usl5ycHEpLS7Es6xeP25HRo0ezcOFCFi5cSF5eXn0tW1EURdkL1JvY5Ofns3r1aqqqquK2L1u2DJ/PF43R5OfnEwwGWblyZZ3jAHr06FFfS1IURVEaCfUmNiNGjCAUCjFlypTottraWl577TWGDRtGcnIyAMOHD8fr9TJ58uS481966SV69uxJ586d62tJiqIoSiNhl2M2b7zxBgBffvklADNnziQvL4+8vDwGDRrEIYccwtlnn821115LKBSic+fOPPnkk6xevTpOWFq0aMH111/PvffeS0ZGBn369OG1115j7ty5TJ8+vZ5vT1EURWkU7GqxDmbCQp3XoEGDosdUVVVZ1113ndWyZUsrOTnZ6tevnzVv3rw616qtrbX++te/Wh06dLB8Pp/Vq1cva8qUKfVSOKQoiqI0DL/0bHZZ1g6R+iZA3759WbhwYUMvQ1EURYnhl57N2vVZURRFSTgqNoqiKErCUbFRFEVREo6KjaIoipJwVGwURVGUhKNioyiKoiQcFRtFURQl4ajYKIqiKAlHxUZRFEVJOCo2iqIoSsJRsVEURVESjoqNoiiKknBUbBRFUZSEo2KjKIqiJBwVG0VRFCXhqNgoiqIoCUfFRlEURUk4KjaKoihKwlGxURRFURKOio2iKIqScFRsFEVRlISjYqMoiqIkHBUbRVEUJeGo2CiKoigJR8VGURRFSTgqNoqiKErCUbFRFEVREo6KjaIoipJwVGwURVGUhKNioyiKoiQcFRtFURQl4ajYKIqiKAlHxUZRFEVJOCo2iqIoSsJRsVEURVESjoqNoiiKknBUbBRFUZSEo2KjKIqiJBwVG0VRFCXhqNgoiqIoCUfFRlEURUk4KjaKoihKwlGxURRFURLOLonNunXr+P3vf8+AAQNITU3F5XJRVFQUd8zChQsZPXo03bt3JzU1lQ4dOnD++eezevXqOteLRCLce++9dOrUCb/fT0FBAW+++Wa93JCiKIrS+NglsVmxYgWvv/46OTk5HHXUUTs95tVXX2Xp0qVcc801zJw5k/vuu4+vvvqKvn37snbt2rhj77jjDu6++27GjRvHzJkz6d+/P2eeeSbvvPPOnt+RoiiK0viwdoFwOBx9P2HCBAuwVq9eHXfM5s2b65xXVFRkuVwu64477ohu27Rpk+Xz+aw777wz7thjjz3W6tWr164sxzr00EN36ThFURRl7/FLz+Zdsmzc7l8/LC8vr862jh07kpeXx/r166PbZs+eTU1NDaNGjYo7dtSoUSxZsmSnbjdFURSlaZPQBIHvvvuOzZs3c/DBB0e3LV26lOTkZLp06RJ3bH5+PgDLli1L5JIURVGUBiBhYlNbW8vYsWPJy8vjsssui24vLi4mOzsbl8sVd3xubm50v6IoirJv4UnUhceNG8fHH3/Mf/7zH3Jycvb4euPHj2f8+PEAbNmyZY+vpyiKouw9EmLZ3HzzzYwfP56JEycybNiwuH05OTmUlpZiWVbcdrFoxMLZkdGjR7Nw4UIWLly40/iQoiiK0nipd7G55557uP/++3nssce44IIL6uzPz88nGAyycuXKuO0Sq+nRo0d9L0lRFEVpYOpVbB577DFuv/127rnnHsaNG7fTY4YPH47X62Xy5Mlx21966SV69uxJ586d63NJiqIoSiNgl2M2b7zxBgBffvklADNnziQvL4+8vDwGDRrEq6++yrXXXsvw4cM59thj+fTTT6PnZmZmRi2WFi1acP3113PvvfeSkZFBnz59eO2115g7dy7Tp0+vz3tTFEVRGgm7LDZnnnlm3PdXXXUVAIMGDWL+/PnMmjULy7KYNWsWs2bNijtWjhHuuece0tPTefTRR/npp5/o1q0br7/+OieddNIe3IqiKIrSWHFZO0bqmwB9+/Zl4cKFDb0MRVEUJYZfejZr12dFURQl4ajYKIqiKAlHxUZRFEVJOCo2iqIoSsJRsVEURVESjoqNoiiKknBUbBRFUZSEo2KjKIqiJBwVG0VRFCXhqNgoiqIoCUfFRlEURUk4KjaKoihKwlGxURRFURKOio2iKIqScJrkiIHmzZuTlpZGXl5eQy8lYWzZsmWfvj/Y9+9R769po/e3+xQVFbF169ad7muSYgP7/kybff3+YN+/R72/po3eX/2ibjRFURQl4ajYKIqiKAmnyYrN6NGjG3oJCWVfvz/Y9+9R769po/dXvzTZmI2iKIrSdGiylo2iKIrSdGhSYrN27VrOOOMMsrKyyMzM5LTTTmPNmjUNvazd5o033uD000+nY8eOpKSk0K1bN2655RbKy8vjjispKeHyyy+PpnoPHTqUJUuWNNCq94zhw4fjcrm4/fbb47Y39Xt85513OProo0lPTyczM5O+ffsyd+7c6P6mfH8LFixg2LBhtGjRgoyMDPr06cPEiRPjjgkEAtx44420bt2alJQUBgwYwAcffNBAK/551q1bx+9//3sGDBhAamoqLpeLoqKiOsft6v1EIhHuvfdeOnXqhN/vp6CggDfffHMv3MnO2ZX7W7hwIaNHj6Z79+6kpqbSoUMHzj//fFavXl3negm5P6uJUFlZaXXp0sXKz8+33nrrLWvq1KlWz549rQMOOMCqqKho6OXtFocffrh15plnWi+99JI1f/5865FHHrGysrKsww8/3AqHw5ZlWVYkErEGDhxotW3b1nr55ZetmTNnWkcffbTVrFkza+3atQ18B7vHyy+/bLVq1coCrNtuuy26vanf41NPPWV5PB7r2muvtd59911r1qxZ1n333We9/fbblmU17fv75ptvLL/fbx1zzDHW1KlTrXfffdcaPXq0BVj/+te/osedd955VlZWljV+/Hhrzpw51qmnnmr5/X7r66+/brjF74R58+ZZLVq0sH73u99Zw4YNswBr9erVdY7b1fu59dZbLZ/PZz344IPW3LlzrdGjR1sul8v6z3/+s3duaAd25f7++Mc/WkcccYT1xBNPWPPnz7cmT55sde/e3crNzbXWrFkTd2wi7q/JiM0//vEPy+12W8uXL49uW7VqlZWUlGQ9/PDDDbiy3Wfz5s11tj3//PMWYL333nuWZVnW1KlTLcCaO3du9JjS0lIrJyfH+v3vf7/X1rqnFBcXWy1btrRefvnlOmLTlO9x9erVlt/vtx555JGfPaYp398tt9xieb1eq7y8PG57//79rf79+1uWZVmLFi2yAGvixInR/aFQyOratas1YsSIvbreX0N+ibMsy5owYcJOH8a7ej+bNm2yfD6fdeedd8adf+yxx1q9evVKzA38Crtyfzt77hQVFVkul8u64447otsSdX9Nxo02ffp0+vfvT5cuXaLbOnfuzMCBA5k2bVoDrmz32VnV7mGHHQbA+vXrAXO/bdq0YfDgwdFjsrKyGDFiRJO635tuuomePXty7rnn1tnXlO9x4sSJuN1uxo4d+7PHNOX7q6mpwev1kpKSErc9KyuLSCQCmPvzer2cffbZ0f0ej4dzzjmH2bNnEwwG9+qafwm3+9cfdbt6P7Nnz6ampoZRo0bFnT9q1CiWLFmyU7dUotmV+9vZc6djx47k5eVFnzuQuPtrMmKzdOlSevbsWWd7fn4+y5Yta4AV1S/vv/8+AAcffDDwy/e7Zs0aKioq9ur6fgsfffQRL7zwAk888cRO9zfle/zoo4/o3r07r776KgceeCAej4cuXbrE3WtTvr+LL74YgGuuuYYNGzZQWlrKhAkTeO+997juuusAc3+dO3cmNTU17tz8/HxqampYsWLF3l72HrGr97N06VKSk5PjfvGV44Am9Tz67rvv2Lx5c/S5A4m7vyYjNsXFxeTk5NTZnpubS0lJSQOsqP5Yv349d955J0OHDqVv377AL98v0OjvuaamhjFjxnDDDTfQrVu3nR7TlO9xw4YNLF++nBtvvJGbb76Zd999l+OOO45x48bx6KOPAk37/nr27Mn8+fOZNm0abdu2JScnh6uvvpqnnnqKc845B/j1+ysuLt6ra95TdvV+iouLyc7OxuVy/eJxjZ3a2lrGjh1LXl4el112WXR7ou7P89uXqtQHFRUVnHzyyXg8HiZNmtTQy6k3HnjgAaqrq7ntttsaeikJIRKJUF5eznPPPcdpp50GwLHHHktRURH33nsv11xzTQOvcM9Yvnw5p59+Ovn5+Tz11FOkpKQwbdo0xo4di9/v5/zzz2/oJSp7yLhx4/j444/5z3/+s1ORrW+ajNjk5OTs9DfBn/ttpClQXV3NiBEjWLVqFe+//z7t2rWL7vul+5X9jZU1a9Zwzz338MwzzxAMBuN898FgkNLSUjIyMpr0PTZr1ozly5dz3HHHxW0fNmwYs2bNYuPGjU36/m699Va8Xi8zZszA6/UCMGTIELZt28Yf/vAHzj33XHJycvjxxx/rnCv3J78JNxV29X5ycnIoLS3Fsqy43/6b0n3ffPPNjB8/nueff55hw4bF7UvU/TUZN1p+fj5Lly6ts33ZsmX06NGjAVa0Z4RCIc444wwWLlzIO++8Q69eveL2/9L9dujQgfT09L211N1m1apVBAIBRo0aRU5OTvQF8NBDD5GTk8OSJUua9D2K//rncLvdTfr+lixZQkFBQVRohH79+rFt2zY2b95Mfn4+q1evpqqqKu6YZcuW4fP56vj8Gzu7ej/5+fkEg0FWrlxZ5zig0T+P7rnnHu6//34ee+wxLrjggjr7E3Z/vzmPbS/zyCOPWElJSdbKlSuj21avXm15PB7roYceasCV7T7hcNg688wzLb/fb82ZM2enx7z11lsWYM2fPz+6bfv27VZubq41bty4vbXU30RJSYk1b968Oi/AGjVqlDVv3jyrvLy8Sd/jjBkzLMCaMmVK3PZhw4ZZ7dq1syyraf8dDho0yOrcubMVDAbjtp977rmW3++3gsGg9dVXX1mA9dxzz0X3h0Ihq3v37tZJJ520t5e8y/xcavCu3s+mTZssr9dr3X333XHnDxkyxOrZs2dC174r/Nz9WZZlPfrooxZg3XPPPT97fqLur8mITUVFhXXggQdaPXv2tKZOnWpNmzbN6t27t9W5c+c6tQCNnbFjx0ZrTj755JO4lxT7hcNha8CAAVa7du2sV155xZo1a5Y1aNAgKycnp04BVlOBHepsmvI9RiIRa/DgwVZubq715JNPWrNnz7Yuv/xyC7AmTZpkWVbTvr8pU6ZYgDVs2DBr6tSp1uzZs62rr77aAqzrrrsuetzZZ59tZWdnWxMmTLDmzJljnX766VZycrL15ZdfNuDqd86UKVOsKVOmRP///etf/7KmTJkS98vArt7PTTfdZCUnJ1sPP/ywNW/ePGvs2LGWy+WKFvQ2BL92f6+88orlcrms4cOH13nuLF26NO5aibi/JiM2lmVZP/74o3XaaadZGRkZVnp6unXyySfvVL0bOx07drSAnb7uuuuu6HHbtm2zLrnkEisnJ8dKSUmxjj32WGvRokUNt/A9ZEexsaymfY/bt2+3rrrqKqtFixaW1+u1evXqZU2ePDnumKZ8f++88441aNAgq3nz5lZ6erpVUFBgPfHEE1ZtbW30mKqqKuu6666zWrZsaSUnJ1v9+vWz5s2b13CL/gV+7v/coEGDosfs6v3U1tZaf/3rX60OHTpYPp/P6tWrVx0rd2/za/d30UUX7dLPwLISc3/a9VlRFEVJOE0mQUBRFEVpuqjYKIqiKAlHxUZRFEVJOCo2iqIoSsJRsVEURVESjoqNoiiKknBUbBRFUZSEo2KjKIqiJBwVG0VRFCXh/D+pI9FtL0h0pwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAGQCAYAAAB4X807AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACIV0lEQVR4nO2dd3hUZdqH75nMTCa9QOhVEZAAiYgIoiKCyKpg79gVUFlXXV172d3Pta+rrquCgg0bugKyAi4CFqyoCIKutEiVloTUmUxmzvfHe545MwQVJEMSeG6uuTI5bd4T4PzydJdlWRaKoiiKkkDcDb0ARVEUZd9HxUZRFEVJOCo2iqIoSsJRsVEURVESjoqNoiiKknBUbBRFUZSE02Bis3btWs444wyysrLIzMzktNNOY82aNQ21HEVRFCWBuBqizqaqqoqCggKSk5P5v//7P1wuF7fffjtVVVUsXryYtLS0vb0kRVEUJYF4GuJDJ0yYwKpVq/jf//5Hly5dAOjduzcHHXQQTz/9NNdff31DLEtRFEVJEA1i2QwZMoRAIMCCBQvitg8aNAiA999/f28vSVEURUkgDWLZLF26lJNPPrnO9vz8fKZMmfKr5zdv3pxOnTolYGWKoijKb6WoqIitW7fudF+DiE1xcTE5OTl1tufm5lJSUvKr53fq1ImFCxcmYmmKoijKb6Rv374/u69BxOa3MH78eMaPHw/Ali1bGng1iqIoyu7QIKnPOTk5O7Vgfs7iARg9ejQLFy5k4cKF5OXlJXqJiqIoSj3SIGKTn5/P0qVL62xftmwZPXr0aIAVKYqiKImkQdxoI0eO5IYbbmDVqlUccMABgAksLViwgPvuu68hlqQoym8gFAqxbt06AoFAQy9F2Yv4/X7atWuH1+vd5XMaJPW5srKSgoICUlJSokWdd9xxB+Xl5SxevJj09PRfPL9v376aIKAojYDVq1eTkZFBs2bNcLlcDb0cZS9gWRbbtm2jvLyczp07x+37pWdzg7jR0tLSmDt3Ll27duWCCy7g/PPPp3PnzsydO/dXhUZRlMZDIBBQodnPcLlcNGvWbLet2QbLRuvQoQNvvvlmQ328oij1hArN/sdv+TvXrs+KoihKwmkydTaKojR+Wj3Uik2Vm+rtei3TWvLTDT/94jFHHHEEH3/88S8ec/nll3P99dfTo0cP/va3v3Hrrbfu1vnp6elUVFTEbSstLeXll1/mqquu+pW7qMsJJ5zAyy+/THZ29m6dN3/+fHw+H0ccccRuf2ZDo5aNoij1Rn0Kza5e79eEAuCZZ56JllX87W9/2+3zd0ZpaSn/+te/drqvtrb2F8995513dltowIjN7q7319ayt1CxURSlSSNJRfPnz+eYY47hjDPOoHv37px//vlIsu0xxxzDwoULufnmm6murqawsJDzzz8/7vyKigqGDBlCnz596NWrF9OmTfvFz7355ptZuXIlhYWF3HjjjcyfP5+jjjqKkSNHRoXtlFNO4dBDDyU/Pz/aAQVMyy3pIfbSSy/Rr18/CgsLGTNmDOFwGIBZs2bRp08fCgoKGDJkCEVFRTz11FM88sgjFBYW8uGHH1JUVMSxxx5L7969GTJkSHQm2MUXX8zYsWM5/PDD+dOf/sRBBx0U7bwSiUTo0qXLXu/Eom40RVH2Gb7++muWLl1KmzZtGDhwIAsWLODII4+M7r/vvvv45z//yaJFi+qc6/f7eeutt8jMzGTr1q3079+fkSNH/mww/L777uPbb7+NXmv+/Pl89dVXfPvtt9GU4IkTJ5Kbm0t1dTWHHXYYp59+Os2aNYte47vvvuO1115jwYIFeL1errrqKiZPnszvfvc7rrjiCj744AM6d+5McXExubm5jB07lvT0dG644QYARowYwUUXXcRFF13ExIkTueaaa5g6dSoA69at4+OPPyYpKYmsrCwmT57Mtddey5w5cygoKNjrnVjUslEUZZ+hX79+tGvXDrfbTWFhIUVFRbt8rmVZ3HrrrfTu3ZuhQ4eyfv16Nm3aPbdgv3794mpPHnvsMQoKCujfvz9r165l+fLlcce/9957fPnllxx22GEUFhby3nvvsWrVKj799FOOPvro6LVyc3N3+nmffPIJ5513HgAXXHABH330UXTfmWeeSVJSEgCXXnopL7zwAmAE8JJLLtmt+6oP1LJRFGWfITk5Ofo+KSlpt+IVkydPZsuWLXz55Zd4vV46deq027UksVOG58+fz5w5c/jkk09ITU3lmGOOqXM9y7K46KKLuPfee+O2v/3227v1ub+2lvbt29OyZUvmzp3L559/zuTJk/f4+ruLWjaKouxXeL1eQqFQne3bt2+nRYsWeL1e5s2bx48//viL18nIyKC8vPxn92/fvp2cnBxSU1P5/vvv+fTTT+scM2TIEN544w02b94MmGbEP/74I/379+eDDz5g9erV0e07+8wjjjiCV199FTBiedRRR/3sei6//HJGjRoVZ/HsTVRsFEWpN1qmtWzU1wPTQb53797RBAHh/PPPZ+HChfTq1YsXXniB7t27/+J1mjVrxsCBA+nZsyc33nhjnf3Dhw+ntraWgw8+mJtvvpn+/fvH7Xe5XPTo0YP/+7//Y9iwYfTu3ZvjjjuOjRs3kpeXx/jx4znttNMoKCjg7LPPBkyM5q233oomCDz++ONMmjSJ3r178+KLL/Loo4/+7HpHjhxJRUVFg7jQoIF6o+0p2htNURoH3333HQcffHBDL6NJEQ6HadGiBT/99NNuNbLcUxYuXMh1113Hhx9+WC/X29nf/S89mzVmoyiKshfJz8/n8ssv36tCc9999/Hkk082SKxGULFRFEXZi3z//fd7/TNvvvlmbr755r3+ubFozEZRFEVJOCo2iqIoSsJRsVEURVESjoqNoiiKknBUbBRFqTdatQKXq/5erVrV7/qkIecvMXXqVJYtWxb9/s4772TOnDl7/NmLFi3inXfe2e3zNmzYwBlnnPGbPvO5555jw4YNv+nc+kbFRlGUemM3W4nt9evtCjuKzV/+8heGDh26x9f9JbH5pbY6bdq04Y033vhNn/lbxEa6Ttc3KjaKojRZKisrOfHEEykoKKBnz5689tprgGlwecghh9CrVy8uvfRSgsFgnXNltADAG2+8wcUXX8zHH3/M9OnTufHGGyksLGTlypVcfPHF0Yf9z123U6dO3HXXXdHxBDumN9fU1HDnnXfy2muvUVhYyGuvvcbdd9/NBRdcwMCBA7ngggsoKiriqKOOok+fPvTp0yc6t6aoqIiePXsCRghuvPFGDjvsMHr37s3TTz8d/Yz777+fXr16UVBQwM0338wbb7zBwoULOf/88yksLKS6uvoX13/TTTfRp08f7rvvPvr06RO97vLly+O+/62o2CiK0mSZNWsWbdq04ZtvvuHbb79l+PDhBAIBLr74Yl577TWWLFlCbW0tTz755C5d74gjjmDkyJE8+OCDLFq0iAMPPDC679eu27x5c7766iuuvPJKHnroobjr+nw+/vKXv3D22WezaNGiaPuZZcuWMWfOHF555RVatGjBf//7X7766itee+01rrnmmjrre/bZZ8nKyuKLL77giy++YMKECaxevZqZM2cybdo0PvvsM7755hv+9Kc/ccYZZ9C3b18mT57MokWLcLlcv7j+Zs2a8dVXX3HbbbeRlZUVHZ0wadKkemlxo2KjKEqTpVevXvz3v//lpptu4sMPPyQrK4v//e9/dO7cma5duwJw0UUX8cEHH+zxZ/3adU877TQADj300F0ebTBy5EhSUlIACIVCXHHFFfTq1YszzzwzzpUnvPvuu7zwwgsUFhZy+OGHs23bNpYvX86cOXO45JJLSE1NBXY+kuDX1i8CCKZp56RJkwiHw7z22mvRMQZ7gnYQUBSlydK1a1e++uor3nnnHW6//XaGDBnCySefvEvnxg5F291RAjtDxhvszmiD2DEAjzzyCC1btuSbb74hEong9/vrHG9ZFo8//jjHH3983PbZs2fvwcrrruX000/nz3/+M8ceeyyHHnpo3MC334paNoqiNFk2bNhAamoqo0aN4sYbb+Srr76iW7duFBUVsWLFCgBefPFFBg0aVOfcli1b8t133xGJRHjrrbei239udMCuXvfn2JWRBK1bt8btdvPiiy/uNFB//PHH8+STT0ZHJPzwww9UVlZy3HHHMWnSJKqqqoCdjyTYnfX7/X6OP/54rrzyynrrEq1ioyhKvdGynicC/Nr1lixZQr9+/SgsLOTPf/4zt99+O36/n0mTJnHmmWfSq1cv3G43Y8eOrXPufffdx0knncQRRxxB69ato9vPOeccHnzwQQ455BBWrlwZ3b6r1/05Bg8ezLJly6IJAjty1VVX8fzzz1NQUMD3338fZ2mIFXb55ZfTo0cP+vTpQ8+ePRkzZgy1tbUMHz6ckSNH0rdvXwoLC6Mxo4svvpixY8dSWFiIZVm7tf7zzz8ft9vNsGHDdvkefwkdMaAoym9GRwwkni+//JLrr7+e999/f69+7kMPPcT27dv561//utP9OmJAURRlH2HhwoWcd9553HfffXv1c0899VRWrlzJ3Llz6+2aKjaKoiiNlL59+/LDDz/s9c+NjWHVFxqzURRFURKOio2iKIqScFRsFEVRlISjYqMoiqIkHBUbRVHqj1aAqx5f9TxiQJg/fz4nnXQSANOnT9/r2V4A9957L126dKFbt26/2gHgmmuuiWsc2hTRbDRFUeqP+h4JsBvXsywLy7Jwu3fvd+iRI0cycuTI3VzYnrFs2TJeffVVli5dyoYNGxg6dCg//PADSUlJdY5duHAhJSUle3V9iUAtG0VRmixFRUV069aNCy+8kJ49e7J27VquvPJK+vbtS35+PnfddVf02FmzZtG9e3f69OnDv//97+j25557jnHjxgHEjRMAZwzBxo0bOfrooyksLKRnz558+OGHe7TuadOmcc4555CcnEznzp3p0qULn3/+eZ3jZKTAAw88sEef1xhQy0ZRlCbN8uXLef755+nfvz8A99xzD7m5uYTDYYYMGcLixYvp2rUrV1xxBXPnzqVLly5xHY53hZdffpnjjz+e2267jXA4HO1BFst1113HvHnz6mw/55xzuPnmm+O2rV+/PrpegHbt2rF+/fo65/7zn/9k5MiRce10mioqNoqiNGk6duwY9+B+/fXXGT9+PLW1tWzcuJFly5YRiUTo3LkzBx10EACjRo1i/Pjxu/wZhx12GJdeeimhUIhTTjmFwsLCOsc88sgje3wvsWzYsIEpU6Ywf/78er1uQ6FuNEVRmjSxDStXr17NQw89xHvvvcfixYs58cQTd2t8gMfjIRKJABCJRKipqQHg6KOP5oMPPqBt27ZcfPHFvPDCC3XOve666ygsLKzz2lnyQdu2bVm7dm30+3Xr1tG2bdu4Y77++mtWrFhBly5d6NSpE1VVVXTp0mWX76WxoZaNoij7DGVlZaSlpZGVlcWmTZuYOXMmxxxzDN27d6eoqIiVK1dy4IEH8sorr+z0/E6dOvHll19y1llnMX369Ggr/x9//JF27dpxxRVXEAwG+eqrr7jwwgvjzt0dy2bkyJGcd955XH/99WzYsIHly5fTr1+/uGNOPPFEfvrpp+j36enp0fEATREVG0VR6o+W1G9G2m6OLCgoKOCQQw6he/futG/fnoEDBwJmPMD48eM58cQTSU1N5aijjtrpbJkrrriCk08+mYKCAoYPHx61mubPn8+DDz6I1+slPT19p5bN7pCfn89ZZ51Fjx498Hg8PPHEE9FMtBNOOIFnnnmGNm3a7NFnNDZ0xICiKL8ZHTGw/7K7IwY0ZqMoiqIkHBUbRVEUJeGo2CiKskc0QU+8sof8lr/zehWbN954g9NPP52OHTuSkpJCt27duOWWW+oE4kpKSrj88stp3rw5aWlpDB06lCVLltTnUhRF2Qv4/X62bdumgrMfYVkW27Ztw+/379Z59ZqN9tBDD9GhQwf+9re/0a5dO77++mvuvvtu5s2bx8cff4zb7cayLEaMGEFRURGPP/44OTk53HvvvQwePJhFixbRrl27+lySoigJpF27dqxbt44tW7Y09FKUvYjf79/tZ3W9is3bb79NXl5e9PtBgwaRm5vLRRddxPz58zn22GOZPn06CxYsYO7cuQwePBiAAQMG0LlzZx544AEee+yx+lySoigJxOv10rlz54ZehtIEqFc3WqzQCIcddhhAtO/P9OnTadOmTVRoALKyshgxYgTTpk2rz+UoiqIojYSEJwi8//77ANF87KVLl9KzZ886x+Xn57NmzRoqKioSvSRFURRlL5NQsVm/fj133nknQ4cOpW/fvgAUFxeTk5NT59jc3FyAfWJuwy8SAWqBkP2qBTS2qijKPk7C2tVUVFRw8skn4/F4mDRp0h5fb/z48dEurU0uGFkLVNmvIEZkwAiPC/O34AfS7Ffd+UmKoihNmoSITXV1NSNGjGDVqlW8//77cVkLOTk5O7VeiouLo/t3xujRoxk9ejRA1Epq9ISAUqCCeAsmAoTt9xZGgCqBbYAXyAFy0c51iqLsM9S7Gy0UCnHGGWewcOFC3nnnHXr16hW3Pz8/n6VLl9Y5b9myZXTo0KHJz9kGjICUA2sxYiMusxr7FSH+J2/hiE8A2AD8DyhDXWyKouwT1KvYRCIRzj//fObOncvUqVPjBhoJI0eOZP369dHEATBtwd9+++29Pgc8IUSALcBP9nsRGDfGZVaDsXTKMIJUab+qMW42EaMg8ANGeCJ79Q4URVHqnXp11Fx99dVMmTKF2267jbS0ND799NPovnbt2tGuXTtGjhzJgAEDGDVqFA8++GC0qNOyLP70pz/V53L2PiI05RiLJID5CYftbbWYeEwSRngg3p0m2ySmA/CjfV57tLmQoihNlnodMdCpUyd+/PHHne676667uPvuuwETn7nhhhuYOnUqgUCAAQMG8Pe//52CgoJd+pxGOWLAwsRciu3vazBCI0kBXoxYRHBcarU7XEPEJsk+XrbVAAdgBEdRFKWR8kvPZp1nU19UAesxolODEQyxcLwYCyZov8CxcHaGJBBYGMFyYYSpD5CdkNUriqLsMTrPJtGEMe6zHYXGhRGaoP19CPDZryScmpsARqwkfhMrSGIJhYFviHexKYqiNBE0ubY+kAB/GCMQFRihceME/cVCkcwzOV5cZ7GyL1YQOC41F7AVKAIOStidKIqiJAQVmz3FwklRlpqZCE68JoQTf6klXpR8u3D9CMbycQGpwLdAW/u9oihKE0HFZk8JYSwbsVICGBERi0YEJWC/dhQZC8edVhuzzYXTXUCy10IYd9wPQGGC7kdRFCUBqNjsKUGc9OUgxh0WwghLMkY4qu19Phy3mcRigjiFm+6Y/VbMMbJP4j2rgU5osoCiKE0GTRDYUwIYUbAwwpCEsWo8MftrMMIjQiIJA2LpeO1XEuZvRF6x+1w4whYAVuKInKIoSiNHxWZPkRiNpCrX2t8n4Vg44jaLAJVgVcHx/57GuJmLHQEi5jo1GGuo2j4/ZF9bXHA1mJqerYm9NUVRlPpC3Wh7SiTm5cYIhKQsV+EkB9hCgwWPLVnEu6+dzLueara1v4Nn8m8mLZTmWCqumK+STi2I1RPGZKZlY6wmRVGURoxaNvWBWDTgtKSR1GXpGlBpf++B3x/amz6HL4PaFF6dfDSFyw/h88DnjsvMg5MY4MHZ7sURMelCsA5t1qkoSqNHxWZPkd5n4Dz0xRqJjduIaw1w42bWxT3ISquFVcex4uu+HLH+CP6y7S/UWjE9bCRJQF6SpSaJBtUYV1p5om5OURSlflCx2VNScWbV1GJ+ojU4wiBTOcWdZgFVkJcCD59n1Cj1v08Rrk7nruK7OGrtUawoX2EsoQriv5YD2+3riOgEMaMMNFlAUZRGjIrNnpKMsWDE+hCBkb5n1THvbaEhDHjhkqNhYFeoKs/k5E+/pZ27HZ8GP6VwUyETKidgJVmOG02+umKuW2V/XwFsTvidKoqi/GZUbPaUZMxI5xDO3Jkw5icrmWnyU5ZOz7aV43bDkxdDkhumf9CO56uWcV7KeVRalYzePppTtp3C5nCMioi1lGJ/rhcjODLaoDpxt6k0PJZlEYlECIfDDfqKRCI0wf69SgOj2Wh7ihvIwwxLE1GRdjXBmG1SH+ONOTcMvZrB9UPgwf/CjS9n8Pntkzkp5SSuLLmS6YHpfLrpU57NfJaTfCeZ6/nta4mgiVVVBWzEFHvqrxD7JBUVFSxatIiioqIGfdi3aNGCPn360KJFiwZbg9L0ULGpD3IxlkZwh+0xVky0gDN2aFql2XbXKfDal/DVGvjXPPj94HM5MvdILtp+EfNq5zGidARjfGN42P0waf40xx0nYwq8GBHaikmFzk3crSoNR0lJCW+++SbTp08nEmm48a2HHXYYeXl5KjbKbqFiUx94MRbF1xgXF8QH7MMY4Ykt7hSxcENaMjx+Hpz8T7jtLTi9G7TPas+cjDk8EnyEW6tu5emap5mbNJeXXC/Rz9cvPjVa0qr9mNhNOrvW5FP5WSzLIhwOEwqFGtxl5PV68Xg8hEIhtmzZ0uCWTfv27QkGd/zNSlF+GRWb+qINpmfZVoz4xI55riHetRVbg2Mzshec3BOmfQvXToPXLzMp0n9M/SPHuY5jVPUoloSXcMRPR3BH7R3c1vE2PJbHsZyky7QbE79pQ3x3AmW3sCyLJUuWsGDBAioqKhpsHX6/nwEDBtCnT58GW4Oi1AcqNvVFEqYT82yMFRM7AiA2O23HVGjZVg2PnQFzfoApX8PMpfC7fKAGert683mLz7mt4jb+XvF37t56NzMrZ/Jiqxc5yGMPt5GkARcmfpQBZCbqZvd9IpEI33zzDU888QQ//fRTg60jJyeHpKSkXR6ZriiNFRWb+iQTM7r5I4xlI90DJGEAnNiNIIPUkqBDc/jLifDHt+Cq1+DbP0KanX3mD/l5uNnDnJh6IhcVX8Rn1Z9RWFTIP6x/cHnG5bi8LvM5ze3P3WzOixM1ZZexLItgMEhZWRmlpaUNtg63200gEGhwV56i7Cmat1TfdMJM0pTZM7XEJwXEpkJHcOpw7G3XHAOFbaGoGP4yG2MhJQNZ5jrH5hzL4q6LOTfzXKqsKkYXjeaUtaewmc1OV4EqjKuuGG1loyhKo0DFpr5JAnpiYiaZON2bazGxm9g4Smzsxu5A4AnC0yeBywUPfwSLt2EC/hGMleKDHCuHlw94mZcPfJmspCyml06n12e9mFEywwiT2772T2jtjaIojQIVm0SQCRyIiZu0sL9KqnMNRgiqcLoJBHBGFSRBv3y4ehCEIzD6ZQhLjCfZPr8GCMG5nnNZ0m4Jg9MHszm0mRHLRjDm6zFUhiqdepyf0FY2iqI0OCo2iaI1ptgzFeMCawnk2K8UjAWUYr+yMPUxHoxIpMM950HbHPhsJTz5gX3NckxrGmnE6Yb2zdozJ38OD7d7GJ/Lx/j14yn8pJDP1nxmrKUAZvaNoihKA6Jikyh8wAEYayTF/j4FY/VkA2mY4stM+70b4y7LMu8zffDPi8ylbnkN1m3ACEwOTmq13S/N7XJzfcvr+eLQL+iV1osVgRUM/Hwgd397N7WBWiM26k5TFKUBUbFJJGLR+O1XJs6gsx1n1Ej7mYh9TBqcchic2gcqAnD1K2Cl48R3IhjxcmGSEVzQO7U3nxd+zh/b/pGIFeHPRX9m4EcDWb55OWxC3WmKojQYKjaJxIVJFBDLxoXTWiYDY9GkYv4WsuxtUv1fBVTD4xdAZgpM/wre/BQjMiGMIFVjRg5sxyQgVIC/ws9DrR/ivd7v0T65PZ+XfE7hh4WMXzweq1hT0xRFaRhUbBKNH+iAERrbYsGKeUm3aJmHIynTESAD2naA+y80lxo3AUq22scGY87LsD/Hh3GtpcHgZoNZXLCYc1ueS1W4ijFfj2HkWyPZvEVnESiKsvdRsdkb5ADNMIIgsRaxZDwYaybVfonLLYvo/JrRx8KR3WDTdrjhNYyoiPvNTocGnGmgdsPP7ORsXj7sZV4ufJksTxYzNs6g58SevP3d23vnvhVFUWxUbPYGSZjYjbjQkjFWTC0mjiKzaZJwOgyEMVZOCNwWTLgcfB6YOA/mLLb3eTAC5cIITdB+H8C42Oz5Oee2Ppclg5YwOG8wWwJbGPn6SEa/PZqKmobr+aUoyv6Fis3eIhUTv5HWNVk4ri8w4lGFESAw4iOWDtD9ALjzLPP+in9BRS0mFiRut2L7vRSPylC1CmA7tA+1Z87AOTyU/xA+t48JX03gkKcP4bN1nyXwphVFUQwqNnsLF8aVlo6J29RgXGo++/tMjLDk4sRgxEqx+5v96UQo7ARFW+C2VzAiU42TwZaBM0Lajt1E4zg+cAfc/LHlH/liyBf0yu7FiuIVDJw4kLvn301tRFROURSl/lGx2Zt4MMWeMtrZj5NdFsCxaiS1ucL+arvbvBkw8TozRvrx/8CCFZi/QRdGWGJ7sHmIT5OOSbXundabz/t/zh8L7BTp9//MwIkDWb5teaJ/Aoqi7Keo2Oxt0jGdBaSuJhMn3dmDIw7V9v40e38GkASHtIY/nQyWBZf+E6qD9n6p0anBtMWpBUqBMvtVgdMuJ8nMSXmoy0O8d8Z7tM9sz+frP6fw6ULGfzleOwwrilLvqNjsbVwYsUnHWBoyWE2sE3Gz+TAC48MkDIil44K7zoQe7eCHjXDHvzECVY1xq5XhJBv47GunYIQsHHOcPSl0sG8wiy9fzHm9zqMqVMWYGWMY+epINlVs2gs/DEVR9hdUbBoCL9AKIzDp9tcgzggCieeIW0yExt6f7IdJ14PbDX9/Cz7+EuOKszBClUL8GAMZqubGCJB8vx2oguyKbCafMpmXT3uZrOQsZvwwg15P9uLt/2mKtKIo9YOKTUORiclICxNv0bgx1ocUfIZw+pql2+elQr/ujjvt4iehqhojIv6Yz6ixv0qmW2zXaXAGum0EyuDcXuey5MolDO40mC1VWxj5qqZIK4pSP6jYNBRuTO1NOkYAwhirI9Xelo3TpNNrv5eWNxGgEu46HfLbw/KNcMsbGIsG+3plGMtF6nXCOPN0xJUmbW5klHQ1tM9qz5wL5/DwsIfxJTkp0p+u+zShPw5FUfZtVGwaEh9GcHwYi6QGk5UmLjQXjhiIS83CWCkh8HvhhWvAkwSPvQ1zF2JEphojLpJO7cHpLODHSY+WmTcV9ueuN5/ndrm5fsD1LLxiIb1amBTpIyceqSnSiqL8Zjy/foiSULIxAiHP8CDG3SUxmEqMSIRi9geIZrD16QV3nAt3vQSX/AMWPwxZfoyVk4xDECMyQZw+bEk4NTluoMQ+rw3ggl4te/HFFV9w+9zbefiTh/nz+39m5oqZvHTqSxzU7KCd3k5FRQVr166lrKxsj3809Y3H46FNmza0bNkSt1t/z1KUvYmKTUPjxiQLFGEsFh8mluPBCEMt0aJOIvYrtqYmArecCG9/DAtXwTXPwvPXU7eGJ4QRqDDOWAK7nU00tuPFdCLwYwpQgWRPMg8Oe5ATu57IhW9dGE2R/vuwvzP60NG4XLFzrmHt2rU888wzLFq0qJ5+QPVHRkYG5557LqeccgrJycm/foKiKPWGik1jwI9xp63HEQGxNqQYE4yV4yE+S60SvG54cRz0uRle+ABOHAhn9cMREQsn5iPfgxMDwv4ssXrW22tKc5Z4TKdjWHzlYq5+52peXvIyY/8zlhnLZ/DMiGdomd4yelxZWRmLFi1i7ty5e/xjqW9yc3MZOHAgkUikoZeiKPsd6ktoLGRhHu5pmAd9LU5WmhR6hjCuL3BcbHbQv/uB8PAVZteYx2DdTzgi5cMRGqm1kXRqGTUdMNchjBGdIntbDNn+bCafZlKks/3Z0RTp6f+bXl8/BUVR9lFUbBoLbkwrGzDWSzZOcD+C06RT0qHFCsnEFH8mw9jhcFIfKK2EC5+AcNA+P9k+vhynoFMKSQXpWlCGEZxyYC1OLCmGc3udy+Kxizm287FsqdrCya+erCnSiqL8Iio2jQk/pruADEeTZpp2bU00HTp2Do4984ZacFXCs1dDiyyY9y3c97a9vwJn/IDLvoa46cCxlmS/GyNopcCP7HScdPus9vz3gv/WSZH+tvTbevtxKIqy75BQsRk+fDgul4vbb789bntJSQmXX345zZs3Jy0tjaFDh7JkyZJELqXpkAW0wMlAk24CYaJD0aKJArFdAuz2My3S4YWrzeY7X4WPvsbJOpPBbUk4lk4JTgac9E+TbtK1wGZgHTsVnJ2lSI/5bAyrOq7SX2MURYkjYY+EV155hW+++abOdsuyGDFiBLNmzeLxxx/nzTffJBQKMXjwYNatW5eo5TQd3BjrxoPJCPNhBEdm1YiwSEdnqZOR1OgUOH4g3HQKRCJw7mOwrdI+T9rhSIwGnLk5sbU3koQgbrv1GAvnZ+LqkiJ9w4AbiFgRijoWwaWYcQmKoigkSGxKSkq47rrr+Pvf/15n3/Tp01mwYAEvvvgi5557LsOHD2f69OlEIhEeeOCBRCyn6ZGMsW5COKnQaThTOaXQU7LKkjAuNplnE4C/ngn9u8K6bXDRoxCpso+1cDLcpG9aLUbA7F5p0S7RFThCtw6TNPAzNZ2SIv3Pw/5JciAZ2gFjgUP3/MehKErTJyFic9NNN9GzZ0/OPffcOvumT59OmzZtGDx4cHRbVlYWI0aMYNq0aYlYTtMkC8jBsWjsAWj4MaKSgTNawI8Td7FrZ7wp8Mp1kJMG//kK7pH4jSS7SxubIEZgpP5GpoeKICXhpFCvBVbg9FbbCYc2O5R+X/aDxfZ1RgDnEpdGrSjK/ke9i81HH33ECy+8wBNPPLHT/UuXLqVnz551tufn57NmzRoqKjSjCXDcadmYh75koUVwLJod06HDGPeYHe/plAsvXwMuF9z1Bsz62j4uhLFe3Bjx8ca8l3EFsWnRYuHUYJp2fmuf/zNjb7xhL/wbmGJfqxtwlf1VUZT9knot6qypqWHMmDHccMMNdOu28ydLcXExnTp1qrM9N9c4+EtKSkhPT6+zf/z48YwfPx6ALVu21N+iGzM+oDmmSWYW5uEurW3EnWbFfJXYjMywicDwAvjz2SZZ4Lx/wBd/hQOlw7R0iJZ+azKATVKik3GSEqTVjQfjbluKcZW1wqnn2ZGlGGvoFOAAjIXzJTAbx1pqpLhcLtLS0mjdunWdLgl7k5ycHDIyMhp0DYpSH9Sr2DzwwANUV1dz22231edlARg9ejSjR48GoG/fvvV+/UZLJkZEgpgHf2zacgXxw9WS7Zcbp3jTC7edAZ+vgBkL4aT74ZN7IFuERo6rwQhabNGohbGUpLhURA37uNWYbLYO9rp2ZieXAS8ChwNDMTGcTsBbmDhQI8XtdnPooYdy/fXXU1VV9esnJIjk5GQKCgrweLTZh9K0qbd/wWvWrOGee+7hmWeeIRgMEgw6jv1gMEhpaSkZGRnk5ORQUlJS5/zi4mLA/CanxODCJAvUANtw6mAkniLCU0187UyAaOGm2wWTR8PAjfDtejjjUZh5O3ilkFOKQ0VogjjZbfILtXyefLbsqwS+x1hgrdi5a80CPgVWAafZx10KfGC/GmH3GJfLRbdu3TjooJ03HN2buN1utWyUJk+9ic2qVasIBAKMGjWqzr6HHnqIhx56iK+//pr8/HzefffdOscsW7aMDh067NSFtt/jwQiOTPOUsFYE529QujhjHyNJBXacJ9MPM26Hw2+B9xbDlU/ChAttLZGx0WLJVOFktsWKh1hBksEms3i8wBagBHzrfPhDfly4sHZUns3ABOBY4AjgGOAgTHxn2x78fBKAy+XC5XI1qu7QycnJdOjQgd69e2NZPxMw2wt06dKF1NTUBvt8pWlSb2JTWFjIvHnz6mwfPHgwo0aN4rLLLqNLly6MHDmSSZMm8f777zNo0CDANG98++23Oe+88+prOfseqZi6m80Yd5eL+CC9jBAI42SXSezGbuzZMR2m3QzH3AHPzoOcZHhgFLh8xPdMk2w0cPqyleMUlsq/Gh9GdFJwulNXQl5VHu1oRwklVFIZLzph4L/AcuBUoC0wBngXWFhPP6t9lNzcXM4++2yOOuqoBhWb3NxcOnbs2GCfrzRN6k1ssrOzOeaYY3a6r2PHjtF9I0eOZMCAAYwaNYoHH3yQnJwc7r33XizL4k9/+lN9LWffpBlGELZggvtZOK1lwsSnNSfjJBGEiYrH4V3gjavhlMfhoVmQmQ13nI4RKPHUpOA05aywz/XbnxXbU01qcGT2ThA8AQ/eiJdsskkjjRpqKKGEcsqpjS3SKQKeBE4AegMnAV2BaRjXnFKH1NRUCgoKKCgoaOilqFtP2W32uo/A7XYzY8YMjjvuOK666ipOPfVUkpKSmDdvHu3bt9/by2lauDDxjmyMJSNta8TakD5psYIQxPlbtoAKOLEnTP49uN0mS+1vr9kGklg1HuItpBScpIOkmH3SuSCCsbwsiPgiJLmSCBLEjZsIEZrRjDa0oRnNSI6d6BYgPkW6K5oi/SuIe6+hX4qyuyQ8xWVn5n5ubi4TJ05k4sSJif74fQ8vZvZNECMMpfZ2sWxif9yxdTgiCi4gB846GipDcNm/4LY3YEsZPDwK3Mn2tSrta4mVQ8znBGI+z0NcRwNXxEVSJIlccgkRIoMMyigjjTT8+MkmmyBBtrOdaqqNtdOEU6QVRdk1Gk/0U9l10jAJAxFMID8NZxSBJBFIdwBJIkjFuML8RMXjkmPglTHgTYJ/vAsXPgPBGuJHEIghIsWeUmsj9TciRLYIJW1Pwmt5SSaZWmoJEcKLlwoqSCKJkJ3m1pzm5JJLDjnG2pEU6VkY8ToU0+6mXf3+6BRFaRhUbJoquZgYTg3mwZ+KM34g036l2d9LtlmIeFs2AGf3hf/cCGl+mPwBHHUb/LgVp25HGn5W2F8lFgRO9lutvd+uw6l11xIhggcPtdTiw4fH/uA88sgggxRSaEUrssmmnf0nw8rA+6kXxmMKWXMxKdKD0X+pitLE0f/CTRWpv8nDCEMtRnjEIpFRBLFjCIjZHrRfGXBcP/jgr9AxD75YBX3uhJlLcaZ7Sqsa6W9mxXyGjCdwA8ngspVIxMaNGx8+mtGMFFIA8OIlSJBqqvHhowpTNNmMZmSTTe7mXFImpMAC+zMGAZdhxFVRlCaJik1TxoNJGEjBJA1Iu5nYLLEwzqhn2e7CCIkMXwP6HAhf/QV+1wuKK+GEB2H0U1BahhGT2Gaf4poL4hSTyj6bMGFSSSWDDFy4cOOOc6slkUSECC5cZJCBDx/JJNOGNmSSSatwKzr/tzOZz2fiKnU5KdL7UfMIRdmXULFp6iRjHsRS2Z+DEZE0nMwyr/1epn6KhRIrELWQmwQzboR7zgOvByb8F3pcC1MXgRUT64laTIGY68diQQoppJJKiBBhwlHBMbstfPjw4yeNNJrRDD9+aqmlkkr8+AnYf3KLcmnxVAuSFyebezgJOA/tIq0oTQwVm32BNIzgyAROER5ptunHGRkQG9CXeEwIIxyp4E6HW8+ARQ/DgK6wsRRO/ScM/Qt8uZL4IlJJg5Y4kL0vOZyMFy811ETdahZWVGxcuGhOc5JJJkSIaqrx2opl2X/SScePn2SSaRloSad/d6LZlGa4q93QFVxXuUjrlkYKKSTtaFYpitLoULHZV8gA2mMsHQ9OzzMpuIxNX5aU6Fr7lYxxxcWUwPRoDx/eDI9fCDnpMHcJ9L0Rzvs7rNiEU88DjmUTAavWwm254ws4bdy4SSWVNNIIEyZiB5Ji4zsePKSSSnOak0Za1Npx4yZjaQbNnmxG8qpkrDSLynMrSRqZRAdfBzrRiRa0IJNMUkjBhw+3/ceF1oUoSkOjYrOv4MLEbVpghCMV404T6yOME7ORTDPJYJPamtiYTBCSPDDuFFj5L7jxFEj2wisLoNsf4PzHYclq4pt/BsFluYi4nc6asa1qUknFg4cau3jGHfPPT6yZDDKwsKiiKmrtANRQQyaZ5JXl0enFTuTNysNV66KiTwVrxq6hol0FWWTRjGa0pCXtaEdHOtKSluSSSzOakRPOwVvpNZlzVRhrLjaWJQIcjnk1wiahitIU0b7l+xIuTPdlgDUY8cjAiEEapr+ZD6ffWYxFEnWp1drvUzEPY4xl88D5cPUw+PMb8OL78PKH5jXycPjTWXBEd3BVg+Wx7KW4opYLgB8/ESLRzDMLK2pxuHCRSioWFuWUR89x4yaJpOj+JJLw4GG7tZ3MTzNJXpXMltO2EGwVZOulW7E+tGjxfgtqI7XRup5MMkkmmUoqybAySK1MNT8bsQClLY/L/nnJaAVi9svLi2MBeohPA1cU5RdRy2Zfw4VJEZY+iRLIj32Ixj4gRWBqMA9dP8Yiij3G9oh17AwTx8LKJ+D3w8Hvg+mfwZF/hMOugRc+hhr7RDfuaAGnBw9+/NHvnaWaP+mkx4mPszSLNNKi1o7EgMTiydicQY8JPWi1oBW4YNugbay6bBWRZhHa0jbOSkommdRIKu6w2xFbsWwkW287RpCleLUY2ITpSF0CbAB+iHl9j5nJI0PrFEX5WdSy2RdxYwoiI5imnVJ7I8Ijv8EHMJaOpEHH/qYuD08ZIZBKdCR1h+bw2KVw24Xw+HR4+h2TPHDRE5Cb3pWuqceTzCYi/Bi1SkKE4iwdMGIitTdhwnFuMzD1OH78lODMPwoTJhmTgODDRygcovV/W5O2PI0fT/mRYNsgq8esJvRuiKyFWdRQExW7DDJIqk1yui1U2V9jG4/K1FKxZMCISa39M3DZ+8EIcwVGhDIxVmU2+r9KUXaCWjb7Km5M/KYVTs+0FhhRycJYP+n2SxptitBYGJGRB6w8ZMUiCANp0DIX/u9iWDMBnh0LvTtDcYWHTzcP432eZyn/RzkDATcWVh2x8eDBh48w4TrL92Ja3uy4L0Ik6hoTSylMmOyibA5+6mByF+cS8UVYc9Ia1py3huT0ZDLIIEyYKncVnpDHCHAQJ0tvK8aqceMUsFbZ20SQXPb3MjVVum9Ls9JtmE7WK+3jGm4CgKI0SlRs9nVygc44c22k6DO2EzSYh2kApxA0BfPbug9HhCS5QBIP7PNTPHDpCbDoXzDp6tV0y/wGFxYlDOJbHuQDJrKcMwnGtABw4yaZ5GiyQCyStSZus1j3mqQ67yhcySSTGcik3b/b0WFKB5Kqk9jedTvLr1zO1u5bTeq15TZutKB9TyGMZeLHCKu06QFHcII4A+Vk5IKFE7MJ4gyqC2BcbysxcaG6CXmKst+iYrOv48IkCXTCiEc2RkCk75mkRidjHrqx/dREiCSF2m3vS9phu89sc7ngsAOqOKnjixzCSDryFH5+IkBrVnM5XzGV73mIYgbhthMGYpHMtRRSovtiYzkePNEGn7G1NV680dRpFy6yl2Zz8JMHk70qm1BaiKJzilg7ci1ejxfLZZl7LbNf4lILYAQmgLFaJGGiFCdpQqyezfa5lfbxm+3jpAFqCBPrWYkRI0VR1Lu835CCSRrYiHlgWhhXWhXOxM1ynH8R0kNN2tuk2Nur7a/iTku3t9luNrflpiapBh8ldOQVujOdTRSyhuMo4UhKGUgpA1lNKc2YRR7/IZUVJNkJBR480YJQswxXVHAk9uPCFRWbWCtI2uCECZNVlkX6i+lsPHwja4auoaRPCR93/pgBkQFm/RUY9yAY0fDYP5dSjOBKvzcPxuJJw5kblITTK05iOyGcFPIqjEVZhhGcAzBCrij7MSo2+xNeTMv+TEwWlbh5pL+ZJA2I0SAp0zJOoBZHgNw47jQpGg1Bal4qBYcUkJmdSXIomaRIEtXeaiz3e1TWfMLSTQV8s7Evm6ta8hPn8BPn0Dx1M/l539Kz1dc0TykmKZIUrdVxR9xUe6tJiiThC/uIuCO4LGPpBLwBfLW+6PHuiJtQUgiX5cIb8RJ2m3hP8cJi/p3/bzblbOIe7iG8OszdLe/GW+t14jGxfeTKMOIgLjI3zsweGdsgjUyTcWJZtfbPNgUjWhkYAf8RIzg7tvVRlP0Il9WQw8x/I3379mXhQh1Yv0cEMFaOxCW8ODEJyc6SLCwRoqC9P4P4WE4Z0aSBAAG2b99OVaAKd4kbK8XC8sf8E6sFKwRL1vmY8lEG73yaRkmF4xLL7xDkpCMq+d3hlXRoXgsWWGkWrgqXM5ba9r5Zfgt3hRvLZ1/frpdxhV1YXuczXWUugp4g/6j+B08XP42FxWFph/FS25fo6u9qBKPCPrgCR1zBcZ9V4cwNkrobsezECqzBWEtS6Joec2x7jNCr41rZh/mlZ7OKzf5MBJM5tQnzkPXhBMLFNVRhv3djftuvJL7HWsjetkO7m+j2LOKz3GoxD3O7c3SoFuZ+Aa/Mg7c+hLJK5xJd28HvBsDvjoRBXcEvzTelH5tYGrHFqTLfJ3Zbqb32VHh/0/tcuPxC1tSsIcWVwt/b/J0xOWNwhV1OPVI5xkKBeLeh3/4Z2SngBO379uGMzfbbPwdJpmhlH5cKHAjkQCQSIRwOE4k0zuKcpKQkkpKSdPyzstuo2Ci/TAgTlyjGPKgr7a/yPrbmpIr4Uc1i4dTgWEBiDYWIFyaJcwSI761WA2RAoBJmfQSvzodZn8P2iuinkJIMgw+BoX3h8K5wSG9IiRBvhUTs9abFXDtor1kak5bDdms744rG8dK2lwA4Ie0Enm3xLK0irZzWNeIeFFGrxUmXjk2ciI1niTutuf1zqcERqGRzjxwMxduL+fjjj1mxYsVO/zoaEo/HQ2FhIX379sXv10CTsnv80rNZYzaKeRC3wmSqbSI64jnatkbqRkQgQpjf/L0x3wdwkgbkt/1y4uI50QevJBQQs90Dfg+cchSccgzUhuDTpTBzEcz8EL5eDu98al4AniQoOBAO72Feh3aDLi0h2SLeVSWWlAhBBLJ8WbzY/kVG+EcwZuMY3ql8h14/9uKZnGc42XOy0x8tzT4/EHN+rLiJsMbGYkTcZPyCrEFaAhXDttJtvPnmm/znP/+hsf2ul5KSwhVXXEHPnj1VbJR6RcWmCWNZFtXV1QQCgfp7aMU27yzHiZNILEcytCS2AeY3eAmqp2DEpBp8tT5S3Cl43B4ntRriLRFXzPYYr5IHOLIfHDkQ7hllRh3M/gI+WgyfLYOlRfDlD+b1r6nmHLcbOrWEbh2cV+dMaN0cWuVAc1+MDoXhrOyzOCJyBBdvv5j3qt7jlG2ncFnyZfzD+w/SvenmPkSsRFSlj5q40kI44xbcMS+x7MoxWX/2CAd+gnBSmPLycrZs2bK7fzsJJyUlhcrKykYngkrTR8WmCRMMBvnwww/58MMPCQbrt6DDZblIqkkirToNb9iLFbbwRrxEkiK4wi6Sa5JNtpcLwp4wRDDFljEdnw9seyADCwbSvHPz+N/+JXXYhbGQRHykS4HEZGLOad0MLv4dXDwUSIHyalj4NXz2A3z2HSxZBas3wir7NfOzuvfkSYKW2dAqF7KTITMVMj3tODj1v7j4gnmRGTzr2840398Y57+Ew3MOIi8L8tKgZRokSyZa7OjtEEaURHglwy8dY8UFcOJhdv85l19jIcr+h4pNE6ampobPP/+cp59+moqKil8/4TeSHE4m3Uon3UrHi5eAK4DXMn3Lgm4jcklWEulWOrXU4sGDCxf9j+5Pfn4+zb3N6140jJkqGuvyEosBzMN6R+SXbS9kuGFwIQzu5+wLlsHKzfDDT/C/Nea1ZgNsLDaWUUk5rN9mXvG4gH72y4Sv7t7hCI8bCltD/wPgwv5wmDQ6lRHZsYWuNTiJFWLxVGKsuwC4Qio2yv6Hik0TJxQKEQgECAQCCfuMAAG2sx0vXtJJJ4ccggSppZbUcCpBgkSIECBgRgCwnRpqqKCCiDcSnz4txY+SgBCLB/NQziVehCTdWZpmSubXDp2pk7OgRwr0OMjeFsG491xAOgQq4KctsKkUyrZBWQWUldtfK6AqCGWBWj6s/oolwVVQnUtqVUfSqw5gS7mXheth4Xr454dw/qHw1NmQHrsWsXjEKpNYlrgmq829u8pc2jtN2e9QsVF2mRAhSiihlFLSSItW7nvwECBAKaVkkhkd7QyYehdJA07CPHi9xCcdgDOoTGpZYvHidDrw2duknQwxX8VVJYhbzo6j+H3QqQV0aoWxPKRoU1rUWEDIA+F+vB+p5sLwhaxhDRYpPBx5jIIfL+M/q1w88QlM/tJ83MRTiHerSQabrFsy5MQlGAZ3tRu3pQU3yv6F/otXdhsLiwoq2MIWfuInSinFhy/aTiaFFPz4SQon4XK7TGDcj6m5kVTpFJy+bNKRIBunIn9HIjjdpyHeKpLu1B7irR15L58pfdBEFMQakfY90ponAIOSBrE4bTGjkkZRTTXXu6/g4U4nceNJP/H5NZDsgUlfwhc/2dcXl5nMxqmwr+uzP7eKqEXmqnHhiejvecr+hf6LV34zFhZB+08xxaSTjh8/1VTjx0/AEyCcEYY8jCUTgbAVZvOWzWzZsAXXdhdWkkXEHzEWkAtcQRfuGrcz8TPsimZ+WRusODFxVbtM/CMJIqkRcIG70v79ybZ83NVu48qzrQx3lRs8kFyTTE52DrnJubgiLscVJpaRF7Jqs3gx/CIjGMFYxvKO6x16VffimRbPcOlhJ/PkJzBrBRx2sCwIIzgyDbUCY6n57e32/CArbJEU3tGHqCj7Nio2Sr0gI50rqIhaOW7LjavS5XSGLoNAKMAn73/CzP/OpCpQhc/yUZvk9OJ3WS7SatOiiQZhd5iAO4A34o3rdwbgiXhIDaVS4asg4jKZBZ6wh+RIMrXuWjwRDzWuGvMZbtP6JqU2hYgrQuvM1gweMpicA3Nw1bqcwWkBjNUlLrYkOMt1FgNrB3Kx62LmWHM4JXAKx7b/F3xyJQtW4VgtYj25Yt6L6MhgurARUBUbZX9DxUapV2Ktnc2pm6ltUWse3vYcnPBPYVZuWcm8L+dRWVVJGml48UYHoUkXZz9+trM9uj2JJDLIiBs1LceHCEVjRC5c0bhRLbVUUUUGGUSIYGHhw0c66WxqvonCwwuNxbFjg1Ep4Iwpymxb05bZvtk8zuPcxE3MzX0SuJL/ba8CUo1Y1WDuNVZc/DhdCezrRiIRvBHtyqnsX2jMRkkcbtNEk5aYFi5+IB2SapNIjaRGRUYExocPC4tiiimhJG7eTZhwNNvNi5daaimjjEoqo8IDRuzChHHhotpubFZNdXTkdK1dCBN0B82/fh/GipGYjcRdpH9bgGj7HrfHzR88f2Bh0kLyM7MBKCqt5Y7QHUYEY+cElRNfBOojmijgxh03j0dR9gdUbJTEIw/bHCAPynLK2OraSogQNdSwmc2UUEIllVRQQYgQFVTgtv+YS7iIECGJJAIEqKQSC4saaqJzcMBYPJVUUkVV9ONrqY0e48FDMcUkuZIIe8NOCnZsRwQRnGqc/mYxTUZ7Rnryhf+/4IpATSb/F7iXgYGB/M/zPyemlIzTskcam8akSSfVqtgo+xcqNsrexQ2RpAjlSeVsYhPFFEfdXSFCUQvHjZsAgWhmmxs3FVSwnvWECUdFCIzlImOmAwSosP94Y1oQBAniwxcVoggRM7VT+rjJsDQRBGkW6sHp9BzCxGfKIYVkspLNGtoGe/CF9QWHlB/Ck2VPYgUtI1ByPcw5pJprWJ74RAdF2R9QsVEaDLFMSu0/W9jCRjZSTTVhwlRRxTrWUUIJAQKECBEhQjnlJNl/xFopp5xqqqMxnVpqqaQSHz48eLCw2MSm6GdXu6tNrUsSphuzzPOR0QGSHi1utmr7q8yw8UGGXfMzs/YjLvBcQDXVXFVzFSdVn8RP1T85XaJjB9P5zDUsl1Z1KvsXKjZKoyBChFpqqaaaLWxhE5sopzwaqwkSJJVU0kiLutJctnmw3f5TQglu3FGLRsRM6oLE/ebFi8tymZ5ubkzHa8lAkw7PYtXs2A8thWjiQLLtCfN7Mnkh+QVe97xODjm8E3mHXqW9mFo11Uk+kA7SSeByuUiKqBtN2b9QsVEaJREiVFPNdrZTTDFb2cpa1rKRjVRQQRllbGFLXEGpuN4iREghhRpq2GL/EREKEyZIEDduwslhIzTJmIJSMO6u2NEAsZ0KpFWO3YYm2T6uxrZ6zvSfyZLsJQxNGspWtnJq1alctvUyysPlzuiFGrCSnA4LirK/oGKjNAnChAkRoooqiimmlFLKKKOUUjaxia1sJUiQAAGKKWYzm6PdDJJJjvZv8+Chmmo2J20m5AuZBAAvxt2Vab/KcYo7JQXag3GllROd9eOx//eEasz3BKBtRVtmZ8zmH+n/IJlkJgYnUrixkE8qPolaS5bbitYFKcr+gtbZKE2SiP1HUpmrqaaMMly4olls8l7iO7LNh482rjamlU4mxlKRnm2lOO40SQ4Q15oXx7oBolOTZRqp3SnAHXLzh6Q/MLTFUEaVjGJRaBFHrj+SW0O3cucBd5rxDZa60ZT9C7VslH0KqbORtGqJ04gVVEIJm9jEeu96KltWQkegE9Aa874tUAD0xNQGgRGdFIyoxL5ie6/FZp+lm+Pzw/l82vJTbsq5CQuL/9v8fxzx7RGsDq2OqyFSlP0BFRtl/0RayiRhxCQd879BXGkeTE+3ThgByrW3+4ifXQNY0tXaS3zH52xIdidzX/Z9zO8yn46+jiysWMiI9SNY0npJgm9QURoXKjaKIsLjxtTC2B1oot2qpaO0hZOp5oOIbdkkSePNAE5SgQunG3UKHM3RfHPIN1zQ/AICVoAPu3wI57HzIXGKsg+iYqMo0gvNjyM0bhxXWRXRAWzkYOpyUp2hou4UjNWTjbF8anHGFcj1syCrOosXCl7gsZaPkRxKhq7AlUD3hN+hojQ4KjaKAk4vNGkrk4pjqWRjhCZ2Ho4LwrbauMGpp0nGCE+6/X0VzuA0e3rnCZkncNY3Z8FKTP3NOcBInMFwirIPomKjKGAEREZWyyTRFJxiTHCGpNljqiN2zMYd64aLYNKmxYWWhRGcGoxFFDTHpQfT4SVgpn1sH2As0D6xt6koDUVCxOadd97h6KOPJj09nczMTPr27cvcuXOj+0tKSrj88stp3rw5aWlpDB06lCVLNGCqNBBSX5mMKb4M4YxFkEyzWpwaG7sTQFRsJGGgxn5Jp2fsY6XrQDlGcGpN1hwW8BnwNLARk4RwCTAY/TVQ2eeo93/STz/9NCeffDKHHnoob731FlOmTOHMM8+kqsp04bUsixEjRjBr1iwef/xx3nzzTUKhEIMHD2bdunX1vRxF+XUkoC9fw0QD+5TbL+lanY1xkfnBsgXFLUkEWfYrDSNU5TixILF67M+I6422BXgG+Mj+/EHAZUCzxNyuojQE9VrUWVRUxLXXXsuDDz7ItddeG91+/PHHR99Pnz6dBQsWMHfuXAYPHgzAgAED6Ny5Mw888ACPPfZYfS5JUX4dEYEajLWRjtNFIAVj8ezYI80NETtm47IwAmWPr47Oycmwt5ViRCgTKDNdn11R08cmDMwBlgOnYtKtxwLvAl/U/y0ryt6mXi2biRMn4na7GTt27M8eM336dNq0aRMVGoCsrCxGjBjBtGnT6nM5irLriJDIS4QjCSM2afb2aqDMfolxIgPWAjguNPk1TjpHi3suGVwR188Xdf4IPAl8g4kPnQicj6ZIK02eehWbjz76iO7du/Pqq69y4IEH4vF46NKlC0888UT0mKVLl9KzZ8865+bn57NmzRoqKirqc0mK8uuIOFgYYdmOcYtl4rjDKuz9aRh3Wg647FiNlYFT9Clp0+UYiyYJIxRJmEQBP1i1O7FsYgkCbwGvY8TtIOAqNEVaadLUq9hs2LCB5cuXc+ONN3LzzTfz7rvvctxxxzFu3DgeffRRAIqLi8nJyalzbm5uLmCSB3bG+PHj6du3L3379mXLli31uWxlf0fiNG5MQF8SBYQknO7PMvPGFVNGE8GxXGQUdBrGdRbGCJXMwakAl88VN/ztZ1kG/AuTIp2KpkgrTZp6jdlEIhHKy8t57rnnOO200wA49thjKSoq4t577+Waa675zdcePXo0o0ePBqBv3771sl5FicODcY/ZosA2nA4CFkaIaoimMksSWljSpD04HaRjBUpSqm1Rs6zdGC9QjkmR7gcch0mR7oSxfNb+xvtUlAagXi2bZs1M+sxxxx0Xt33YsGFs2rSJjRs3kpOTs1Prpbi4GGCnVo+iJBTJRAtjREGsk0wckbFn2BDGiEkWJCeb04OpOG40P8b1VgmU2O+z7euXARngCrlwRX7BjbYjP5cifSyaIq00GerVssnPz+fTTz/92f1ut5v8/HzefffdOvuWLVtGhw4dSE/XSKiyl5GYjbSq2YARHWm6WYozciCm27Pf7gwQlEacYrBE7PP89vfVGFFIMe+TvEmkZ6TTIq8FvxS62RnWNIvKfpVUHVIFR4Onu4fMOZl4Suvnv3JKSgrp6em4XLu5MEX5FepVbE499VSeffZZZs+ezRlnnBHdPmvWLNq1a0erVq0YOXIkkyZN4v3332fQoEEAlJWV8fbbb3PeeefV53IUZdeQmI0XE5xPt7/WYkTGjxGKEMaNFjL7ku3ncaAEI0gu+xoiVB57WyBmWxCysrMYftxw2g1q95stkxWhFbxU+RLFLYopP6+cU1JP4cjkI/dYJDweDwUFBfj9/l8/WFF2g3oVmxNOOIHBgwczZswYtm7dygEHHMCUKVN49913mTRpEgAjR45kwIABjBo1igcffJCcnBzuvfdeLMviT3/6U30uR1F2jSQc91gpTprxFpyGnNLtWY5PgvRU822FB5Oh5sLpDB3ExH08mESBZPvaOZDtyubI/kcy8OCBe+QGuz1wO9f/93pe+vYlplRNoaxVGeNPHE+r9Fa//aIYD0RSkg53U+qXehUbl8vF1KlTueWWW7jrrrsoKSmhe/fuTJ48OWq1uN1uZsyYwQ033MBVV11FIBBgwIABzJs3j/bttTGU0gCIG03a1ATsVw5OQkDAPlYsFiDbFqXSSuKz18Sd5scIlYyY9gC14PK48CZ5zb49eKbn+fJ48fQXGdl9JGNmjGH2qtn0eaYPE0ZM4NSDT/3tF1aUBFDv4cXMzEyeeOIJNm3aRE1NDYsXL67jHsvNzWXixIkUFxdTVVXFe++9R0FBQX0vRVF2DXF/BTBWTQ3x3QJcGMtEUqODQDVk2zGbkhJM1liZ/bWauBTpuDEFkmIdgPoa1nlm/pksuXIJxx1wHNuqt3Ha66dx6bRLKQ+W188HKEo9oLksiiLWhRcjFMn2qwIjCj6MxZOKIxi1kJNmTisO2PsycNrS+DFiU2Zfx3a5EcBxtUk36XqgbWZbZo2axaPDH8Xv8TNp0SQKnipgwZoF9fchirIHqNgoitTDpODMn/HiZJhZOO40F1Fhad3cnL5hO04yQSXGuqnECJeMnK6xt0kSQi3xrrf6uA2Xm2sOv4YvR39JYatCVpeu5ujnjub2ubcTCofq98MUZTdRsVGU2DqbFIwwVGNEIh0jIuKRkuOqob1trazdZu/z4PRVk/HQln0tsWhsqygqTgmgR14PPrv8M24aeBOWZXHPh/cw4NkBfL/1+8R8oKLsAio2TRyXy9UoayIa45p+liScQL5k/IohUGPvy8a40yowvdMC0N6uP15XjBEUsWgk3iPjpmNn3IjoBO1jE4Qvycd9Q+9j/sXz6ZjVkS83fkmfp/vwxOdP7F4HA0WpJ+o1G03Zu3g8HvLz8zn11FMJBBL0a/IecOihh5KVldXQy/h1XBjBkYw0Nyb+Ukp8r7RajBilm/cd88zpK7eC5QFXrGUjMRlxy4nFJKOjLYxoJZijOx7NN2O/4ZpZ1/DCNy8wbuY4/rP8Pzw78llaZ7RO/AIUxUbFpgnj9/sZMmQIffr0IRKpp9SmeiQtLY3mzZs39DJ2DR9O8D+C+Z/hsd8HMEIhFpCdkdY8DVpmwqYy+LEEOknjzdj5NjI4LYSxZDIwFlAapp1NLQn/X5jlz+L5U55nRNcRjJkxhpkrZtLryV6aIq3sVVRsmjBut5tmzZpFe9Ipe0AKRiTEOqnCCJAPKCa+R1qtc1zP1kZslqyGTj1xREYspbD9qsFYNJJoIL8blGF6ne0FzuhxBke0P4JLpl3Cuyvf5bTXT+OSwkt4dPijZCRn7J1FKPstGrNRFIjrykwqJqYS22omg/gOAjXAdujVwmxatA6ngaf0TxMLR4o+Q8BmTNxnM7AeMz5gL9Imow0zz5/JY8Mfi6ZIFz5dyMdrP967C1H2O1RsFAWMFeLDGQmQRbR4E4/9Xoan+YjGdY442Jz+/iqMy0y6RgcxQiVD1yCurxrbgXXAG5hx0D9i2uOUYiwf6VpQg5MmHSG+4edvxO1y8/vDfx9NkV5VsoqjJh2lKdJKQlE3mrJXcblcpKamkpOTg8/XcFPAsrKy4j9frJE0YJP91WN/lYd/Co6IeIEwDGpnTv+4CIKVTnPOqEhI5+hwzHlBjFj5MWL2PkZscjFiJc08xRXntt/LtVwxx3lw5udI+xuZpfMrSIr0XfPu4v4F93PPh/cwa8UsXjrtJbo317GgSv2iYqPsVXw+H0ceeSQpKSnU1NT8+gkJIjs7m/z8fCdF24N5gAdwijutmG2pGGGoso+tMdtbZEF+K1j6E3y8HAYfgLFeRDCkU7TU3YARnthebDJGWsRNri/WlrS4ie2lVhvzfRhneqfLfp+MM/jNh1OoKi14bHxJPu4dei8nHHQCF7x1QTRF+sHjHuSqw65qWinsSqNGxUbZq/h8Pg4//HAOPfTQBl2Hy+XC44n55y+dAbbhCIzUyMiDPoSJ3YRwOjrXwoiuRmxeWwqDD8QIhlgy2MeLcEnCgFyz1rkO1fZXuw1OtOtAmr0WuU4SJv06ZJ8j1xFRKY9ZnyQ9iBWUbN+nH6dRqBuO6ngUi69czDUzr+H5b55n3MxxzFg+g4kjJ2qKtFIvuKwmWOHVt29fFi5c2NDLUPY1tgM/YERCBqJtxhEasU6kbU0EqIYlm6H3vZCbAhvvBJ8UbbpwBELqbAIY8ajFyVoTqyQV01fNh1OPI8diHyvus3Ic60UsGykeTccRMHHbuXCsqAiOlePF6euWYr5/4/s3GDNjDMXVxTRLacb4EeM57eDT9vSnq+wH/NKzWRMEFEVIwamvkeLONMyDWqr9pQOAZKolQa9W0LMlFFfDlK8xYgSOuywVxwqRFGvJcpPkA6ESkw4tqdGlxNf5VAJbcayZGvv8LTiCIv3ZAphaHonriBswSLQLAlX29dYCy4EVcEb2GSwZtYRhnYexrXobp79+unaRVvYYFRtFETyYh7UE2SUTzYdjLYjYVOBYOxVw7RHmEvfMhYgPJ2gvFkZVzLXlvTT4lA4GksUmYwnKcKwVqfeRZLFa+5gt9v40e73Sh63SvmaKfZ0SnBY5bowABmKOL8HJnvsJ2pS0YWbfmTx22GP4k7SLtLLnqNgoiuDG9ECrJX6cQBCnDifD3ifBfNsVdcEA6JAN322Fl5bixHrCOOLiI2oNyYho3DixlSBOAkA5RliSMFaOfC/CIxaQHyctO4iJOXljjqnGSeH22sdvxxGfCpwsPBG2sNnvrnbz+1a/58sjv+SQ7EOiXaRvm30bNaGGS+5QmiYqNooSSxZGTCTgLi4wySqTrgCS3WXHY3zJ8Oeh5hLXTrfHDkhQX+pvJCstBeehLhllsRaNfJZsBydGI/ukZicJp89abJYbGCGR88QFJ1NIY8Wnwt5XhWM9+Z3r98jpwaf9P+WWrrdgWRZ/+/RvDHhyAN9/970zKE5RfgUVG0WJJRkndbgWJ/NLkgRCmIe1WC1gBCIIF/WF33WFkmo4702olkwwCfgHcNxrMqRNijSlHxv2cdKBQFx28nlJGAGJTaOO4GSfeXBiM7FNQd0YQaq21+DCEb9Ke580DA3gtNjZaD7Ph4+/dfwb7x/1Ph1TO/JVyVcc8sYhPDH7Cawiy7jzqtnjglNl30XFRlFicQN2N+doEScYwZAJnGJNyDiBoHm53PDMmdAqHd7/EU57BaqlMaeMKhARk3oY7GuIVSOzcMSCkp5sInYiWlK4GbA/Xywa1w7bwJnPI5+Ffb6Ms5YmpCJMlZgsPJnvI+vxwFHuo1jcfzEXtbmIQCTAuG/GccLsE9i4ciMUYV6lOFl4imKjYqMoO5KDU7kvNTPi5nJjHs5pmAdxJsbVlma+tsmB90abjtCzfoC+T8Oi9TgdA6QdjrTGEetDhEfSnMWSqY05TgauyXuxclw4iQiSUi0Peg/xoxJiBUtcdW77VRlzPVfM9hAmFmTHjTIjmTx36HNM6TOFXG8us7bMotfcXry18i1jYa0CVmB6v1WgbjYFULFRlLp4ALvBJhYmKSCJ6GiBqItLqvHFvYV536MVzLsMujWDZVug73i4YCos2YQjEjK+wL3D+ZEd3ov4xE75lKSBCE6BqIiCzM8RkZI1x5ZvV+LEZSTOH8G40lz2+eDUBUnGmsR47ILVM3LOYEmvJQzLGca20DZO+/I0Lv38Uso95eYzyzAp1UUYsapBrZ39GBUbRdkZeRiLRcRACh+lC0AQJ4YTxHmo2w/Unu3hq2vgajsl+qXF0PsJ6P4vuGEOTFkCP2yHsNTseIl3p7livhfETSZrkrRpsRxiuxOAY8F4Yo6xC1GjveBEwKQNj4iBuNkCOI1HYwVsq/n8NlltmNVjFo/3eBy/28+kdZMomFXAR5s+MgIjWXNFGGtnDcZCUmtnv0M7CCjKz/EjsAHnt3uxJOQ39ArMQ1kC+BIvsZt0Sp3O6g3w0Afw8rdQusNA1SQXtMqAtlnQLAWyUyArBTLSIcNlvmYmQ2Y2ZEYgNweaZ0OzNEj3gSuCEUIvxjKRFGtx1cV2D/DgJBek2wuQ9GuxliQ5ospefzPiBY2Y97EWXxi+C37H+d+dz9eVX+PGzc1dbuauA+7Cl+VzPksy8VIwjUfTcCwppcnzS89mFRtF+TlqgG9xCiG34lg1HhyXlYiNBNfFjSXNNe1mmSE3fLwS3l0K32yDbzbCuj0YDZ3ihXY50DYX2jeDAzPhoI5wUBvolmdEKip8koEm65P+a2UYgfHjWFLikpORChIPKsOkhksBqj/m5xAEcqDGVcPdK+/mvrX3YWHRJ6MPk7tOpnted8cyysRJOpBZQdLxWvt+NmlUbBTlt7IV4/4Rt5mFcS9FMA9uedjK/yJ5mEu8JRXHdQVO8N4O1geD8FMQ1pdASS2UlkKpBeVBqKiG8looC0BZDWwvh+IgbK0wr+pfGT3TqTn07gC928Jh3eHwjmaMdbSIM4xJHsjGybCTa4p1JK7ECnvt2cRnzYFjFYmFFYYPN33IBasv4Mfgj6S4U3iw24NcdeBVuGpd5t6TcdK/sT87237JZypNDhUbRfmtRIDVOBM2wYmDbMc8FKtxCj6rMA9QCycOEraPlXb/Ik4iSjJqQCyPLJyHvqRIi5ssm2hcpqwC1pfCugCs2QIr1sHyUli+Cf63AYIiBjF0ag79u8DRveGYLtA9B1zZOIJRgXGxiXWTgpPBFsFYIW6cBIDmOG426SxdZX4eZellXLPqGp7/6XkAhucNZ2K3ibSubW0+Q1xw4tKLFazmOFaV0mRQsVGUPaEG+A6nAl+mb4pbKDboHmvllOEMO5MHNxjRENeVHJ+GeYBH7OMiMeeJy6saZ8SBdHnG3iYtaXLMptrt8EMJLN4IX6+Cz4tg4Sqo2CFm1CITBveC4wtheD60TsGIHfbnxHaPlhELYtVZ9rGSnSdp2bGuu2R4c9ObjP5+NMXhYpp5mjG+63hOa3WauS/5OcrIBOnzVoMRnmz7MzSu0yRQsVGUPaUc+B7zQE/CCEnI3i5JAl6cLszyXjoIVBE/1lnqW2L7o7lwCj6lu0AQ87CVan9pnyMD3qTDQRXmQZ1hX19cVBJf8UE4CMvWwcdrYP4ymP8t/LRDzKigA/yuL5x8GPTrAG5ZiwhfOkZoxJUmbrmg/bNoRnwmndesZUP1Bi7dcCmzS2cDcHHLi3m016NkWpnmetLSJ4wzOqEGp4g2GyOkkkWnNEpUbBSlPigGVmIejtIRQDLSqnCEQlxpMhBNZuDIrJnYTDZp/S9xFEk2SMPpMJ0Sc21wBGy7fT1fzPXE7SWtckTYpPWNCFIIrEr4XzG89wPM/BLmfQtVMf01W2XByL5w6gAY0hu84vqT4H4IIzZhHEsn2z45NlnCbtdjuS2eKHmCG1fcSCASoFNyJ17s/iJH5h5prhErXBK3qbbvUXrVZdsv/y78fSl7HRUbRakvtmESBuQBG1voKa40aWMDRgRi59ZInEKGqLkxVpIEzSXOI64oqcOROFA15qEMJrifa78XC0nEQAQm1i0l7jCxioIY4bFdZYGt8OFPMONLmPoZrNnq3HZuOpx6GJx9BAwuBI90PogVyDCOC04sneb29+Ju9MF3xd9xftH5fF1tp0h3vJm72t2FL9Xn1AaJ+Mq5mTgC78EIUB5Oqx2lUaBioyj1SQnGwpHW/tL5WKwb+Y1cOidL7ENm4EisQkRKXG7gdIe2MA/UgH3NTJyi0cyY60pFv8RW5Brg9FATN1usuFTiWBPgDIezH/BWABatgKnfwhufwLK1zu3nZcK5A+GCY+HQA8El9yfn2zN+cMdcH5w+bD6oidRw97q7uW+jnSKd0oeXDniJg5sdHG81ue17ts+jGmP1iAjnYiydFJRGgIqNotQ3VZgstW04ghM7cE16j0mGmRsjAmLdSNGnzMaR2E9qzPEpOC42P46YSIcBSUjw2cdKtlwGTlpzDk5MSVrvQLw1Jd/7cXq0ifvP3r90Fbz2Mbz2KfywwfkxdG8DFxwDFx0NbVvhuPRkjbHFo7GWDkAIPqr5iAv+dwFFNUX4XX4ePOhBrm57tUmRlvhMEMf9J50MpFZHrL40TIshrdVpUFRsFCURhDAdBn7CcVPF1t+I8EjMRlxpVThpvZKx5seJ0YhFJG1ypCWOxEfKiWadRetk3DiWgwxUq8FJGJB07dhx0rEJBLGzdeQ+RNAkY8wFVhJ8tQpenAuvfAyb7QQDtwuGHwqXHQsnFYDPG7MWKXBNIt7SsccilCWV8Yc1f+C5Lc8BcHzO8UzsOJE2rjbxXQqk24CM7JZxCHIfEUyCQg4a02kgVGwUJVFIsH8tpgBUss0khlKFk50lcRoJnktcJXZomohNDU4atNS5+HBaxbhjzpXgv6RDSxdoiZNEcARI3G0iblIHJA9rsRykqNODI0wSM7H31wbg3cXw3DyY+jmE7LXlZcKlg2HMSdC5HUZoJLkg1V7/jtlrwJub32T0mtEU1xaTm5TL+I7jOb3j6c7PT34GMjwuHcflJqIqP7MMjBWlls5eRcVGURJNBGOlbMBkiUm7f0lvlmPEPSW/rSfhWEXp9rEBnIB4FU4hZwUmAG/Zn5WBeYCXYB6wqRhLx4XjZtpuv/fZ58TGacrtrxk4SQtS8yM94CB+KFvsw13SvUOwNQgvvQ/Pvgvf2vEdlwuOPwSuHAIn9oGkNBzBFItuB0tnAxu4dO2lzN5up0i3uphHuzxKZijT+bmIYKbgpIhLpl/Q/gwRz+b2zy8ZZS+gYqMoe4sIRiC2YERAAvGyT0Y9WzHbpDVLFU4Ps2qczgGVOA0yZcyzD6f3mqRPg2OBiMUTwXGFiWUj9SylmIe3WCvbMUIjVpDU8WTgjBsApyeaTAettY+pBisMn/wPnnoPXl8AQbsTQqc8GDcSLj0ecqTjgB/H3SWWTi5YLosnNj3BjT/eSMAK0MnXiRc7v8iR6Uc66dHi2pO1BnDEV6wesYhSMILTDCcmpSQEFRtFaQgkLboE85u8ZKNJoF9ESERBEgggflKnvI91I0l/Nck4i3WlBezPycJplZOCeTBLooDMwIkVwNjWMTX2miXBoAYnjTsVJ/Ub+9rSTkfWlwFbS+C5WfDkf2HVJnNoajJccBRcewJ0PwgnxVu6UcdYOsu2LWPUulHRFOmbWt3E3Qfdjc/jM/dYiSOWch87diUQ159Yk80wwqNtcBKCio2iNDTyAAxhHoCVMe8l20r6pMWOaI4dkCazZzwx34u7SOISsenQUlwqfc7EpSc9ziIY68aDERCxXGI7HYjlUY3TDkfiS2JlSbNRKeyUDgB2vVG4FmYug8dmwH+/dn4kJ/aD60+FwQfaoxJ2tHTKoCanhj9v+DP3bbiPCBH6pPXhpU4vcbD/YHOc9FiTc1KJjumOSygQEZWU8uY4HayVekPFRlEaM9ZOXmLVgDMUTYRHOlBLnCUc872ImghSTcxXSUWuxHGpiZCJRVKKESI/zohoETNpJYP9uVU44iNxGCm4dNnfg5PSHYbv/gePzoTnP4CAHRMq7AQ3joCzhoDHz05jOh+VfcQFyy+gKGRSpB/o+ADjcsfhSneZ48TSEVcaMfcrPxNxB8rPJhmTLi3Ftcoeo2KjKPsqseOhxW1XidM01MIRHAn6xw5Xc+MkFYgVIDN4quyXPMDLY46RzxbxCWHcaOJ2i+AkIIj1UU00425LGJ6aCf+c7qRPd2oJfzwNLj0KUkUMpFizBspKyvhD+R94butzAAzLHMakgyaZFGnp2BA7jK0GJ5tPMgEl/VzqjVwYt1oLjCBq5toeoWKjKPsbYh2Jm64MIxxSswOOCHlxsrgkcUAyuoI4SQtlOM1AJbtNzhEBEjdYLU4CggTly2POt3vHBUrgpQ/hwRlOsWjzDBPTGXcqZGXjWDpuIAv+Xfxvrlh1hZMi3Wk8p+ed7szfkaLaSozASEubWEtHikSlaapk8Gm69B6hYqMoivntX7LKtuNYP+JKk07RsZle1TgpzuBkkYEjPtKJoALzYJciUnFdYW8rJd7NFiAqfOE0mPop3P8KfLHSbMtKg3Ej4NrjobmMu7brdDZUbOCSlZfwbvW7AFycdzGPtn2UzJRMp15J0rhl7RLTkXiWzM6RVG5xEzbHJBLoWIPd5peezeqpVJT9BTdGKLKBjkA3oLv9Ph2nY3Ns1wNphZOGk8UlfdnE1ZUWc47UF4n1IkhXgjQcq0FiUamQ5IHT+8Nn98Cc282Mne2VcM+r0HEs3PASbKpwzmsTbsOsDrN4vOPj+F1+ntvyHAVLC/ho00eOtRZbDFqNsawqcERFsvfE1SbZa9swve+KcTIGlT2mXsVmwYIFDBs2jBYtWpCRkUGfPn2YOHFi3DGBQIAbb7yR1q1bk5KSwoABA/jggw/qcxmKouwKErhvAXQFugAHYLK0MnBiLRJYF1ebTNRsjvPbvzzUwUkwEMTFlo7zxBHrR6wLgFqjD0MKYO4DsODvcMIhUBWEh2dA5yvghvGwyXa3uXwuxrUex1e9v6JPSh+KQkUcvepobll3CzWRmvisOUkMSIp5iZVXjRGWrfa2Env7amAVxoJrcv6fxke9ic3ixYsZOnQooVCICRMm8O9//5vDDjuMyy67jCeffDJ63GWXXcaECRP4y1/+wowZM2jdujXHH388ixYtqq+lKIqyu0izz2YYwekCtMdJD87CWANZGJGJHQInLXma2ddw48RIRKDEdSaEMCKzo/VjEQ3UH9EV/nMzLLwXRvaD6iA8/G/ofDXc8CJssQtZD/YczCcdP+HWZrfiwsV9G+6j/7f9WVayzGkLJLU2EftzKom3dEREpbu0pH2XYVoR/Uj8FFZlt6m3mM2tt97KQw89RHFxMenp6dHtAwYMAOCTTz7hm2++obCwkIkTJ3LJJZcAUFtbS35+Pt26dWP69Om79Fkas1GUvYTEecowcZ7tOK12wCkUlYf5duJHWrtwMsokyC+914I4YhPBWBexCQXVGAvDjtV8tQL+8jxMs//rp/nhDyfDDcMgx06RXsACLlhxAauDq02KdLsHGNdmHC6Xy7GwRCSlu4B8nlhaYZzWOFLLJN0cWmLGGmhR6E7ZKzGbmpoavF4vKSnxgyWysrKIRIx9PX36dLxeL2effXZ0v8fj4ZxzzmH27NkEg0EURWlESJynBXAg0MN+L92YpYi0CqdaX1xvuThFk1KgKrGRFBxLJzYhIbadTKyguaBPJ5h6I3x5L5zYFyoD8LfXoPPv4a9ToCICAzMGsqjbIi7OupiAFeCatdfwu+9/x4bABmemj6xR2t6Iq60cI3DSjUCmpLpwBHY9Jp6zDY3n7Cb1JjYXX3wxANdccw0bNmygtLSUCRMm8N5773HdddcBsHTpUjp37kxqamrcufn5+dTU1LBixYr6Wo6iKPWNG/Obf1uM8ByIcav5MMIimVzpOPEbic1EMJaCpCbLA1yakMZaGOBYVLEdAuw2PX26woy/wscPw9BesL0K7nwdDhgNj/4bkqsymdR+Em+0e4NmnmbM3j6bXkt68WbJm/FpzdLcVNruSN2RxHQqMAJVDWzGiFIFRpR+xMR05FzlV6k3senZsyfz589n2rRptG3blpycHK6++mqeeuopzjnnHACKi4vJycmpc25ubm50/88xfvx4+vbtS9++fdmyZUt9LVtRlN+CFyM0ne1XDs7gNOlV5sKITwpGaCQTTawJsSBiXWfgWEDSc03YwdIZ0AX+ezvMuxP6d4Mt2+Ha8dD1WnjuPTgl93SW9FrC8PThFIeLOeOnM7j4x4spqy1zhEMy0pJiPkPSvStwOi/I/lScDg0lmASCtTgdspWfpd7EZvny5Zx++unk5+fz9ttvM2fOHMaOHcvYsWOZPHnyHl9/9OjRLFy4kIULF5KXl1cPK1YUZY+JtXa6YpIL0nG6M8skzSqcep4gRkhycQpG5SUPbZlVI0jh6I690NxwTC/4+BGYdgf0bA9rtsIlT8Ih18PXC1vzn7bv8M82/8Tv8vP81ucpWFzAh1s+dBIHwOm0IM1SZdCcJDvICIkKTFyqFKfYdDOwHONaE4tOqUO9ic2tt96K1+tlxowZnHTSSQwZMoTHHnuMs846iz/84Q9EIhFycnIoKSmpc65YNGLhKIrSBPFiBKQzJpOtBc5ETRldkIdjyUjWV2wHAp99bGyDTGlgKvU8EN+oNBVcbhhZCIsehOevgg55sKQITvwrDPk/F/22XM3X3b+mT2ofimqKGLRmELdsuYUaV40zFkLm9YibL7Y+R1r3YN9P7GRTSShYZb/EYlLiqDexWbJkCQUFBXi98WW3/fr1Y9u2bWzevJn8/HxWr15NVVVV3DHLli3D5/PRpUuX+lqOoigNhYwKaAcchDO8TAo+JV06tmt1GkaopBhTJpGG7GNiLRpwBEqEye4Nl+SBCwfD/56Bhy6CnDSYvxT63QZ/fbI7r6R8wq15dor0tvvov6w/3xV/Fy8e2OuswBnhIN2zZV8Vxo0mX2swwlQC/IBJJBABVYB6FJtWrVqxaNEiamrinZefffYZfr+f3NxcRowYQSgUYsqUKdH9tbW1vPbaawwbNozkZB2npyj7DFK70w5Tt9MRZ6Jopr2vJY7FIrUuYsnEdigQdxbs3NKJ7ZadCn4v/PEEWPUU/GkkJHvh5fnQ6zofof/ew4y8j+js68zXVV/TZ2UfHi99HMuynMF1ldTtRCA95mQgngymk+F0MsjNAtZhXGsyKlypP7EZN24cq1evZsSIEUybNo13332XcePG8corr3DllVfi8/k45JBDOPvss7n22mt55plneO+99zjnnHNYvXo1f/7zn+trKYqiNDZ8mGSBA3AERkYkeHAe4JIRtmPqtBRkSjwlg7quNltooinZQHYq3D8K/vc0nH8k1NTCg1PhwpsHcPWqpVyUcZlJkd5wDcPXDmdDxYb4gWtSFxRr5UjNjXSTlmw1SZ0ux2lougqTKi2TVPdj6rUR58yZM7n//vtZunQpgUCAAw88kNGjRzNmzBiSksy/jOrqam677TZefvllSktLKSgo4P777+eYY47Z5c/Rok5FaeLIA3wb5uEuLieZ+CkTPKWI1MI8sCVFOoQzLls6AvhxikRFvKQZpx1XWfgjXD8RPvzeHHZwOzj9rAU8mXMy28LbTBfpduM5Pet0p8uBuPKkU7SsJYix0HbcJ409ZYyDjGJohYlj7cMFodr1WVGUxonMvSnGWAIS9JcO1FWYh7kfp5O0x/4qA9Y8OK4qsXakk4FktZU7+6xaeOsLuPFFZ1z1kIIAwePG8VH6swBclH0Rj+U8RmZyppOWLfNxAjiWVpa9ZlmnTEWVnm/S+Vqaf6YAHXCy9fYxtOuzoiiNE3tGDR1wkglS7W0pmOw1CdzHzs4JYx7WqdSdtCkxnXScmh8hBC4/nHYYLHsMHrwQMlPgvW/8fPrIBAZ/9DXJgZY8X/o8BWsL+DD0oTkvghEZcfuJtSVxHBmp7cPpKA3xI8Cr7GO/x7jX9rPaHBUbRVEaHsk464xJKBA3lF1LE63UFytHOlOLS0omkUo/ttjx0NKRWiwOm2Qv3HAyLH8IrhgC4YiLeXMKSfvXOjp882eKan5k0MpB3LLxFmrKa+ITBmQqqoiPJAnIpNRSjHUmdUXyVWbpbAQWYxII9pO2Nyo2iqI0HmRiZqylk2G/0jBJBlLR78OJ90g2mlg6O3aYjp0wWktcanWLXBh/JXz5IBx1MBSXeVjz1p20fm4NrO3PfVvuo/+G/nzn+s5cT1x4IjJSjFpOvOUTO+KgDCM+Mq6gCiNKyzCp0vHVIPskKjaKojQ+pJlnJ6CN/V5iNuBYDWDcbVk4UzmlG4EE60XAfDHbJMtM6mfccMgB8P6d8PIV0DYXNq5ph/Xsx6RPm8LXJevos6oPj29+HKvCMudIrKjSXo9kqYVxRhjI58eO3xZ3XA1GZH4CFgEb2KetHBUbRVEaLxLT6YRph5OOE8/JxqRHu3FSpmX6p9TrSF1P7NA2K2Zf7BPQAlcVnDsEvn8cbjkVfB6o+PoMfP8sIvDp5Vyz/jqGbxnOhsgGZ5qp1NvIaO3Yxp4y00fGcAdx+q3J5FFp+LkM+DZm+z6Gio2iKI0fadgZW6cjhZchzANcUpCTcRp/igiJyMT2XtvRpVZDtI1Oegr87WxY8mcY3htqAqkw83GSJnzFuz+U0WtDL97Y8oa5llg41TjpzuC4ysI4saUgTj1OpX1MAGf8wQbgU0xH6X2sA4GKjaIoTYcknGminTDJAjk4fdcycFKMRWDACEkYp0+bpEhLppoMdIvtPh2Erq3hnTvgrRugYzMI/9Qbnv2E4rce4MzVY7loy0WU1ZQ51orU5QRxLB4ZZVBFvLBJQWgtTkJBOUaEFgOfY1LC9xFUbBRFaXp4cToSNMPJWEvCcWPZ/dKiY6lFiAR56Fs4vddiW+LUAGngSoJTCmDZ/XDrSeBNsuDry+Cf/+OF+V56/1jIh5EPnc4F5ThuNbFY5ElbjeN6s+y1iujIaAOxiNYDH2Dca/vAXEkVG0VRmi4+jFutq/1VkgVS7O9TMUKSjDNjB5yhbX4coZHaHRncJvN0bNFKTYZ7zoQl97gYmg9UN4O3n+HHZ1/k6MXjuGXzLdRU1zjD12LHKoi1IwJXFfNVREYKW9cBmzCJAxuAj4F3MenSTRgVG0VRmjaxDT87YiwYERNpLZOEU+fitY+XZqCCFXNOMo4VFI756oNuLeHdW+CVq6BlhgVrB8LTX3LfG9kctvEYloWXmc8SYRNLRkYZhO21iNtsO0ZoNuPEccL2/oC9/wfgdeBDmux0UBUbRVH2DVyYeEwnnMy1NJzMNSkEzcHpIu3BKQaNtXRiu0yLRSI91pLA5YJzesP3f3Vx9XHgIgkW3MTiR1+m8JNbeazqMSKRSHz/tgBOMoNkqG3HiIsIYCpG5Lz2Vz/O+IU04CvgDWBFvf7k9goqNoqi7FvIPJ0DgNaYh7bUwVThWDASr7EHsEVrcaRGJzamI12mZR5PjTkvuzn88wL49E8uerULw/ZOhF6eyh+ebcHg1eeyIbzB6V4Qts+rwcy9kf5vfuo255QMtghOHzYvxjXoxbjWPqdJZayp2CiKsm/iwWSodcUUhvowgpKMsRRSMVaOFINKHzURB6nF8ePEdGILRVOIdg/o1xm++lMSD50Kyb5aWHoOHzz6FAd9+ABTgm840zwlPiOuup11gJansrTFkZiPfC+tfYqAL2gyyQMqNoqi7Nt4MWJzAMaVJg/sCE5SQADHkhF3XAaOpQNOoaiIhFzDtnI8Xvjj8fD9nR6O7R6AQA5Vb/+Ds55szqlr/kRZRVn8TByL+GLTn3sax/blj+0w4MeMaFhMk7BwVGwURdn3kQ7RHTGWThpO0WcORkCy7FcqTp0OxLvB0ojPbJOOBclEe7Z1yoQ5l/l5+TyL9LQq+PEYpv7rL3T8/GnmeT+Kt2Zi631ihSeW2HXIvdTaX32Y5IKVOzmvkaFioyjK/oO0vzkAY+3IbBwZyOYl3soRKygFZzYOOO42SZH24MR/guDywrl9XRTdkMophdsh7Kd03o0c+0I6l2x8nJpwjdPHLXZtsHMrR4pBJTVbjrMTFtgIbNmjn0zCUbFRFGX/w4uZmtkdUxwqHaHlazomvpOBEScZjCZWTg1GYFKIt3Sk67PdDLRZMrx1QhbvnFxLVnYJbCrkuWevpP38yXwZWWbWIhZJ7Jjr2CezCJKFk6QgRGKOX0+jnpGjYqMoyv5LMiZVuhNGYCIYV5nEZuThLVaObM/ACI0g+9yYWIrEg+zx1b/r6mH9mBzOOnwDWG42f3wJhz3p4drVU4iEIz9v5bDDdqgrOmLxVGNSqRspKjaKouzfyAiCrpiYTjLOxE2xXmIHtkmqsrjNQjiD2cSqAWecgF0zk+aD14a2Yc5F1WTnrcfa1pVHnz2dzjOnsiJstweQolNJv5YWOrHdD4jZL4jgbCJ+MmkjQsVGURQFzIO9JdAFkzINxsqxMIIj8ZsA0dhMNAVamntK0oDU5+w4XycCQw5M46er23La0d+DK8Kaz06j2yPV/HX5fKeehpjPi10fxLvV5L2kZUvBaCNExUZRFCWWVMx46oNwMtYkBVpiOjKsLTaeIzU4MqogNpYjbjV7hk6yB94c2p1ZY0pIb7maSMkB3Pn00fSYPpufQmXOWrzO22iqtSQpuHbyVXqwNUJUbBRFUXbEhUmJPggzojoJx00mHZ1juwzE1uBIfU5sBwKIH9Zmd30+/sA8tl7bid8N/gJcEb775Hja37uVf32/yHyWJCWIey62o0Cs1SNrlk7TjRAVG0VRlJ/Dh0mRzsd0HZAYjnz1YkQoG2cgG8R3IZCWNPK0lcC+3YEg2evinWGH8eY16/C3WEnttgO4+oleDPj3fMprapw4jhBr4eyYJu2m0WakqdgoiqL8GmmYWM6BOIkDPsyDP2YMQbTvWgRniFtsv7UQjlDJ09ee7nnaQZ3YcnMHjhj0AQCfzjuGl5Z/7zQMFYGR82K/SuPQHRMHGhE768yjKIqi7EgSpjYnC1iLGQkARmwkWUAKRL0Yd5a4viR248exUqyY4+1xBukuLwvOOJqnD13CtB+2cWXXY5webNKrTawZsXCsmGvaXQwaIyo2iqIou0MyxsLJBVZhalvE8qjFaWEjlo5ks0m2moiMZLLJU1isHj+M6dGLMQdhhEjGIHhwOh5Idlwy8SnS0uCzEaJioyiKsru4MGKTjrFyfrK3u3E6SNsdoeMaf0oNTGyGm4iPzLCRrDIPjpjIGAT5bG/MOZI0IFlxclwjQ8VGURTlt+LD9FlrhhlothUnK0zGQ1fYXyXOI5llEsMBx722Y1wHnKFuMmogjfgUaHGhieUjSQqNDBUbRVGUPcGFyUbrjWmIuZJ4t1YNzkwccbXJeTKVM7YWRzoYgOMqk0ahyTitamRyaErMtVNRsVEURdmn8WHa3WQB/8O41lLsVzVOlwEvjssLnOp/T8wxYYx4+InvSJ2ME7MRYZJzXZimojv2UmskqNgoiqLUJ9nAoZhJmt8BlRixENcaxGeoiWtNrBNxo6XixG98GOEJ4VhJ4LjOwBSTNtJ4DajYKIqi1D8enB5rXwPfY0QnF6ceJraXmoiPiEzsGGrpXCBC443ZLjU4Hkxft0aa9gxa1KkoipI4soCBwJEYoaigbvGlD6eZp7jFpP4m0z5GYjQiJiI0khyQZ+9vxKhloyiKkki8QE9MQehsoJx4C0eQ2IskAcT2W5PWNLHZbNKjLQ8Tq2nkqNgoiqLsDVoAZwKfYOI5MidHmnru2OPMF7PNFXOsJ+Zrnn3dJuCjUrFRFEXZW/iBwRixWYZpaSMZZ2LpxPY5k1odEZgknHhNG0xRaSPNPtsRFRtFUZS9TSegNbAOWI8ZyAZOVpo014xNkU7CWEO59iu2E3QTQMVGURSlIZAea52AMqAUE88JEd+FwI8RmUzikwSaGCo2iqIoDUkSZlBbDsZFJinPEJ8i3cRRsVEURWksSN3MPkgTyGFQFEVRmjoqNoqiKErCUbFRFEVREs4uic26dev4/e9/z4ABA0hNTcXlclFUVFTnuEAgwI033kjr1q1JSUlhwIABfPDBB3WOi0Qi3HvvvXTq1Am/309BQQFvvvnmHt+MoiiK0jjZJbFZsWIFr7/+Ojk5ORx11FE/e9xll13GhAkT+Mtf/sKMGTNo3bo1xx9/PIsWLYo77o477uDuu+9m3LhxzJw5k/79+3PmmWfyzjvv7NHNKIqiKI0UaxcIh8PR9xMmTLAAa/Xq1XHHLFq0yAKsiRMnRreFQiGra9eu1ogRI6LbNm3aZPl8PuvOO++MO//YY4+1evXqtSvLsQ499NBdOk5RFEXZe/zSs3mXLBu3+9cPmz59Ol6vl7PPPju6zePxcM455zB79myCwSAAs2fPpqamhlGjRsWdP2rUKJYsWcLq1at3XSkVRVGUJkG9JQgsXbqUzp07k5oaP70nPz+fmpoaVqxYET0uOTmZLl261DkOYNmyZfW1JEVRFKWRUG9iU1xcTE5OTp3tubm50f3yNTs7G5fL9YvHKYqiKPsOTaZWdfz48YwfPx6ALVu2NPBqFEVRlN2h3iybnJwcSkpK6mwXS0Usl5ycHEpLS7Es6xeP25HRo0ezcOFCFi5cSF5eXn0tW1EURdkL1JvY5Ofns3r1aqqqquK2L1u2DJ/PF43R5OfnEwwGWblyZZ3jAHr06FFfS1IURVEaCfUmNiNGjCAUCjFlypTottraWl577TWGDRtGcnIyAMOHD8fr9TJ58uS481966SV69uxJ586d62tJiqIoSiNhl2M2b7zxBgBffvklADNnziQvL4+8vDwGDRrEIYccwtlnn821115LKBSic+fOPPnkk6xevTpOWFq0aMH111/PvffeS0ZGBn369OG1115j7ty5TJ8+vZ5vT1EURWkU7GqxDmbCQp3XoEGDosdUVVVZ1113ndWyZUsrOTnZ6tevnzVv3rw616qtrbX++te/Wh06dLB8Pp/Vq1cva8qUKfVSOKQoiqI0DL/0bHZZ1g6R+iZA3759WbhwYUMvQ1EURYnhl57N2vVZURRFSTgqNoqiKErCUbFRFEVREo6KjaIoipJwVGwURVGUhKNioyiKoiQcFRtFURQl4ajYKIqiKAlHxUZRFEVJOCo2iqIoSsJRsVEURVESjoqNoiiKknBUbBRFUZSEo2KjKIqiJBwVG0VRFCXhqNgoiqIoCUfFRlEURUk4KjaKoihKwlGxURRFURKOio2iKIqScFRsFEVRlISjYqMoiqIkHBUbRVEUJeGo2CiKoigJR8VGURRFSTgqNoqiKErCUbFRFEVREo6KjaIoipJwVGwURVGUhKNioyiKoiQcFRtFURQl4ajYKIqiKAlHxUZRFEVJOCo2iqIoSsJRsVEURVESjoqNoiiKknBUbBRFUZSEo2KjKIqiJBwVG0VRFCXhqNgoiqIoCUfFRlEURUk4KjaKoihKwlGxURRFURLOLonNunXr+P3vf8+AAQNITU3F5XJRVFQUd8zChQsZPXo03bt3JzU1lQ4dOnD++eezevXqOteLRCLce++9dOrUCb/fT0FBAW+++Wa93JCiKIrS+NglsVmxYgWvv/46OTk5HHXUUTs95tVXX2Xp0qVcc801zJw5k/vuu4+vvvqKvn37snbt2rhj77jjDu6++27GjRvHzJkz6d+/P2eeeSbvvPPOnt+RoiiK0viwdoFwOBx9P2HCBAuwVq9eHXfM5s2b65xXVFRkuVwu64477ohu27Rpk+Xz+aw777wz7thjjz3W6tWr164sxzr00EN36ThFURRl7/FLz+Zdsmzc7l8/LC8vr862jh07kpeXx/r166PbZs+eTU1NDaNGjYo7dtSoUSxZsmSnbjdFURSlaZPQBIHvvvuOzZs3c/DBB0e3LV26lOTkZLp06RJ3bH5+PgDLli1L5JIURVGUBiBhYlNbW8vYsWPJy8vjsssui24vLi4mOzsbl8sVd3xubm50v6IoirJv4UnUhceNG8fHH3/Mf/7zH3Jycvb4euPHj2f8+PEAbNmyZY+vpyiKouw9EmLZ3HzzzYwfP56JEycybNiwuH05OTmUlpZiWVbcdrFoxMLZkdGjR7Nw4UIWLly40/iQoiiK0nipd7G55557uP/++3nssce44IIL6uzPz88nGAyycuXKuO0Sq+nRo0d9L0lRFEVpYOpVbB577DFuv/127rnnHsaNG7fTY4YPH47X62Xy5Mlx21966SV69uxJ586d63NJiqIoSiNgl2M2b7zxBgBffvklADNnziQvL4+8vDwGDRrEq6++yrXXXsvw4cM59thj+fTTT6PnZmZmRi2WFi1acP3113PvvfeSkZFBnz59eO2115g7dy7Tp0+vz3tTFEVRGgm7LDZnnnlm3PdXXXUVAIMGDWL+/PnMmjULy7KYNWsWs2bNijtWjhHuuece0tPTefTRR/npp5/o1q0br7/+OieddNIe3IqiKIrSWHFZO0bqmwB9+/Zl4cKFDb0MRVEUJYZfejZr12dFURQl4ajYKIqiKAlHxUZRFEVJOCo2iqIoSsJRsVEURVESjoqNoiiKknBUbBRFUZSEo2KjKIqiJBwVG0VRFCXhqNgoiqIoCUfFRlEURUk4KjaKoihKwlGxURRFURKOio2iKIqScJrkiIHmzZuTlpZGXl5eQy8lYWzZsmWfvj/Y9+9R769po/e3+xQVFbF169ad7muSYgP7/kybff3+YN+/R72/po3eX/2ibjRFURQl4ajYKIqiKAmnyYrN6NGjG3oJCWVfvz/Y9+9R769po/dXvzTZmI2iKIrSdGiylo2iKIrSdGhSYrN27VrOOOMMsrKyyMzM5LTTTmPNmjUNvazd5o033uD000+nY8eOpKSk0K1bN2655RbKy8vjjispKeHyyy+PpnoPHTqUJUuWNNCq94zhw4fjcrm4/fbb47Y39Xt85513OProo0lPTyczM5O+ffsyd+7c6P6mfH8LFixg2LBhtGjRgoyMDPr06cPEiRPjjgkEAtx44420bt2alJQUBgwYwAcffNBAK/551q1bx+9//3sGDBhAamoqLpeLoqKiOsft6v1EIhHuvfdeOnXqhN/vp6CggDfffHMv3MnO2ZX7W7hwIaNHj6Z79+6kpqbSoUMHzj//fFavXl3negm5P6uJUFlZaXXp0sXKz8+33nrrLWvq1KlWz549rQMOOMCqqKho6OXtFocffrh15plnWi+99JI1f/5865FHHrGysrKsww8/3AqHw5ZlWVYkErEGDhxotW3b1nr55ZetmTNnWkcffbTVrFkza+3atQ18B7vHyy+/bLVq1coCrNtuuy26vanf41NPPWV5PB7r2muvtd59911r1qxZ1n333We9/fbblmU17fv75ptvLL/fbx1zzDHW1KlTrXfffdcaPXq0BVj/+te/osedd955VlZWljV+/Hhrzpw51qmnnmr5/X7r66+/brjF74R58+ZZLVq0sH73u99Zw4YNswBr9erVdY7b1fu59dZbLZ/PZz344IPW3LlzrdGjR1sul8v6z3/+s3duaAd25f7++Mc/WkcccYT1xBNPWPPnz7cmT55sde/e3crNzbXWrFkTd2wi7q/JiM0//vEPy+12W8uXL49uW7VqlZWUlGQ9/PDDDbiy3Wfz5s11tj3//PMWYL333nuWZVnW1KlTLcCaO3du9JjS0lIrJyfH+v3vf7/X1rqnFBcXWy1btrRefvnlOmLTlO9x9erVlt/vtx555JGfPaYp398tt9xieb1eq7y8PG57//79rf79+1uWZVmLFi2yAGvixInR/aFQyOratas1YsSIvbreX0N+ibMsy5owYcJOH8a7ej+bNm2yfD6fdeedd8adf+yxx1q9evVKzA38Crtyfzt77hQVFVkul8u64447otsSdX9Nxo02ffp0+vfvT5cuXaLbOnfuzMCBA5k2bVoDrmz32VnV7mGHHQbA+vXrAXO/bdq0YfDgwdFjsrKyGDFiRJO635tuuomePXty7rnn1tnXlO9x4sSJuN1uxo4d+7PHNOX7q6mpwev1kpKSErc9KyuLSCQCmPvzer2cffbZ0f0ej4dzzjmH2bNnEwwG9+qafwm3+9cfdbt6P7Nnz6ampoZRo0bFnT9q1CiWLFmyU7dUotmV+9vZc6djx47k5eVFnzuQuPtrMmKzdOlSevbsWWd7fn4+y5Yta4AV1S/vv/8+AAcffDDwy/e7Zs0aKioq9ur6fgsfffQRL7zwAk888cRO9zfle/zoo4/o3r07r776KgceeCAej4cuXbrE3WtTvr+LL74YgGuuuYYNGzZQWlrKhAkTeO+997juuusAc3+dO3cmNTU17tz8/HxqampYsWLF3l72HrGr97N06VKSk5PjfvGV44Am9Tz67rvv2Lx5c/S5A4m7vyYjNsXFxeTk5NTZnpubS0lJSQOsqP5Yv349d955J0OHDqVv377AL98v0OjvuaamhjFjxnDDDTfQrVu3nR7TlO9xw4YNLF++nBtvvJGbb76Zd999l+OOO45x48bx6KOPAk37/nr27Mn8+fOZNm0abdu2JScnh6uvvpqnnnqKc845B/j1+ysuLt6ra95TdvV+iouLyc7OxuVy/eJxjZ3a2lrGjh1LXl4el112WXR7ou7P89uXqtQHFRUVnHzyyXg8HiZNmtTQy6k3HnjgAaqrq7ntttsaeikJIRKJUF5eznPPPcdpp50GwLHHHktRURH33nsv11xzTQOvcM9Yvnw5p59+Ovn5+Tz11FOkpKQwbdo0xo4di9/v5/zzz2/oJSp7yLhx4/j444/5z3/+s1ORrW+ajNjk5OTs9DfBn/ttpClQXV3NiBEjWLVqFe+//z7t2rWL7vul+5X9jZU1a9Zwzz338MwzzxAMBuN898FgkNLSUjIyMpr0PTZr1ozly5dz3HHHxW0fNmwYs2bNYuPGjU36/m699Va8Xi8zZszA6/UCMGTIELZt28Yf/vAHzj33XHJycvjxxx/rnCv3J78JNxV29X5ycnIoLS3Fsqy43/6b0n3ffPPNjB8/nueff55hw4bF7UvU/TUZN1p+fj5Lly6ts33ZsmX06NGjAVa0Z4RCIc444wwWLlzIO++8Q69eveL2/9L9dujQgfT09L211N1m1apVBAIBRo0aRU5OTvQF8NBDD5GTk8OSJUua9D2K//rncLvdTfr+lixZQkFBQVRohH79+rFt2zY2b95Mfn4+q1evpqqqKu6YZcuW4fP56vj8Gzu7ej/5+fkEg0FWrlxZ5zig0T+P7rnnHu6//34ee+wxLrjggjr7E3Z/vzmPbS/zyCOPWElJSdbKlSuj21avXm15PB7roYceasCV7T7hcNg688wzLb/fb82ZM2enx7z11lsWYM2fPz+6bfv27VZubq41bty4vbXU30RJSYk1b968Oi/AGjVqlDVv3jyrvLy8Sd/jjBkzLMCaMmVK3PZhw4ZZ7dq1syyraf8dDho0yOrcubMVDAbjtp977rmW3++3gsGg9dVXX1mA9dxzz0X3h0Ihq3v37tZJJ520t5e8y/xcavCu3s+mTZssr9dr3X333XHnDxkyxOrZs2dC174r/Nz9WZZlPfrooxZg3XPPPT97fqLur8mITUVFhXXggQdaPXv2tKZOnWpNmzbN6t27t9W5c+c6tQCNnbFjx0ZrTj755JO4lxT7hcNha8CAAVa7du2sV155xZo1a5Y1aNAgKycnp04BVlOBHepsmvI9RiIRa/DgwVZubq715JNPWrNnz7Yuv/xyC7AmTZpkWVbTvr8pU6ZYgDVs2DBr6tSp1uzZs62rr77aAqzrrrsuetzZZ59tZWdnWxMmTLDmzJljnX766VZycrL15ZdfNuDqd86UKVOsKVOmRP///etf/7KmTJkS98vArt7PTTfdZCUnJ1sPP/ywNW/ePGvs2LGWy+WKFvQ2BL92f6+88orlcrms4cOH13nuLF26NO5aibi/JiM2lmVZP/74o3XaaadZGRkZVnp6unXyySfvVL0bOx07drSAnb7uuuuu6HHbtm2zLrnkEisnJ8dKSUmxjj32WGvRokUNt/A9ZEexsaymfY/bt2+3rrrqKqtFixaW1+u1evXqZU2ePDnumKZ8f++88441aNAgq3nz5lZ6erpVUFBgPfHEE1ZtbW30mKqqKuu6666zWrZsaSUnJ1v9+vWz5s2b13CL/gV+7v/coEGDosfs6v3U1tZaf/3rX60OHTpYPp/P6tWrVx0rd2/za/d30UUX7dLPwLISc3/a9VlRFEVJOE0mQUBRFEVpuqjYKIqiKAlHxUZRFEVJOCo2iqIoSsJRsVEURVESjoqNoiiKknBUbBRFUZSEo2KjKIqiJBwVG0VRFCXh/D+pI9FtL0h0pwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -423,7 +426,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAGQCAYAAAB4X807AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACB4klEQVR4nO2dd3hUZdqH75lk0gsJvRNBQUMTUQEXkSJFBRVEQECxISIWXFHWrrsuWHZtawM/UBQEQQVE2iJgwbagCIKFFnongfRkZs73x3ueORODFMmQ9tzXNVcmp75H4fx4usuyLAtFURRFCSHu0l6AoiiKUvFRsVEURVFCjoqNoiiKEnJUbBRFUZSQo2KjKIqihBwVG0VRFCXklJrYbN++nWuuuYbExEQSEhLo27cv27ZtK63lKIqiKCHEVRp1Njk5ObRq1YrIyEj+8Y9/4HK5ePjhh8nJyWHNmjXExsae7iUpiqIoISS8NG46ceJENm/ezK+//kqTJk0AaNmyJWeeeSZvvPEG9957b2ksS1EURQkRpWLZdO3alby8PFasWFFke6dOnQD47LPPTveSFEVRlBBSKpbNunXruPLKK4ttT01NZebMmcc9v1q1ajRq1CgEK1MURVH+LGlpaRw4cOCo+0pFbA4dOkRSUlKx7cnJyaSnpx/3/EaNGrFy5cpQLE1RFEX5k7Rt2/YP95WK2PwZJkyYwIQJEwDYv39/Ka9GURRFORlKJfU5KSnpqBbMH1k8AMOHD2flypWsXLmS6tWrh3qJiqIoSglSKmKTmprKunXrim1fv34955xzTimsSFEURQklpeJG69OnD/fddx+bN2/mjDPOAExgacWKFYwfP740lqQoyp+gsLCQHTt2kJeXV9pLUU4jUVFR1KtXD4/Hc8LnlErqc3Z2Nq1atSI6OjpQ1PnII4+QmZnJmjVriIuLO+b5bdu21QQBRSkDbNmyhfj4eKpWrYrL5Srt5SinAcuyOHjwIJmZmaSkpBTZd6x3c6m40WJjY1m6dClnnXUWQ4cOZfDgwaSkpLB06dLjCo2iKGWHvLw8FZpKhsvlomrVqidtzZZaNlqDBg344IMPSuv2iqKUECo0lY8/8/9cuz4riqIoIafc1NkoilL2qfVcLfZm7y2x69WMrcme+/Yc85gOHTrw1VdfHfOYW265hXvvvZdzzjmHf/7znzz44IMndX5cXBxZWVlFtmVkZDBt2jRGjhx5nKcozmWXXca0adOoUqXKSZ23fPlyIiIi6NChw0nfs7RRy0ZRlBKjJIXmRK93PKEAePPNNwNlFf/85z9P+vyjkZGRwauvvnrUfV6v95jnzp8//6SFBozYnOx6j7eW04WKjaIo5RpJKlq+fDmXXHIJ11xzDc2aNWPw4MFIsu0ll1zCypUrGTt2LLm5ubRu3ZrBgwcXOT8rK4uuXbvSpk0bWrRowZw5c45537Fjx7Jp0yZat27NmDFjWL58OR07dqRPnz4BYbvqqqs477zzSE1NDXRAAdNyS3qIvfvuu1xwwQW0bt2a2267DZ/PB8DChQtp06YNrVq1omvXrqSlpfH666/z/PPP07p1a7744gvS0tLo0qULLVu2pGvXroGZYMOGDWPEiBFceOGF3H///Zx55pmBzit+v58mTZqc9k4s6kZTFKXC8MMPP7Bu3Trq1KnDRRddxIoVK/jLX/4S2D9+/Hj+85//sHr16mLnRkVF8dFHH5GQkMCBAwdo164dffr0+cNg+Pjx4/npp58C11q+fDnff/89P/30UyAleNKkSSQnJ5Obm8v5559Pv379qFq1auAaP//8MzNmzGDFihV4PB5GjhzJ1KlT6dWrF7feeiuff/45KSkpHDp0iOTkZEaMGEFcXBz33XcfAL179+aGG27ghhtuYNKkSdx1113Mnj0bgB07dvDVV18RFhZGYmIiU6dO5Z577mHJkiW0atXqtHdiUctGUZQKwwUXXEC9evVwu920bt2atLS0Ez7XsiwefPBBWrZsSbdu3di5cyd7956cW/CCCy4oUnvy0ksv0apVK9q1a8f27dvZsGFDkeM//fRTVq1axfnnn0/r1q359NNP2bx5M9988w0XX3xx4FrJyclHvd/XX3/NddddB8DQoUP58ssvA/v69+9PWFgYADfddBNTpkwBjADeeOONJ/VcJYFaNoqiVBgiIyMD38PCwk4qXjF16lT279/PqlWr8Hg8NGrU6KRrSYKnDC9fvpwlS5bw9ddfExMTwyWXXFLsepZlccMNNzBu3Lgi2z/++OOTuu/x1lK/fn1q1qzJ0qVL+e6775g6deopX/9kUctGUZRKhcfjobCwsNj2w4cPU6NGDTweD8uWLWPr1q3HvE58fDyZmZl/uP/w4cMkJSURExPDL7/8wjfffFPsmK5duzJr1iz27dsHmGbEW7dupV27dnz++eds2bIlsP1o9+zQoQPTp08HjFh27NjxD9dzyy23MGTIkCIWz+lExUZRlBKjZmzNMn09MB3kW7ZsGUgQEAYPHszKlStp0aIFU6ZMoVmzZse8TtWqVbnoooto3rw5Y8aMKba/Z8+eeL1ezj77bMaOHUu7du2K7He5XJxzzjn84x//oHv37rRs2ZJLL72U3bt3U716dSZMmEDfvn1p1aoVAwYMAEyM5qOPPgokCLz88stMnjyZli1b8s477/Diiy/+4Xr79OlDVlZWqbjQoJR6o50q2htNUcoGP//8M2effXZpL6Nc4fP5qFGjBnv27DmpRpanysqVKxk9ejRffPFFiVzvaP/vj/Vu1piNoijKaSQ1NZVbbrnltArN+PHjee2110olViOo2CiKopxGfvnll9N+z7FjxzJ27NjTft9gNGajKIqihBwVG0VRFCXkqNgoiqIoIUfFRlEURQk5KjaKopQYtWqBy1Vyn1q1SnZ90pDzWMyePZv169cHfn/00UdZsmTJKd979erVzJ8//6TP27VrF9dcc82fuudbb73Frl27/tS5JY2KjaIoJcZJthI77dc7EX4vNk8++STdunU75eseS2yO1VanTp06zJo160/d88+IjXSdLmlUbBRFKbdkZ2dz+eWX06pVK5o3b86MGTMA0+Dy3HPPpUWLFtx0003k5+cXO1dGCwDMmjWLYcOG8dVXXzF37lzGjBlD69at2bRpE8OGDQu87P/ouo0aNeKxxx4LjCf4fXpzQUEBjz76KDNmzKB169bMmDGDxx9/nKFDh3LRRRcxdOhQ0tLS6NixI23atKFNmzaBuTVpaWk0b94cMEIwZswYzj//fFq2bMkbb7wRuMfTTz9NixYtaNWqFWPHjmXWrFmsXLmSwYMH07p1a3Jzc4+5/gceeIA2bdowfvx42rRpE7juhg0bivz+Z1GxURSl3LJw4ULq1KnDjz/+yE8//UTPnj3Jy8tj2LBhzJgxg7Vr1+L1ennttddO6HodOnSgT58+PPvss6xevZrGjRsH9h3vutWqVeP777/n9ttv57nnnity3YiICJ588kkGDBjA6tWrA+1n1q9fz5IlS3jvvfeoUaMG//3vf/n++++ZMWMGd911V7H1/d///R+JiYn873//43//+x8TJ05ky5YtLFiwgDlz5vDtt9/y448/cv/993PNNdfQtm1bpk6dyurVq3G5XMdcf9WqVfn+++956KGHSExMDIxOmDx5com0uFGxURSl3NKiRQv++9//8sADD/DFF1+QmJjIr7/+SkpKCmeddRYAN9xwA59//vkp3+t41+3bty8A55133gmPNujTpw/R0dEAFBYWcuutt9KiRQv69+9fxJUnLF68mClTptC6dWsuvPBCDh48yIYNG1iyZAk33ngjMTExwNFHEhxv/SKAYJp2Tp48GZ/Px4wZMwJjDE4F7SCgKEq55ayzzuL7779n/vz5PPzww3Tt2pUrr7zyhM4NHop2sqMEjoaMNziZ0QbBYwCef/55atasyY8//ojf7ycqKqrY8ZZl8fLLL9OjR48i2xctWnQKKy++ln79+vHEE0/QpUsXzjvvvCID3/4satkoilJu2bVrFzExMQwZMoQxY8bw/fff07RpU9LS0ti4cSMA77zzDp06dSp2bs2aNfn555/x+/189NFHge1/NDrgRK/7R5zISILatWvjdrt55513jhqo79GjB6+99lpgRMJvv/1GdnY2l156KZMnTyYnJwc4+kiCk1l/VFQUPXr04Pbbby+xLtEqNoqilBg1S3giwPGut3btWi644AJat27NE088wcMPP0xUVBSTJ0+mf//+tGjRArfbzYgRI4qdO378eK644go6dOhA7dq1A9sHDhzIs88+y7nnnsumTZsC20/0un9E586dWb9+fSBB4PeMHDmSt99+m1atWvHLL78UsTTECrvllls455xzaNOmDc2bN+e2227D6/XSs2dP+vTpQ9u2bWndunUgZjRs2DBGjBhB69atsSzrpNY/ePBg3G433bt3P+FnPBY6YkBRlD+NjhgIPatWreLee+/ls88+O633fe655zh8+DB///vfj7pfRwwoiqJUEFauXMl1113H+PHjT+t9r776ajZt2sTSpUtL7JoqNoqiKGWUtm3b8ttvv532+wbHsEoKjdkoiqIoIUfFRlEURQk5KjaKoihKyFGxURRFUUKOio2iKCVHLcBVgp8SHjEgLF++nCuuuAKAuXPnnvZsL4Bx48bRpEkTmjZtetwOAHfddVeRxqHlEc1GUxSl5CjpkQAncT3LsrAsC7f75P4N3adPH/r06XOSCzs11q9fz/Tp01m3bh27du2iW7du/Pbbb4SFhRU7duXKlaSnp5/W9YUCtWwURSm3pKWl0bRpU66//nqaN2/O9u3buf3222nbti2pqak89thjgWMXLlxIs2bNaNOmDR9++GFg+1tvvcWoUaMAiowTAGcMwe7du7n44otp3bo1zZs354svvjildc+ZM4eBAwcSGRlJSkoKTZo04bvvvit2nIwUeOaZZ07pfmUBtWwURSnXbNiwgbfffpt27doB8NRTT5GcnIzP56Nr166sWbOGs846i1tvvZWlS5fSpEmTIh2OT4Rp06bRo0cPHnroIXw+X6AHWTCjR49m2bJlxbYPHDiQsWPHFtm2c+fOwHoB6tWrx86dO4ud+5///Ic+ffoUaadTXlGxURSlXNOwYcMiL+7333+fCRMm4PV62b17N+vXr8fv95OSksKZZ54JwJAhQ5gwYcIJ3+P888/npptuorCwkKuuuorWrVsXO+b5558/5WcJZteuXcycOZPly5eX6HVLC3WjKYpSrgluWLllyxaee+45Pv30U9asWcPll19+UuMDwsPD8fv9APj9fgoKCgC4+OKL+fzzz6lbty7Dhg1jypQpxc4dPXo0rVu3LvY5WvJB3bp12b59e+D3HTt2ULdu3SLH/PDDD2zcuJEmTZrQqFEjcnJyaNKkyQk/S1lDLRtFUSoMR44cITY2lsTERPbu3cuCBQu45JJLaNasGWlpaWzatInGjRvz3nvvHfX8Ro0asWrVKq699lrmzp0baOW/detW6tWrx6233kp+fj7ff/89119/fZFzT8ay6dOnD9dddx333nsvu3btYsOGDVxwwQVFjrn88svZs2dP4Pe4uLjAeIDyiIqNoiglR01KNiPtJEcWtGrVinPPPZdmzZpRv359LrroIsCMB5gwYQKXX345MTExdOzY8aizZW699VauvPJKWrVqRc+ePQNW0/Lly3n22WfxeDzExcUd1bI5GVJTU7n22ms555xzCA8P55VXXglkol122WW8+eab1KlT55TuUdbQEQOKovxpdMRA5eVkRwxozEZRFEUJOSo2iqIoSshRsVEU5ZQoh5545RT5M//PS1RsZs2aRb9+/WjYsCHR0dE0bdqUv/3tb8UCcenp6dxyyy1Uq1aN2NhYunXrxtq1a0tyKYqinAaioqI4ePCgCk4lwrIsDh48SFRU1EmdV6LZaM899xwNGjTgn//8J/Xq1eOHH37g8ccfZ9myZXz11Ve43W4sy6J3796kpaXx8ssvk5SUxLhx4+jcuTOrV6+mXr16JbkkRVFCSL169dixYwf79+8v7aUop5GoqKiTfleXqNh8/PHHVK9ePfB7p06dSE5O5oYbbmD58uV06dKFuXPnsmLFCpYuXUrnzp0BaN++PSkpKTzzzDO89NJLJbkkRVFCiMfjISUlpbSXoZQDStSNFiw0wvnnnw8Q6Pszd+5c6tSpExAagMTERHr37s2cOXNKcjmKoihKGSHkCQKfffYZQCAfe926dTRv3rzYcampqWzbto2srKxQL0lRFEU5zYRUbHbu3Mmjjz5Kt27daNu2LQCHDh0iKSmp2LHJyckAFWJug6IoilKUkLWrycrK4sorryQ8PJzJkyef8vUmTJgQ6NKqwUhFUZTyRUgsm9zcXHr37s3mzZtZtGhRkayFpKSko1ovhw4dCuw/GsOHD2flypWsXLnyqLEhRVEUpexS4mJTWFjINddcw8qVK5k/fz4tWrQosj81NZV169YVO2/9+vU0aNCg3M/ZVhRFUYpTomLj9/sZPHgwS5cuZfbs2UUGGgl9+vRh586dgcQBMG3BP/7449M+B1xRFEU5PZRozOaOO+5g5syZPPTQQ8TGxvLNN98E9tWrV4969erRp08f2rdvz5AhQ3j22WcDRZ2WZXH//feX5HIURVGUMkKJjhho1KgRW7duPeq+xx57jMcffxww8Zn77ruP2bNnk5eXR/v27fn3v/9Nq1atTug+OmJAqchYloVlWfj9/jLZBsblchEWFobL5SrtpShljGO9m3WejaKUMXw+H+vWreOHH344qZHGp4tatWpx4YUXUqtWrdJeilLGONa7WSd1KkoZw+v18u233/LSSy8FsjTLEhdccAF16tRRsVFOChUbRSmDZGdns2fPHg4cOFDaSynGgQMHKCwsLO1lKOUMnWejKIqihBwVG0VRFCXkqNgoiqIoIUfFRlEURQk5KjaKoihKyFGxURRFUUKOio2iKIoSclRsFEVRlJCjYqMoiqKEHBUbRVEUJeRouxqlUiKdlctiH1qfz4ff7y/tZShKiaJio1RKsrKyWL16NWlpaWVOcLxeL6tWrSI/P7+0l6IoJYaKjVIpSU9P54MPPmDu3Lll0oo4cuQI2dnZpb0MRSkxVGyUSklhYSH79+8vk5aNolRENEFAURRFCTkqNoqiKErIUbFRFEVRQo6KjaIoihJyVGwURVGUkKNioyiKooQcFRtFURQl5KjYKIqiKCFHizorOOnp6aSlpZGVlVXaSylGZGQkDRo0oGbNmrhcrtJejqIoIUTFpoKzYcMGXn/9dX755ZfSXkoxatSowc0338xll11GWFhYaS9HUZQQomJTwTl8+DBr1qxh1apVpb2UYtStW5crrrhC28UoSiVAYzaKoihKyFGxURRFUUKOio2iKIoSclRsFEVRlJCjYqMoiqKEHBUbRVEUJeRo6rOiKEpJ4wOCp42HUen/aa9ioyiKcqpYQBaQaX8Kgva5gQggCogB4u3fKxkqNoqiKH8WH3AI2IcRGem65A766caITybGwvEAiUAyEH06F1u6qNgoiqL8GXKAjRixcWHepsHNMFz2J1h4hP3AEaA6kIQRoQqOio2iKMrJshdYD3hxRMSHIzYu+7v8jMBYNIX2OR4gD9iFcb/VtbdVYFRsFKWM4XK5qFGjBnXq1MHjKXtvoLPPPpu4uLjSXkbpsQ1YjXl7huEkA/hxxMZt7wu3P16M0LgwcZt8nKSBTPuaDajQgqNioyhljPDwcC666CIGDx5MYmJiaS+nGFWqVKFBgwalvYzSYTvwDRCJERlf0D6Jz4j7zI+xXiyMsETZ+7Ps88GITiSQDezECE4FzVpTsVGUMobL5aJ+/fp07NiR6tWrl/ZyFCED+ALz1vRhrJVga0aQJIEwjJCE28dl29+jMQkDhThWTiQmhpMOVA3hM5QiFVRDFUVRSpACYAmQixEXL45VE5wIIG6zMByBycSJ0/jt34Uce1u+fb29GGuoAqKWjaIoyrHwA6uAHUBNHKEJTgAg6LvEayQpwMIIiBfjSvNgXGmx9rFi2Vj290NAndA/1ulGLRtFUZRjsRX4EePyKsAIjQiK/PRg/unusbd5MYKSjRErsWqy7PMjMFYNOO44SSA4bH+vYIRUbHr27InL5eLhhx8usj09PZ1bbrmFatWqERsbS7du3Vi7dm0ol6IoinLypGOsmhyMYPgwVooIiXwy7WPyMRZKOEZQpLNAPo4wZWMEJtw+JwzjnvPb1y+wj6lghExs3nvvPX788cdi2y3Lonfv3ixcuJCXX36ZDz74gMLCQjp37syOHTtCtRxFUZSTIw9j0WTguLi8GOtDLJngj4UjFLkY4RCrJw8jLC57W459vFxXstd8GKtGrJ4KREjEJj09ndGjR/Pvf/+72L65c+eyYsUK3nnnHQYNGkTPnj2ZO3cufr+fZ555JhTLURRFOTl8wK+YSn8/RiBcGCEQ4cjBicWIa02Exxe0H4yV48cRHLe9LxwjUC6KuuiyKZ7lVs4Jidg88MADNG/enEGDBhXbN3fuXOrUqUPnzp0D2xITE+nduzdz5swJxXIURVFOHAtTZLnD/i6NNcVaCcZnb8/BuMsKCdTVfLp3O83/bxnZGYVGaESE8sx+vDhCI+dJ4oG44yoQJS42X375JVOmTOGVV1456v5169bRvHnzYttTU1PZtm0bWVlZJb0kRVGUEycd2IIRAxEGibcEE5wcIIkBeUA2LD+wlh4veln3VWcun7PCSXH24NTYhON0EijAcat57eur2PwxBQUF3Hbbbdx33300bdr0qMccOnSIpKSkYtuTk5MB44I7GhMmTKBt27a0bduW/fv3l9yiFUVRhGyM+0xe/lIDI26z3KDv2RhxEWvEDXjg04LP6fbGIXyHUoiv8xvv9Wljri01OuE47rVga0a+H61QtAJQomLzzDPPkJuby0MPPVSSlwVg+PDhrFy5kpUrV2pVtaIoJY8X2Iyp5BeBkayx4D5n8nFT1I1WAB/lfUSPD9bg29KJqLgMfritIbWjEpwizwL7PAtj3cj4AUFEpwIOWyuxos5t27bx1FNP8eabb5Kfn09+fn5gX35+PhkZGcTHx5OUlHRU6+XQoUMAR7V6FEVRQoqFidHswynWlKQACd6HU7RbgBwD4IcJORMY8b9vsL6dhDvMy+Jb42mcGGasmCgcd1l40PdYjGBF4nSQluJPaXtTQSgxsdm8eTN5eXkMGTKk2L7nnnuO5557jh9++IHU1FQWL15c7Jj169fToEGDyt1NVjltREZG0qBBA1q2bIlllS2fRUREBHXr1iU8XBt8nDYOYcQmuCAzH2ckgATy5QOBIk7LZfEP7z94dOscmPclAK/1C6NjY/vAQvsTgSNc0fY2cZnJR7pHJ4T0aUuFEvvT3Lp1a5YtW1Zse+fOnRkyZAg333wzTZo0oU+fPkyePJnPPvuMTp06AXDkyBE+/vhjrrvuupJajqIck+TkZAYMGEDHjh3LnNi43W4aNmxITExMaS+lcpCDcZ9JfUshThNNC2NlyBhneWPagXx/oZ+7XHfxStYMmLEKfFHcdiEMP9fluOAkEUAsmkKcrs/+oOtJ3CccqID/5i4xsalSpQqXXHLJUfc1bNgwsK9Pnz60b9+eIUOG8Oyzz5KUlMS4ceOwLIv777+/pJajKMckJiaGVq1a0apVq9Jeyh/iclUwP0pZxIcRGmmOGYFjiXhxrBsPJjYT5ErLd+dzg/8GZnhn4Zr5X6wjDWjfEF68GiczLRon/pKPMwY62GUmXaFFiGpiBK6CcdrtdLfbzbx587jvvvsYOXIkeXl5tG/fnmXLllG/fv3TvRylEqMv80qOhZkhcwQjJtKTLIeiA9EkUC8dBCIgMzyTvq6+LLGWELH03xSkdaZmLMwcCJHBb1URGBESERUfRcdIy08/UC8kT1vqhFxsjuaiSE5OZtKkSUyaNCnUt1cURTk6hzBjmb04vcnEsgnDcX1JN2e7keZ+/34u81/GSvdKEtffyOEVowlzw/sDoa7MqonAsVyC4zUyakCKQ4PFJgdoBpS9eXklgkYgKwFutxu3u+zlUbrdbrUulNIhD9MlQFKR5a+HFHKK20ssEjcQA2kFaXQP684G9wbqHehC+uw3AXimB1ycYl9Dmm4GZ51J0acIjyQGuHEmeiYCTUL4zKWMik0Fp3bt2vTq1YtmzZqV9lKKkZycTOPGjVVwlNOLFzM2QOpbsjAve2kRI0F7mcZpF2CuzV9LD08PdrOblvntKJixkB0Fbq5pBqPPC7q+WEXBIiZuM2lLI403xdqxgPOpkLEaQcWmgtO4cWNuu+02CgoKjn/waSYsLIwqVaqUSatLqaBYwB5MS5pCjPvMrvwvEsTPw8yvyQXi4MsjX9Lb25sMMrjY34k6Hy9m+n4PTavCpD7gktEAv3efReIUbgZnsomoifvsUqCC16qr2FRwoqOjiY6OPv6BilIZOIIRGxGGMJzRAGDERmIqEUA4zM2Zy4DcAeSRx9VhV9Nt1Qzu+MlDjAc+6APx0l1AYj3Bvwe7z36fDJCFEaUuwJmhfOiygYqNoiiVgzwgzf7uxrzsMzGurBycehgZGZAOk7yTGH5kOD58DI8czvADr3LRAtM24PXLIbUuztgBF066s3QY8AV9l95n2fY5UUBHoEVoH7usoGKjKErFx4/JPMvFiEk2zhhnmSnjwbSPyQcr2uKZI88wNmssAA97HuavEU9y/hQX+V64tR0MvQDHVSYNO/Nx2s9I/7Mo+6cPIzqJQBWMNdOKCtcD7Y9QsVEUpeJz0P4UYITAQ3HLw46r+PP83HfgPp7Peh4XLl5KfIk7wkcxYCJs3A+t6sKLV9nXicAIWIz9EbGRN6sPIzaRGJHxYCyfasC59u+VBBUbRVEqNlmYNGdJRc7BxG7C7H0eArU2hWGF3LT/Jt7NeRcPHqZUncLAsIG8tgJmroG4SHh/KERXwZk7IyFRaWuTjxGXcPsYaT0Ta98zHmhj/16JULFRFKXiUohxn/kwIpCFIzoRGGvEtj6yC7Ppt68fi3IWEeuK5aP4j7g05lJWb4XRM8zlJgyFs2rZ14nBCIbEbCwCSQW4cZptxmHcbNH2vlSgEja3V7Gp4GRnZ7N//37y8vKOf3CIcLlcJCYmUrVqVTyeSuQ3UEoXCzMyQOpoInBiNFLaFQFkw0HrIJfvvZxvc7+lWlg15teez/ne88nKgAFvQL4Xhv8FBp2HM23Tj9PjTEYCRNvbJW4TjpP+7AEaA3VOw7OXQVRsKjgbN25k6tSpbN68udTW4Ha76dq1K/379w9MZFWUkHMEY9XI6GYZdObCJAjYFfzbMrfRY28Pfin8hYbhDVlcczFnRZ8FFtzxFvy2F1rUhRcGY8RJxg2IdSTXlkJO+V0sG0mxrg40otIkBPweFZsKzr59+1i2bBkrV64stTWEh4eTlJRE7969S20NSiUjD9NkUwoqD+PEUMR9lgvrfevpsacHO7w7aO5pzsKaC6lLXciHKd/BlG8gJgJm3AzRUvkfb1+zACNacTjtacBpsCmutEiMu+0sKlVCwO9RsakElJV5LWVlHUoFx49xn4kYiAUSjtP3zANfH/yaK3ZcwSHfIf4S/RfmVptLUmQSeGFDGoycbC738g1wdmP7XLGIIu1PIU4KtXSIttOnA90EIjFpzpUsIeD3qNgoilKxyAD22t+jcHqcSSylEOZnzeeabdeQa+XSO743MxrMIDo3GvxQ4IJBb0N2Pgw8D268CGegmXSIDi7UDO4OLRlqkhbtwowMqIQJAb+nknoPFUWpkORi4jTirsrEJAhIkoAF7+x9hz6b+5Br5XJjzI18mPwh0d5oI0wWPDQdVm2BRtXh9WHgyqFo/Uy0ff14jABF2duCf5eMtNpAXZyEhEqMio2iKBUDH6bvmbSEkVY0YmV44F/p/+L6vdfjw8cD1R/g/xr+H+FWuBGiHFjyMzy3AMLc8N4dkJiMcX+5KNrjLBcnI03uLcPWIjExoTigAeo/stH/DIqiVAzS7Y+kOYMRBMvEC8emjeWZPc8A8O8a/2Z0rdHmGLvL84FcuP51s+nxvtCuEU5MJjg5wI8zB0dSncXNJvU2kcAZOAWfioqNoigVgGyM+8yNM/AsHzgCXreXW9Nu5a30twgnnLfqvsXg6MFGGOxAv2XBrS/D7gz4y1nwt14E3Grk2/eQZp1SOxM8o0biQuJiq4vGaX6Hio2iKOUbcZ9JkWUGRnBckOPKYcCWAczLmEeMK4YPGn5Az7ie5pwjBHqlTfoCZn8PCdHw7nAIk55nsRhrxk4sCNTSSAdnCyNKYTjilATUOl0PX35QsVEUpXxzEGN1ZGLcZ3bFfnphOr039GZF9gqSw5OZf8Z8Lgy70JmgmQhkwcatcPckc6lXh0PDOgTcb+Rg3GNi0RRi4jEy7lmy3YLrahrY+5UiqNgoilJ+ycEUb4JxX9nD0HYe3kmPn3uwLncd9cLrsfjMxZwdc7axVnwEBpx5o2HIBDvN+UK47kKcLs0FmOOzcGIvXvueUfb3Aoz1I2nOjdA4zR+gYqMoSvlE3GcWRmjSzfdfjvxCj597sK1wG2dHnc2iWouoT30jEj6ckc8eGD8Xvt0M9ZLh1aHgyrevJ5X/IjpRGMtFss/icFrSSDFnbYy1pBwVFRtFUconBzGWRz4Bi+W7gu+4bP1lHPQepF1cO+Y1nUfVwqrGCpFKfzdwBFbtgifeN5d66y5Iqm5fS7oEROP0QPPidAAIbsLpt6+ZiInTaD3NH6JioyhlGJ/PR0ZGBkeOHMHv9x//hBARERFBUlISsbGxuFxl4I2ai+kSkI954UfB4j2L6ftzX7J92fRK6MXMJjOJ9cSat9wRnPTlCMiNgaFvgNcHd/WAri3sfR5zLfJwugFg3yfM/kiqcwROckB99G16HPQ/j6KUYXJzc1m0aBGLFy+msLCw1NZRp04d+vfvz/nnn19qawjgB3bjDCnLh/e2vMcN62+g0CpkaPJQ/q/O/+HJ9Dgdn8OCjnfBI+/Dz7uhaW0Y1xsTl4kz+wJdAtwYdxsYayYGIzBiJUnspz4apzkBVGwUpQyTn5/P6tWrmTlzJrm5uaW2jqZNm9KuXbuyITaSfeYCjsBLG17i7q13A3BvzXt5ttGzuHE7dTBS2e8DDsOX2+HfH4PbDVPugZgaONM7ZcCZG8dNJhZNQdD2CJw0Z52acUKo2ChKGceyLPx+f6l2zbYsq2x07c4H9pufVrbFI1sf4amtTwHwzBnPMCZpjBM3icHEX2SejAeyM2DYf0wR59+uhgvOtI9NwHGViaD4cCZyuuxPrL0djDDVRZt+nSAqNoqilA/8mOyzHPB6vdy+8Xbe3P4mYYTxZpM3GVZ9mKm1EfeWGyM0hQQac46dCZv2Q4t68Gh3HJcYOC6yGPtjYayZOBzLBvv6ERj3WSWeT3OyqNgoilI+OAxkQG5YLtf97zpm75tNlDuK9xu8T++E3kZUwjDWjAcjFlLp74fPNsJ/FkB4GLx9N0TaRZ2B+IzddYA8nOab4LjTvDjxn6oYa0g5YVRsFEUp+xQA+yGjIIMrv76Sz9M/p0p4Fea1nMdFERc5ForEaHw4ggPkZMDNL5vvD/aDcxvb1w2e3unH6egscRpwEgVkfxxQE01zPklUbBRFKdtYwH7Ynb6bnl/0ZE32GupE1mFR6iKaJzY3YiHxFhfGUsmkSKrzQ/Ng0z7jPnvoiqBrSyqzhVNHI263aByXnB8nNVrHBvwp9D+Zoihlm2zYsGkD3b/tTlpOGk1jm7Ko+SIaFjR06mdycLoyyxjofMz459/gxU/MjJrJoyDComjigPQ8C7aO7AadeHEKPCOAGjjp0MpJoWKjKErZxQur1q2i14pe7C/Yz/mx5zO/xXyqeaoZQZAAfRjGmnFTZJBZfjrcbGefjbkazjsLJ/AfnHnmx8RvxLqRjLMYTOEm9r7qoX3cioyKjaIoZZZP13zKVUuuIsubRfeq3fmg2QfERcQ5EzjFzSUt/m1rRiyWp2bBzzvhrNrwWH/7orZrLTB/RjLP8nHm0RTiuNGkB1o9tJvzKaAZ4oqilElm/TiLyz65jCxvFgNrDeTjdh8T54kzVom0qcm2vwe7wOxGC2u3wbg55vubN0NUPk5fMxnzLJM1pXOAWDSF9seNEbVaOBaO8qdQy0ZRlDLHa/97jTvm34GFxV2N7+L5+s/jznQ7TTc9GIGQ+EuwxeEHXy7c+qrpfXZ7D+jYBiMeUpcqnX/ycQL/wVls0ZisMy9meJp2CThl1LJRFKXMYFkWjy9/nJHzR2Jh8VTTp3jhjBdw57md4WQe+xOOEQIJ8ov7zA2vL4RvN0DdZBg/1L64dHx2Y2pk4u2PGxOPSQj6KVZOBKZLgLrPThm1bBRFKRP4/D7uXHAnr618DbfLzRut3uCW5FvMC1+EQiZienEC/NGYTLQI8/uOQ/C3WeaaLw+CBHugWsBVJqnNHpx5NeCMEsi3f4/AuM8iQ/rYlQYVG0VRSp18bz5DPxrKzPUziQyLZHqr6VxV/yoTU5GBZ7k4rq4snOmYwY0yPWbEc2YuXHUBXN3J3l6IU4Rp2efH29u89vXtjtDE2cfHYjoFKCWCio2iKKXKkfwjXDX9KpalLSMhIoG57efSKbGTEYHDOF2YCzECA0YwxLqRrs6FMO8b+PAbiIuCl28JOteHUx/jx1gvPpx5NDIArQAn2aAOGmgoQVRsFEUpNfZm7aXX1F78sOcHasXVYmGXhbRytzKWBzhDysJwgvpgXGdH7O+2ZZPjg1Hvmk1P9oN6YpWI+y0Xx5qRhADJMCvESXMOx8RpNPusRFGxURSlVNicvpnu73RnU/ommiQ3YVHfRZyx7wxjdYhFkoNT3S8pz8F1NRKrccHfZ8HWA9CqEdx5KUawInGabIq7TBpvFlJ0Ro2kTscCVU7Df4BKhoqNoiinnR/3/EjPqT3Zk7WHNrXbMH/AfGrur+lYFtkYAcjEaUHjsbeDY+XYlf+/HITn5oDLBa/fBuEJQcd4cOpnsnDiPJI0EBv0HaA2mn0WAkIiNvPnz2f8+PF8//33uN1uzjrrLJ555hm6dOkCQHp6OmPGjGH27Nnk5ubSvn17nn/+eVq0aBGK5VRqkpOTufDCC0lKSiq1NYSFhXH22WcTGalpPQp8lvYZfab34Uj+EbqkdOGjAR+RkJXguM6O4FTzx2OsD7E6pNJf2tR4wMqDO980NTW3doV2TZ19gd5mcThxHqmjkSmcIm5RGKHREc8hocTF5o033mDUqFGMGjWKRx55BL/fz+rVq8nJyQFMHn3v3r1JS0vj5ZdfJikpiXHjxtG5c2dWr15NvXr1SnpJlZozzzyTO+64I/DfvzRwuVxUq1aNhAQdAFLZ+ejnjxj0wSDyfflcc841vHv1u0RakbAPJ2ssCiME4Li7BEldljY1wKzvYcl6SI6Df16Bic1EUTTVOTjduQAnHiMFonH2pyo6OiBElKjYpKWlcc899/Dss89yzz33BLb36NEj8H3u3LmsWLGCpUuX0rlzZwDat29PSkoKzzzzDC+99FJJLqnSk5CQwDnnnFPay1AUJq6ayIhPRuC3/IxsO5KXer1EmCsMdmOsGgtHDLJwAvsFODNmwAiRnaqcbcG9k83mcUOgWn17Xx7O282PsZbicOIzeRjBkamcPsyMGg0shIwSTeybNGkSbrebESNG/OExc+fOpU6dOgGhAUhMTKR3797MmTOnJJejKEoZwLIs/vH5Pxg+bzh+y8/jnR7nP5f9hzB3mHnpH8Bp638Yp6hSMtFEJKRLQCQmzpIL46bBjoNwXmO4uStOkWc4Rkxi7fOj7G0xGNecWDIu+7417N+VkFGiYvPll1/SrFkzpk+fTuPGjQkPD6dJkya88sorgWPWrVtH8+bNi52bmprKtm3byMrKKrZPUZTyid/yc9eCu3hk2SO4cPHa5a/x2CWP4XK5AkPR8GIsF+lLFoERDIm3uIN+F8Jhcx48t9j8+vLAoJi+uM9ycdKco+1rSexHmnJ6cEYHqPsspJSo0bhr1y527drFmDFj+Oc//0njxo2ZOXMmo0aNwuv1cvfdd3Po0CEaNWpU7NzkZNPpLj09nbi44v/EmDBhAhMmTABg//79JblspZJgWRaFhYV4vd7jHxxCXC4XHo+HsLAw89KtoBT4Crhh9g1M/2k6EWERvHv1u/RP7e8ckAOkY0RBugFk2D8LMa4vSQSQ4L4kDoTBX9+G/EIYejG0P9s+N4ZA2xrCMJZTTNA183H6o0ncpjpOsagSMkpUbPx+P5mZmbz11lv07dsXgC5dupCWlsa4ceO46667/vS1hw8fzvDhwwFo27ZtiaxXqVzk5eXxzTffsGrVqlIVnOTkZDp16sRZZ51VamsINVkFWfSd0Zf/bv4v8RHxzB44my4pXZwD/JhYjdS35OLEWiIxIhMTtF8snFwgAz7dCLO/g9goGH+9fWwkjgtOugpIV+cIHLdcDM4o6ESg9BI1KxUlKjZVq1Zlw4YNXHrppUW2d+/enYULF7J7926SkpJIT08vdu6hQ4cASjVFV6nY5OXlsWzZMiZOnEheXl6prePMM8+kVq1aFVZs9mfv5/Jpl/O/Xf+jRmwNFgxeQJvabYoelIWpobHsny6MpSEzZFw4XQKCm2jGgS8P7p1qLvNgb6hTxb6mFHr6cOI8IioJ9vbgSZ4xaE3NaaRExSY1NZVvvvnmD/e73W5SU1NZvHhxsX3r16+nQYMGR3WhKUpJ4Pf7yc3NJSMjo1TF5siRIxQUFBz/wHLI1oytdH+3O78d/I2UKiksHrqYJslNih4kVk2u/XsUxqKRlOYjFM0ky8TpYRYGk76ENTugYTUY3Rkn00y6Dlj29WJxGnTKLJtCjAUUhZlRI/3SlJBTogkCV199NQCLFi0qsn3hwoXUq1ePWrVq0adPH3bu3Mlnn30W2H/kyBE+/vhj+vTpU5LLURTlNLJ271o6TOrAbwd/o2XNlqy4aUVxoQETpzmCEzvJs3/PwYiDTNGUrgEejOBkQuYBeHiauczT10N0dXv/YYx4FWIEKhdTqBnc6kYGook7rXqJ/ydQjkGJWjaXXXYZnTt35rbbbuPAgQOcccYZzJw5k8WLFzN5skmG79OnD+3bt2fIkCE8++yzgaJOy7K4//77S3I5iqKcJlZsW8EV711BRl4GFze8mLkD55IYlVj8QC+wFyMmIgZhODNrwFgbeTjTOO2EAHLhmY9h32Fo1wSubWdvj8VYKl6cXmgS8JdWNCIwMga6NpoUcJopUbFxuVzMnj2bv/3tbzz22GOkp6fTrFkzpk6dynXXXQcYV9q8efO47777GDlyJHl5ebRv355ly5ZRv379klyOoiingXm/zePamdeS683lqmZX8V6/94gK/4OWyRmYeE1wLQ047jIZ9SypyZJZFgE7M+BfttPkXwPBlYMRGekKDUa84uxtwUPRpMVNNCYh4Cg6qISWEq+XTUhI4JVXXilSW/N7kpOTmTRpEpMmTSrp2yuKchp5a/Vb3DL3FnyWj1vb3Mprl79mijWPRiGwC6fZpg8jPvJd+pZJskAWTsKAGx6ZDrkFcM2F0OEsnEadYtnIGAIRKTCuueAiTxemgFPn1Jx29D+5oignjWVZPLPiGW6ccyM+y8fDHR/mjSve+GOhAdMpIBcnA60Qx70lggBOt4AEAjGcn3bA259BeBiMG4yxXuIxQpOHM4pApnCKcEVgrBhxs1W1z1FOO9oJSFGUk8Jv+RmzeAz//ubfuHDxYs8XufPCO499UgEmViNNMSURQIL3UrSZgxEJGSsQA+TDg++D34KRXaBJPE6zzShMnMaLk+5cELQ9HydpIBpj1VTcOtoyjYqNoignTKGvkJs/vpl317yLx+1hytVTGNh84LFPkrY0YtW4MdljMtJZxj1H4EzUlLiNC77YBB+vNqOeH+mN06zTwgiIy/5IurMHp1OAtMAJB6phBEgpFVRsFEU5IfL8eVw14yoWbFxArCeWDwd8SPfG3Y9/Yj4mVhOGSXGW4WXB4579OLEaEY4IsCwY+565zF97QY0aGKGRY7w4tTK5OC44L6aOJgpHlGRMtFIqqNgoinJcfBE+nkx7kg25G6gaXZUFgxdwft3zT+zkvRj3mFgg0nZGijoLMXEWSQ6QgWYFMG8tfLURqsXDX7vj1MuI1SIZZ5I6HY6J5Ui3ANlfBye1WikVVGwURTk2CbCt2zYKcgtomNiQRUMW0bRa0+OfB0ZEdmNExI+prZHOyxLEl8p/f9BPH/i88OB0c5mHroT4BHtfDsaakbiOFydFWtxrkpEWBVRBU53LACo2ilKGcblchIeHExkZid/vP/4JJYxV1aJwUCEFCQU0iGrAlzd+Sb3EE5yma+GkOstETOkMYGGER9xnwSMB7LY0730LP+2CBskw4i8U7ZsmgiOJBtLAUxIOfj8UTfNuSx0VG0Upw0RGRtK+fXu8Xi+FhYXHP6EE2R22m7lxcyl0F9LQ1ZB3urxD3YS6J36BI5hxzz6cfmXZOAKB/bvH3i8TNSOgIBwe/cAc8ng/iJIRBFKTU4hJn5Z4Tb79PRYntVmGommqc5lAxUZRyjDR0dF06dKFDh06YFnWabvvp1s/5aZFN5HnzaNHox78X6//o1pitRO/gBdIw7zwpVdZ0IRNwnAGmon4SB+0LHhzMWzZD83qwNCOOA01LRyrpdC+RgROOrXMsIm2P2rVlBlUbBSlDON2u4mLizut3dDfXfMuNy64Ea/fy7DWw5jYeyLh7pN8VewFDuG4vrz2x4eJ4wS3qcmiSNuZ7Ej4u90Y/h+9IFw0NrgFTTRGmOystUDSgYiMFHOqVVNmUM1XFCXA818/z9CPhuL1e7m/w/1M6jPp5IUmF2PV+DDuLYnFgLFuYnCaZUphZjZGdHLhxQWw5zC0TYG+HTDuMunoLPGafIx4FeJktYnASFynxkk/vhJC1LJRFAXLsvjbp3/j6RVPA/Dv7v9mdPvRJ38hH/AbRdvHSNBeugNI4WYk5g0USaCr88FD8PQ8c6mnB4JLLB6ZQ+O2r+HDiJakQSfY98izr1UTnVVTxlCxUU4Yy7I4cuQI6enp+Hy+UltHWFgYSUlJJCQk4HJp75FTxev3ctvHtzFptbFiJl85mSEth/y5i23HZKDJSGY/Tmqy9EIDJxtN0p7tcc3//BCO5EH3s6FLCk46tHQNkA4BhUHb8+2PD2PZeNBZNWUQFRvlhPF6vXz11VfMmTOHzMzMUltHQkICV111FV27diU8XP8Inwq5hbkM/GAgc3+dS4wnhln9Z9HrzF5/7mIHMVZN8FTM4LRnsW6iMG+eWJxRA3mw6SC8vBRcLhh/jX18Ac7AM/s4ou3vkv7sw7F6/Bih0bY0ZQ79m6qcMH6/n19//ZWPPvqI/fv3l9o6atSowTnnnEPnzp1LbQ0VgfTcdHq/15sV21eQHJ3MJ9d9Qrt67f7cxQ4BP+DMoZEmm1JbIxZMJo4lIpM67f5lD3wIhT4YdhGc2xTHOgrO+JZOBNKGRmI+YfZ1ojA90JQyh4qNctL4/f7Tmob7e0rz3hWFnUd20nNqT37a9xP1EuqxaMgizql+zp+7WDqwGuMW8+IISS5OkoBkjUUGfZfaGhd8tg4++B5iIuAfV9jHRGEslwL7vEicNjSxFBU1CyNsddAJnGUUFRtFqWT8euBXur/bnW2Ht3F2tbNZNGQR9RP/xJRcPyY+sw6nG4AMQQvH6YUWjbFIfEHHBLWcKciH2+22NA90h7pVcDLPonBSnKU9jYwpECGLt4+JQtvSlGFUbBSlErFy10p6Te3FgZwDXFj3Qj657hOqxvyJdsh5wCZgM0ZAZFQAQb8XYMRA2tP4MFZHOEZsDgPx8O9P4ec9cGYNuP8KnLYzOfZ50jVA4j1e+/qSLIB9XG202WYZRsVGUSoJ/930X66ecTXZhdn0atKLmf1nEhtxklWPXkzB5kaMWEjTS/m4MO4zmU8jlf1SvBmNEQy7k8CvG+HJj82lXx0MUZZ9jRgct5nMrPHa50nn6HD7+lGY1Oekk/0vopxOVGwUpRIw/afpXP/R9RT6CxnScgiT+kzCE3YSZoAXkwSQhhnvXIDjxpLYCzhzasTKycUIRwTG3ZVJYAZNoQeGvA+5hXD9BdCtKUZEpFZGREriMeCkQkvcR6Zz1kLfZmUc/d+jKBWcl799mbsX3o2Fxb3t7uXZ7s/idp1g85ACIAPYhtN+xhu0X0YH+DACIJM4/RiLw48RmGiMpRKHcYdlwxP/hZVboWFVeKk/jqUiLW1i7Ovl2PeSHmsJGPGRtOdkNFZTDlCxUZQKimVZPLLsEZ764ikAxncdz/0X3X/8QlhxjR0EdmLEwofTvVksGnn5i8BE4AiRxFuigq4nUzVjYc538NQCU1Mz5WZITLCPi8MZCR1sJUXiWDex9vXlenXQxlvlABUbRamAeP1eRn4ykonfTyTMFcbE3hO58dwbj32SjAHYBezHsSiCM7+Cp2uKGHhxRMeP0+pfMtCi7J+YbesyYMg08+u4y+DiM3CGoEm3AUlflmJNidHk2uvw2PuqYARKKfOo2ChKBSPPm8egDwYx+5fZRIVH8f4179O7ae8/PsGHsV72YFxluThTL0VoCnAKM2VYmbSI8eDEWDLsa0qXAEkYiDLnbD0EvV6GrHwYdAHc3wunTkZa2Mi1xGXnt+8n7WnicIau1cFp8qmUaVRsFKUCcTjvMFdOv5LPtn5GlagqzBs0j4saXHT0gwsxw8pkHIAMJROBkAC9/JRuyzJt04Vj8RRiRCAWIwySkZaPecvkw8486PIqbM+ADinw5g3gkjRnic9IwoHgCtonzTa99v3rY0RMKReo2ChKBWF35m56Te3Fj3t/pE58HRYNWUTzGs2LH+jFVP3vwinGlA8YsfBigvQSq/FgXvwRGNEREXJh3Fm59naZLePCCJDHXGvjQej1Bmw+COc1gPnDIEasGXBSmOVcGY4mXQfEyrJwhrAln+J/MOW0omKjKBWAjYc20uPdHmxO38xZVc9i8ZDFNKzSsOhBhRiR2YERFOmcnP27n3k41kQkxjUmRZXSFFOsILFoonFqbcIxYuU21/hqO/R5Aw5mw7n1YdG9kCjFmeJCk/EDwe1nJIYk2W3SgNPCWDVawFmuULFRlHLO97u/p9fUXuzL3kfbOm2Zf918qscG9dj3Ympj9mOEw4VxV7kw1otYJlE4o5eP2MdEYywYD+aFn43ThkbOy8Np+y+Witt8fWU53DcX8r3QqxnMuB7ipTATirrPgtcrTTw9ONM2fZg3Vh00KaAcomKjKOWYpVuWctX0q8gsyKTbGd348NoPiY+MNzt9GNHYjhEJyQgLTmGWF3sWToxFLAg3zhA0CdqHY8RF2sWIQLnsffb8mv0FcOs7MOcnc6mRl8CL10J4jn2+jADwBn2PCPqImIilE44RnkTMBE5NCih3qNgoSjll1vpZDP5wMAW+AgakDmDK1VOICItwLJOdGLeZuLRycNxlkkYsacmSaiz1M36c8QB59jlitXjs63twXGYF5lr+Apj8P7h/LhzKMe6yif2h/0U42WzSkkYKQaV3mrjgJPsNnJiNTORsgHZ1Lqeo2ChKOeT1la8z8pORWFjcecGdvNDzBdMVIAfYjXGbyZTMMIxYyFTLCByrJtfeJ/3HRBCO4HRcDsMZGQCOeyuPIr3KvvwF7v8Yvt5iDuvWDCZeD41i7Xsk4HQJiCGQDl2kvY2sQVxn8TjuufpB25Vyh4qNopQjLMviyc+e5PHPHgfgH53/wYMdH8TldRmB2YHjGhMLQQLwYTitY/w4LfulbsZnfxcxkRoX6RDgsa+TgBEIu8Dyh33w6GyYt96ssWY8vHAlDGgDLukMkGevRSr9g8c9y8eFERNx2xXa53gwHZ111HO5RsVGqTR4PB7OPPNMunbtSn5+/vFPCBH169enZs2aJ32ez+/jrgV38erKV3G73Lx++evc2uZW4yoTl1kYRgRcGGsi2HqQhpZ+TMfmcHu7CEwuTn2NC6eqX6yhIIGxIuDLNPjnElj4i1lfXCT89RK49wpIEHedxFvCKdrrTOpvJKMNjPiIwMTZH4nT1EbjNOUcFRul0hATE8Nll11G27Zt8fv9xz8hRERFRVG3bt2TOiffm8+Qj4Ywa/0sIsMiea/fe1ydcrXpwrwXx1IQsZCgvcRbJLYiIiJWze8TAOQawfGZbIw4RILXAx98C//+Er5LM4fERMBtF8PYLlBDREniMN6ga/ntfdE4WW4F9ncZJSDJAdJ9IB5IQd9UFQD9X6hUGsLDw6lXrx716tUr7aWcFEfyj3D1jKtZumUpCZEJzBkwh0sSLzETMrNwgv4unHoVGTQmw8fEchEBkEJNsVaC61yCM87CgGjIOAhvroGXl8K2Q2ZdybFwZ0e4swNUrWmvIxNHQMSiEQETURO3nAicFG1KnzURqzigEZoQUEFQsVGUMszerL1cNu0yvt/9PTVja7Kw/0Jae1vDbzjuJ0kltq2PQFqztI0BxwUlL/QcHPeZvAUkE00EJwc2H4EXlsCkLyHbzhA7qwaM/gtc3xliIjEuOUlhjsGZ0indAIKbaUo9jghecBGnNPaMsj9n4KRhK+UeFRtFKaNsSd9C93e7s/HQRhonNWbRFYtofLCxyRQTF5kUZobbP8WaESEpwOlrJi42+Yi4gNP/zBas77bDs/Pgw7Xgt91gXZvA6J7Qqzm4M3EEJBYnBiMWi7S1kQC/tLoRqyUWx60WbAGJODXGCJdSYVCxUZQyyI97fqTn1J7sydrDuTXPZUHHBdTcU9NxbeXhuLukGaUUVcqsF+lrJvGPTHufxEskIG8fY4XDkg0wbgks22Au6QmD6y+E0ZdCy3gc91gMTuKAiIn0QxPxkDRliQ2F40z4FOsn2IXmxvQ7a4Q22KyAqNgoShnj862f0/u93hzJP0Lnep2Z3Wo2CfsSzN/W4D5mksrswRGWYCHx4dTQROJMzpRr2OnPVh4sWAePL4D/pZk1JESbqv87z4c6NXA6BUg3Z8lukzoeaZ4pKc7i4ou0P2LNSHaauMukvscNVEOLNiswKjaKUoaY/ctsBs4aSL4vn34N+/FuyrtEZdv/zM+2D5Kq++A6Fanil2JNcU9JYoBkq/kIuNAsFyzeaGpkJLOsRjyMvhhu7wSJyRjRkGQDifdIN+dwnNRqyXSTin8RRikklaQAF0ZgJMYTPG2zlr02pUKiYqMoZYQ3v3+T2+bdht/yc1vKbbxS/xXCCDNiIS9tSUV249TASBW/VPuLdRGL0/4luJNyOPxvJzwwC5ZtNPeuEQcPdIMRl0KMdByQuhx7Hg2ROCJW6FyLWJxsM6/9uyQFxFI0bhMsUmH2z0aYWhqto6nQqNgoSiljWRbjvhzHQ0sfAuCxMx7jsXqP4SpwOdX3IiDBWWUue1vwvhjMiz44IQACArFtDzywAKb/z2yuEg1/uwzuuBhivRQt8szHsWjCg+4hlksWTjqztJ+RWTcyGkAsGrFmJOjvwnQEqIfTiFOp0KjYKEop4rf83LvoXl789kVcuPjPmf9hZO2Rzks8F6eVv4xNlsp8Ccp77H1Z9kWDs8JsayPHB08vgmcWQl4hRHng7i7wwEWQVAunUWewwEjAX9xjYfY9pNVNnL22bBzBiMQUYuZjhMWLMxQt3l5nHEZkknDa1ygVnhL9X71ixQq6d+9OjRo1iI+Pp02bNkyaNKnIMXl5eYwZM4batWsTHR1N+/bt+fzzz0tyGYpSLijwFTDkgyG8+O2LRLgimNFsBiOTRxoLIgvzEj+CIzDBfcuCuwNIHEZcZsH1Mh6YtxZSH4MnPzZCM6A1/PIkjO8PSVVwZsmIoEhwX1KYpb+a1NHI/BkpyJRx0AU4XQHkzeLBSRAIAxoCZwNVUaGpZJSYZbNmzRq6detGu3btmDhxIjExMcyaNYubb76Z/Px8br/9dgBuvvlmPvnkE5599lnOOOMMXnnlFXr06MHXX39N69atS2o5ilKmycrPot97/Vi8dTFxYXHMPns2XZO6OkIh6crS5l+C/+AMFpMMsWycDC4RHB/s3AejZsLsH8yulvXgP9dBx3o4LWQkwC+WFDhjBeQe0j1aij3jccYViFCJoMTZxwY3+wzHuMxq29fT2EylpMTEZvr06fh8Pj7++GPi4szko0svvZQ1a9YwZcoUbr/9dn788UemTZvGpEmTuPHGGwHo1KkTqampPProo8ydO7eklqMoZZYD6Qe4fNrlfHfgO6p7qrPgnAWcF32eSWN247SgEYtCalskxVncZRKEl+JNn/ndcsOb38B9H8KRPNMg8++XwaiOEJ6Ak/4c3CQzDKeiX6yXQpw6Ghn7LEkAHozoSK1MYdA6JMssGmPB1MKIkIpMpabExKagoACPx0N0dNH+EomJiaSnpwMwd+5cPB4PAwYMcBYQHs7AgQMZP348+fn5REZqtFCpoPhh65at9Jjdg1+zfqVRZCMWn7OYM60zne7HkTgxEqnoz8EITALOiGYp2rSvK9u27YKb3odPfza7ejeHV6+HelUwYiYCI21tZLBalH1/yUKTdYjoxNhrirfv58OJ58iaxLqKxBRn1rHPU5FRKEGv6bBhwwC466672LVrFxkZGUycOJFPP/2U0aNHA7Bu3TpSUlKIiSnahyI1NZWCggI2btxYUstRlLKDHbz/6buf6PB+B37N+pWWsS35qvlXnBl1plP/Ii6xLJwuAPIi99jbpcZG6mzs+hrLgsmroPl4IzTV4uC9W2COCI0IisyokXoXidH47f0xzjUDnQJig44TAaqCEZUqQeuLwsRkWgJNcFKyFYUStGyaN2/O8uXLufrqq3n11VcBMz/k9ddfZ+DAgQAcOnSIpKSkYucmJycH9v8REyZMYMKECQDs37+/pJatKKGlENgJK35ZwRWrriDDm0HH+I7MbTiXKv4qcBCnWFKyyGTmTI59jVicjDOpb7EIVPLv2wW3zoa5P5rDr2oObwyDGlUw4iQZZhIHkrHP0nEg2MIJjsmAU18jYiJxGelrZmFqZOpgssvUMaH8ASUmNhs2bKBfv36kpqby+uuvEx0dzZw5cxgxYgRRUVEMHjz4lK4/fPhwhg8fDkDbtm1LYsmKEjr8wCFgB3yy9RP6r+lPrj+Xq5KuYlrTaUTnRzvt/SWlWV724haLwslKC8cpsiwk0Bvtk3Vw02TYlwmJ0fDydTCkRZBBIdlkYiVJ6nHQjJrAvcTqEeFLsM+VRAQ5H/ucaph4TCJaRKEclxL7I/Lggw/i8XiYN28eHo8HgK5du3Lw4EHuvvtuBg0aRFJSElu3bi12rlg0YuEoSrkmB9gGHIS3d7zNzb/cjA8ft1S7hdfqvEZ4ZrgjGDJXRrLOCjECI7GQ4IaZIgIeyM6Ev74Fb3xlbtm5Cbw1BBrUwwiGVPRLxX4ERlyksDIGR4TEqpE0ZgunUaZkqEmsJgpHZBJQN5lywpSY2Kxdu5ZWrVoFhEa44IILmDZtGvv27SM1NZWPPvqInJycInGb9evXExERQZMmTUpqOUqICAsLIzIykoiI0uuWGBERQVhYGWyiVQjssT8F8OzmZ7l/8/0APFT/If6e/HdckS6nmaX0HZN+Y1E44iBdncFJOS4A8uGbnTD0/2DjPogIh39eDaO7gDuHojU3v6+ZiccZbiY1NNI8U9KYxV0nBZiRGJGJBGpi0peleaainAQlJja1atVi9erVFBQUFHkRffvtt0RFRZGcnEzv3r157LHHmDlzJjfccAMAXq+XGTNm0L17d81EK+OEhYXRsmVLhg0bRlZW1vFPCBHx8fE0b94ct7uMVAX6McWX24Ac8Bf4uX/j/fxr+78AeKHOC9xd9W5jsUh7mRic+Iz0IvPZ2+Xfa+LWslOQ88PgiQ/h6WVmxkyLujB1ELRoinn5iysMHMGRxIIC+9rROG4xubakO0fhxFwkvhOJsWJqoTUyyilRYmIzatQo+vfvT+/evRk5ciTR0dHMnTuX9957j9GjRxMREcG5557LgAEDuOeeeygsLCQlJYXXXnuNLVu2MHXq1JJaihIiwsLCOP/882nevDl+v//4J4QIt9tNTExM2bBu8oAdmEB/IRTmFXLLhluYsm8KHpeHtxu8zaDqg5x4i1gbkmIsg86kr5jEZ4LrVvJh1S64cTKs3QkuF4zpAX+/CiILcWIvIhDSM03EKx4nVVnSmINHDkhWm6RbS+1NHYwlo0PMlBKgxMTmmmuuYf78+Tz99NPccsst5OXl0bhxY1555RVuu+22wHGTJ0/moYce4uGHHyYjI4NWrVqxcOFC2rRpU1JLUUKEy+UiJiamWOp6pcSLEZjtBNKWs61srl1/LfPT5xPrjuXDxh/Sne5OMF5cW2Jx5OMkBgTHZ8Tq8ECeC578BJ5ZCj4/NKkBbw+ADk1x4jwiJJJEIFaTdIsGZ9SytL2R4kvJapN1uYEamLkyMvxMUUoAl2VZ1vEPK1u0bduWlStXlvYylMqIZI5tBzLs33PgkPcQV/x0BV9nf03VsKrMbzyfCxIucGa6ZOPESqS63sK438CZWCmCkQufbYHbpsOve4w1c08X+HtfiBVLRERLml1K92dpcJlv30fa2Yg4xQedA05bnGSMyMSjfcuUP8Wx3s2asKgoJ0oBsA/YjREEOxi/o2AHPdb1YH3OehpENGBRnUU0czeDw84xuHEq7CXcJXUrLoww2CJyMB/GzIDJX5vDmtWCSddB+4ZB1wCn6aV8l5TmgqDrSksbqYmRTs7BLrN4TBdm6f6sKCFAxUZRjoeFEY6d9k8puHTDL+m/0H1Dd7YXbic1MpVFZy+ibn5dJ94idTTgpDPH2NvByTLzgD8fJn8FD8yFg1km0+zhHnD/FRApsZ4CiraFCU4AkAB/DEbkJP1Z2uD4Ma4xyS5zY+Iy9XGsHEUJESo2inIs8jGWzH6c6ns7vvFt9rdc9utlHPIdokN0Bz6u+zHJecmOlSIpyzKXxouxPtw4QXk7x2H1drhjKny1yfzepRm8dh2cVdVeh5wj7jaZvBkRdE2pxZE1JmLcaIU4bjsRqnjMhMxkNMNMOS2o2CjK0bAwMZkdmNoUidXYacoLMxfSb3M/cvw5XFHlCmbUmkGMJ8ZJJw6u+hd3lkzclPTiMMg4Ao/Og1eWm3TmWgnw774wsB24JCsteEqmCyMuMonThSNCHnu7HC8joiXrLMI+ti7Gmim9UimlEqJioyi/JxdTmLkP88KW9jF2SvDU9KkM2zoMr+XlhvgbmFhrIp58jxObkdRhqakJD9pu18FYHnjnS7j/Q9h7BMLcZnLmE30gUeIr0vI/2DoSN1rwvBgZ/yyB/tign1IsCo41oxMylVJAxUZRBD+QjnGbZdq/H8a8mNMBF7yw7wVGbzddzMdUG8PTNZ/G5XaZuEkW5sUebM3kYqycWPv3fFizFe6YAV9uMLf9SxN4ZRC0rE3R7LJ8AoPQAh2aRXBEhGS7WC/S28yNMwsnDJPO3Ai1ZpRSQ8VGUcC8xHdjrBk3RYsbw8HKtXhw14OM3z0egOdqPMdfE/7qCIukFcvUS7Fkogm4vI5Y8PgseGmZqZmpEQ/P9oWhfwGXFFWKkPgx7rJc+yOZa9H2R/qqSZxGLBVJAJABaFHAGZjYTBmogVUqLyo2SuXGj4nN7MRpgHkY82LOML973V5uS7uNSYcmEUYYk+pO4vrk650+YzE445il51kmJkDvMZMzZ34Ho2fBrgxwu2DUJaZmpko0zshlmTmTgyMUMnxMEgLEopEOAJKlJtMxI3Cy3pKAFIw4KUopo2KjVF7ygF2YTDMZiyyxDztWk+vKZeCvA5l7ZC7Rrmhm1ZvFZXGXOdM0Cyma3izWh532vCkT7pgEi9aZ3RecAa8NgjYNcVKQwckwi7GvIUImHaFjcYaaBaczS8qzdA7A/r0+WjejlClUbJTKh2SabcfERcCxZg4TyCJLL0inz9Y+fJn5JUnuJOY1mkcHOjgxGCmqlPb90h7GDQVh8Mxc+MdCyPdCUgyMvxpuuRjcUtUPRbsJSMW/CJYMVRPryYVp6y8iJwkAMsxM0p0bYpIBFKUMoWKjVC6kbmYfTuW+jDqGQLbYruxd9NjUg58KfqJueF0WNVhEalyqY4HkUHSYmKQ258AX2+G2SfDzLrPr+ovg2QFQIzgVOgbjthMLRUYoF+BYI5E4Kc0ibB77PiJEkTgNN2thijQ1NqOUQVRslMqB9CHbQaD6nyzMi1l+95mfvxX+RvdN3dlasJVmEc1YVHsRDQobFG09E9SRWVKb0y24/y14024zc2ZNeP1a6NISIwb59j1lMmbwfBnpXSbV/yJE4HQFkNYyYumINZOMaTej1oxShlGxUSo+0tNsF8Z6kGFhhTitZ+xA+8qMlfTa1YsDvgNcEHUBn5zxCdWo5qQ2B49cst1ZVibM/BnumgJ7D4MnDB7sDWP7QJS0mJFWMjJFMxKndY24xbxB103AGWwmtTRi1UiMJhpToKmxGaUcoGKjVFyk6l8yzcIxwiJdmCUZwO6evCRzCVfvvJosfxY9Ynowq9os4txxTqaYFGraFhBhsCMXRk6Ej38yt/zLWTDhWji7IY4L7DDOwDSJz0h6tCQaROIMUJPriwUlXZojnfsGOjRrpplSTlCxUSomMm9mB+blLYkA0kZGXGh2AH5G/gyGpg2l0CrkuirXMbn2ZCIyI8zxwWOQ7aJLfw5M+Bbufw8y8yAhCp4ZBLd2AbcX4x4T6yUepymmZJfFUHQstLjWEnDGM4PTnVm6CsRhXGbJqDWjlCtUbJSKRy5Oh2ZwgvCZOLEOmQXjgpf3vMzd++7GwuKeKvfwr/r/wo3baTMjVpAtChsPwy2vw2d2B4Arz4NXroG6VXHa+UfZ64i17xWFk7UmSQLRFG2uKfU00h5HAv+WfUw9oCaOEClKOULFRqk4SIHmdpzgvT3cjHBMgoBkhHnBcls8uvNR/rHvHwCMrzGe+8Pvx5XrMuIgx9rJAD4vvLQEHnofcgtMB4D/3ADXtAOXjCGQQL/U2gRX94tVk40jKtjHiiCBERjpSOACqmJiM5KxpijlEBUbpWKQj2meKQWaUr+SidO0Ul72eeDL8TFy+0gmZEzAjZuJ9SZyU9JN5ngfznRL26X16wG48XX4erO53eCL4MV+UFUEQNKZpRuANM+MM/cL9DmTJpriRvPb2yU5QGIzXoxLrSHqMlMqBCo2SvkmeEyzxEVycTLMgptj+gAP5LnyGLxvMB9mfkiUK4oZSTPoE9fH6XEm3ZbzweeDFxbDwzMhrxBqJ8IbN0HvtjhWk6Quh+MkE4iQgFOQGTxzRroUxOFkpYXhWC8pmOaZwdlvilKOUbFRyi9e4AAmCUBSmj0YsYnGqYvxYyyLHDhccJgrt17JZ9mfkehO5OOUj+no7WjOlUC9HcjfsBuGTYCvNprb3dARnu9vugEUacApWWrhONMwJQmhMOiYOHtNEvDPxempJrGkJLRmRqmQqNgo5ZM8TBLAEQIxmECMRDLPgi0ID+xx7aHX5l6szltN7bDaLGq0iBaxLcxLP8iV5bfglUXwwHQTm6mdCBNvgsvb4gxH8+IkEIThiIdYNB6MuIhLzBt0j0h7zfFB50ais2aUCo2KjVK+kED8VgLNLonAWBHipsqnaNPKGNiUv4nuad3ZXLiZMyPOZHHyYhr5Gpn9ERhXnAe27oIbJ8Gyn83thlwELw2EJOk/JkF7ezZNwD0nCQVizcg8meCEASnSjMfJkHNhijJroy4zpUKjYqOUH7yYJICDOFle0p/MwnFnidvKLp78IeMHem7ryT7fPs6LPo/5KfOpUVjD6XEWDZYL3l4Od71j6maqx8Mbw+Dqdva9JOnAwim4lOB/8LyZKHu7F2fmjFgz0klA3HXxmASAODTLTKnwqNgo5YNcTBLAEZx2M2LNSPaYDC6TYLwblucup8+OPmT6M+kW2Y0Pa31IvDveaRHjgf17Yfg7MHuludVV58EbN0CNRByh8WFiMbk4VlMsTlt/F07rf+xzpOWM9DKTbLRwTFymKvo3UKk06B91pWxjYUYy78S4raRtjPyUfmGR9u9eArGTD7M+ZNCOQRRYBQxIHMDb1d4msjDSWDMx5hqf/AA3v2l6miVEw8tDYGgncAXPi5GgvoURGBknIB0CZN6MD6drc3BPM4nbRANVMEKjbWaUSoaKjVJ2EbfZIYxAgLFsxKUl7qvgtvz2y/+Nw28wcudI/PgZlTSKF+u9iNvnNoIAZKfDfe/D6/81v3dqBm+PgIbVcIL/MjNGAv+yPQqnp5nEh6RORsY2B3dwlnPqY8RGRwAolRAVG6VskoNJaZaWM/LSFmvGrpnBj7Ei7HRiy23x931/57EDjwHw96S/81DsQ7jyXYFGlqu2wuBX4dfdEBEOT/WD0VdAmIxVBic+4ydgBZGPEQqpp4ki0CstMM45zD5O5sxEYdxlddAEAKVSo2KjlC1kiuYunJf3EZyXvQw7k1iKWBhe8Pl83L3tbl45/Apu3LxW9zWGJww3lkkB+Pzw3EJ4eAZ4fXBOHZh2N7Sqi5NwUIixTPJxujCH4bjppOeZDyfNWeIwMRhLSObMxGGsmQQ0AUCp9KjYKGUHL2buzE6cMckiABL/kOwu6XcWZY7J9+Zz/Z7ref/w+0QSybTq0+hbpW/AvbbjMFz/Giz7xfx+Zzd4ehBEyzUkuUDcYdJ1QBpkBo8DkELRGJyRBT6ctjjROP3M9G+YogD6V0EpK+ThuM1EWCQmIskA8rKXzC87Cy3Tm0nfnX1ZkrOEBHcCc+rO4RLXJYFEgI/WwC1vwKFsqJEAb42CXmdjhEF6k0kHZrFmwoPuFYm5li/ovhK3icKZUePGpDM3sH+qNaMoAVRslNLFwjS/3IoRljzMS1rGJ2fZx+URqIkJNLn0wz72cdn2y1iVt4qaYTVZmLKQ1tGtIRNyC+HeV+H1ZeYSvVrC5FugZrJ9nWwc60XmyUg3AmlHIwPM4ux1RONkv0k6tIhONUxxpiYAKEoxVGyU0sMP7AV241grwS/zMJyXvVTqZxMo5tySu4UeO3qwoWADjT2NWVR1EY1djQH4aR8MfBHW7TRJAM8Mhbs6gUvccpEYocizrylFmVIQKj3WvDj1M1JT48EZZgbGipHYjKIoR0XFRikdCjBusyP2d7FwpOWLZJ5JurG40GyLY+2RtfTY0YPdvt20jmrNggYLqFVQCysfJnwK97wLeQXQtDZMHwGtm9rXEWtGqvqDxzT7KTqRM7jvWR5GkHw4Vo5aM4pywqjYKKefTEw3gByM6yy4zYxkmIGTERbcR8wHX+R/Qe/tvTnsP8wlkZcwu+FsEiMTyciE4W/CzP+Z02/qbPqaxUp2mRRfyggCicmIC01iNmLNeO3jwZmFI8IXnGmmKMpxUbFRTh8Wpq/ZLpyXfzbm5Z1L0VkyYThuLanI98KcrDkM2DOAfCufvvF9mVplKlF5UXy3BQa+AFv2QXyU6Ws2qBvGWsnBccNJirKLosWg4MRmxI0maxRrRpIFkjB1MzqeWVFOGBUb5fTgxcRm9mNe4n6cqZg+nFRmC+NGk5d+0Gjm/zv8fwzfPRw/fm5Lvo1X6ryCOyuMFxbD/TOg0AfnnQHTb4MmNTECJbUvmfY9pOZFKvz9ONaT9FkTK0pa//vsfVGYTLMEdAyAopwkKjZK6MkDtuGkNUvr/Tycin1xU1kYiybP3m6B5bd4+sjT/G3P3wB4JOERnqjyBBnZLm78D8yxG2je1R2euRkipauAxGGkKWY2xa2ZYGGRpACpo5F06Gj7/HpB61UU5aRQsVFCh4VJAJCRzQUYq0WmWh7BiYFIPU1Y0E8X+HP9/HX3X3kh6wVcuPhP7f8wMnIk322Ea1+FrQegSixMugmuPs++pwhIJk5bf7FMonGKQqVDtG05BYQllqKjChpgepqpNaMofxoVGyU0+DEuMxnZXIDTRVkq7cWakemaElOxzy9wFXDj/huZljUNDx7erfMu/atey0tz4b53jdvs/MYw46+QkmBfuwBjfURgrJE8ivYzc2PcZ9KCxo0RQnDSm8WqScAIjfY0U5RTRsVGKXkKMS1n0nGKJqVzcibGwgCnmaaIgQTjCyCrMItrDl7DoqxFxLnj+KjaR1zg68a1z8Csb83pd10Kzw6AiEScdjI5GHEIdstJZ2ixVsRCiQi6dzxOfY8L4zKrhqY0K0oJoWKjlCw5GLeZBOQl4ywcIyRS0+LDGaEsrV/seM0BzwEu33o53xV+R/Ww6sxvNJ+I7W1p+yJs2Avx0TBpJFzTAqeHWgzOjBjpQhAe9FMESKwUaVMj54q7LQYzPVMy1hRFKRFUbJSSIwPjNhPXlVgb0jlZgv8y/MyDY43YacbbXNvosaUHvxT+QqOwRiyuvZivvjmTERNNkWbL+jDrTjizsX09mdAZHJcJnkcTnCTgxulMEInjZhO3XnU0pVlRQoSKjXLq+IEDGNdZDualno5TJCnJAV7Myz0W50+ePb4ZC9YdWkePQz3Y6d1Ji8gWzK6ykPHv1GHiZ+bQGy+BV66zOzUXYtxgcZhEg1yKWiMyxEzqeKRIU6ZpyqgAceOlAOKOUxSlxDmhv1o7duzgzjvvpH379sTExOByuUhLSyt2XF5eHmPGjKF27dpER0fTvn17Pv/882LH+f1+xo0bR6NGjYiKiqJVq1Z88MEHp/wwSingxbjN0uzfg91XwVX3ErSXAk1xodmTM78u/JqOBzqy07uTjlEdeTf+S6591ghNpAfevBUm3QXR8fZ98nCaZcbZ1w6eMSOtZyIwIpSAySirgonPJGCsm6rAWZhCTRUaRQkZJ/TXa+PGjbz//vskJSXRsWPHPzzu5ptvZuLEiTz55JPMmzeP2rVr06NHD1avXl3kuEceeYTHH3+cUaNGsWDBAtq1a0f//v2ZP3/+KT2McprJAzZjZtD4MG60LPtnJqauJgsn00zcasHB+yPwyaFP6Lq5K+n+dK6MvpK/7v0vnccmsGozpFSHrx+Gmy/C6WcWixGVfHsdct14nC7M4kLzYoQn194u9Ts+TLuZFJxYj6IoIcNlWZZ1vIP8fj9ut9GlN998k1tvvZUtW7bQqFGjwDE//vgjrVu3ZtKkSdx4440AeL1eUlNTadq0KXPnzgVg37591K9fn7Fjx/LEE08Ezu/atSv79+9nzZo1x11027ZtWbly5Uk9qFLCZGKsmTzMSz/C3haBeclLcoB0VRZrRzo7A1gwZecUbjp0Ez583Jh4Mw2/fIMnPgzDsuDyc+GdeyApDCeTTHqVeYO2SXJBPEZ4CnDayxRirBjZJv3O6qEzZxSlhDnWu/mELBsRmmMxd+5cPB4PAwYMCGwLDw9n4MCBLFq0iPx888/QRYsWUVBQwJAhQ4qcP2TIENauXcuWLVtOZElKaWFh4jObMILix2mYKR+7jxkWTssZSTkuINCm5rkDz3HDoRvw4WO05wn2T5nI4x+YXOMn+8HcOyFJsswigq4LTrBfXGgiPuJGw94mdTwS56kKNEZHNSvKaabEEgTWrVtHSkoKMTExRbanpqZSUFDAxo0bSU1NZd26dURGRtKkSZNixwGsX7+elJSUklqWUpJ4gT04jTTDKJrWDOZFn4eTFODBefm7gVjwH/bzwKEHeO7wcwDcn/cOH742hI17ISkWpt0NPc+yz5HUZPljJbUwck/JQJNiTUmtDrfvK5ZQBFALk3GmsRlFOe2UmNgcOnSIpKSkYtuTk5MD++VnlSpVcLlcxzxOKWPI/JkDFB0D4MW8vEVQZP6LWBNenFHL0VDoLuTWw7fydtbbhBPO7buW8Z+3/0JOPrRuCB/eCSkpOM058yma1ox93XycuIwnaLsfp8+Z/OmOQccBKEopU25SnydMmMCECRMA2L9/fymvppKRjRnbfJiis17AcW0V2N/FmpFMsXCMdZENOd4crj1wLZ9kfUK0P57Lv1nNy4vPAGDoX+D1oRAThVP7EodxuUlas0zZjMVYN7lB95Lu0YWYWIx0DkhEG2gqShmgxMQmKSmJrVu3FtsulopYLklJSWRkZGBZVhHr5vfH/Z7hw4czfPhwwAShlNNEBrAF8yL34sROpLWMZJZJ8aZkfMmYAHv/Idchrth9BV/nf01SfhOazF7JrJ8TCQ+Dfw+CUVeCSzLMpKuA7XYLCImIihRphuMUZMbZ34MHrdUGaqBuM0UpA5TYX8PU1FS2bNlCTk5Oke3r168nIiIiEKNJTU0lPz+fTZs2FTsO4JxzzimpJSmngh/YixGaHIwVkY2xNDIxYnLE/oibzML8iZI5MNnm3B0FO+i4tyNf539Nzf3diZmwjv/9nEiNBPh0LNzZDVyS1iwdACStWbLYJK1ZXHPiQpMiTRnAJm68M4CaqNAoShmhxP4q9u7dm8LCQmbOnBnY5vV6mTFjBt27dycy0jSl6tmzJx6Ph6lTpxY5/91336V58+aaHFAW8GLiM9swQhNmb5MeZhFBH5n9IinOBTht/sPgl/xf6LCpA+sL1lP353s5PHEBOw9G0DYFVo6Hi8/EyVKT8+JwMsvEWvJjhEZcY7GYAs1YHCGKwWSbnWkfo9lmilJmOGE32qxZswBYtWoVAAsWLKB69epUr16dTp06ce655zJgwADuueceCgsLSUlJ4bXXXmPLli1FhKVGjRrce++9jBs3jvj4eNq0acOMGTNYunRpoBZHKUUKMPGZ/ZiXdRZGUDJxrAoJ2gsywjkPp74mEr7N/5bL917OQW86dT6bws7PhgJwQ0cTn4mKt68ps2XETReBEZ4YnOLN4M4A/qBjC+17+3A6NZebSKSiVB5OqKgTKJY9JnTq1Inly5cDkJuby0MPPcS0adPIyMigVatWPP3001xyySVFzvH5fIwbN46JEyeyZ88emjZtyqOPPso111xzQovWos4QkY3pCJCJ0xVZ0ouzMCJSaH8X4cnBiEIERqjsIWiLshfRb18/snPCqT77v+z/9XzC3PCvwXBXF3BJ/YsUX0q6dCKOJRVrf8+3v4vISJFmor2+GIzQaO2MopQqx3o3n7DYlCVUbEoYC5NptglHMGTKpgT+xZqR+TQRvztGUpNzYGruVIbtHYZ3f2MS3l/Gkf21qRoH798BXVri9EdzYdxm0vZfamgkJpOAI3CSYSZFomCEqApGaIqWdymKUgoc692sDofKjoVJBNiGsSwkvVjiMcGTNCWGko1T1S81NS6z/YUjLzA6fTT81ouIDz/gSF40LevD7HsgpRZO25gYjFWUY1/DZd9PstAk2C/WjGTDSdwoCkjGjATQP8WKUubRv6aVGR+mG8BWzAveh3nJi0srG2d0slgVEpsR68Ouc7FcFg8deYhxh8bBV/fhWvIMBZaLfufD27dCrFgs4haTTsxZGAGSe/w+rdmFE/yXOI0bqItJBtBsM0UpF6jYVFYKgY2Yjs3BMRnJCAOnM0ABTnpzBM6fGpfZ5y30ctuB25iUPhXXx1Ow1gzFAp7oBw9fBW4RCbFOpFbGjREUcc9l2+vCPk46NkuhZ6R9fEOcNjSKopQLVGwqI7kYoTmCkwQgPc6kc7Mbp+WMtH8B4/aSKF8k5IbnMnDfQObu+w7XjM+xdlxATCS8cyP0PR+ni4C4zyTBIDijTQTFhdMpwItJACjACIsX4zarhyOGiqKUG1RsKhsZGKHJxInPiCBIPzFJCsjFERzJ8pIYzRHI8GfQ50AfvticjWv6KqwjdWhYDebcC63q4sRbxEUmlpEMQBNLB4o27BSXXXBacx1Mkab+iVWUcon+1a0sWMBB4DecmpYcnJkvBZgXew7GVSWV+BKkL8C89OOAcNgdtZseu3uwdk1TXLOnYBVG85cm8MEIqFHbvqfMrpFq/3ycuA84Q9BkoFqwMEn2WQTGmklG05oVpRyjYlMZ8ON0BCjEWCySuuzBSWWWIWT5OFaJuNGigXQgCzZ4NnDpnu5s/fR6WP4EFnBTJ3htGETk48RXgoelhdn3lZgMOCnTdhEobpzuARZGjBrY2xRFKdeo2FR0vJiJmtsxIuKyf0rQX36KdSEjliMwgpOJ02U5FlYdWUXPHVdz4KNnYd0A3C6L5/q6uOdKcIXhZLVJ5pm4yez2NUTZ+/NwLKxw+3dx0UVgMs20W7OiVBhUbCoyeZj4zC6cF790BhDEspC043z7uOCuAAVm26d8Sp/tI8h5bxbsuoD4KIvpd7i47AyM1WK72LAo6j4rwIiNhVO748G4ygpxxjVL4L82ZtCZuNsURSn3qNhUVLKBX4BDONlmwcWS4k6Tgk0RiCj7WBEdu4J/Zt5Mrlv/LN5pyyCzHo2qWsy700VqE5wOBMHuM+lt5sZJRJAPQdvEChIhaggkofEZRalgqNhURDKAtZhgv7SFkQaZUk/jxxkJEIVxl0n6MziJAT54NedV7vjff+HDZVAYy0VNLD4a7qK6pDJLhlmwcMh2yXCLwlg4Mn9GRjuLxROH1s8oSgVGxaYiYQF7gJ8xwmFhxEbSh104bWEkEUAabUrml0y7LAQrxuKxI4/z90W5sOQDwM31F1pMGOYiMhqn3YwIilgzkukmcZ9gK0WyzkTwfJj4TAO0fkZRKjAqNhUFPyYJ4FeMwMjwseCkAAsnI0xmxEhcRFr4R5uPL93H7UfuZuKH58IPNwPwzz4w9gqXGXQmA82y7PsFjxyQ/mbROAkCMlxN3GUS+K+J9jdTlEqA/hWvCHgxiQC/4aQtS2Bf3GUFQdvdOCMCsjAvfrtjM37Ii8rj2qwRfPzODZDWmQiPl2k3htOvFU6WWR7G9SW1MuJCk3odd9BPaXETFvTTwrjNqqP9zRSlEqBiU97JB37CjG8O7s4scRrpbybbpL2/vOAlvoLZdoQjdP/1Dr5952E42JTk+AIWjYqgbWP7OBEp6XEmwhH7u+1Su+PHGRMgrrYooBE6f0ZRKhEqNuWZHOBbYCeOVWHZ28NxMs/EjebC6dYcixGcbIw7zAV78vfQ8Ze/sXHa85BbjbPq5rJkeDT1JagvSQPxmIQC6TYg1pOkNcfa95PU5gSMAHkw1lCKfZ6iKJUGFZvyyiFgBSZOI0Ijlox0CJACSankh6KjBCSwnwmbozbT/pv/sG/26+CL5JKzc5h7QwzxVe1jszBCIY0744OuL8Wh4jorxOmFJvcOx0kEkKaeiqJUGlRsyiPbgcXAfpx6GKnCF7EpxMkUi8SxPkSEIJD6/IN/NR3nLSZ7+b8BuLlDDq9fFUO4uL9i7GvLaAARD3CslWj7etLUM8q+r4hdHUyxphZqKkqlRMWmPOEH1gD/xVgS8kIXFxkUHXRmz5shDydDLQbH+oiCxXzGFR/sonDN/eDyM/7KAh7oFGPu5bfPk1HMkkEm26TdDDhp1TKbRupn3DiJABqfUZRKi4pNecELfAmsxAhGPE46M0E/g1/okg0WjjMgzUegcHLK4Y8Z9mECVtogwjx5vN8/jL6tohzrw4OxknJxeppJV4AYjJDJrBppgSP389jnpGDm0iiKUqlRsSkPFGDiMz9jLARp+2Id5VixMMSqEMS15QMOwzjXdB6c1QoOnE1M3GE+uyGetnXdRsAkXdnCBPeD06lluzTujMZYMTH2MeI2i8cITUxJ/UdQFKU8o2JT1vECPwBbgSo4GWe/J9iiEVeaBOxlBHMEWPkWtx+ZzBsfXQ7ZNalZfS/fDapBg5oux2LJxelpFomTYSZJAOI+k24DMhRNOjtXx7jOtGOzoig2KjZlnTT7I3Us4GR5BRP2u+8iDB4CiQP+MD+9d/0f8+cOBm8MZzfczte965MYbR8j1on0J5OBZ3Lt4MB/DI5LLgzHZVcHqI8mAiiKUgQVm7LMEWAD5gWf/wfHuIJ+ivtM4ihS+xIG+b582q+dzg+LbwbcdGm+hYUdUvCIS0xmzEThWCR2/U2gWBSctjYy+0Yy08IxbrMaaEcARVGKoWJTVvFh2s8Ez54JbmopP4MtCKnul+JKWwgOezJp+ekitn17AwA3ddzMm63PwCXTOL0YC0Wy18QiEleaxGX8ODGYaBxRigEaY0Y3K4qiHAUVm7JKJmZUgLR4EYJTnOV3sWhEYHC+byvYT+u5a0j/+RpwF/D3y3bx8DlnOP3SZK5NFM48G+nGXBB0ffmT4g9akx8TRzoTYwUpiqL8ASo2ZREL2I2T9eUP2v57ywaMsBTYP4MSAn7wbaPDtP3k7eiKO/IIb/fLZEjNRs51InFSoqUAVEQr2J3msb+H4UzwBJMI0ISiHZ8VRVGOgopNWaQQZ8hZXtD23wtNOE78pMDeFgnkwPxDv9DnHQ++g+fhSdjNfwd56FSjrhObkfMlfdmi6NROqZeR4L9YN2Jl1cXEaLT1jKIoJ4CKTVmkgKIFm8HxGSmk9OG0qPHgDCULhzf3/sDwKXWxsmsQW3Mj/xtYg7OjE5yEASnIlLk0IiiSaSbpzjJ3JriexoURGc04UxTlJFCxKYvk4Li63By9FY1kgUm8JtJse+ynb3hyanMojKPGGT+ydlBTakRHOfGZ39fPeDGCVYBJEojASRCQFjVivYRjEgHqoBlniqKcFCo2ZZFg68X1uw84IgNGDPLMz5tWfcHkD9qDFc6Zrb/ixysvJNoV5jTgDMdp3CmiI9uzceIyrqB90kwzDmgKVAvlgyuKUlFRsSmLSIpzsFUT7DoT8ci3f/pg0Y4tTP6gA1hhXHTx53x+RUfcLldxi0ayzYKbaIq7TuI0YvXIn45E4Gy0x5miKH8aFZuySPBY5WALJhunOWYEzqjnSOhRM4WBV32O17KY2bGTESIZLyAWTSFOfEYmbEqasy/oPtIhwIOxZFrgdBVQFEX5E6jYlEWCZ8NIw8vgYL5koUXjCFAMvHfxxY5QyfhnnP2BAk4vDsGWk6Q7ixjVBc7BiI+iKMopoGJTFhFrREYxQ2D+DLn2/mwcgZCMNGmiKSOYgy0acNrKiEUjH599nRgcwTkDE6PR1GZFUUoAFZuySAROK38RAxEf+SlD08TqEMGJxREYidFE4qQ6S4GoIFllEqeJAppjss4040xRlBJCxaYsEo6ZI7OPolljORgxyMKp4pckARkHLdMyJT06uH2NnCMjoi2MkOXb94sD2gAN0KmaiqKUKPpv17KIC6hK0cJKCyeTTOIvEsyXwH88TuEn9vGxOG1pfDjWTXC3Zw+mx1kHzBwaFRpFUUoYFZuySgzG2gi2bCRZQPbbHQOIw2k3E23/HoEz4ExazUQFfSQulIWxZLphEgIURVFCgLrRyioyiCwHp3VNcIZaPkZU8nBGBBQGHRuGMzbAR9FmnsJ+oBFwOZAUyodRFKWyo5ZNWSYKqIVj0Ui1fxjGgpFEgWgcCyYWZ9aMuM7AsZAkIy3bvnY/VGgURQk5atmUdapiLJbdOP+33BgLRhpqWhiBwT7WhyMuMjYgeFRBJkZoemBcdYqiKCFGxaas4wJq2t/3BG2XkczSKNNn/y4doCUJQJCpnPnAWcCF6BwaRVFOGyfkRtuxYwd33nkn7du3JyYmBpfLRVpaWpFjVq5cyfDhw2nWrBkxMTE0aNCAwYMHs2XLlmLX8/v9jBs3jkaNGhEVFUWrVq344IMPSuSBKiRujCXSGBOnkW7MERjBkAJOmbQp2yURwIPjYusAdESFRlGU08oJic3GjRt5//33SUpKomPHjkc9Zvr06axbt4677rqLBQsWMH78eL7//nvatm3L9u3bixz7yCOP8PjjjzNq1CgWLFhAu3bt6N+/P/Pnzz/1J6qouDAur8aYrLFoTOxGYjkiMpFB36W/WgymkWYnTGcAjdQpinKacVmWZR3vIL/fj9tt3lBvvvkmt956K1u2bKFRo0aBY/bv30/16tWLnLd161ZSUlJ4+OGHefLJJwHYt28f9evXZ+zYsTzxxBOBY7t27cr+/ftZs2bNcRfdtm1bVq5ceUIPWGGRaZ6HMRlrUsApWWvhGJGpYn/UklEUJcQc6918QjEbEZpj8XuhAWjYsCHVq1dn586dgW2LFi2ioKCAIUOGFDl2yJAh3HTTTWzZsoWUlJQTWVblxoPJIkvCaWkjcRrJOlMLRlGUMkJIX0c///wz+/bt4+yzzw5sW7duHZGRkTRp0qTIsampqQCsX78+lEuqmEjW2e9daIqiKGWEkL2SvF4vI0aMoHr16tx8882B7YcOHaJKlSq4XEV7oiQnJwf2K4qiKBWLkKU+jxo1iq+++opPPvmEpKRTrxqcMGECEyZMAEx8SFEURSk/hMSyGTt2LBMmTGDSpEl07969yL6kpCQyMjL4fV6CWDRi4fye4cOHs3LlSlauXHnU+JCiKIpSdilxsXnqqad4+umneemllxg6dGix/ampqeTn57Np06Yi2yVWc84555T0khRFUZRSpkTF5qWXXuLhhx/mqaeeYtSoUUc9pmfPnng8HqZOnVpk+7vvvkvz5s01E01RFKUCcsIxm1mzZgGwatUqABYsWED16tWpXr06nTp1Yvr06dxzzz307NmTLl268M033wTOTUhICFgsNWrU4N5772XcuHHEx8fTpk0bZsyYwdKlS5k7d25JPpuiKIpSRjhhsenfv3+R30eOHAlAp06dWL58OQsXLsSyLBYuXMjChQuLHCvHCE899RRxcXG8+OKL7Nmzh6ZNm/L+++9zxRVXnMKjKIqiKGWVE+ogUNbQDgKKoihlj2O9m7X0T1EURQk5KjaKoihKyFGxURRFUUKOio2iKIoSclRsFEVRlJCjYqMoiqKEHBUbRVEUJeSo2CiKoighR8VGURRFCTkqNoqiKErIUbFRFEVRQo6KjaIoihJyVGwURVGUkKNioyiKooSccjlioFq1asTGxlK9evXSXkrI2L9/f4V+Pqj4z6jPV77R5zt50tLSOHDgwFH3lUuxgYo/06aiPx9U/GfU5yvf6POVLOpGUxRFUUKOio2iKIoScsqt2AwfPry0lxBSKvrzQcV/Rn2+8o0+X8lSbmM2iqIoSvmh3Fo2iqIoSvmhXInN9u3bueaaa0hMTCQhIYG+ffuybdu20l7WSTNr1iz69etHw4YNiY6OpmnTpvztb38jMzOzyHHp6enccsstgVTvbt26sXbt2lJa9anRs2dPXC4XDz/8cJHt5f0Z58+fz8UXX0xcXBwJCQm0bduWpUuXBvaX5+dbsWIF3bt3p0aNGsTHx9OmTRsmTZpU5Ji8vDzGjBlD7dq1iY6Opn379nz++eeltOI/ZseOHdx55520b9+emJgYXC4XaWlpxY470efx+/2MGzeORo0aERUVRatWrfjggw9Ow5McnRN5vpUrVzJ8+HCaNWtGTEwMDRo0YPDgwWzZsqXY9ULyfFY5ITs722rSpImVmppqffTRR9bs2bOt5s2bW2eccYaVlZVV2ss7KS688EKrf//+1rvvvmstX77cev75563ExETrwgsvtHw+n2VZluX3+62LLrrIqlu3rjVt2jRrwYIF1sUXX2xVrVrV2r59eyk/wckxbdo0q1atWhZgPfTQQ4Ht5f0ZX3/9dSs8PNy65557rMWLF1sLFy60xo8fb3388ceWZZXv5/vxxx+tqKgo65JLLrFmz55tLV682Bo+fLgFWK+++mrguOuuu85KTEy0JkyYYC1ZssS6+uqrraioKOuHH34ovcUfhWXLllk1atSwevXqZXXv3t0CrC1bthQ77kSf58EHH7QiIiKsZ5991lq6dKk1fPhwy+VyWZ988snpeaDfcSLP99e//tXq0KGD9corr1jLly+3pk6dajVr1sxKTk62tm3bVuTYUDxfuRGbF154wXK73daGDRsC2zZv3myFhYVZ//rXv0pxZSfPvn37im17++23LcD69NNPLcuyrNmzZ1uAtXTp0sAxGRkZVlJSknXnnXeetrWeKocOHbJq1qxpTZs2rZjYlOdn3LJlixUVFWU9//zzf3hMeX6+v/3tb5bH47EyMzOLbG/Xrp3Vrl07y7Isa/Xq1RZgTZo0KbC/sLDQOuuss6zevXuf1vUeD/lHnGVZ1sSJE4/6Mj7R59m7d68VERFhPfroo0XO79Kli9WiRYvQPMBxOJHnO9p7Jy0tzXK5XNYjjzwS2Baq5ys3brS5c+fSrl07mjRpEtiWkpLCRRddxJw5c0pxZSfP0ap2zz//fAB27twJmOetU6cOnTt3DhyTmJhI7969y9XzPvDAAzRv3pxBgwYV21een3HSpEm43W5GjBjxh8eU5+crKCjA4/EQHR1dZHtiYiJ+vx8wz+fxeBgwYEBgf3h4OAMHDmTRokXk5+ef1jUfC7f7+K+6E32eRYsWUVBQwJAhQ4qcP2TIENauXXtUt1SoOZHnO9p7p2HDhlSvXj3w3oHQPV+5EZt169bRvHnzYttTU1NZv359KayoZPnss88AOPvss4FjP++2bdvIyso6rev7M3z55ZdMmTKFV1555aj7y/MzfvnllzRr1ozp06fTuHFjwsPDadKkSZFnLc/PN2zYMADuuusudu3aRUZGBhMnTuTTTz9l9OjRgHm+lJQUYmJiipybmppKQUEBGzduPN3LPiVO9HnWrVtHZGRkkX/4ynFAuXof/fzzz+zbty/w3oHQPV+5EZtDhw6RlJRUbHtycjLp6emlsKKSY+fOnTz66KN069aNtm3bAsd+XqDMP3NBQQG33XYb9913H02bNj3qMeX5GXft2sWGDRsYM2YMY8eOZfHixVx66aWMGjWKF198ESjfz9e8eXOWL1/OnDlzqFu3LklJSdxxxx28/vrrDBw4EDj+8x06dOi0rvlUOdHnOXToEFWqVMHlch3zuLKO1+tlxIgRVK9enZtvvjmwPVTPF/7nl6qUBFlZWVx55ZWEh4czefLk0l5OifHMM8+Qm5vLQw89VNpLCQl+v5/MzEzeeust+vbtC0CXLl1IS0tj3Lhx3HXXXaW8wlNjw4YN9OvXj9TUVF5//XWio6OZM2cOI0aMICoqisGDB5f2EpVTZNSoUXz11Vd88sknRxXZkqbciE1SUtJR/yX4R/8aKQ/k5ubSu3dvNm/ezGeffUa9evUC+471vLK/rLJt2zaeeuop3nzzTfLz84v47vPz88nIyCA+Pr5cP2PVqlXZsGEDl156aZHt3bt3Z+HChezevbtcP9+DDz6Ix+Nh3rx5eDweALp27crBgwe5++67GTRoEElJSWzdurXYufJ88i/h8sKJPk9SUhIZGRlYllXkX//l6bnHjh3LhAkTePvtt+nevXuRfaF6vnLjRktNTWXdunXFtq9fv55zzjmnFFZ0ahQWFnLNNdewcuVK5s+fT4sWLYrsP9bzNmjQgLi4uNO11JNm8+bN5OXlMWTIEJKSkgIfgOeee46kpCTWrl1brp9R/Nd/hNvtLtfPt3btWlq1ahUQGuGCCy7g4MGD7Nu3j9TUVLZs2UJOTk6RY9avX09EREQxn39Z50SfJzU1lfz8fDZt2lTsOKDMv4+eeuopnn76aV566SWGDh1abH/Inu9P57GdZp5//nkrLCzM2rRpU2Dbli1brPDwcOu5554rxZWdPD6fz+rfv78VFRVlLVmy5KjHfPTRRxZgLV++PLDt8OHDVnJysjVq1KjTtdQ/RXp6urVs2bJiH8AaMmSItWzZMiszM7NcP+O8efMswJo5c2aR7d27d7fq1atnWVb5/n/YqVMnKyUlxcrPzy+yfdCgQVZUVJSVn59vff/99xZgvfXWW4H9hYWFVrNmzawrrrjidC/5hPmj1OATfZ69e/daHo/Hevzxx4uc37VrV6t58+YhXfuJ8EfPZ1mW9eKLL1qA9dRTT/3h+aF6vnIjNllZWVbjxo2t5s2bW7Nnz7bmzJljtWzZ0kpJSSlWC1DWGTFiRKDm5Ouvvy7ykWI/n89ntW/f3qpXr5713nvvWQsXLrQ6depkJSUlFSvAKi/wuzqb8vyMfr/f6ty5s5WcnGy99tpr1qJFi6xbbrnFAqzJkydbllW+n2/mzJkWYHXv3t2aPXu2tWjRIuuOO+6wAGv06NGB4wYMGGBVqVLFmjhxorVkyRKrX79+VmRkpLVq1apSXP3RmTlzpjVz5szA379XX33VmjlzZpF/DJzo8zzwwANWZGSk9a9//ctatmyZNWLECMvlcgUKekuD4z3fe++9Z7lcLqtnz57F3jvr1q0rcq1QPF+5ERvLsqytW7daffv2teLj4624uDjryiuvPKp6l3UaNmxoAUf9PPbYY4HjDh48aN14441WUlKSFR0dbXXp0sVavXp16S38FPm92FhW+X7Gw4cPWyNHjrRq1KhheTweq0WLFtbUqVOLHFOen2/+/PlWp06drGrVqllxcXFWq1atrFdeecXyer2BY3JycqzRo0dbNWvWtCIjI60LLrjAWrZsWekt+hj80d+5Tp06BY450efxer3W3//+d6tBgwZWRESE1aJFi2JW7unmeM93ww03nNB/A8sKzfNp12dFURQl5JSbBAFFURSl/KJioyiKooQcFRtFURQl5KjYKIqiKCFHxUZRFEUJOSo2iqIoSshRsVEURVFCjoqNoiiKEnJUbBRFUZSQ8/8mu8wRqmj8uwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAGQCAYAAAB4X807AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACB4klEQVR4nO2dd3hUZdqH75lk0gsJvRNBQUMTUQEXkSJFBRVEQECxISIWXFHWrrsuWHZtawM/UBQEQQVE2iJgwbagCIKFFnongfRkZs73x3ueORODFMmQ9tzXNVcmp75H4fx4usuyLAtFURRFCSHu0l6AoiiKUvFRsVEURVFCjoqNoiiKEnJUbBRFUZSQo2KjKIqihBwVG0VRFCXklJrYbN++nWuuuYbExEQSEhLo27cv27ZtK63lKIqiKCHEVRp1Njk5ObRq1YrIyEj+8Y9/4HK5ePjhh8nJyWHNmjXExsae7iUpiqIoISS8NG46ceJENm/ezK+//kqTJk0AaNmyJWeeeSZvvPEG9957b2ksS1EURQkRpWLZdO3alby8PFasWFFke6dOnQD47LPPTveSFEVRlBBSKpbNunXruPLKK4ttT01NZebMmcc9v1q1ajRq1CgEK1MURVH+LGlpaRw4cOCo+0pFbA4dOkRSUlKx7cnJyaSnpx/3/EaNGrFy5cpQLE1RFEX5k7Rt2/YP95WK2PwZJkyYwIQJEwDYv39/Ka9GURRFORlKJfU5KSnpqBbMH1k8AMOHD2flypWsXLmS6tWrh3qJiqIoSglSKmKTmprKunXrim1fv34955xzTimsSFEURQklpeJG69OnD/fddx+bN2/mjDPOAExgacWKFYwfP740lqQoyp+gsLCQHTt2kJeXV9pLUU4jUVFR1KtXD4/Hc8LnlErqc3Z2Nq1atSI6OjpQ1PnII4+QmZnJmjVriIuLO+b5bdu21QQBRSkDbNmyhfj4eKpWrYrL5Srt5SinAcuyOHjwIJmZmaSkpBTZd6x3c6m40WJjY1m6dClnnXUWQ4cOZfDgwaSkpLB06dLjCo2iKGWHvLw8FZpKhsvlomrVqidtzZZaNlqDBg344IMPSuv2iqKUECo0lY8/8/9cuz4riqIoIafc1NkoilL2qfVcLfZm7y2x69WMrcme+/Yc85gOHTrw1VdfHfOYW265hXvvvZdzzjmHf/7znzz44IMndX5cXBxZWVlFtmVkZDBt2jRGjhx5nKcozmWXXca0adOoUqXKSZ23fPlyIiIi6NChw0nfs7RRy0ZRlBKjJIXmRK93PKEAePPNNwNlFf/85z9P+vyjkZGRwauvvnrUfV6v95jnzp8//6SFBozYnOx6j7eW04WKjaIo5RpJKlq+fDmXXHIJ11xzDc2aNWPw4MFIsu0ll1zCypUrGTt2LLm5ubRu3ZrBgwcXOT8rK4uuXbvSpk0bWrRowZw5c45537Fjx7Jp0yZat27NmDFjWL58OR07dqRPnz4BYbvqqqs477zzSE1NDXRAAdNyS3qIvfvuu1xwwQW0bt2a2267DZ/PB8DChQtp06YNrVq1omvXrqSlpfH666/z/PPP07p1a7744gvS0tLo0qULLVu2pGvXroGZYMOGDWPEiBFceOGF3H///Zx55pmBzit+v58mTZqc9k4s6kZTFKXC8MMPP7Bu3Trq1KnDRRddxIoVK/jLX/4S2D9+/Hj+85//sHr16mLnRkVF8dFHH5GQkMCBAwdo164dffr0+cNg+Pjx4/npp58C11q+fDnff/89P/30UyAleNKkSSQnJ5Obm8v5559Pv379qFq1auAaP//8MzNmzGDFihV4PB5GjhzJ1KlT6dWrF7feeiuff/45KSkpHDp0iOTkZEaMGEFcXBz33XcfAL179+aGG27ghhtuYNKkSdx1113Mnj0bgB07dvDVV18RFhZGYmIiU6dO5Z577mHJkiW0atXqtHdiUctGUZQKwwUXXEC9evVwu920bt2atLS0Ez7XsiwefPBBWrZsSbdu3di5cyd7956cW/CCCy4oUnvy0ksv0apVK9q1a8f27dvZsGFDkeM//fRTVq1axfnnn0/r1q359NNP2bx5M9988w0XX3xx4FrJyclHvd/XX3/NddddB8DQoUP58ssvA/v69+9PWFgYADfddBNTpkwBjADeeOONJ/VcJYFaNoqiVBgiIyMD38PCwk4qXjF16lT279/PqlWr8Hg8NGrU6KRrSYKnDC9fvpwlS5bw9ddfExMTwyWXXFLsepZlccMNNzBu3Lgi2z/++OOTuu/x1lK/fn1q1qzJ0qVL+e6775g6deopX/9kUctGUZRKhcfjobCwsNj2w4cPU6NGDTweD8uWLWPr1q3HvE58fDyZmZl/uP/w4cMkJSURExPDL7/8wjfffFPsmK5duzJr1iz27dsHmGbEW7dupV27dnz++eds2bIlsP1o9+zQoQPTp08HjFh27NjxD9dzyy23MGTIkCIWz+lExUZRlBKjZmzNMn09MB3kW7ZsGUgQEAYPHszKlStp0aIFU6ZMoVmzZse8TtWqVbnoooto3rw5Y8aMKba/Z8+eeL1ezj77bMaOHUu7du2K7He5XJxzzjn84x//oHv37rRs2ZJLL72U3bt3U716dSZMmEDfvn1p1aoVAwYMAEyM5qOPPgokCLz88stMnjyZli1b8s477/Diiy/+4Xr79OlDVlZWqbjQoJR6o50q2htNUcoGP//8M2effXZpL6Nc4fP5qFGjBnv27DmpRpanysqVKxk9ejRffPFFiVzvaP/vj/Vu1piNoijKaSQ1NZVbbrnltArN+PHjee2110olViOo2CiKopxGfvnll9N+z7FjxzJ27NjTft9gNGajKIqihBwVG0VRFCXkqNgoiqIoIUfFRlEURQk5KjaKopQYtWqBy1Vyn1q1SnZ90pDzWMyePZv169cHfn/00UdZsmTJKd979erVzJ8//6TP27VrF9dcc82fuudbb73Frl27/tS5JY2KjaIoJcZJthI77dc7EX4vNk8++STdunU75eseS2yO1VanTp06zJo160/d88+IjXSdLmlUbBRFKbdkZ2dz+eWX06pVK5o3b86MGTMA0+Dy3HPPpUWLFtx0003k5+cXO1dGCwDMmjWLYcOG8dVXXzF37lzGjBlD69at2bRpE8OGDQu87P/ouo0aNeKxxx4LjCf4fXpzQUEBjz76KDNmzKB169bMmDGDxx9/nKFDh3LRRRcxdOhQ0tLS6NixI23atKFNmzaBuTVpaWk0b94cMEIwZswYzj//fFq2bMkbb7wRuMfTTz9NixYtaNWqFWPHjmXWrFmsXLmSwYMH07p1a3Jzc4+5/gceeIA2bdowfvx42rRpE7juhg0bivz+Z1GxURSl3LJw4ULq1KnDjz/+yE8//UTPnj3Jy8tj2LBhzJgxg7Vr1+L1ennttddO6HodOnSgT58+PPvss6xevZrGjRsH9h3vutWqVeP777/n9ttv57nnnity3YiICJ588kkGDBjA6tWrA+1n1q9fz5IlS3jvvfeoUaMG//3vf/n++++ZMWMGd911V7H1/d///R+JiYn873//43//+x8TJ05ky5YtLFiwgDlz5vDtt9/y448/cv/993PNNdfQtm1bpk6dyurVq3G5XMdcf9WqVfn+++956KGHSExMDIxOmDx5com0uFGxURSl3NKiRQv++9//8sADD/DFF1+QmJjIr7/+SkpKCmeddRYAN9xwA59//vkp3+t41+3bty8A55133gmPNujTpw/R0dEAFBYWcuutt9KiRQv69+9fxJUnLF68mClTptC6dWsuvPBCDh48yIYNG1iyZAk33ngjMTExwNFHEhxv/SKAYJp2Tp48GZ/Px4wZMwJjDE4F7SCgKEq55ayzzuL7779n/vz5PPzww3Tt2pUrr7zyhM4NHop2sqMEjoaMNziZ0QbBYwCef/55atasyY8//ojf7ycqKqrY8ZZl8fLLL9OjR48i2xctWnQKKy++ln79+vHEE0/QpUsXzjvvvCID3/4satkoilJu2bVrFzExMQwZMoQxY8bw/fff07RpU9LS0ti4cSMA77zzDp06dSp2bs2aNfn555/x+/189NFHge1/NDrgRK/7R5zISILatWvjdrt55513jhqo79GjB6+99lpgRMJvv/1GdnY2l156KZMnTyYnJwc4+kiCk1l/VFQUPXr04Pbbby+xLtEqNoqilBg1S3giwPGut3btWi644AJat27NE088wcMPP0xUVBSTJ0+mf//+tGjRArfbzYgRI4qdO378eK644go6dOhA7dq1A9sHDhzIs88+y7nnnsumTZsC20/0un9E586dWb9+fSBB4PeMHDmSt99+m1atWvHLL78UsTTECrvllls455xzaNOmDc2bN+e2227D6/XSs2dP+vTpQ9u2bWndunUgZjRs2DBGjBhB69atsSzrpNY/ePBg3G433bt3P+FnPBY6YkBRlD+NjhgIPatWreLee+/ls88+O633fe655zh8+DB///vfj7pfRwwoiqJUEFauXMl1113H+PHjT+t9r776ajZt2sTSpUtL7JoqNoqiKGWUtm3b8ttvv532+wbHsEoKjdkoiqIoIUfFRlEURQk5KjaKoihKyFGxURRFUUKOio2iKCVHLcBVgp8SHjEgLF++nCuuuAKAuXPnnvZsL4Bx48bRpEkTmjZtetwOAHfddVeRxqHlEc1GUxSl5CjpkQAncT3LsrAsC7f75P4N3adPH/r06XOSCzs11q9fz/Tp01m3bh27du2iW7du/Pbbb4SFhRU7duXKlaSnp5/W9YUCtWwURSm3pKWl0bRpU66//nqaN2/O9u3buf3222nbti2pqak89thjgWMXLlxIs2bNaNOmDR9++GFg+1tvvcWoUaMAiowTAGcMwe7du7n44otp3bo1zZs354svvjildc+ZM4eBAwcSGRlJSkoKTZo04bvvvit2nIwUeOaZZ07pfmUBtWwURSnXbNiwgbfffpt27doB8NRTT5GcnIzP56Nr166sWbOGs846i1tvvZWlS5fSpEmTIh2OT4Rp06bRo0cPHnroIXw+X6AHWTCjR49m2bJlxbYPHDiQsWPHFtm2c+fOwHoB6tWrx86dO4ud+5///Ic+ffoUaadTXlGxURSlXNOwYcMiL+7333+fCRMm4PV62b17N+vXr8fv95OSksKZZ54JwJAhQ5gwYcIJ3+P888/npptuorCwkKuuuorWrVsXO+b5558/5WcJZteuXcycOZPly5eX6HVLC3WjKYpSrgluWLllyxaee+45Pv30U9asWcPll19+UuMDwsPD8fv9APj9fgoKCgC4+OKL+fzzz6lbty7Dhg1jypQpxc4dPXo0rVu3LvY5WvJB3bp12b59e+D3HTt2ULdu3SLH/PDDD2zcuJEmTZrQqFEjcnJyaNKkyQk/S1lDLRtFUSoMR44cITY2lsTERPbu3cuCBQu45JJLaNasGWlpaWzatInGjRvz3nvvHfX8Ro0asWrVKq699lrmzp0baOW/detW6tWrx6233kp+fj7ff/89119/fZFzT8ay6dOnD9dddx333nsvu3btYsOGDVxwwQVFjrn88svZs2dP4Pe4uLjAeIDyiIqNoiglR01KNiPtJEcWtGrVinPPPZdmzZpRv359LrroIsCMB5gwYQKXX345MTExdOzY8aizZW699VauvPJKWrVqRc+ePQNW0/Lly3n22WfxeDzExcUd1bI5GVJTU7n22ms555xzCA8P55VXXglkol122WW8+eab1KlT55TuUdbQEQOKovxpdMRA5eVkRwxozEZRFEUJOSo2iqIoSshRsVEU5ZQoh5545RT5M//PS1RsZs2aRb9+/WjYsCHR0dE0bdqUv/3tb8UCcenp6dxyyy1Uq1aN2NhYunXrxtq1a0tyKYqinAaioqI4ePCgCk4lwrIsDh48SFRU1EmdV6LZaM899xwNGjTgn//8J/Xq1eOHH37g8ccfZ9myZXz11Ve43W4sy6J3796kpaXx8ssvk5SUxLhx4+jcuTOrV6+mXr16JbkkRVFCSL169dixYwf79+8v7aUop5GoqKiTfleXqNh8/PHHVK9ePfB7p06dSE5O5oYbbmD58uV06dKFuXPnsmLFCpYuXUrnzp0BaN++PSkpKTzzzDO89NJLJbkkRVFCiMfjISUlpbSXoZQDStSNFiw0wvnnnw8Q6Pszd+5c6tSpExAagMTERHr37s2cOXNKcjmKoihKGSHkCQKfffYZQCAfe926dTRv3rzYcampqWzbto2srKxQL0lRFEU5zYRUbHbu3Mmjjz5Kt27daNu2LQCHDh0iKSmp2LHJyckAFWJug6IoilKUkLWrycrK4sorryQ8PJzJkyef8vUmTJgQ6NKqwUhFUZTyRUgsm9zcXHr37s3mzZtZtGhRkayFpKSko1ovhw4dCuw/GsOHD2flypWsXLnyqLEhRVEUpexS4mJTWFjINddcw8qVK5k/fz4tWrQosj81NZV169YVO2/9+vU0aNCg3M/ZVhRFUYpTomLj9/sZPHgwS5cuZfbs2UUGGgl9+vRh586dgcQBMG3BP/7449M+B1xRFEU5PZRozOaOO+5g5syZPPTQQ8TGxvLNN98E9tWrV4969erRp08f2rdvz5AhQ3j22WcDRZ2WZXH//feX5HIURVGUMkKJjhho1KgRW7duPeq+xx57jMcffxww8Zn77ruP2bNnk5eXR/v27fn3v/9Nq1atTug+OmJAqchYloVlWfj9/jLZBsblchEWFobL5SrtpShljGO9m3WejaKUMXw+H+vWreOHH344qZHGp4tatWpx4YUXUqtWrdJeilLGONa7WSd1KkoZw+v18u233/LSSy8FsjTLEhdccAF16tRRsVFOChUbRSmDZGdns2fPHg4cOFDaSynGgQMHKCwsLO1lKOUMnWejKIqihBwVG0VRFCXkqNgoiqIoIUfFRlEURQk5KjaKoihKyFGxURRFUUKOio2iKIoSclRsFEVRlJCjYqMoiqKEHBUbRVEUJeRouxqlUiKdlctiH1qfz4ff7y/tZShKiaJio1RKsrKyWL16NWlpaWVOcLxeL6tWrSI/P7+0l6IoJYaKjVIpSU9P54MPPmDu3Lll0oo4cuQI2dnZpb0MRSkxVGyUSklhYSH79+8vk5aNolRENEFAURRFCTkqNoqiKErIUbFRFEVRQo6KjaIoihJyVGwURVGUkKNioyiKooQcFRtFURQl5KjYKIqiKCFHizorOOnp6aSlpZGVlVXaSylGZGQkDRo0oGbNmrhcrtJejqIoIUTFpoKzYcMGXn/9dX755ZfSXkoxatSowc0338xll11GWFhYaS9HUZQQomJTwTl8+DBr1qxh1apVpb2UYtStW5crrrhC28UoSiVAYzaKoihKyFGxURRFUUKOio2iKIoSclRsFEVRlJCjYqMoiqKEHBUbRVEUJeRo6rOiKEpJ4wOCp42HUen/aa9ioyiKcqpYQBaQaX8Kgva5gQggCogB4u3fKxkqNoqiKH8WH3AI2IcRGem65A766caITybGwvEAiUAyEH06F1u6qNgoiqL8GXKAjRixcWHepsHNMFz2J1h4hP3AEaA6kIQRoQqOio2iKMrJshdYD3hxRMSHIzYu+7v8jMBYNIX2OR4gD9iFcb/VtbdVYFRsFKWM4XK5qFGjBnXq1MHjKXtvoLPPPpu4uLjSXkbpsQ1YjXl7huEkA/hxxMZt7wu3P16M0LgwcZt8nKSBTPuaDajQgqNioyhljPDwcC666CIGDx5MYmJiaS+nGFWqVKFBgwalvYzSYTvwDRCJERlf0D6Jz4j7zI+xXiyMsETZ+7Ps88GITiSQDezECE4FzVpTsVGUMobL5aJ+/fp07NiR6tWrl/ZyFCED+ALz1vRhrJVga0aQJIEwjJCE28dl29+jMQkDhThWTiQmhpMOVA3hM5QiFVRDFUVRSpACYAmQixEXL45VE5wIIG6zMByBycSJ0/jt34Uce1u+fb29GGuoAqKWjaIoyrHwA6uAHUBNHKEJTgAg6LvEayQpwMIIiBfjSvNgXGmx9rFi2Vj290NAndA/1ulGLRtFUZRjsRX4EePyKsAIjQiK/PRg/unusbd5MYKSjRErsWqy7PMjMFYNOO44SSA4bH+vYIRUbHr27InL5eLhhx8usj09PZ1bbrmFatWqERsbS7du3Vi7dm0ol6IoinLypGOsmhyMYPgwVooIiXwy7WPyMRZKOEZQpLNAPo4wZWMEJtw+JwzjnvPb1y+wj6lghExs3nvvPX788cdi2y3Lonfv3ixcuJCXX36ZDz74gMLCQjp37syOHTtCtRxFUZSTIw9j0WTguLi8GOtDLJngj4UjFLkY4RCrJw8jLC57W459vFxXstd8GKtGrJ4KREjEJj09ndGjR/Pvf/+72L65c+eyYsUK3nnnHQYNGkTPnj2ZO3cufr+fZ555JhTLURRFOTl8wK+YSn8/RiBcGCEQ4cjBicWIa02Exxe0H4yV48cRHLe9LxwjUC6KuuiyKZ7lVs4Jidg88MADNG/enEGDBhXbN3fuXOrUqUPnzp0D2xITE+nduzdz5swJxXIURVFOHAtTZLnD/i6NNcVaCcZnb8/BuMsKCdTVfLp3O83/bxnZGYVGaESE8sx+vDhCI+dJ4oG44yoQJS42X375JVOmTOGVV1456v5169bRvHnzYttTU1PZtm0bWVlZJb0kRVGUEycd2IIRAxEGibcEE5wcIIkBeUA2LD+wlh4veln3VWcun7PCSXH24NTYhON0EijAcat57eur2PwxBQUF3Hbbbdx33300bdr0qMccOnSIpKSkYtuTk5MB44I7GhMmTKBt27a0bduW/fv3l9yiFUVRhGyM+0xe/lIDI26z3KDv2RhxEWvEDXjg04LP6fbGIXyHUoiv8xvv9Wljri01OuE47rVga0a+H61QtAJQomLzzDPPkJuby0MPPVSSlwVg+PDhrFy5kpUrV2pVtaIoJY8X2Iyp5BeBkayx4D5n8nFT1I1WAB/lfUSPD9bg29KJqLgMfritIbWjEpwizwL7PAtj3cj4AUFEpwIOWyuxos5t27bx1FNP8eabb5Kfn09+fn5gX35+PhkZGcTHx5OUlHRU6+XQoUMAR7V6FEVRQoqFidHswynWlKQACd6HU7RbgBwD4IcJORMY8b9vsL6dhDvMy+Jb42mcGGasmCgcd1l40PdYjGBF4nSQluJPaXtTQSgxsdm8eTN5eXkMGTKk2L7nnnuO5557jh9++IHU1FQWL15c7Jj169fToEGDyt1NVjltREZG0qBBA1q2bIlllS2fRUREBHXr1iU8XBt8nDYOYcQmuCAzH2ckgATy5QOBIk7LZfEP7z94dOscmPclAK/1C6NjY/vAQvsTgSNc0fY2cZnJR7pHJ4T0aUuFEvvT3Lp1a5YtW1Zse+fOnRkyZAg333wzTZo0oU+fPkyePJnPPvuMTp06AXDkyBE+/vhjrrvuupJajqIck+TkZAYMGEDHjh3LnNi43W4aNmxITExMaS+lcpCDcZ9JfUshThNNC2NlyBhneWPagXx/oZ+7XHfxStYMmLEKfFHcdiEMP9fluOAkEUAsmkKcrs/+oOtJ3CccqID/5i4xsalSpQqXXHLJUfc1bNgwsK9Pnz60b9+eIUOG8Oyzz5KUlMS4ceOwLIv777+/pJajKMckJiaGVq1a0apVq9Jeyh/iclUwP0pZxIcRGmmOGYFjiXhxrBsPJjYT5ErLd+dzg/8GZnhn4Zr5X6wjDWjfEF68GiczLRon/pKPMwY62GUmXaFFiGpiBK6CcdrtdLfbzbx587jvvvsYOXIkeXl5tG/fnmXLllG/fv3TvRylEqMv80qOhZkhcwQjJtKTLIeiA9EkUC8dBCIgMzyTvq6+LLGWELH03xSkdaZmLMwcCJHBb1URGBESERUfRcdIy08/UC8kT1vqhFxsjuaiSE5OZtKkSUyaNCnUt1cURTk6hzBjmb04vcnEsgnDcX1JN2e7keZ+/34u81/GSvdKEtffyOEVowlzw/sDoa7MqonAsVyC4zUyakCKQ4PFJgdoBpS9eXklgkYgKwFutxu3u+zlUbrdbrUulNIhD9MlQFKR5a+HFHKK20ssEjcQA2kFaXQP684G9wbqHehC+uw3AXimB1ycYl9Dmm4GZ51J0acIjyQGuHEmeiYCTUL4zKWMik0Fp3bt2vTq1YtmzZqV9lKKkZycTOPGjVVwlNOLFzM2QOpbsjAve2kRI0F7mcZpF2CuzV9LD08PdrOblvntKJixkB0Fbq5pBqPPC7q+WEXBIiZuM2lLI403xdqxgPOpkLEaQcWmgtO4cWNuu+02CgoKjn/waSYsLIwqVaqUSatLqaBYwB5MS5pCjPvMrvwvEsTPw8yvyQXi4MsjX9Lb25sMMrjY34k6Hy9m+n4PTavCpD7gktEAv3efReIUbgZnsomoifvsUqCC16qr2FRwoqOjiY6OPv6BilIZOIIRGxGGMJzRAGDERmIqEUA4zM2Zy4DcAeSRx9VhV9Nt1Qzu+MlDjAc+6APx0l1AYj3Bvwe7z36fDJCFEaUuwJmhfOiygYqNoiiVgzwgzf7uxrzsMzGurBycehgZGZAOk7yTGH5kOD58DI8czvADr3LRAtM24PXLIbUuztgBF066s3QY8AV9l95n2fY5UUBHoEVoH7usoGKjKErFx4/JPMvFiEk2zhhnmSnjwbSPyQcr2uKZI88wNmssAA97HuavEU9y/hQX+V64tR0MvQDHVSYNO/Nx2s9I/7Mo+6cPIzqJQBWMNdOKCtcD7Y9QsVEUpeJz0P4UYITAQ3HLw46r+PP83HfgPp7Peh4XLl5KfIk7wkcxYCJs3A+t6sKLV9nXicAIWIz9EbGRN6sPIzaRGJHxYCyfasC59u+VBBUbRVEqNlmYNGdJRc7BxG7C7H0eArU2hWGF3LT/Jt7NeRcPHqZUncLAsIG8tgJmroG4SHh/KERXwZk7IyFRaWuTjxGXcPsYaT0Ta98zHmhj/16JULFRFKXiUohxn/kwIpCFIzoRGGvEtj6yC7Ppt68fi3IWEeuK5aP4j7g05lJWb4XRM8zlJgyFs2rZ14nBCIbEbCwCSQW4cZptxmHcbNH2vlSgEja3V7Gp4GRnZ7N//37y8vKOf3CIcLlcJCYmUrVqVTyeSuQ3UEoXCzMyQOpoInBiNFLaFQFkw0HrIJfvvZxvc7+lWlg15teez/ne88nKgAFvQL4Xhv8FBp2HM23Tj9PjTEYCRNvbJW4TjpP+7AEaA3VOw7OXQVRsKjgbN25k6tSpbN68udTW4Ha76dq1K/379w9MZFWUkHMEY9XI6GYZdObCJAjYFfzbMrfRY28Pfin8hYbhDVlcczFnRZ8FFtzxFvy2F1rUhRcGY8RJxg2IdSTXlkJO+V0sG0mxrg40otIkBPweFZsKzr59+1i2bBkrV64stTWEh4eTlJRE7969S20NSiUjD9NkUwoqD+PEUMR9lgvrfevpsacHO7w7aO5pzsKaC6lLXciHKd/BlG8gJgJm3AzRUvkfb1+zACNacTjtacBpsCmutEiMu+0sKlVCwO9RsakElJV5LWVlHUoFx49xn4kYiAUSjtP3zANfH/yaK3ZcwSHfIf4S/RfmVptLUmQSeGFDGoycbC738g1wdmP7XLGIIu1PIU4KtXSIttOnA90EIjFpzpUsIeD3qNgoilKxyAD22t+jcHqcSSylEOZnzeeabdeQa+XSO743MxrMIDo3GvxQ4IJBb0N2Pgw8D268CGegmXSIDi7UDO4OLRlqkhbtwowMqIQJAb+nknoPFUWpkORi4jTirsrEJAhIkoAF7+x9hz6b+5Br5XJjzI18mPwh0d5oI0wWPDQdVm2BRtXh9WHgyqFo/Uy0ff14jABF2duCf5eMtNpAXZyEhEqMio2iKBUDH6bvmbSEkVY0YmV44F/p/+L6vdfjw8cD1R/g/xr+H+FWuBGiHFjyMzy3AMLc8N4dkJiMcX+5KNrjLBcnI03uLcPWIjExoTigAeo/stH/DIqiVAzS7Y+kOYMRBMvEC8emjeWZPc8A8O8a/2Z0rdHmGLvL84FcuP51s+nxvtCuEU5MJjg5wI8zB0dSncXNJvU2kcAZOAWfioqNoigVgGyM+8yNM/AsHzgCXreXW9Nu5a30twgnnLfqvsXg6MFGGOxAv2XBrS/D7gz4y1nwt14E3Grk2/eQZp1SOxM8o0biQuJiq4vGaX6Hio2iKOUbcZ9JkWUGRnBckOPKYcCWAczLmEeMK4YPGn5Az7ie5pwjBHqlTfoCZn8PCdHw7nAIk55nsRhrxk4sCNTSSAdnCyNKYTjilATUOl0PX35QsVEUpXxzEGN1ZGLcZ3bFfnphOr039GZF9gqSw5OZf8Z8Lgy70JmgmQhkwcatcPckc6lXh0PDOgTcb+Rg3GNi0RRi4jEy7lmy3YLrahrY+5UiqNgoilJ+ycEUb4JxX9nD0HYe3kmPn3uwLncd9cLrsfjMxZwdc7axVnwEBpx5o2HIBDvN+UK47kKcLs0FmOOzcGIvXvueUfb3Aoz1I2nOjdA4zR+gYqMoSvlE3GcWRmjSzfdfjvxCj597sK1wG2dHnc2iWouoT30jEj6ckc8eGD8Xvt0M9ZLh1aHgyrevJ5X/IjpRGMtFss/icFrSSDFnbYy1pBwVFRtFUconBzGWRz4Bi+W7gu+4bP1lHPQepF1cO+Y1nUfVwqrGCpFKfzdwBFbtgifeN5d66y5Iqm5fS7oEROP0QPPidAAIbsLpt6+ZiInTaD3NH6JioyhlGJ/PR0ZGBkeOHMHv9x//hBARERFBUlISsbGxuFxl4I2ai+kSkI954UfB4j2L6ftzX7J92fRK6MXMJjOJ9cSat9wRnPTlCMiNgaFvgNcHd/WAri3sfR5zLfJwugFg3yfM/kiqcwROckB99G16HPQ/j6KUYXJzc1m0aBGLFy+msLCw1NZRp04d+vfvz/nnn19qawjgB3bjDCnLh/e2vMcN62+g0CpkaPJQ/q/O/+HJ9Dgdn8OCjnfBI+/Dz7uhaW0Y1xsTl4kz+wJdAtwYdxsYayYGIzBiJUnspz4apzkBVGwUpQyTn5/P6tWrmTlzJrm5uaW2jqZNm9KuXbuyITaSfeYCjsBLG17i7q13A3BvzXt5ttGzuHE7dTBS2e8DDsOX2+HfH4PbDVPugZgaONM7ZcCZG8dNJhZNQdD2CJw0Z52acUKo2ChKGceyLPx+f6l2zbYsq2x07c4H9pufVrbFI1sf4amtTwHwzBnPMCZpjBM3icHEX2SejAeyM2DYf0wR59+uhgvOtI9NwHGViaD4cCZyuuxPrL0djDDVRZt+nSAqNoqilA/8mOyzHPB6vdy+8Xbe3P4mYYTxZpM3GVZ9mKm1EfeWGyM0hQQac46dCZv2Q4t68Gh3HJcYOC6yGPtjYayZOBzLBvv6ERj3WSWeT3OyqNgoilI+OAxkQG5YLtf97zpm75tNlDuK9xu8T++E3kZUwjDWjAcjFlLp74fPNsJ/FkB4GLx9N0TaRZ2B+IzddYA8nOab4LjTvDjxn6oYa0g5YVRsFEUp+xQA+yGjIIMrv76Sz9M/p0p4Fea1nMdFERc5ForEaHw4ggPkZMDNL5vvD/aDcxvb1w2e3unH6egscRpwEgVkfxxQE01zPklUbBRFKdtYwH7Ynb6bnl/0ZE32GupE1mFR6iKaJzY3YiHxFhfGUsmkSKrzQ/Ng0z7jPnvoiqBrSyqzhVNHI263aByXnB8nNVrHBvwp9D+Zoihlm2zYsGkD3b/tTlpOGk1jm7Ko+SIaFjR06mdycLoyyxjofMz459/gxU/MjJrJoyDComjigPQ8C7aO7AadeHEKPCOAGjjp0MpJoWKjKErZxQur1q2i14pe7C/Yz/mx5zO/xXyqeaoZQZAAfRjGmnFTZJBZfjrcbGefjbkazjsLJ/AfnHnmx8RvxLqRjLMYTOEm9r7qoX3cioyKjaIoZZZP13zKVUuuIsubRfeq3fmg2QfERcQ5EzjFzSUt/m1rRiyWp2bBzzvhrNrwWH/7orZrLTB/RjLP8nHm0RTiuNGkB1o9tJvzKaAZ4oqilElm/TiLyz65jCxvFgNrDeTjdh8T54kzVom0qcm2vwe7wOxGC2u3wbg55vubN0NUPk5fMxnzLJM1pXOAWDSF9seNEbVaOBaO8qdQy0ZRlDLHa/97jTvm34GFxV2N7+L5+s/jznQ7TTc9GIGQ+EuwxeEHXy7c+qrpfXZ7D+jYBiMeUpcqnX/ycQL/wVls0ZisMy9meJp2CThl1LJRFKXMYFkWjy9/nJHzR2Jh8VTTp3jhjBdw57md4WQe+xOOEQIJ8ov7zA2vL4RvN0DdZBg/1L64dHx2Y2pk4u2PGxOPSQj6KVZOBKZLgLrPThm1bBRFKRP4/D7uXHAnr618DbfLzRut3uCW5FvMC1+EQiZienEC/NGYTLQI8/uOQ/C3WeaaLw+CBHugWsBVJqnNHpx5NeCMEsi3f4/AuM8iQ/rYlQYVG0VRSp18bz5DPxrKzPUziQyLZHqr6VxV/yoTU5GBZ7k4rq4snOmYwY0yPWbEc2YuXHUBXN3J3l6IU4Rp2efH29u89vXtjtDE2cfHYjoFKCWCio2iKKXKkfwjXDX9KpalLSMhIoG57efSKbGTEYHDOF2YCzECA0YwxLqRrs6FMO8b+PAbiIuCl28JOteHUx/jx1gvPpx5NDIArQAn2aAOGmgoQVRsFEUpNfZm7aXX1F78sOcHasXVYmGXhbRytzKWBzhDysJwgvpgXGdH7O+2ZZPjg1Hvmk1P9oN6YpWI+y0Xx5qRhADJMCvESXMOx8RpNPusRFGxURSlVNicvpnu73RnU/ommiQ3YVHfRZyx7wxjdYhFkoNT3S8pz8F1NRKrccHfZ8HWA9CqEdx5KUawInGabIq7TBpvFlJ0Ro2kTscCVU7Df4BKhoqNoiinnR/3/EjPqT3Zk7WHNrXbMH/AfGrur+lYFtkYAcjEaUHjsbeDY+XYlf+/HITn5oDLBa/fBuEJQcd4cOpnsnDiPJI0EBv0HaA2mn0WAkIiNvPnz2f8+PF8//33uN1uzjrrLJ555hm6dOkCQHp6OmPGjGH27Nnk5ubSvn17nn/+eVq0aBGK5VRqkpOTufDCC0lKSiq1NYSFhXH22WcTGalpPQp8lvYZfab34Uj+EbqkdOGjAR+RkJXguM6O4FTzx2OsD7E6pNJf2tR4wMqDO980NTW3doV2TZ19gd5mcThxHqmjkSmcIm5RGKHREc8hocTF5o033mDUqFGMGjWKRx55BL/fz+rVq8nJyQFMHn3v3r1JS0vj5ZdfJikpiXHjxtG5c2dWr15NvXr1SnpJlZozzzyTO+64I/DfvzRwuVxUq1aNhAQdAFLZ+ejnjxj0wSDyfflcc841vHv1u0RakbAPJ2ssCiME4Li7BEldljY1wKzvYcl6SI6Df16Bic1EUTTVOTjduQAnHiMFonH2pyo6OiBElKjYpKWlcc899/Dss89yzz33BLb36NEj8H3u3LmsWLGCpUuX0rlzZwDat29PSkoKzzzzDC+99FJJLqnSk5CQwDnnnFPay1AUJq6ayIhPRuC3/IxsO5KXer1EmCsMdmOsGgtHDLJwAvsFODNmwAiRnaqcbcG9k83mcUOgWn17Xx7O282PsZbicOIzeRjBkamcPsyMGg0shIwSTeybNGkSbrebESNG/OExc+fOpU6dOgGhAUhMTKR3797MmTOnJJejKEoZwLIs/vH5Pxg+bzh+y8/jnR7nP5f9hzB3mHnpH8Bp638Yp6hSMtFEJKRLQCQmzpIL46bBjoNwXmO4uStOkWc4Rkxi7fOj7G0xGNecWDIu+7417N+VkFGiYvPll1/SrFkzpk+fTuPGjQkPD6dJkya88sorgWPWrVtH8+bNi52bmprKtm3byMrKKrZPUZTyid/yc9eCu3hk2SO4cPHa5a/x2CWP4XK5AkPR8GIsF+lLFoERDIm3uIN+F8Jhcx48t9j8+vLAoJi+uM9ycdKco+1rSexHmnJ6cEYHqPsspJSo0bhr1y527drFmDFj+Oc//0njxo2ZOXMmo0aNwuv1cvfdd3Po0CEaNWpU7NzkZNPpLj09nbi44v/EmDBhAhMmTABg//79JblspZJgWRaFhYV4vd7jHxxCXC4XHo+HsLAw89KtoBT4Crhh9g1M/2k6EWERvHv1u/RP7e8ckAOkY0RBugFk2D8LMa4vSQSQ4L4kDoTBX9+G/EIYejG0P9s+N4ZA2xrCMJZTTNA183H6o0ncpjpOsagSMkpUbPx+P5mZmbz11lv07dsXgC5dupCWlsa4ceO46667/vS1hw8fzvDhwwFo27ZtiaxXqVzk5eXxzTffsGrVqlIVnOTkZDp16sRZZ51VamsINVkFWfSd0Zf/bv4v8RHxzB44my4pXZwD/JhYjdS35OLEWiIxIhMTtF8snFwgAz7dCLO/g9goGH+9fWwkjgtOugpIV+cIHLdcDM4o6ESg9BI1KxUlKjZVq1Zlw4YNXHrppUW2d+/enYULF7J7926SkpJIT08vdu6hQ4cASjVFV6nY5OXlsWzZMiZOnEheXl6prePMM8+kVq1aFVZs9mfv5/Jpl/O/Xf+jRmwNFgxeQJvabYoelIWpobHsny6MpSEzZFw4XQKCm2jGgS8P7p1qLvNgb6hTxb6mFHr6cOI8IioJ9vbgSZ4xaE3NaaRExSY1NZVvvvnmD/e73W5SU1NZvHhxsX3r16+nQYMGR3WhKUpJ4Pf7yc3NJSMjo1TF5siRIxQUFBz/wHLI1oytdH+3O78d/I2UKiksHrqYJslNih4kVk2u/XsUxqKRlOYjFM0ky8TpYRYGk76ENTugYTUY3Rkn00y6Dlj29WJxGnTKLJtCjAUUhZlRI/3SlJBTogkCV199NQCLFi0qsn3hwoXUq1ePWrVq0adPH3bu3Mlnn30W2H/kyBE+/vhj+vTpU5LLURTlNLJ271o6TOrAbwd/o2XNlqy4aUVxoQETpzmCEzvJs3/PwYiDTNGUrgEejOBkQuYBeHiauczT10N0dXv/YYx4FWIEKhdTqBnc6kYGook7rXqJ/ydQjkGJWjaXXXYZnTt35rbbbuPAgQOcccYZzJw5k8WLFzN5skmG79OnD+3bt2fIkCE8++yzgaJOy7K4//77S3I5iqKcJlZsW8EV711BRl4GFze8mLkD55IYlVj8QC+wFyMmIgZhODNrwFgbeTjTOO2EAHLhmY9h32Fo1wSubWdvj8VYKl6cXmgS8JdWNCIwMga6NpoUcJopUbFxuVzMnj2bv/3tbzz22GOkp6fTrFkzpk6dynXXXQcYV9q8efO47777GDlyJHl5ebRv355ly5ZRv379klyOoiingXm/zePamdeS683lqmZX8V6/94gK/4OWyRmYeE1wLQ047jIZ9SypyZJZFgE7M+BfttPkXwPBlYMRGekKDUa84uxtwUPRpMVNNCYh4Cg6qISWEq+XTUhI4JVXXilSW/N7kpOTmTRpEpMmTSrp2yuKchp5a/Vb3DL3FnyWj1vb3Mprl79mijWPRiGwC6fZpg8jPvJd+pZJskAWTsKAGx6ZDrkFcM2F0OEsnEadYtnIGAIRKTCuueAiTxemgFPn1Jx29D+5oignjWVZPLPiGW6ccyM+y8fDHR/mjSve+GOhAdMpIBcnA60Qx70lggBOt4AEAjGcn3bA259BeBiMG4yxXuIxQpOHM4pApnCKcEVgrBhxs1W1z1FOO9oJSFGUk8Jv+RmzeAz//ubfuHDxYs8XufPCO499UgEmViNNMSURQIL3UrSZgxEJGSsQA+TDg++D34KRXaBJPE6zzShMnMaLk+5cELQ9HydpIBpj1VTcOtoyjYqNoignTKGvkJs/vpl317yLx+1hytVTGNh84LFPkrY0YtW4MdljMtJZxj1H4EzUlLiNC77YBB+vNqOeH+mN06zTwgiIy/5IurMHp1OAtMAJB6phBEgpFVRsFEU5IfL8eVw14yoWbFxArCeWDwd8SPfG3Y9/Yj4mVhOGSXGW4WXB4579OLEaEY4IsCwY+565zF97QY0aGKGRY7w4tTK5OC44L6aOJgpHlGRMtFIqqNgoinJcfBE+nkx7kg25G6gaXZUFgxdwft3zT+zkvRj3mFgg0nZGijoLMXEWSQ6QgWYFMG8tfLURqsXDX7vj1MuI1SIZZ5I6HY6J5Ui3ANlfBye1WikVVGwURTk2CbCt2zYKcgtomNiQRUMW0bRa0+OfB0ZEdmNExI+prZHOyxLEl8p/f9BPH/i88OB0c5mHroT4BHtfDsaakbiOFydFWtxrkpEWBVRBU53LACo2ilKGcblchIeHExkZid/vP/4JJYxV1aJwUCEFCQU0iGrAlzd+Sb3EE5yma+GkOstETOkMYGGER9xnwSMB7LY0730LP+2CBskw4i8U7ZsmgiOJBtLAUxIOfj8UTfNuSx0VG0Upw0RGRtK+fXu8Xi+FhYXHP6EE2R22m7lxcyl0F9LQ1ZB3urxD3YS6J36BI5hxzz6cfmXZOAKB/bvH3i8TNSOgIBwe/cAc8ng/iJIRBFKTU4hJn5Z4Tb79PRYntVmGommqc5lAxUZRyjDR0dF06dKFDh06YFnWabvvp1s/5aZFN5HnzaNHox78X6//o1pitRO/gBdIw7zwpVdZ0IRNwnAGmon4SB+0LHhzMWzZD83qwNCOOA01LRyrpdC+RgROOrXMsIm2P2rVlBlUbBSlDON2u4mLizut3dDfXfMuNy64Ea/fy7DWw5jYeyLh7pN8VewFDuG4vrz2x4eJ4wS3qcmiSNuZ7Ej4u90Y/h+9IFw0NrgFTTRGmOystUDSgYiMFHOqVVNmUM1XFCXA818/z9CPhuL1e7m/w/1M6jPp5IUmF2PV+DDuLYnFgLFuYnCaZUphZjZGdHLhxQWw5zC0TYG+HTDuMunoLPGafIx4FeJktYnASFynxkk/vhJC1LJRFAXLsvjbp3/j6RVPA/Dv7v9mdPvRJ38hH/AbRdvHSNBeugNI4WYk5g0USaCr88FD8PQ8c6mnB4JLLB6ZQ+O2r+HDiJakQSfY98izr1UTnVVTxlCxUU4Yy7I4cuQI6enp+Hy+UltHWFgYSUlJJCQk4HJp75FTxev3ctvHtzFptbFiJl85mSEth/y5i23HZKDJSGY/Tmqy9EIDJxtN0p7tcc3//BCO5EH3s6FLCk46tHQNkA4BhUHb8+2PD2PZeNBZNWUQFRvlhPF6vXz11VfMmTOHzMzMUltHQkICV111FV27diU8XP8Inwq5hbkM/GAgc3+dS4wnhln9Z9HrzF5/7mIHMVZN8FTM4LRnsW6iMG+eWJxRA3mw6SC8vBRcLhh/jX18Ac7AM/s4ou3vkv7sw7F6/Bih0bY0ZQ79m6qcMH6/n19//ZWPPvqI/fv3l9o6atSowTnnnEPnzp1LbQ0VgfTcdHq/15sV21eQHJ3MJ9d9Qrt67f7cxQ4BP+DMoZEmm1JbIxZMJo4lIpM67f5lD3wIhT4YdhGc2xTHOgrO+JZOBNKGRmI+YfZ1ojA90JQyh4qNctL4/f7Tmob7e0rz3hWFnUd20nNqT37a9xP1EuqxaMgizql+zp+7WDqwGuMW8+IISS5OkoBkjUUGfZfaGhd8tg4++B5iIuAfV9jHRGEslwL7vEicNjSxFBU1CyNsddAJnGUUFRtFqWT8euBXur/bnW2Ht3F2tbNZNGQR9RP/xJRcPyY+sw6nG4AMQQvH6YUWjbFIfEHHBLWcKciH2+22NA90h7pVcDLPonBSnKU9jYwpECGLt4+JQtvSlGFUbBSlErFy10p6Te3FgZwDXFj3Qj657hOqxvyJdsh5wCZgM0ZAZFQAQb8XYMRA2tP4MFZHOEZsDgPx8O9P4ec9cGYNuP8KnLYzOfZ50jVA4j1e+/qSLIB9XG202WYZRsVGUSoJ/930X66ecTXZhdn0atKLmf1nEhtxklWPXkzB5kaMWEjTS/m4MO4zmU8jlf1SvBmNEQy7k8CvG+HJj82lXx0MUZZ9jRgct5nMrPHa50nn6HD7+lGY1Oekk/0vopxOVGwUpRIw/afpXP/R9RT6CxnScgiT+kzCE3YSZoAXkwSQhhnvXIDjxpLYCzhzasTKycUIRwTG3ZVJYAZNoQeGvA+5hXD9BdCtKUZEpFZGREriMeCkQkvcR6Zz1kLfZmUc/d+jKBWcl799mbsX3o2Fxb3t7uXZ7s/idp1g85ACIAPYhtN+xhu0X0YH+DACIJM4/RiLw48RmGiMpRKHcYdlwxP/hZVboWFVeKk/jqUiLW1i7Ovl2PeSHmsJGPGRtOdkNFZTDlCxUZQKimVZPLLsEZ764ikAxncdz/0X3X/8QlhxjR0EdmLEwofTvVksGnn5i8BE4AiRxFuigq4nUzVjYc538NQCU1Mz5WZITLCPi8MZCR1sJUXiWDex9vXlenXQxlvlABUbRamAeP1eRn4ykonfTyTMFcbE3hO58dwbj32SjAHYBezHsSiCM7+Cp2uKGHhxRMeP0+pfMtCi7J+YbesyYMg08+u4y+DiM3CGoEm3AUlflmJNidHk2uvw2PuqYARKKfOo2ChKBSPPm8egDwYx+5fZRIVH8f4179O7ae8/PsGHsV72YFxluThTL0VoCnAKM2VYmbSI8eDEWDLsa0qXAEkYiDLnbD0EvV6GrHwYdAHc3wunTkZa2Mi1xGXnt+8n7WnicIau1cFp8qmUaVRsFKUCcTjvMFdOv5LPtn5GlagqzBs0j4saXHT0gwsxw8pkHIAMJROBkAC9/JRuyzJt04Vj8RRiRCAWIwySkZaPecvkw8486PIqbM+ADinw5g3gkjRnic9IwoHgCtonzTa99v3rY0RMKReo2ChKBWF35m56Te3Fj3t/pE58HRYNWUTzGs2LH+jFVP3vwinGlA8YsfBigvQSq/FgXvwRGNEREXJh3Fm59naZLePCCJDHXGvjQej1Bmw+COc1gPnDIEasGXBSmOVcGY4mXQfEyrJwhrAln+J/MOW0omKjKBWAjYc20uPdHmxO38xZVc9i8ZDFNKzSsOhBhRiR2YERFOmcnP27n3k41kQkxjUmRZXSFFOsILFoonFqbcIxYuU21/hqO/R5Aw5mw7n1YdG9kCjFmeJCk/EDwe1nJIYk2W3SgNPCWDVawFmuULFRlHLO97u/p9fUXuzL3kfbOm2Zf918qscG9dj3Ympj9mOEw4VxV7kw1otYJlE4o5eP2MdEYywYD+aFn43ThkbOy8Np+y+Witt8fWU53DcX8r3QqxnMuB7ipTATirrPgtcrTTw9ONM2fZg3Vh00KaAcomKjKOWYpVuWctX0q8gsyKTbGd348NoPiY+MNzt9GNHYjhEJyQgLTmGWF3sWToxFLAg3zhA0CdqHY8RF2sWIQLnsffb8mv0FcOs7MOcnc6mRl8CL10J4jn2+jADwBn2PCPqImIilE44RnkTMBE5NCih3qNgoSjll1vpZDP5wMAW+AgakDmDK1VOICItwLJOdGLeZuLRycNxlkkYsacmSaiz1M36c8QB59jlitXjs63twXGYF5lr+Apj8P7h/LhzKMe6yif2h/0U42WzSkkYKQaV3mrjgJPsNnJiNTORsgHZ1Lqeo2ChKOeT1la8z8pORWFjcecGdvNDzBdMVIAfYjXGbyZTMMIxYyFTLCByrJtfeJ/3HRBCO4HRcDsMZGQCOeyuPIr3KvvwF7v8Yvt5iDuvWDCZeD41i7Xsk4HQJiCGQDl2kvY2sQVxn8TjuufpB25Vyh4qNopQjLMviyc+e5PHPHgfgH53/wYMdH8TldRmB2YHjGhMLQQLwYTitY/w4LfulbsZnfxcxkRoX6RDgsa+TgBEIu8Dyh33w6GyYt96ssWY8vHAlDGgDLukMkGevRSr9g8c9y8eFERNx2xXa53gwHZ111HO5RsVGqTR4PB7OPPNMunbtSn5+/vFPCBH169enZs2aJ32ez+/jrgV38erKV3G73Lx++evc2uZW4yoTl1kYRgRcGGsi2HqQhpZ+TMfmcHu7CEwuTn2NC6eqX6yhIIGxIuDLNPjnElj4i1lfXCT89RK49wpIEHedxFvCKdrrTOpvJKMNjPiIwMTZH4nT1EbjNOUcFRul0hATE8Nll11G27Zt8fv9xz8hRERFRVG3bt2TOiffm8+Qj4Ywa/0sIsMiea/fe1ydcrXpwrwXx1IQsZCgvcRbJLYiIiJWze8TAOQawfGZbIw4RILXAx98C//+Er5LM4fERMBtF8PYLlBDREniMN6ga/ntfdE4WW4F9ncZJSDJAdJ9IB5IQd9UFQD9X6hUGsLDw6lXrx716tUr7aWcFEfyj3D1jKtZumUpCZEJzBkwh0sSLzETMrNwgv4unHoVGTQmw8fEchEBkEJNsVaC61yCM87CgGjIOAhvroGXl8K2Q2ZdybFwZ0e4swNUrWmvIxNHQMSiEQETURO3nAicFG1KnzURqzigEZoQUEFQsVGUMszerL1cNu0yvt/9PTVja7Kw/0Jae1vDbzjuJ0kltq2PQFqztI0BxwUlL/QcHPeZvAUkE00EJwc2H4EXlsCkLyHbzhA7qwaM/gtc3xliIjEuOUlhjsGZ0indAIKbaUo9jghecBGnNPaMsj9n4KRhK+UeFRtFKaNsSd9C93e7s/HQRhonNWbRFYtofLCxyRQTF5kUZobbP8WaESEpwOlrJi42+Yi4gNP/zBas77bDs/Pgw7Xgt91gXZvA6J7Qqzm4M3EEJBYnBiMWi7S1kQC/tLoRqyUWx60WbAGJODXGCJdSYVCxUZQyyI97fqTn1J7sydrDuTXPZUHHBdTcU9NxbeXhuLukGaUUVcqsF+lrJvGPTHufxEskIG8fY4XDkg0wbgks22Au6QmD6y+E0ZdCy3gc91gMTuKAiIn0QxPxkDRliQ2F40z4FOsn2IXmxvQ7a4Q22KyAqNgoShnj862f0/u93hzJP0Lnep2Z3Wo2CfsSzN/W4D5mksrswRGWYCHx4dTQROJMzpRr2OnPVh4sWAePL4D/pZk1JESbqv87z4c6NXA6BUg3Z8lukzoeaZ4pKc7i4ou0P2LNSHaauMukvscNVEOLNiswKjaKUoaY/ctsBs4aSL4vn34N+/FuyrtEZdv/zM+2D5Kq++A6Fanil2JNcU9JYoBkq/kIuNAsFyzeaGpkJLOsRjyMvhhu7wSJyRjRkGQDifdIN+dwnNRqyXSTin8RRikklaQAF0ZgJMYTPG2zlr02pUKiYqMoZYQ3v3+T2+bdht/yc1vKbbxS/xXCCDNiIS9tSUV249TASBW/VPuLdRGL0/4luJNyOPxvJzwwC5ZtNPeuEQcPdIMRl0KMdByQuhx7Hg2ROCJW6FyLWJxsM6/9uyQFxFI0bhMsUmH2z0aYWhqto6nQqNgoSiljWRbjvhzHQ0sfAuCxMx7jsXqP4SpwOdX3IiDBWWUue1vwvhjMiz44IQACArFtDzywAKb/z2yuEg1/uwzuuBhivRQt8szHsWjCg+4hlksWTjqztJ+RWTcyGkAsGrFmJOjvwnQEqIfTiFOp0KjYKEop4rf83LvoXl789kVcuPjPmf9hZO2Rzks8F6eVv4xNlsp8Ccp77H1Z9kWDs8JsayPHB08vgmcWQl4hRHng7i7wwEWQVAunUWewwEjAX9xjYfY9pNVNnL22bBzBiMQUYuZjhMWLMxQt3l5nHEZkknDa1ygVnhL9X71ixQq6d+9OjRo1iI+Pp02bNkyaNKnIMXl5eYwZM4batWsTHR1N+/bt+fzzz0tyGYpSLijwFTDkgyG8+O2LRLgimNFsBiOTRxoLIgvzEj+CIzDBfcuCuwNIHEZcZsH1Mh6YtxZSH4MnPzZCM6A1/PIkjO8PSVVwZsmIoEhwX1KYpb+a1NHI/BkpyJRx0AU4XQHkzeLBSRAIAxoCZwNVUaGpZJSYZbNmzRq6detGu3btmDhxIjExMcyaNYubb76Z/Px8br/9dgBuvvlmPvnkE5599lnOOOMMXnnlFXr06MHXX39N69atS2o5ilKmycrPot97/Vi8dTFxYXHMPns2XZO6OkIh6crS5l+C/+AMFpMMsWycDC4RHB/s3AejZsLsH8yulvXgP9dBx3o4LWQkwC+WFDhjBeQe0j1aij3jccYViFCJoMTZxwY3+wzHuMxq29fT2EylpMTEZvr06fh8Pj7++GPi4szko0svvZQ1a9YwZcoUbr/9dn788UemTZvGpEmTuPHGGwHo1KkTqampPProo8ydO7eklqMoZZYD6Qe4fNrlfHfgO6p7qrPgnAWcF32eSWN247SgEYtCalskxVncZRKEl+JNn/ndcsOb38B9H8KRPNMg8++XwaiOEJ6Ak/4c3CQzDKeiX6yXQpw6Ghn7LEkAHozoSK1MYdA6JMssGmPB1MKIkIpMpabExKagoACPx0N0dNH+EomJiaSnpwMwd+5cPB4PAwYMcBYQHs7AgQMZP348+fn5REZqtFCpoPhh65at9Jjdg1+zfqVRZCMWn7OYM60zne7HkTgxEqnoz8EITALOiGYp2rSvK9u27YKb3odPfza7ejeHV6+HelUwYiYCI21tZLBalH1/yUKTdYjoxNhrirfv58OJ58iaxLqKxBRn1rHPU5FRKEGv6bBhwwC466672LVrFxkZGUycOJFPP/2U0aNHA7Bu3TpSUlKIiSnahyI1NZWCggI2btxYUstRlLKDHbz/6buf6PB+B37N+pWWsS35qvlXnBl1plP/Ii6xLJwuAPIi99jbpcZG6mzs+hrLgsmroPl4IzTV4uC9W2COCI0IisyokXoXidH47f0xzjUDnQJig44TAaqCEZUqQeuLwsRkWgJNcFKyFYUStGyaN2/O8uXLufrqq3n11VcBMz/k9ddfZ+DAgQAcOnSIpKSkYucmJycH9v8REyZMYMKECQDs37+/pJatKKGlENgJK35ZwRWrriDDm0HH+I7MbTiXKv4qcBCnWFKyyGTmTI59jVicjDOpb7EIVPLv2wW3zoa5P5rDr2oObwyDGlUw4iQZZhIHkrHP0nEg2MIJjsmAU18jYiJxGelrZmFqZOpgssvUMaH8ASUmNhs2bKBfv36kpqby+uuvEx0dzZw5cxgxYgRRUVEMHjz4lK4/fPhwhg8fDkDbtm1LYsmKEjr8wCFgB3yy9RP6r+lPrj+Xq5KuYlrTaUTnRzvt/SWlWV724haLwslKC8cpsiwk0Bvtk3Vw02TYlwmJ0fDydTCkRZBBIdlkYiVJ6nHQjJrAvcTqEeFLsM+VRAQ5H/ucaph4TCJaRKEclxL7I/Lggw/i8XiYN28eHo8HgK5du3Lw4EHuvvtuBg0aRFJSElu3bi12rlg0YuEoSrkmB9gGHIS3d7zNzb/cjA8ft1S7hdfqvEZ4ZrgjGDJXRrLOCjECI7GQ4IaZIgIeyM6Ev74Fb3xlbtm5Cbw1BBrUwwiGVPRLxX4ERlyksDIGR4TEqpE0ZgunUaZkqEmsJgpHZBJQN5lywpSY2Kxdu5ZWrVoFhEa44IILmDZtGvv27SM1NZWPPvqInJycInGb9evXExERQZMmTUpqOUqICAsLIzIykoiI0uuWGBERQVhYGWyiVQjssT8F8OzmZ7l/8/0APFT/If6e/HdckS6nmaX0HZN+Y1E44iBdncFJOS4A8uGbnTD0/2DjPogIh39eDaO7gDuHojU3v6+ZiccZbiY1NNI8U9KYxV0nBZiRGJGJBGpi0peleaainAQlJja1atVi9erVFBQUFHkRffvtt0RFRZGcnEzv3r157LHHmDlzJjfccAMAXq+XGTNm0L17d81EK+OEhYXRsmVLhg0bRlZW1vFPCBHx8fE0b94ct7uMVAX6McWX24Ac8Bf4uX/j/fxr+78AeKHOC9xd9W5jsUh7mRic+Iz0IvPZ2+Xfa+LWslOQ88PgiQ/h6WVmxkyLujB1ELRoinn5iysMHMGRxIIC+9rROG4xubakO0fhxFwkvhOJsWJqoTUyyilRYmIzatQo+vfvT+/evRk5ciTR0dHMnTuX9957j9GjRxMREcG5557LgAEDuOeeeygsLCQlJYXXXnuNLVu2MHXq1JJaihIiwsLCOP/882nevDl+v//4J4QIt9tNTExM2bBu8oAdmEB/IRTmFXLLhluYsm8KHpeHtxu8zaDqg5x4i1gbkmIsg86kr5jEZ4LrVvJh1S64cTKs3QkuF4zpAX+/CiILcWIvIhDSM03EKx4nVVnSmINHDkhWm6RbS+1NHYwlo0PMlBKgxMTmmmuuYf78+Tz99NPccsst5OXl0bhxY1555RVuu+22wHGTJ0/moYce4uGHHyYjI4NWrVqxcOFC2rRpU1JLUUKEy+UiJiamWOp6pcSLEZjtBNKWs61srl1/LfPT5xPrjuXDxh/Sne5OMF5cW2Jx5OMkBgTHZ8Tq8ECeC578BJ5ZCj4/NKkBbw+ADk1x4jwiJJJEIFaTdIsGZ9SytL2R4kvJapN1uYEamLkyMvxMUUoAl2VZ1vEPK1u0bduWlStXlvYylMqIZI5tBzLs33PgkPcQV/x0BV9nf03VsKrMbzyfCxIucGa6ZOPESqS63sK438CZWCmCkQufbYHbpsOve4w1c08X+HtfiBVLRERLml1K92dpcJlv30fa2Yg4xQedA05bnGSMyMSjfcuUP8Wx3s2asKgoJ0oBsA/YjREEOxi/o2AHPdb1YH3OehpENGBRnUU0czeDw84xuHEq7CXcJXUrLoww2CJyMB/GzIDJX5vDmtWCSddB+4ZB1wCn6aV8l5TmgqDrSksbqYmRTs7BLrN4TBdm6f6sKCFAxUZRjoeFEY6d9k8puHTDL+m/0H1Dd7YXbic1MpVFZy+ibn5dJ94idTTgpDPH2NvByTLzgD8fJn8FD8yFg1km0+zhHnD/FRApsZ4CiraFCU4AkAB/DEbkJP1Z2uD4Ma4xyS5zY+Iy9XGsHEUJESo2inIs8jGWzH6c6ns7vvFt9rdc9utlHPIdokN0Bz6u+zHJecmOlSIpyzKXxouxPtw4QXk7x2H1drhjKny1yfzepRm8dh2cVdVeh5wj7jaZvBkRdE2pxZE1JmLcaIU4bjsRqnjMhMxkNMNMOS2o2CjK0bAwMZkdmNoUidXYacoLMxfSb3M/cvw5XFHlCmbUmkGMJ8ZJJw6u+hd3lkzclPTiMMg4Ao/Og1eWm3TmWgnw774wsB24JCsteEqmCyMuMonThSNCHnu7HC8joiXrLMI+ti7Gmim9UimlEqJioyi/JxdTmLkP88KW9jF2SvDU9KkM2zoMr+XlhvgbmFhrIp58jxObkdRhqakJD9pu18FYHnjnS7j/Q9h7BMLcZnLmE30gUeIr0vI/2DoSN1rwvBgZ/yyB/tign1IsCo41oxMylVJAxUZRBD+QjnGbZdq/H8a8mNMBF7yw7wVGbzddzMdUG8PTNZ/G5XaZuEkW5sUebM3kYqycWPv3fFizFe6YAV9uMLf9SxN4ZRC0rE3R7LJ8AoPQAh2aRXBEhGS7WC/S28yNMwsnDJPO3Ai1ZpRSQ8VGUcC8xHdjrBk3RYsbw8HKtXhw14OM3z0egOdqPMdfE/7qCIukFcvUS7Fkogm4vI5Y8PgseGmZqZmpEQ/P9oWhfwGXFFWKkPgx7rJc+yOZa9H2R/qqSZxGLBVJAJABaFHAGZjYTBmogVUqLyo2SuXGj4nN7MRpgHkY82LOML973V5uS7uNSYcmEUYYk+pO4vrk650+YzE445il51kmJkDvMZMzZ34Ho2fBrgxwu2DUJaZmpko0zshlmTmTgyMUMnxMEgLEopEOAJKlJtMxI3Cy3pKAFIw4KUopo2KjVF7ygF2YTDMZiyyxDztWk+vKZeCvA5l7ZC7Rrmhm1ZvFZXGXOdM0Cyma3izWh532vCkT7pgEi9aZ3RecAa8NgjYNcVKQwckwi7GvIUImHaFjcYaaBaczS8qzdA7A/r0+WjejlClUbJTKh2SabcfERcCxZg4TyCJLL0inz9Y+fJn5JUnuJOY1mkcHOjgxGCmqlPb90h7GDQVh8Mxc+MdCyPdCUgyMvxpuuRjcUtUPRbsJSMW/CJYMVRPryYVp6y8iJwkAMsxM0p0bYpIBFKUMoWKjVC6kbmYfTuW+jDqGQLbYruxd9NjUg58KfqJueF0WNVhEalyqY4HkUHSYmKQ258AX2+G2SfDzLrPr+ovg2QFQIzgVOgbjthMLRUYoF+BYI5E4Kc0ibB77PiJEkTgNN2thijQ1NqOUQVRslMqB9CHbQaD6nyzMi1l+95mfvxX+RvdN3dlasJVmEc1YVHsRDQobFG09E9SRWVKb0y24/y14024zc2ZNeP1a6NISIwb59j1lMmbwfBnpXSbV/yJE4HQFkNYyYumINZOMaTej1oxShlGxUSo+0tNsF8Z6kGFhhTitZ+xA+8qMlfTa1YsDvgNcEHUBn5zxCdWo5qQ2B49cst1ZVibM/BnumgJ7D4MnDB7sDWP7QJS0mJFWMjJFMxKndY24xbxB103AGWwmtTRi1UiMJhpToKmxGaUcoGKjVFyk6l8yzcIxwiJdmCUZwO6evCRzCVfvvJosfxY9Ynowq9os4txxTqaYFGraFhBhsCMXRk6Ej38yt/zLWTDhWji7IY4L7DDOwDSJz0h6tCQaROIMUJPriwUlXZojnfsGOjRrpplSTlCxUSomMm9mB+blLYkA0kZGXGh2AH5G/gyGpg2l0CrkuirXMbn2ZCIyI8zxwWOQ7aJLfw5M+Bbufw8y8yAhCp4ZBLd2AbcX4x4T6yUepymmZJfFUHQstLjWEnDGM4PTnVm6CsRhXGbJqDWjlCtUbJSKRy5Oh2ZwgvCZOLEOmQXjgpf3vMzd++7GwuKeKvfwr/r/wo3baTMjVpAtChsPwy2vw2d2B4Arz4NXroG6VXHa+UfZ64i17xWFk7UmSQLRFG2uKfU00h5HAv+WfUw9oCaOEClKOULFRqk4SIHmdpzgvT3cjHBMgoBkhHnBcls8uvNR/rHvHwCMrzGe+8Pvx5XrMuIgx9rJAD4vvLQEHnofcgtMB4D/3ADXtAOXjCGQQL/U2gRX94tVk40jKtjHiiCBERjpSOACqmJiM5KxpijlEBUbpWKQj2meKQWaUr+SidO0Ul72eeDL8TFy+0gmZEzAjZuJ9SZyU9JN5ngfznRL26X16wG48XX4erO53eCL4MV+UFUEQNKZpRuANM+MM/cL9DmTJpriRvPb2yU5QGIzXoxLrSHqMlMqBCo2SvkmeEyzxEVycTLMgptj+gAP5LnyGLxvMB9mfkiUK4oZSTPoE9fH6XEm3ZbzweeDFxbDwzMhrxBqJ8IbN0HvtjhWk6Quh+MkE4iQgFOQGTxzRroUxOFkpYXhWC8pmOaZwdlvilKOUbFRyi9e4AAmCUBSmj0YsYnGqYvxYyyLHDhccJgrt17JZ9mfkehO5OOUj+no7WjOlUC9HcjfsBuGTYCvNprb3dARnu9vugEUacApWWrhONMwJQmhMOiYOHtNEvDPxempJrGkJLRmRqmQqNgo5ZM8TBLAEQIxmECMRDLPgi0ID+xx7aHX5l6szltN7bDaLGq0iBaxLcxLP8iV5bfglUXwwHQTm6mdCBNvgsvb4gxH8+IkEIThiIdYNB6MuIhLzBt0j0h7zfFB50ais2aUCo2KjVK+kED8VgLNLonAWBHipsqnaNPKGNiUv4nuad3ZXLiZMyPOZHHyYhr5Gpn9ERhXnAe27oIbJ8Gyn83thlwELw2EJOk/JkF7ezZNwD0nCQVizcg8meCEASnSjMfJkHNhijJroy4zpUKjYqOUH7yYJICDOFle0p/MwnFnidvKLp78IeMHem7ryT7fPs6LPo/5KfOpUVjD6XEWDZYL3l4Od71j6maqx8Mbw+Dqdva9JOnAwim4lOB/8LyZKHu7F2fmjFgz0klA3HXxmASAODTLTKnwqNgo5YNcTBLAEZx2M2LNSPaYDC6TYLwblucup8+OPmT6M+kW2Y0Pa31IvDveaRHjgf17Yfg7MHuludVV58EbN0CNRByh8WFiMbk4VlMsTlt/F07rf+xzpOWM9DKTbLRwTFymKvo3UKk06B91pWxjYUYy78S4raRtjPyUfmGR9u9eArGTD7M+ZNCOQRRYBQxIHMDb1d4msjDSWDMx5hqf/AA3v2l6miVEw8tDYGgncAXPi5GgvoURGBknIB0CZN6MD6drc3BPM4nbRANVMEKjbWaUSoaKjVJ2EbfZIYxAgLFsxKUl7qvgtvz2y/+Nw28wcudI/PgZlTSKF+u9iNvnNoIAZKfDfe/D6/81v3dqBm+PgIbVcIL/MjNGAv+yPQqnp5nEh6RORsY2B3dwlnPqY8RGRwAolRAVG6VskoNJaZaWM/LSFmvGrpnBj7Ei7HRiy23x931/57EDjwHw96S/81DsQ7jyXYFGlqu2wuBX4dfdEBEOT/WD0VdAmIxVBic+4ydgBZGPEQqpp4ki0CstMM45zD5O5sxEYdxlddAEAKVSo2KjlC1kiuYunJf3EZyXvQw7k1iKWBhe8Pl83L3tbl45/Apu3LxW9zWGJww3lkkB+Pzw3EJ4eAZ4fXBOHZh2N7Sqi5NwUIixTPJxujCH4bjppOeZDyfNWeIwMRhLSObMxGGsmQQ0AUCp9KjYKGUHL2buzE6cMckiABL/kOwu6XcWZY7J9+Zz/Z7ref/w+0QSybTq0+hbpW/AvbbjMFz/Giz7xfx+Zzd4ehBEyzUkuUDcYdJ1QBpkBo8DkELRGJyRBT6ctjjROP3M9G+YogD6V0EpK+ThuM1EWCQmIskA8rKXzC87Cy3Tm0nfnX1ZkrOEBHcCc+rO4RLXJYFEgI/WwC1vwKFsqJEAb42CXmdjhEF6k0kHZrFmwoPuFYm5li/ovhK3icKZUePGpDM3sH+qNaMoAVRslNLFwjS/3IoRljzMS1rGJ2fZx+URqIkJNLn0wz72cdn2y1iVt4qaYTVZmLKQ1tGtIRNyC+HeV+H1ZeYSvVrC5FugZrJ9nWwc60XmyUg3AmlHIwPM4ux1RONkv0k6tIhONUxxpiYAKEoxVGyU0sMP7AV241grwS/zMJyXvVTqZxMo5tySu4UeO3qwoWADjT2NWVR1EY1djQH4aR8MfBHW7TRJAM8Mhbs6gUvccpEYocizrylFmVIQKj3WvDj1M1JT48EZZgbGipHYjKIoR0XFRikdCjBusyP2d7FwpOWLZJ5JurG40GyLY+2RtfTY0YPdvt20jmrNggYLqFVQCysfJnwK97wLeQXQtDZMHwGtm9rXEWtGqvqDxzT7KTqRM7jvWR5GkHw4Vo5aM4pywqjYKKefTEw3gByM6yy4zYxkmIGTERbcR8wHX+R/Qe/tvTnsP8wlkZcwu+FsEiMTyciE4W/CzP+Z02/qbPqaxUp2mRRfyggCicmIC01iNmLNeO3jwZmFI8IXnGmmKMpxUbFRTh8Wpq/ZLpyXfzbm5Z1L0VkyYThuLanI98KcrDkM2DOAfCufvvF9mVplKlF5UXy3BQa+AFv2QXyU6Ws2qBvGWsnBccNJirKLosWg4MRmxI0maxRrRpIFkjB1MzqeWVFOGBUb5fTgxcRm9mNe4n6cqZg+nFRmC+NGk5d+0Gjm/zv8fwzfPRw/fm5Lvo1X6ryCOyuMFxbD/TOg0AfnnQHTb4MmNTECJbUvmfY9pOZFKvz9ONaT9FkTK0pa//vsfVGYTLMEdAyAopwkKjZK6MkDtuGkNUvr/Tycin1xU1kYiybP3m6B5bd4+sjT/G3P3wB4JOERnqjyBBnZLm78D8yxG2je1R2euRkipauAxGGkKWY2xa2ZYGGRpACpo5F06Gj7/HpB61UU5aRQsVFCh4VJAJCRzQUYq0WmWh7BiYFIPU1Y0E8X+HP9/HX3X3kh6wVcuPhP7f8wMnIk322Ea1+FrQegSixMugmuPs++pwhIJk5bf7FMonGKQqVDtG05BYQllqKjChpgepqpNaMofxoVGyU0+DEuMxnZXIDTRVkq7cWakemaElOxzy9wFXDj/huZljUNDx7erfMu/atey0tz4b53jdvs/MYw46+QkmBfuwBjfURgrJE8ivYzc2PcZ9KCxo0RQnDSm8WqScAIjfY0U5RTRsVGKXkKMS1n0nGKJqVzcibGwgCnmaaIgQTjCyCrMItrDl7DoqxFxLnj+KjaR1zg68a1z8Csb83pd10Kzw6AiEScdjI5GHEIdstJZ2ixVsRCiQi6dzxOfY8L4zKrhqY0K0oJoWKjlCw5GLeZBOQl4ywcIyRS0+LDGaEsrV/seM0BzwEu33o53xV+R/Ww6sxvNJ+I7W1p+yJs2Avx0TBpJFzTAqeHWgzOjBjpQhAe9FMESKwUaVMj54q7LQYzPVMy1hRFKRFUbJSSIwPjNhPXlVgb0jlZgv8y/MyDY43YacbbXNvosaUHvxT+QqOwRiyuvZivvjmTERNNkWbL+jDrTjizsX09mdAZHJcJnkcTnCTgxulMEInjZhO3XnU0pVlRQoSKjXLq+IEDGNdZDualno5TJCnJAV7Myz0W50+ePb4ZC9YdWkePQz3Y6d1Ji8gWzK6ykPHv1GHiZ+bQGy+BV66zOzUXYtxgcZhEg1yKWiMyxEzqeKRIU6ZpyqgAceOlAOKOUxSlxDmhv1o7duzgzjvvpH379sTExOByuUhLSyt2XF5eHmPGjKF27dpER0fTvn17Pv/882LH+f1+xo0bR6NGjYiKiqJVq1Z88MEHp/wwSingxbjN0uzfg91XwVX3ErSXAk1xodmTM78u/JqOBzqy07uTjlEdeTf+S6591ghNpAfevBUm3QXR8fZ98nCaZcbZ1w6eMSOtZyIwIpSAySirgonPJGCsm6rAWZhCTRUaRQkZJ/TXa+PGjbz//vskJSXRsWPHPzzu5ptvZuLEiTz55JPMmzeP2rVr06NHD1avXl3kuEceeYTHH3+cUaNGsWDBAtq1a0f//v2ZP3/+KT2McprJAzZjZtD4MG60LPtnJqauJgsn00zcasHB+yPwyaFP6Lq5K+n+dK6MvpK/7v0vnccmsGozpFSHrx+Gmy/C6WcWixGVfHsdct14nC7M4kLzYoQn194u9Ts+TLuZFJxYj6IoIcNlWZZ1vIP8fj9ut9GlN998k1tvvZUtW7bQqFGjwDE//vgjrVu3ZtKkSdx4440AeL1eUlNTadq0KXPnzgVg37591K9fn7Fjx/LEE08Ezu/atSv79+9nzZo1x11027ZtWbly5Uk9qFLCZGKsmTzMSz/C3haBeclLcoB0VRZrRzo7A1gwZecUbjp0Ez583Jh4Mw2/fIMnPgzDsuDyc+GdeyApDCeTTHqVeYO2SXJBPEZ4CnDayxRirBjZJv3O6qEzZxSlhDnWu/mELBsRmmMxd+5cPB4PAwYMCGwLDw9n4MCBLFq0iPx888/QRYsWUVBQwJAhQ4qcP2TIENauXcuWLVtOZElKaWFh4jObMILix2mYKR+7jxkWTssZSTkuINCm5rkDz3HDoRvw4WO05wn2T5nI4x+YXOMn+8HcOyFJsswigq4LTrBfXGgiPuJGw94mdTwS56kKNEZHNSvKaabEEgTWrVtHSkoKMTExRbanpqZSUFDAxo0bSU1NZd26dURGRtKkSZNixwGsX7+elJSUklqWUpJ4gT04jTTDKJrWDOZFn4eTFODBefm7gVjwH/bzwKEHeO7wcwDcn/cOH742hI17ISkWpt0NPc+yz5HUZPljJbUwck/JQJNiTUmtDrfvK5ZQBFALk3GmsRlFOe2UmNgcOnSIpKSkYtuTk5MD++VnlSpVcLlcxzxOKWPI/JkDFB0D4MW8vEVQZP6LWBNenFHL0VDoLuTWw7fydtbbhBPO7buW8Z+3/0JOPrRuCB/eCSkpOM058yma1ox93XycuIwnaLsfp8+Z/OmOQccBKEopU25SnydMmMCECRMA2L9/fymvppKRjRnbfJiis17AcW0V2N/FmpFMsXCMdZENOd4crj1wLZ9kfUK0P57Lv1nNy4vPAGDoX+D1oRAThVP7EodxuUlas0zZjMVYN7lB95Lu0YWYWIx0DkhEG2gqShmgxMQmKSmJrVu3FtsulopYLklJSWRkZGBZVhHr5vfH/Z7hw4czfPhwwAShlNNEBrAF8yL34sROpLWMZJZJ8aZkfMmYAHv/Idchrth9BV/nf01SfhOazF7JrJ8TCQ+Dfw+CUVeCSzLMpKuA7XYLCImIihRphuMUZMbZ34MHrdUGaqBuM0UpA5TYX8PU1FS2bNlCTk5Oke3r168nIiIiEKNJTU0lPz+fTZs2FTsO4JxzzimpJSmngh/YixGaHIwVkY2xNDIxYnLE/oibzML8iZI5MNnm3B0FO+i4tyNf539Nzf3diZmwjv/9nEiNBPh0LNzZDVyS1iwdACStWbLYJK1ZXHPiQpMiTRnAJm68M4CaqNAoShmhxP4q9u7dm8LCQmbOnBnY5vV6mTFjBt27dycy0jSl6tmzJx6Ph6lTpxY5/91336V58+aaHFAW8GLiM9swQhNmb5MeZhFBH5n9IinOBTht/sPgl/xf6LCpA+sL1lP353s5PHEBOw9G0DYFVo6Hi8/EyVKT8+JwMsvEWvJjhEZcY7GYAs1YHCGKwWSbnWkfo9lmilJmOGE32qxZswBYtWoVAAsWLKB69epUr16dTp06ce655zJgwADuueceCgsLSUlJ4bXXXmPLli1FhKVGjRrce++9jBs3jvj4eNq0acOMGTNYunRpoBZHKUUKMPGZ/ZiXdRZGUDJxrAoJ2gsywjkPp74mEr7N/5bL917OQW86dT6bws7PhgJwQ0cTn4mKt68ps2XETReBEZ4YnOLN4M4A/qBjC+17+3A6NZebSKSiVB5OqKgTKJY9JnTq1Inly5cDkJuby0MPPcS0adPIyMigVatWPP3001xyySVFzvH5fIwbN46JEyeyZ88emjZtyqOPPso111xzQovWos4QkY3pCJCJ0xVZ0ouzMCJSaH8X4cnBiEIERqjsIWiLshfRb18/snPCqT77v+z/9XzC3PCvwXBXF3BJ/YsUX0q6dCKOJRVrf8+3v4vISJFmor2+GIzQaO2MopQqx3o3n7DYlCVUbEoYC5NptglHMGTKpgT+xZqR+TQRvztGUpNzYGruVIbtHYZ3f2MS3l/Gkf21qRoH798BXVri9EdzYdxm0vZfamgkJpOAI3CSYSZFomCEqApGaIqWdymKUgoc692sDofKjoVJBNiGsSwkvVjiMcGTNCWGko1T1S81NS6z/YUjLzA6fTT81ouIDz/gSF40LevD7HsgpRZO25gYjFWUY1/DZd9PstAk2C/WjGTDSdwoCkjGjATQP8WKUubRv6aVGR+mG8BWzAveh3nJi0srG2d0slgVEpsR68Ouc7FcFg8deYhxh8bBV/fhWvIMBZaLfufD27dCrFgs4haTTsxZGAGSe/w+rdmFE/yXOI0bqItJBtBsM0UpF6jYVFYKgY2Yjs3BMRnJCAOnM0ABTnpzBM6fGpfZ5y30ctuB25iUPhXXx1Ow1gzFAp7oBw9fBW4RCbFOpFbGjREUcc9l2+vCPk46NkuhZ6R9fEOcNjSKopQLVGwqI7kYoTmCkwQgPc6kc7Mbp+WMtH8B4/aSKF8k5IbnMnDfQObu+w7XjM+xdlxATCS8cyP0PR+ni4C4zyTBIDijTQTFhdMpwItJACjACIsX4zarhyOGiqKUG1RsKhsZGKHJxInPiCBIPzFJCsjFERzJ8pIYzRHI8GfQ50AfvticjWv6KqwjdWhYDebcC63q4sRbxEUmlpEMQBNLB4o27BSXXXBacx1Mkab+iVWUcon+1a0sWMBB4DecmpYcnJkvBZgXew7GVSWV+BKkL8C89OOAcNgdtZseu3uwdk1TXLOnYBVG85cm8MEIqFHbvqfMrpFq/3ycuA84Q9BkoFqwMEn2WQTGmklG05oVpRyjYlMZ8ON0BCjEWCySuuzBSWWWIWT5OFaJuNGigXQgCzZ4NnDpnu5s/fR6WP4EFnBTJ3htGETk48RXgoelhdn3lZgMOCnTdhEobpzuARZGjBrY2xRFKdeo2FR0vJiJmtsxIuKyf0rQX36KdSEjliMwgpOJ02U5FlYdWUXPHVdz4KNnYd0A3C6L5/q6uOdKcIXhZLVJ5pm4yez2NUTZ+/NwLKxw+3dx0UVgMs20W7OiVBhUbCoyeZj4zC6cF790BhDEspC043z7uOCuAAVm26d8Sp/tI8h5bxbsuoD4KIvpd7i47AyM1WK72LAo6j4rwIiNhVO748G4ygpxxjVL4L82ZtCZuNsURSn3qNhUVLKBX4BDONlmwcWS4k6Tgk0RiCj7WBEdu4J/Zt5Mrlv/LN5pyyCzHo2qWsy700VqE5wOBMHuM+lt5sZJRJAPQdvEChIhaggkofEZRalgqNhURDKAtZhgv7SFkQaZUk/jxxkJEIVxl0n6MziJAT54NedV7vjff+HDZVAYy0VNLD4a7qK6pDJLhlmwcMh2yXCLwlg4Mn9GRjuLxROH1s8oSgVGxaYiYQF7gJ8xwmFhxEbSh104bWEkEUAabUrml0y7LAQrxuKxI4/z90W5sOQDwM31F1pMGOYiMhqn3YwIilgzkukmcZ9gK0WyzkTwfJj4TAO0fkZRKjAqNhUFPyYJ4FeMwMjwseCkAAsnI0xmxEhcRFr4R5uPL93H7UfuZuKH58IPNwPwzz4w9gqXGXQmA82y7PsFjxyQ/mbROAkCMlxN3GUS+K+J9jdTlEqA/hWvCHgxiQC/4aQtS2Bf3GUFQdvdOCMCsjAvfrtjM37Ii8rj2qwRfPzODZDWmQiPl2k3htOvFU6WWR7G9SW1MuJCk3odd9BPaXETFvTTwrjNqqP9zRSlEqBiU97JB37CjG8O7s4scRrpbybbpL2/vOAlvoLZdoQjdP/1Dr5952E42JTk+AIWjYqgbWP7OBEp6XEmwhH7u+1Su+PHGRMgrrYooBE6f0ZRKhEqNuWZHOBbYCeOVWHZ28NxMs/EjebC6dYcixGcbIw7zAV78vfQ8Ze/sXHa85BbjbPq5rJkeDT1JagvSQPxmIQC6TYg1pOkNcfa95PU5gSMAHkw1lCKfZ6iKJUGFZvyyiFgBSZOI0Ijlox0CJACSankh6KjBCSwnwmbozbT/pv/sG/26+CL5JKzc5h7QwzxVe1jszBCIY0744OuL8Wh4jorxOmFJvcOx0kEkKaeiqJUGlRsyiPbgcXAfpx6GKnCF7EpxMkUi8SxPkSEIJD6/IN/NR3nLSZ7+b8BuLlDDq9fFUO4uL9i7GvLaAARD3CslWj7etLUM8q+r4hdHUyxphZqKkqlRMWmPOEH1gD/xVgS8kIXFxkUHXRmz5shDydDLQbH+oiCxXzGFR/sonDN/eDyM/7KAh7oFGPu5bfPk1HMkkEm26TdDDhp1TKbRupn3DiJABqfUZRKi4pNecELfAmsxAhGPE46M0E/g1/okg0WjjMgzUegcHLK4Y8Z9mECVtogwjx5vN8/jL6tohzrw4OxknJxeppJV4AYjJDJrBppgSP389jnpGDm0iiKUqlRsSkPFGDiMz9jLARp+2Id5VixMMSqEMS15QMOwzjXdB6c1QoOnE1M3GE+uyGetnXdRsAkXdnCBPeD06lluzTujMZYMTH2MeI2i8cITUxJ/UdQFKU8o2JT1vECPwBbgSo4GWe/J9iiEVeaBOxlBHMEWPkWtx+ZzBsfXQ7ZNalZfS/fDapBg5oux2LJxelpFomTYSZJAOI+k24DMhRNOjtXx7jOtGOzoig2KjZlnTT7I3Us4GR5BRP2u+8iDB4CiQP+MD+9d/0f8+cOBm8MZzfczte965MYbR8j1on0J5OBZ3Lt4MB/DI5LLgzHZVcHqI8mAiiKUgQVm7LMEWAD5gWf/wfHuIJ+ivtM4ihS+xIG+b582q+dzg+LbwbcdGm+hYUdUvCIS0xmzEThWCR2/U2gWBSctjYy+0Yy08IxbrMaaEcARVGKoWJTVvFh2s8Ez54JbmopP4MtCKnul+JKWwgOezJp+ekitn17AwA3ddzMm63PwCXTOL0YC0Wy18QiEleaxGX8ODGYaBxRigEaY0Y3K4qiHAUVm7JKJmZUgLR4EYJTnOV3sWhEYHC+byvYT+u5a0j/+RpwF/D3y3bx8DlnOP3SZK5NFM48G+nGXBB0ffmT4g9akx8TRzoTYwUpiqL8ASo2ZREL2I2T9eUP2v57ywaMsBTYP4MSAn7wbaPDtP3k7eiKO/IIb/fLZEjNRs51InFSoqUAVEQr2J3msb+H4UzwBJMI0ISiHZ8VRVGOgopNWaQQZ8hZXtD23wtNOE78pMDeFgnkwPxDv9DnHQ++g+fhSdjNfwd56FSjrhObkfMlfdmi6NROqZeR4L9YN2Jl1cXEaLT1jKIoJ4CKTVmkgKIFm8HxGSmk9OG0qPHgDCULhzf3/sDwKXWxsmsQW3Mj/xtYg7OjE5yEASnIlLk0IiiSaSbpzjJ3JriexoURGc04UxTlJFCxKYvk4Li63By9FY1kgUm8JtJse+ynb3hyanMojKPGGT+ydlBTakRHOfGZ39fPeDGCVYBJEojASRCQFjVivYRjEgHqoBlniqKcFCo2ZZFg68X1uw84IgNGDPLMz5tWfcHkD9qDFc6Zrb/ixysvJNoV5jTgDMdp3CmiI9uzceIyrqB90kwzDmgKVAvlgyuKUlFRsSmLSIpzsFUT7DoT8ci3f/pg0Y4tTP6gA1hhXHTx53x+RUfcLldxi0ayzYKbaIq7TuI0YvXIn45E4Gy0x5miKH8aFZuySPBY5WALJhunOWYEzqjnSOhRM4WBV32O17KY2bGTESIZLyAWTSFOfEYmbEqasy/oPtIhwIOxZFrgdBVQFEX5E6jYlEWCZ8NIw8vgYL5koUXjCFAMvHfxxY5QyfhnnP2BAk4vDsGWk6Q7ixjVBc7BiI+iKMopoGJTFhFrREYxQ2D+DLn2/mwcgZCMNGmiKSOYgy0acNrKiEUjH599nRgcwTkDE6PR1GZFUUoAFZuySAROK38RAxEf+SlD08TqEMGJxREYidFE4qQ6S4GoIFllEqeJAppjss4040xRlBJCxaYsEo6ZI7OPolljORgxyMKp4pckARkHLdMyJT06uH2NnCMjoi2MkOXb94sD2gAN0KmaiqKUKPpv17KIC6hK0cJKCyeTTOIvEsyXwH88TuEn9vGxOG1pfDjWTXC3Zw+mx1kHzBwaFRpFUUoYFZuySgzG2gi2bCRZQPbbHQOIw2k3E23/HoEz4ExazUQFfSQulIWxZLphEgIURVFCgLrRyioyiCwHp3VNcIZaPkZU8nBGBBQGHRuGMzbAR9FmnsJ+oBFwOZAUyodRFKWyo5ZNWSYKqIVj0Ui1fxjGgpFEgWgcCyYWZ9aMuM7AsZAkIy3bvnY/VGgURQk5atmUdapiLJbdOP+33BgLRhpqWhiBwT7WhyMuMjYgeFRBJkZoemBcdYqiKCFGxaas4wJq2t/3BG2XkczSKNNn/y4doCUJQJCpnPnAWcCF6BwaRVFOGyfkRtuxYwd33nkn7du3JyYmBpfLRVpaWpFjVq5cyfDhw2nWrBkxMTE0aNCAwYMHs2XLlmLX8/v9jBs3jkaNGhEVFUWrVq344IMPSuSBKiRujCXSGBOnkW7MERjBkAJOmbQp2yURwIPjYusAdESFRlGU08oJic3GjRt5//33SUpKomPHjkc9Zvr06axbt4677rqLBQsWMH78eL7//nvatm3L9u3bixz7yCOP8PjjjzNq1CgWLFhAu3bt6N+/P/Pnzz/1J6qouDAur8aYrLFoTOxGYjkiMpFB36W/WgymkWYnTGcAjdQpinKacVmWZR3vIL/fj9tt3lBvvvkmt956K1u2bKFRo0aBY/bv30/16tWLnLd161ZSUlJ4+OGHefLJJwHYt28f9evXZ+zYsTzxxBOBY7t27cr+/ftZs2bNcRfdtm1bVq5ceUIPWGGRaZ6HMRlrUsApWWvhGJGpYn/UklEUJcQc6918QjEbEZpj8XuhAWjYsCHVq1dn586dgW2LFi2ioKCAIUOGFDl2yJAh3HTTTWzZsoWUlJQTWVblxoPJIkvCaWkjcRrJOlMLRlGUMkJIX0c///wz+/bt4+yzzw5sW7duHZGRkTRp0qTIsampqQCsX78+lEuqmEjW2e9daIqiKGWEkL2SvF4vI0aMoHr16tx8882B7YcOHaJKlSq4XEV7oiQnJwf2K4qiKBWLkKU+jxo1iq+++opPPvmEpKRTrxqcMGECEyZMAEx8SFEURSk/hMSyGTt2LBMmTGDSpEl07969yL6kpCQyMjL4fV6CWDRi4fye4cOHs3LlSlauXHnU+JCiKIpSdilxsXnqqad4+umneemllxg6dGix/ampqeTn57Np06Yi2yVWc84555T0khRFUZRSpkTF5qWXXuLhhx/mqaeeYtSoUUc9pmfPnng8HqZOnVpk+7vvvkvz5s01E01RFKUCcsIxm1mzZgGwatUqABYsWED16tWpXr06nTp1Yvr06dxzzz307NmTLl268M033wTOTUhICFgsNWrU4N5772XcuHHEx8fTpk0bZsyYwdKlS5k7d25JPpuiKIpSRjhhsenfv3+R30eOHAlAp06dWL58OQsXLsSyLBYuXMjChQuLHCvHCE899RRxcXG8+OKL7Nmzh6ZNm/L+++9zxRVXnMKjKIqiKGWVE+ogUNbQDgKKoihlj2O9m7X0T1EURQk5KjaKoihKyFGxURRFUUKOio2iKIoSclRsFEVRlJCjYqMoiqKEHBUbRVEUJeSo2CiKoighR8VGURRFCTkqNoqiKErIUbFRFEVRQo6KjaIoihJyVGwURVGUkKNioyiKooSccjlioFq1asTGxlK9evXSXkrI2L9/f4V+Pqj4z6jPV77R5zt50tLSOHDgwFH3lUuxgYo/06aiPx9U/GfU5yvf6POVLOpGUxRFUUKOio2iKIoScsqt2AwfPry0lxBSKvrzQcV/Rn2+8o0+X8lSbmM2iqIoSvmh3Fo2iqIoSvmhXInN9u3bueaaa0hMTCQhIYG+ffuybdu20l7WSTNr1iz69etHw4YNiY6OpmnTpvztb38jMzOzyHHp6enccsstgVTvbt26sXbt2lJa9anRs2dPXC4XDz/8cJHt5f0Z58+fz8UXX0xcXBwJCQm0bduWpUuXBvaX5+dbsWIF3bt3p0aNGsTHx9OmTRsmTZpU5Ji8vDzGjBlD7dq1iY6Opn379nz++eeltOI/ZseOHdx55520b9+emJgYXC4XaWlpxY470efx+/2MGzeORo0aERUVRatWrfjggw9Ow5McnRN5vpUrVzJ8+HCaNWtGTEwMDRo0YPDgwWzZsqXY9ULyfFY5ITs722rSpImVmppqffTRR9bs2bOt5s2bW2eccYaVlZVV2ss7KS688EKrf//+1rvvvmstX77cev75563ExETrwgsvtHw+n2VZluX3+62LLrrIqlu3rjVt2jRrwYIF1sUXX2xVrVrV2r59eyk/wckxbdo0q1atWhZgPfTQQ4Ht5f0ZX3/9dSs8PNy65557rMWLF1sLFy60xo8fb3388ceWZZXv5/vxxx+tqKgo65JLLrFmz55tLV682Bo+fLgFWK+++mrguOuuu85KTEy0JkyYYC1ZssS6+uqrraioKOuHH34ovcUfhWXLllk1atSwevXqZXXv3t0CrC1bthQ77kSf58EHH7QiIiKsZ5991lq6dKk1fPhwy+VyWZ988snpeaDfcSLP99e//tXq0KGD9corr1jLly+3pk6dajVr1sxKTk62tm3bVuTYUDxfuRGbF154wXK73daGDRsC2zZv3myFhYVZ//rXv0pxZSfPvn37im17++23LcD69NNPLcuyrNmzZ1uAtXTp0sAxGRkZVlJSknXnnXeetrWeKocOHbJq1qxpTZs2rZjYlOdn3LJlixUVFWU9//zzf3hMeX6+v/3tb5bH47EyMzOLbG/Xrp3Vrl07y7Isa/Xq1RZgTZo0KbC/sLDQOuuss6zevXuf1vUeD/lHnGVZ1sSJE4/6Mj7R59m7d68VERFhPfroo0XO79Kli9WiRYvQPMBxOJHnO9p7Jy0tzXK5XNYjjzwS2Baq5ys3brS5c+fSrl07mjRpEtiWkpLCRRddxJw5c0pxZSfP0ap2zz//fAB27twJmOetU6cOnTt3DhyTmJhI7969y9XzPvDAAzRv3pxBgwYV21een3HSpEm43W5GjBjxh8eU5+crKCjA4/EQHR1dZHtiYiJ+vx8wz+fxeBgwYEBgf3h4OAMHDmTRokXk5+ef1jUfC7f7+K+6E32eRYsWUVBQwJAhQ4qcP2TIENauXXtUt1SoOZHnO9p7p2HDhlSvXj3w3oHQPV+5EZt169bRvHnzYttTU1NZv359KayoZPnss88AOPvss4FjP++2bdvIyso6rev7M3z55ZdMmTKFV1555aj7y/MzfvnllzRr1ozp06fTuHFjwsPDadKkSZFnLc/PN2zYMADuuusudu3aRUZGBhMnTuTTTz9l9OjRgHm+lJQUYmJiipybmppKQUEBGzduPN3LPiVO9HnWrVtHZGRkkX/4ynFAuXof/fzzz+zbty/w3oHQPV+5EZtDhw6RlJRUbHtycjLp6emlsKKSY+fOnTz66KN069aNtm3bAsd+XqDMP3NBQQG33XYb9913H02bNj3qMeX5GXft2sWGDRsYM2YMY8eOZfHixVx66aWMGjWKF198ESjfz9e8eXOWL1/OnDlzqFu3LklJSdxxxx28/vrrDBw4EDj+8x06dOi0rvlUOdHnOXToEFWqVMHlch3zuLKO1+tlxIgRVK9enZtvvjmwPVTPF/7nl6qUBFlZWVx55ZWEh4czefLk0l5OifHMM8+Qm5vLQw89VNpLCQl+v5/MzEzeeust+vbtC0CXLl1IS0tj3Lhx3HXXXaW8wlNjw4YN9OvXj9TUVF5//XWio6OZM2cOI0aMICoqisGDB5f2EpVTZNSoUXz11Vd88sknRxXZkqbciE1SUtJR/yX4R/8aKQ/k5ubSu3dvNm/ezGeffUa9evUC+471vLK/rLJt2zaeeuop3nzzTfLz84v47vPz88nIyCA+Pr5cP2PVqlXZsGEDl156aZHt3bt3Z+HChezevbtcP9+DDz6Ix+Nh3rx5eDweALp27crBgwe5++67GTRoEElJSWzdurXYufJ88i/h8sKJPk9SUhIZGRlYllXkX//l6bnHjh3LhAkTePvtt+nevXuRfaF6vnLjRktNTWXdunXFtq9fv55zzjmnFFZ0ahQWFnLNNdewcuVK5s+fT4sWLYrsP9bzNmjQgLi4uNO11JNm8+bN5OXlMWTIEJKSkgIfgOeee46kpCTWrl1brp9R/Nd/hNvtLtfPt3btWlq1ahUQGuGCCy7g4MGD7Nu3j9TUVLZs2UJOTk6RY9avX09EREQxn39Z50SfJzU1lfz8fDZt2lTsOKDMv4+eeuopnn76aV566SWGDh1abH/Inu9P57GdZp5//nkrLCzM2rRpU2Dbli1brPDwcOu5554rxZWdPD6fz+rfv78VFRVlLVmy5KjHfPTRRxZgLV++PLDt8OHDVnJysjVq1KjTtdQ/RXp6urVs2bJiH8AaMmSItWzZMiszM7NcP+O8efMswJo5c2aR7d27d7fq1atnWVb5/n/YqVMnKyUlxcrPzy+yfdCgQVZUVJSVn59vff/99xZgvfXWW4H9hYWFVrNmzawrrrjidC/5hPmj1OATfZ69e/daHo/Hevzxx4uc37VrV6t58+YhXfuJ8EfPZ1mW9eKLL1qA9dRTT/3h+aF6vnIjNllZWVbjxo2t5s2bW7Nnz7bmzJljtWzZ0kpJSSlWC1DWGTFiRKDm5Ouvvy7ykWI/n89ntW/f3qpXr5713nvvWQsXLrQ6depkJSUlFSvAKi/wuzqb8vyMfr/f6ty5s5WcnGy99tpr1qJFi6xbbrnFAqzJkydbllW+n2/mzJkWYHXv3t2aPXu2tWjRIuuOO+6wAGv06NGB4wYMGGBVqVLFmjhxorVkyRKrX79+VmRkpLVq1apSXP3RmTlzpjVz5szA379XX33VmjlzZpF/DJzo8zzwwANWZGSk9a9//ctatmyZNWLECMvlcgUKekuD4z3fe++9Z7lcLqtnz57F3jvr1q0rcq1QPF+5ERvLsqytW7daffv2teLj4624uDjryiuvPKp6l3UaNmxoAUf9PPbYY4HjDh48aN14441WUlKSFR0dbXXp0sVavXp16S38FPm92FhW+X7Gw4cPWyNHjrRq1KhheTweq0WLFtbUqVOLHFOen2/+/PlWp06drGrVqllxcXFWq1atrFdeecXyer2BY3JycqzRo0dbNWvWtCIjI60LLrjAWrZsWekt+hj80d+5Tp06BY450efxer3W3//+d6tBgwZWRESE1aJFi2JW7unmeM93ww03nNB/A8sKzfNp12dFURQl5JSbBAFFURSl/KJioyiKooQcFRtFURQl5KjYKIqiKCFHxUZRFEUJOSo2iqIoSshRsVEURVFCjoqNoiiKEnJUbBRFUZSQ8/8mu8wRqmj8uwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -440,8 +443,10 @@ "planner.layer.optimizer.set_params(max_iterations=10)\n", "solution_dict, info = planner.layer.forward(\n", " planner_inputs,\n", - " verbose=False,\n", - " damping=0.1,\n", + " optimizer_kwargs={\n", + " \"verbose\": False,\n", + " \"damping\": 0.1,\n", + " }\n", ")\n", "plot_trajectories(straight_traj_dict, solution_dict)" ] @@ -470,7 +475,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAGQCAYAAAB4X807AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACU8klEQVR4nOydd5hU5fXHP9O2d1h6laXIUlaKgl2aWMAeCxhJVDTGGDUSifozphhrYjQxKhqwoSIYBRsgXbHginRF2tL7FraXmfv7471n7x0WBGQ75/M888zure+d3bnfe8p7jseyLAtFURRFqUG8dT0ARVEUpfGjYqMoiqLUOCo2iqIoSo2jYqMoiqLUOCo2iqIoSo2jYqMoiqLUOHUmNlu3buXKK68kMTGRhIQELr/8crZs2VJXw1EURVFqEE9dzLMpKiqid+/eREZG8te//hWPx8MDDzxAUVERK1asIDY2traHpCiKotQg/ro46YsvvsjGjRtZu3YtaWlpAPTq1YvOnTvzwgsvcPfdd9fFsBRFUZQaok4sm8GDB1NSUsLixYvDlp9zzjkALFy4sLaHpCiKotQgdWLZrF69mksuuaTK8vT0dKZOnXrE/Zs2bUqHDh1qYGSKoijKTyUrK4t9+/Ydcl2diE12djbJyclVlqekpJCTk3PE/Tt06EBmZmZNDE1RFEX5ifTr1++w6+pEbH4KEyZMYMKECQDs3bu3jkejKIqiHAt1kvqcnJx8SAvmcBYPwNixY8nMzCQzM5PU1NSaHqKiKIpSjdSJ2KSnp7N69eoqy9esWUP37t3rYESKoihKTVInYjNy5Ei+/PJLNm7cWLksKyuLxYsXM3LkyLoYkqIoilKD1InY3HzzzXTo0IFLLrmE6dOnM2PGDC655BLatm3LLbfcUhdDUhRFUWqQOhGb2NhY5s2bR5cuXbj++usZNWoUHTt2ZN68ecTFxdXFkBRFUZQapM6y0dq1a8c777xTV6dXFEVRahGt+qwoiqLUOCo2iqIoSo2jYqMoiqLUOCo2iqIoSo2jYqMoiqLUOCo2iqIoSo2jYqMoiqLUOCo2iqIoSo2jYqMoiqLUOCo2iqIoSo2jYqMoiqLUOCo2iqIoSo2jYqMoiqLUOCo2iqIoSo2jYqMoiqLUOCo2iqIoSo2jYqMoiqLUOCo2iqIoSo2jYqMoiqLUOCo2iqIoSo2jYqMoiqLUOCo2iqIoSo2jYqMoiqLUOCo2iqIoSo2jYqMoiqLUOCo2iqIoSo2jYqMoiqLUOP66HoCiKDWEZb8AQvbPIddLfve4trMwj6A++2eP/bPX9bOndoavNC5UbBSlISOCErRfZfarwv693H5Z9jIRmgjXshL79wh7newfiREXEaZI+5x+IGBvH+X63W9vryiHQMVGUeo7IiYhjHBU2K9ioNT1ewXmZh+wfy619/djrBGxYgAO2MeMBhKAIiDbPleCfYwijPBE278X2sf12q+Q/S7CFYERpFggBkes1BJSULFRlPqFW1RKccSkzF6G/V6C+fZGufbx2uvyMDf5eHv7Ant5gHBLRQQl314eaS/PsfeLsl8l9jZivVRgBCSAEbxCjCAF7ePl4bji4oBEe33E8X88SsNFxUZR6gK3tVKCEZViHNdXEHPDDtrrPYRbJ/H2dmKNRGBu7mU47q599jaJGEujHNhrb5vgOncFjhAV44iJCFqJa8x++xzF9viS7G1l/H57zB77nMXAfhzhamovV3fbCYeKjaLUBCIm4MRTQjg35RLX7+A89RfiuKmKMN/QWHtdPo6rzB1X8drH2W9vG8CJ1Xjs/aLs88bYx8rBicNE29vuxIhYpD22PHvbRPscxa5tYuxr2u8au7jl5HhF9nlL7euNxohjApCC465TTghUbBTlaHBbIhKUDxEenBcrRKwSCcBLgN4tEBGYm3AQIx459nZJmG9lAUYogva6oL1flGuZiJIfc2MX6yXXHluk6xi7MTd3ibWU2cslKUCsGLFORPSwt7XsbUTIvPbvJfa6ONd+RTjuuiL7mmT/WIz4FdnjS0VF5wRBxUY5sQm5fhbBEKtAbsqlODEKt2tL3EWS4eXHCcYfsPf1YQSizN43FiMk2fbyGNfxY3Bu1tE4MZRiHNeauKbE7VVorxNhCWAsEsk4E3eYxFd8ONZUpL2/395eEgv242SbgRGvgD0m7OOJ1RKD41aTJAULYw1F2OsKccS1ACNM8jmX2MdphbGYNJmg0aJio5wYWK6XWBgiKPKEXoH5RkjMo8J+99v7FWJuln7MjTEaJ94ilk4RTgwl3l63F8cdVmKfP8bebi/mBhuHI1xBzM1bxh3E3JBDGCHw4dz4sY8pWWhiRYmVIUInrrF8wtOYK+wxJ7rOV4wjNCJyIgIitBaOSy5kX0eS6zwiMGX29nE4gmgRLsBFwHqgCdDcXqc0OlRslMaJhWOhSCaXxEo8mBuhl3Drw4u5+ebZywM48RIRiVicm3YpzlwTCZIX4gTzRaCicWInxThB9SBOKnEh5mZcjCMEhfYxJavMg2M9uBMCJC7ic7377GuWLDJwbuzurDCZjyOxIDm/CFgRjsVT5louGXMyt0esI+xlefZnFWW/i7sQe0wilnJ9HnufIqAlRvzUymlUqNgoDR+xBmSCojsALzdWEQ93OrDEJfw4glCAk7Jr2b+7XUbgiFSZfQ6ZSyKWhMceQxFOnEQsKhGdOBwXlg/HfSX749pHLBO3pSVjkrhLwB4rOJaBXE+y/bskLIj1I+6/gOvzEauo3B6fXK/PHre4Cr0YcRB3m1hEEguSY4noittRxlGBky59wB6zuNg2Ai2AZugdqhGhf0qlYXFwyrC8JJgt8Q+5AR7AmSEv7iuJw8S6jnkAc7NLJPxbUeY6LjhxFcm8kn3ldxEKsRiK7fOIqy0C58lfxgmOZeTFuVHLhEoJ2otVIfNpRBhlf8s+hoiNpEmX4wiajM/tHhMrqJzwlORCjFjKZ1SEySIDx50WfdD2EmuSc4g1JNUL4l3rfDip1CJikgix096vtet4SoNGxUap34jV4p7kCOZGJKm9kr0lgXNxkRVjbpLxrmPtsY8hN01wbuyRmBuqCIdMqBRBkHNKRhk47jCJUYgQiFBICnA5zrfNhxEodxBeJl1KLEniN3ITLiTcUgtgMtLk2uT6xGIRl6AE5sUykgw2ET+fa1+xSNy/C+Kek2OL8IlgFbnWyf4yb0gqC8jxxMWZjyOyZThCnIDzN92MERx5MFAaLCo2Sv1BbpQiLOKSKcJ5Khc3lASoI3HcWXLjDQK77GWJzuErLaJonLknYjmI+0jiHvLk707J9WNcXXGuZVIWRiyeRJzANzhlXiRTDByLQ4TFnU4scRW3xSBuO7fwSbKDJDXI9cm2Ua7fQziWlrj8RHjcLju3uMjnbbn2l2PJ5+iO3cjEUHHNyd8s2vVZyN9Strdw5uWIkLotpjz79y1AW8I/d6XBoWKj1B1y45IAvgTY5cYr9b8kUO/FEQl5qt5r7+8WFYltRLq2j8KJkUg9LxG0CsIzoAKY1GSZDyOIdSKJARKgd9f/KiBcFCDcJeauAiCusQCOBSAcKIe9G2HH97BtLeTsg/wi8BRDaREEKyDoA68Ponzg80O5F3wewIsV4aW0yENBGRQUQ1EZFJdAUTkUl0F5BQSDFhUhqLBFxoeF12vh84SI8FpE+kJERECkD6ICHmIiPETHRRCd1JSEFql4E1IhuSW06QPx8eGxMymHI0kDZfZnI5lwkuHntoTESpK/v6RuF2MEpx0qOA0YFRuldpAnZBGWEszNX2IiIjruGe0VGJGxMKJxwF7nP+iY0a5jyUz5AE5MpBTzRO0l/D9eXFFSY0xw3/TEGpAgt9wkZTa+xBvkeHIeN25LptJVVga5u2HPLijcCZs3wt4NsHMD7NgAuzYaQfmJeAivEFOThDw+ClucQnTPs/F3PQd6DYWYaEd0JMblnocE4dmCMsFVHjLExSdxomJgK2rhNGCqVWymTZvGm2++SWZmJnv27KFdu3Zcfvnl3HfffcTHO87lnJwcxo0bx3vvvUdxcTEDBw7kqaeeomfPntU5HKWucLvDxM1UiOOukvRdd6FHmfFuYWp6FeNYKx4cIQnhiI7EEURUgva+UjBSCODESESEwHEbyXhkH4mZyKTJeFyuIwvKSyE3D4IHILcAyguguACK8iE7H0ryIZhvfi/Mh5wcKMyBwlzznrcf8rN//DP0eKBZB2jXjfIWXdlltWBbdixbi2PYnB/Dtmwf+3KDeKwgPoL4qcCDhZcQHix8BIn0Q0ocJMdBYjTER1nEx3qIjzLGUIQPAlEeIuzimqFyqIj0Egx6KC3xUlTmoTDkoajQ4kCxRW6hRVFRKZ78fUSV7qUZe+hAFqdY3xK/MxN2ZsLsf1AaSCDU/0qiz7oeOp0NkV7HVYjrf0Pci+5KCCJGkjwg/zvi0twKdCDczag0CDyWZVlH3uzoGDBgAO3ateOSSy6hTZs2fPvttzz00EN069aNzz//HK/Xi2VZnHXWWWRlZfHEE0+QnJzMI488wurVq1m2bBlt2rQ54nn69etHZmZmdQ1bOR4Otljc81ncM/BFWEpx/P1BjGsliLmhi2BIiu3B2VLueIWUv08iPO6Qh1MmX4Lf7jResZwASizYmwf5u2HfbijdAzl7YNceyNsHBdmQux8Ks+FANuTnQdEBqJC75nHg9UFyc0huAYktoHkHQq06sSe6E6vKOvHVnk4s3RnNii2wYScc6lvq8UCHVEhrCZ3awEkpcFIz6NgU2reDlEjwiIXgFlCpKhDCSeeW9gGJOAkPYCzLQqpMGD1QAt9vhO92wfKsAgpWfUHbvYu4kI/oy9LKMRbFtyP64t/gGXQzBBKdGJvEnOSBotw+l1SVlvlL7uWSRBAPtEez1OohP3Zvrlax2bt3L6mpqWHLXn31VW644Qbmzp3LoEGDmD59Opdeeinz5s3jvPPOAyAvL4+OHTsyevRonnnmmSOeR8WmDhBRcZcZkbRWuQlJqq8Xc6MQd4jU35KAbwzODHKJWYjHSGIX7qDyPox4uJ9m81zbxuK4vQqx03xDENwLe7bCli2wfSvs3wp7tkPuDti7HfbugNJijplABMQmQlQ8xNqv6Djz8sdBdAIk2suj4sGfBEnJEJUMqcmUB1LIym/Cdzu9fL8NvtsE322D1VtNfOVg/D7o2gZ6toYe7aBbmvk9LdFYKPgIr04gyRNS6FPmzcjES3chTxEbKYmTQLjYxGEeCERsxAKVv0EMlX+//Tvhk82wYP53tP/+da7jddqzBYCKiHh8Z92M54I7oXlb5wFBzi8PJJK+LRNtJTNQ5j0l29eZjBEcrR5dr/ixe3O1utEOFhqA/v37A7B9+3YAZsyYQatWrSqFBiAxMZERI0Ywffr0oxIbpYaQTCL3rHKpUiwuMcm0kqwn981L6nvJhD/JtHJnM0kKrBSelNnjUrsrH6cUDISn72IvlzkbZbmwfoMJpO/dCFuzYPsm2J0FO7OMu+tIRMdCSktIbgZJzSG1GcQ2g5SmkNAEElIgJsW8JyRBXAJE2HfbXMLmlZSWwd5tsDcH9pbCvkLYmw07tsKW/bBlD2zZBzv2Qyh06OG0SIbeJ0Gv9tCrJfRKN8ISGWF/NkGMNYfrbyM3XHE7CRJrkkC8e66OfObudGV5lyQGCdCD0zba5/o95Pq9DJrEwTVnwDWnn8yeHQ/zyhd/4dtZM7mp+EkGlc2Huf/AWvgsnhG/hwvGQ3yM8z8lIutO4BBL1z5+5f+eTGDdhampppUGGgQ1niCwcOFCAE4++WQAVq9eTY8ePapsl56ezquvvkpBQQFxcRoBrFZCrneJmUjRScnIKne9wHnCFDeM3IBktrnMK4nFeUqWbDEpfSL1v9xlWiA8lVdmjYOTQiznjQH25cL2H2D7Otj8A+xaB9vXw9YNR457xCdDi3bQpK15b9YWmrWBpFbQrhVEtYYk10QVKWhZaq4zNx+274Pde2H3dth9AHbnwu4c2J9nQjE5RZBTCNkHoPgotA2M+6ttUzi5HXRrCye3hm6toXsHaNbE3kgmfrrnA0XgVAkAJ1lBcP+d5IFA5gFFUPXbLtcq2wpS8UCOJ1ZjJOEN3CJc20pMzZ430ywOxl3spXDEhfxn5oX89f2l3FLyGFdXvA3v/gVr4ct4rnkS+l9lMuhkzpGM33fQeNzZa2JJZ2P+/5IO8SEr9Y4aFZvt27fz4IMPMmTIEPr16wdAdnY2HTp0qLJtSor5VuXk5DRusXHf7KWch3yRLNc2B//ufneX/RAhEZeVWBEVrp/FxSUuMAifWS77SSVhSTmWOIvMmZAnY/H1SzC/AvOFd89slxuRLIu0l8u8CynGWAHkBiEnC9Z+b1J9t66FLEn53XP4zzIqBlp1Mq8WHc2rVQdo1RFatIfIeOf87rRiV9bT/jxYuRF+2Aobt8PGnbBxh3nPyT/8qQ9FwA9NE8wrNQlSU6BpIrSIg/bNoF0qtG8JrVpBxMHFLkXEBXmCd9cUO7jFslQTkGUenM/Ze9Dv0YTP2JcSN+4HCvf55CXnEcGSMR5qQqhUbZD4UITRgnGDYUy/Ptw2bQrPfH0Hz3AHfbOXwn+uhrM+hF9MMNai24qS44j17D6PFPusALYRHodT6i01JjYFBQVccskl+P1+Jk2adNzHmzBhAhMmTABMbKhBUY55St2NeRrLtn8vwCm34sfcwBMwN2HJmnJ/6d0+d3AEQlJrJfYhP7tFRMRNsn3E+nBPDJRxBnB6o+zAfJnjcSwRGZOU2/fj1LdylzDJd43Vi0nl/WEDrF8NO9bAljWQtQa2rIUyaQd5EJEx0LYztOkMbbtAq86QkgZpadC0uTET5DOWSYQHf/aWcVut3QLfroMVG2DFelix0VguhyMmCto2g+bJ0DwemjeF5k2guS0iKVGQHIDkVpAcD7HR4JG4USRV4yHyd5EguVtI3AF4ebqPPmgbEQ935pzceAVxQ8lx3EU4ZftijDXpzviKI7wSQBzhM/7luOIyDbjWy3jkQcUddys2x0tNgal3wtuLz2DoxCVcWfJfnvbcRfSnr8LuTTDufxDZNNylJg8KXtd5wLHGmtpj2YmZg6MTOeo1NfLnKS4uZsSIEWzcuJGFCxeGZZglJyeTk5NTZZ/s7OzK9Ydi7NixjB07FqDSSqr3lGFu1tswAiOFCt1l4CNxZpnvxKR2RmCaSollIW4Et/BI0F1KkYjbS9JHJaNL0n4l4Cp9R6TcezHOTHH3E2UB4enIOTgT8uSmVILT4teLiWF4AL9lAvPrV8LqlbBzFWxeBVu+h7LD+JqatIZ2J0PHbtC2K7TvBqldIbY1NPGGP9Fn49wcBblmW2x27IMl38FXq8z71z+YOZEHExMFPU+Cbu2gU2uTzXVSS+jU3lgnHnchSfk8BbkxuieUyix7t1tKLAiPa7lMMnVbD2I5yAOEpHeL4IgIiDUiDyOSbCH/E0k4c5YkM08eLnyu5eBUeHbPf7Fw+u4cXEVBKizE2eOXhxUReUkikOC+iKwdq/tZD+g5zsdFz4/ljL39+MgzghY/fAr3D4A/LILEVuZY7szDSNfnJunrxZj/a/lf3IdpT6Dxm3pLtYtNeXk5V155JZmZmXzyySdV5s6kp6cze/bsKvutWbOGdu3aNQ4XmoW58W7AfAkkuCk+Z3lyDRLuGhBLoQDIwtwkEjA3dAmMiziJm8uLIyYROEUPpQRItv1zAKcXSjxO//p4nCZaxZgsHx/mxi2pxeJ6kb4nYnWVAeWFsHMlbFgB36+ATStg8woozDv0Z9OsLbTtAe3SoUt36Ngd2nSDYKK5FnniBqdyskyGFCTmY9+QysqNxfLFEvhiI3yxBrYewvvWthn07Qq9O0GvDtArDU5qAd6DqwTI3+hgl9XBiHhYrm3lpn2wEMpTv9tKFWGSa5KYiHtZDOZvITdbt8Ugri+xgOTJPwbn7wPmb1zi+l0yuuT/LxknEcNdrVmSEhJxYmwiJD7XOSSLDHtc4ip1u1ylDE8ITu4IX/4JLn2qD33XLWGWbwQ99nwLk34Jd30MEfaHJ+Nwf5byOfgJrwKxF+e7otRLqlVsQqEQo0aNYt68eXzwwQcMGDCgyjYjR45k0qRJLFy4kHPOOQeAAwcO8P7773PddddV53DqhiDGktmCM3dBXjIjXX6XOIrMRxH3lnzp92OEpynmSx+LU3dKgqkSj3BPlpSn30KMWAQxBSjFCjmAU5dKnpzLccq8SyxF/P0yU754JyxfBtuXwdplsHEZ7Fh36EkgiU2hY09o29O8d+gB3bpDIMHpKSMpuyKwUiDSfcNwu21sduTBFyvhyy3wxWr4Zi2UuOMdmESnU0+GU7vBaZ3g1B7QsoVrA/ncDmVoiSUiNzaLcFek++YXQ1UxlMmnHLQsx3VMydzLw7EK3OIiVojHXi9/F1kudcaSXMfKxSmJ45706nOtl4cSsUSl34w8bEiKsVTSlmzBSHv8CTj/M5KxFsARswicB50S+/hisdnWlhWwyPdsZOxN3/LQf05n6OYPWePpQfKKWbDgObjkNmcMUpVB/kclViQJJGJVlwHbgZPQdOh6SrWKza9//WumTp3K/fffT2xsLF9++WXlujZt2tCmTRtGjhzJwIEDGT16dNikTsuy+P3vf1+dw6l9gpgqtdtwKgaLyBwsMO4aUvI07XaPlGJuJPn28VrgPNFKsDcXx+KRYGoSjshJGRdxy8jNROqQiUsiB6cOmAfYZ0FBFmR9A+u/hR+WwqZvTXmVg/H5oe3JcFJvaN8L0npDu57QpIU5mHtSoaSySlKEiC+Eb+d6oi2tgG/XwpdZxmL5YvWhrZZu7WBgNxjYBQb2g5Pbg09uOiJuVcaO40J0r5ebpyBzPfyEd7EERwgEESbJAnPHrERY5Vt3cPmWg5fJcskac49VHjBCrmXxhDeEi8exSsFpSCafcSLOQ0rA7FvmKWNd2TrSQmlERkSa68u190/CmTflrqwATvsGQVy60WafwqJCJpdNZmrhVDJLM8kN2Qe9JhFemc/Nu15gGldR8cbd+HsNhaadzTFF7Dw4sUx3BQIRPZlntBfzXVHqHdU6qbNDhw5s3rz5kOv++Mc/8tBDDwEmPnPPPffw3nvvUVJSwsCBA/nHP/5B7969j+o89XZS53ZM4yf3ZEcJBMu7uEnkybkIJ0grN2JxkcjTnTyhxtmvWJygrLjSynCeSsW9kYCTepxE+M1JMuCiLNiwETZlwrZvYP03sG4pFOVWvb7YRCMq7U6B9hmQnmGEJhBprCWZ6Q2OkEiMR84tM8TFrSRPxvnm56074MtN8MVa+GIVLP0ByioIIyEWTkuDgT1hQC84rTukSFwiH6dZmOAOMrurCsTipHu7MwLjcQRbRDEOx2Up1xi0P2OJxUmQXx4GDuBMgCyzzycxMvn7iiDJDd9983dPxJTgvPt/IwHHvWnhZAQW2suScSyDUtffpxAnJmSZ9YWeQl7a9xJPbnySbaXbiPHFcHbi2QyJG8LQJkPpGdUTj9/jtAWQz/KA/bMc7wBh4rneWs9/9v2HiUUTybMc12pzT3P6R/WndaA1S/Zv4tv//IfXcv7IaCaz/eRetB63DKI94b1xZPySECPfA8nckyreHdHW0nVErVUQqC3qpdjkA6tweq6I26AC5ylZZtcXYb6oslzmu7hTi2W9xHlyMDe8Jjg3O3EjyA0rBsdqinUtL7F/j7Bg0xbYmglbvoZ1mbDxm0MLS2IzSOsLaX2g9SnQ/hTo1BH8HnMdEhiXm/d+nJIz4LROTiC88KIEuv2mCvHStfDFJvhyBXz5w6Gzw7q3gwEnG2EZmA4ntwVfPuHdM8Ep+hhFuM1ejtMCwJ1uLFNsDhBeeVliICIsQRyrQCZSyucvFobcdEUEJGYh4iDxKMnok3iNxKgKcSyOOBwXnwThk3GKVObilOaXMcnTvwi6ZAaW4KQGl9nbituuDPLL8/nn9n/y9Man2V++H4CmEU3ZVxb+h2gb2Zbrm17PDa1uoEtEF6cskVsEbRdvYWwh7+W8x6t5rzK7xInPDowayK2xtzIoOIjWia3xSGymFL7ZXMbIv+1mdXlPkshj5i2/ZviwfzsPKkH77yWeAJlMKxa8xCujMW7nNlQtiKrUOCo2NU0FsBYTcC/FCdKL4Ij/GpwvqLi+PK5lsp3c4OTnEI7LIBXHpSCunVIgEULBEPs9+9lZupP90fuJPlBIysYNJO74gbiN3xGzeRWeA4dIG09qAZ36Qoe+0KkfnNQHmraCkMecQyoZi6DJjVGy5cCJB7jmSJJNpSCFQrBuCyz5Ab78Hr5aB8s3OuXtK4cSBwO6OsJyaluzrNINJcjnkeBaJlaBuHpkWcgel2TYibUiAiKiAOZGL/GXEnufWMJTqvPtz7wJjpBW4CRcuLcttF9NCU/hzbXPI5lsIpT237LS0pKYkjsZQQLw+faxJMnD7WqTb3WE6ziSuWY/wIS8IYbOG8q83fMAOK3Jafyh+x8Y0WIEe0r2MHfXXObsmsPsPbPZUbqj8pIGxA/g+mbX0zmqM7GhWOIq4oj1xbKudB2Tsyfz7oF3KbRMvZtITyTXxV7Hr5N+TV9/X2dOkVhxYvEHYOpS+OyZp3maO1mfEEXCcz/QLLKt+f9zW8jyoCDfmQTXZy6TjE9CJ3vWAbVWruaEJR9z8wi5XuL6EdeYfPndbi6fazvxpcsN6eD5BWIR5FE5435zaDNzDsxhjmcOX2//jBbbd9J3e5DTtsGp2yGtaoY5uTF+drRtRUWnDFK6Dqd1ixF42rVx0mHzcG7C4v6D8HiK3LAl7dr9VB0yb5t2wdIVkLkZvt4I36yDAwelHnu9JivstHQ73tIJunQAr4iIPLUXER6Ah/AqwoIErCE8hVhiIDEYC0TcUu6YiKSku78RMifl4Cdk6WXjTgzwHvS5uVPUI3BccnJeERSxaEVEmuC45URIJNhf6LoWSQSRuVUlOC5JL86DSAAnc8vrOr8Xnst8jnm755Eak8qUK6Zwbsdz8dhxthaeFowKjWKUNYpQeYhPt3zKKyteYeq6qXyZ/yVf5jvx2EMxMHogoxNHc3Xc1TQpbuIkN0hMSzLb5DPyw1X9YcnQ21j9yQTSD6xh3uTbGHTZ++Fjl+w2ca+VEv4wJi7Mvfbno3e4eoNaNseLBfyASXEWt4VYJe74jDxdSsxErBb3DbgYx5KRny3Cbng7infwepPXmFP8X1K2rWPANhiwDU7ZBZEHWQklAS/ft4xmWdtIvm7j4eMW+9mURJhPvaO/I5fGXMqlTS/ljOgz8OX6zBOhiFsZTtBa3FHytB2EfA+s2QGr18LyTfDtVvN+sLAAtGoC/dNgQBcY0AP6dYE4cfnIPJkInIKQImB59nq31STJFuKvB8evL6nbkkoe69qmFCM4CYRXDZaEjoiDjidzV0RYRPhj7XO441AyvgIc60JcfRLQFkFLxJm0eADHVSfuPDmf/A3AqdoAjnUgbr9IHHedexLoYdiQvYFez/eiqLyId372DpeffPnhN3ZRWFbI/777H+//8D7ZRdkUFhdSUFxAYWkh8d54rky+kuvirqOTv1N4eRlx60mM8uCHAtvKL/XDjXdM5/X9l5LvjSLuqQ142rRyHthEZEW4xGqVdfIZJWKsyWZHdVlKNaFutJqkBFiB4z4TkZHUVPHHS+BWArbgCIncrEoP8XMIKChhVc4rfLX3KVJ2rGXANmjpzoACLI8Hq1k3vO0HQtqp0OE0aNkDIvyVwdS8nDy+8X7DkuASlhQv4bPSz9gbdNxqTX1NGRE5ghua3sDZiWfj8XigECp8sCUX1u+AdXtg3Xb4YYepUrzlMDPwWyRDRkfo3wH69TTC0qoJ4SVyxDqIxOmqCY5rRG6WxTiVfgURPnfAXdwrctx8nHiHe8KiWAhu10wQcxOTNFuxZsRNV+T6+4lQWBhhKbTPIeIVdF2LO2lC5lodZAlWWihud55bPCJxMrFEDGXdTyBkhTjvlfNYtHkR1/a4ljeueOOnHchNMSY5ZhvO31geruTBSlKZpepBAc7nLw8cxbA0q4ItD17OpbzP6vRLSP/Le+YcIlpihUsGnDwQyJwjydiMBNLQVgS1iLrRahKZke9+inRbGOIqsA5a7y4tI8vk5nFgD2xbDDsWU7RtDoHdK+gRsujhOkRZdDz+NmfibXs6dDgNT+dT8fgSHb+8fLklPmRBoi+RQYFBDIoeBOUQ9Ab5qvgr3i14j3ey57Fph8WknANMyv2AlAO7aZE/kJJ9rdmy31sltiJE+E0xyfS20KsVZKRBRndokYJjlSQd9PlI6uzB8yGiCZ/AKMg1iStK8ONYGBA+Q9+PuRFJ+RU5VwVO1pZkcYHjcom3lxfguMXA/L0kdiTzbcRtk4STGCIWSXOcJAG38Mh1HDxnRAL5iTguMHGDHTyx8Tj595J/s2jzIprHNudfF/yreg4aDXTHpB1/j7HWJF7kdf0sD1OS+BCD4xq0/x592vn587mDuWDBLNJXT6d41VdEdznNnEfS9mUyNDhJNQk4E2gl7X8fWhm6nqBic7wU2u/i1nHHZmQ5OLEb92S/IGZC5L71sO5T2PYZbP0MstdVbhJj77KqmYfilhmcnPBL4loOJaJjFzPT2oeTbSSB1BCUBiEvx1QuzsuHnBDsy4a9B2BvGezKga3ZPrZmn87W7NMpOKg0Wbb9EpolV3ByKz+dm0NaO+jSxGSJdWoJ/gSc7K0InEC+B8ct5P5PkziCfF5ugXAHugWZQ1KMI8oiLDLxMAenr43gxbhRZMKh21KQuT45hIuePAi0xsm4Ctp/iCR7mwKcGIlUfhARicJJOpCxN8WxUt0CZccqwuqO1TDrs9czfs54AF64+AWaxDSpvoN7MDGnU4DVmM9WYlju+UBi3chnJRaiuCijoN1lW3hqyXWML3qZPf+4k/ZPfg7xnnCBTiDcPSqxG3eGWi7ms3Ynlyh1gorN8SJPx/KU5fYti7h4Xb9bYBXu55P/vUXPwoU02fMpEcW7wg5Z7o3h2+QOzEyMY3Fie8oiL6dn8GJ8ZXEU74XiXVC8HAoroKgCCoPm58ISyC+D/FIoP4wlcjjioqBjc+jYBNqlVJDbdBlfR73F2piPIHkTewIltI3uS7f4a7m61dW0KW0TXoXYh3NDdSOz6S3XthKslyd+tyUjcQqxYtxZVT7MTcmdtizndk9gFKtR3HMRGNEowPHvYx+nKU4iQAGOtSRiFOMaUzFO3bAUwrO+5PpFNHyu5e7PqI7Tce+ZfQ/FFcWM6jmKS7pdUjMniQF6AGswlq2Iu7jAZI6ZuBHFIpTYmgdSAvE8fNV8xrzSnPa5X7J57hu0v2qUOb5YjyI0Mp9LMtzEUqzAZG/uwTRa01ToOkXF5niRCWbujDPhMKb7zn0HGLbm9srf95DKp5zFZ5zJp5zF8lBvKvYHzNwVmwXHOKyADxIiTf/5pGiTPtw0FppGQdOm0DwB2jaBNgmmZlhyPHgk+F/oh5R+QD8yD1zDf3L+w7T8aXxT/A3fFH/DuD3jODv2bIZFD6PcV06Bt4DCUCEFZQUUVBSQ58kjN5hLXkUeecE8CkOFZERncEHSBVyYfCGnWKfg9XnNzedQbrNkHPckhFsisTjldgQJzsvcFBExibeI+6Y1TsxGrBCZhyRP5VLlAJxSK24hcbu03G67BsCyXcuYvnY60f5o/j7s7zV7smigG0ZwJPFDrFJ5kHCLhdsqDUFieSIFHb/luS738qcfHiN66r1YF1+KJyLWKceDs33lfCt3CZ0gjru2CKdvklInqNgcLxIoPgaspA581urXLCrsydKIc9gf25Vor4dAIMi2wEIq/K8T6/MzkuG0IZVIL0T7Me+W+Tk60ZS0jwmY5pGxCRBrQXwCxEdBZBLmSV2Co5KlU4C5mYtrS9KH3TPsXSLZL7ofE5Mn8mzRs3xU/BFv5r7JB/kfsLBwIQsLFx71NX9R+AVfFH7Bg9sfpHlEcy5LvYw/tfsTzeKahdd3EzeL3x6rzHx30xwn8Cw3F7lOP06bBskAk6oA7jiLFKuUJ25xaYll0gh9/H9Z9BcAbu13K83jmtf8CWOBzhjBkbiZDycd3IOTdAHOhOQiyLaduIU3R7FsfF8yKr5h1dOP0WPcn52/rXsumvuBLxEn/Vwme+7DKQiq1AkqNseL3CQhvHaVZERJ6qfX+X1HfCZbf3MGfwhdg6fCxF2sYosrfFex2/suza3mfFr0KZ09qeGZaSIWXsxTuMx0d1eFllRgeZqXMYnbQr5s8rME6+Vm7Y6ziCsoANH+aK6IuYIrUq4gz5/HeznvsSJnBbGBWGIjYonzxRFHHLHRsSRWJJIUSCLRk0hiYiIBX4BPsz/l410f81HBR2wt3crz25/n7d1v88+T/8no1NF4yjzO7Hm3CIgbTqwcSZUGJ+NJCj1KWnGCa73Es+RmJ1lKEkg+QW4+K3av4H/f/Y8ofxTjTh9XeydOwkyw3IjzuUvGXwXGghWxkf+7GFiRuwKA/k1OZvvIIWS8exadljxJ4fabiW3Z1mwv/ydiFcn/iZR4kgSECMz35gA60bMOUbE5XsQ0d7tY5EYuN/xy5/egJ8gtFbfwrfUtL3lfYpI1iXa04y3fW7zrfZckK4nZZbPpHOrs3Azdbhs55sHrwHEjSWqp3UMkLF4igWz3mN1B+hDhNafkFU1lED7Rn8gNqTc42VruCXfx9r6SLGALwyWpl3BJk0uwLIsVhSu4Z9M9zMmZw89X/pzJqZN5vtvzdAh1CHOl4MMIRxBzs5B6b5KM4cNkP4mVI3XixE0TjxNzccdRTkDEqhnbZywt41vW7slTMX8/CU1KcoDEbiTjThJDArCi2IhNL38vul55Mp/MvoqhhVNZ9vc/kPH0605cVCoJgPO/606NFss2FWPdSGq8UuucIM91NYjUJ3Pf/N2ByoNu5h48/Drwa1JIYV5oHndyJ0VWEfd67wXgSetJenl7hVtLEB6Ilpu7+wYqIuT+4kmmk9vFEH3QsXw4AXA5jjt1OsK1baRrO4l5SA026WsC4QVCg67tY8GT4KF3Ym9md57NpB6TSA4kM2vvLLot7sa9++4l15vrzFlyZyvFAW1x0vPk+gtxRKgZ0BITDG6PucHE4sRdTlBW7VnFtDXTiPBF8Psz6qCyug8TLxMrQyoqiBtUCtTak2HzSvLIKs8i0hNJ55jOeH3Q5JbHKCWCjK2T2fPVV05Cgfv/30N4bT5JDglhHn5KcGrYKbWOis3xIm4aecIXF5oEtN1BZB94Q15ujLmRjyM+BmA96/ln6J9sZSsZoQzGhMY4YmK5jiMZXeKHlmOK7xvXOrcF5HXt73HtKwJUgVM4UrJ8ZF6LHBOcGe5iqUnZEQnay/HBST1NprKqcKULxU499jTzMKbtGNacvoZrm19LaaiUx394nE5zOvHY9sfIT853KgHIuSSduAlm7kRrjIumE8bCkRpZjdRetyyLUChEMBg8ptdfFhqr5qZTbqJFbItj3v/gVygU4pjngkdjWjeD+R9IwIiPFB21qKyGsMRaAkCPqB74g34IQJ8zO/Jxq7sAOPDcXRBnOa7lIE7BU6lHKDXYwKlYUIZJhRbLXqlVGunXshbxYQLWuTiWghSDDOD0P5HYgl0xoKXHuDK2spWnrKcAeIIn8AV94eVhJBNKJgKKa0riLTLnQMRJSqOImMgckEKceIj81UXA5Akwh/DCkIk4T56yXSQmnVVEVWiOM7HRg1MBQGbQy/XIE6ctUC38LXjj9De4K+cuxq0cx8L9Cxm/ejyPr3uch3o+xG0Zt+EL+JzrFjFshAH8I1FQUMCyZcvIyso66pv9jrIdTN0+FR8+0nanMXny5OMeR7NmzejTpw/Nmh1jLZhkzP/Ofpz+TmK9llL5/zlr1ywABscMDmtZ0fO397H73kmkHfiCrGnT6HDxVc73ItJ1TEmp9uGIkFRpKMRYNyk/8eKVn4yKTXXQhHAftLimygi3HV3urCYRTaAUcu3OVKdyKoN9gx2rQQTG7TIqxolDuOefuCeSuht7SXkPsQp8OHMSRDSiXMsTcOpNSQZXCCOkkskj80xEQMGZPxHAuEJEcOWam9o/y2x+P04JHzvm1b95f+a3m8+sPbP4y7K/8Pmuz7njmzt4dcerPD7kcc5rft6hP/sTiJycHN555x1mzJhBKHTwhKZDs++sfVhpFtHfR/P0pKerZRz9+/cnNTX12MXGh3Fz5mL+V+T/uJiwoqqzcozYDI8Z7sQOo6FTrwTe7vknfrbyV0RMHg9DRoI/0vwPufvXSP8h9/woSYFOxGkhrXe/WkU/7uogAtOw6TucmfEypyASp89GkfMeExHeLP1e7sXj9TiT3sT0l5IzIZwUXREQSTwQH7jESORLLNWSg5gnOZk8l4QzV0GEJoT5IpbjtKAWcZFEALFaZAKll/Dq1SGM8MoTpKQty+zuWNf53MUjY8w1eQIehrcfzvmnns+MtTO4/ePbydyZyaDXBjE8bTgvXPwC7RLFF1OzWJZFMBikvLz82F1G1UwgEMDv91NeXs7evXuP3rJJxrgZQ1Aws4CC3IIj7XFUtG3bltLS0iNveChiMC7QnfbvkklmxyK3F29nVckqYr2xnJF6hpM8YIvGoF/fxPe/eoZuZd+x/uVnSfvN3eEPWAfP4RFrX+baSJUKtW5qHRWb6qIZpr7LDsIbcbmLawZc764nuc6ezlzqv9RJ3RV3gHxppJ9MMuFzFcR1IBlX4Myur8B8mYpwUogPLqEjLrM8nB4pch554pTCk5J27RbTKIy4SAFJSSAotI8nmWNuYRORkTIvhwjce/BwSbdLGHLSEP755T95bPFjzFw/k1NeOIXXLnuNCztfeKi/QLViWRYrV65k8eLFFBRUz036pxAVFcXAgQPp06fPse98JuYz/hantXN9oCnOxFx3ar8P5uyeA8B5CecREWGriPxPhaBpEz+fnPEE3T67mGZz/4J18xg8ESnOdiIugjzkSLxSHsLyMN+Tg1tXKDWGik114cEEqoswPmn5ZN2ZaeKisuMsNwVuYnbFbGYHZuP1e50vn1g3bldUNE6TLKlwK090UnYdnErIkhIqZV2kW2cAY7lI35MQRijlCx1l7yMBVpkXIXN7xJqRJASxnpLt84ilJeMTF9uhUrWPQGxELPeffT9j+45lzPQxfLTuIy564yLuPeNe/jror/i9NffvGwqFWL58Oc8++yy7du068g41RHJyMj6f76hbpleSCGRg/q6fVf+4jgspVJqP+b8Vy7ccFu9fDMC58ec68UKpCGE/aF38mwtZ9MVgzg7OZf1TfyPtgSed7LZoHCGTWKa7ZJI7O00mOCu1gopNdRIBpGPaQ+/FyQKTrBn52b7hvpjwIqGyEF6v13m68+DU95LMGpnAKZaB9HyRdGQvjstK3FISPxLhEMox4iKlPCTZQIpWSjmXaBxrSGbbS4n8aBwhkuQCedXAZMnU2FTev/Z9Hl/8OA/Me4DHFj/GZ1s+480r3qRtYtvqO5ELy7IoLS3lwIED5Obm1sg5jgav10tJScmxu/LOwPwdVhJW9qjeEI+50efiBPDL4fOizwE4PfF0p2q2u2yQB+LxsP3Sx+GdvrT74l+Evr8db4sO4e5dMN8BiaXKg5x8j6Jw5t3oXbBW0NTn6iYK6IWJ4UhwX7Kx3Ddj+90baf8JJCVZkgvEv9wM84VIwomHRGC+qBJXibTXuY5LE5zMtGjMlzkB50lSLJVY1zkl5pyCIzayXxOM5dbdfu8IdMD431NxSuOLxVTNeD1exp85nvk3zKd1fGsWb11MxgsZvL/2/eo/WUMnFhCv26d1OZAfwYf535YWA2WQW5rL6uLVRHgi6NO0j/O9cbchAAjB5T/rw7sR1xFBGVte+j/zP+ueEiD/9+6Ue2ngdgAnY1Tn3dQaKjY1QQSmCOGpOPEPCO9R4nW9y5dErI1CzBesKeYmn4LTCjcRJ0YTidNxUp4Oo3HK2Mj27koAkRjhirN/jsOIRQvMRMjOGCHpjGk81QlHVJKoDOZXjr2WU5DPan8Wy25dxoWdLyS7OJuRb43krpl3UVrxEwPWjZHOmP+z9ZiKx/WVOJzU+Fj4KvsrAPrF9yMyFBleykYoA3IgsgJKrvgrpUTQ7rvJBNctc7aReKe7aZok2EjqvGTASRVxpcZRsalJmgIDgLMwN3IJUErtpgKMP3o/5qYgbq0WmNnyLTFCk4QRnSYY8Uq2j51i/9zMfrWw92mNEYqTMMJxMsYiOdl+dQG62i8RlzYY0UnAKfnhdknUI5rGNOX9a9/nyaFP4vf6+edX/6Trv7sy6dtJVIR0xh6d7Pcf6nQUR8aD+Z+z4yg/lJsB90zo6STJyDwa6S0kD2LJcOWojrwe82u8WOz6xx/MMSVD011TT8TE7S6TWoJ5ON1RlRpFvZU1jbi0mmD+uSUTphAjOpIiLW4rma8icQ+3+0D+Wu6qBAeXvD9B8Hq8/O7033FmuzO5ccaNrN67ml/O+CWPLX6MP5/3Z67sfiVeTz1UyppGElUANtTlQI4SyWjcD1kFWQB0jO9o/teTCa9KUYhjqQMBL8TccB8HnnuJ1lkzCX65AF/Pc4145bvOUYaxovJwUqnFyi/FxG7cpW+UGuEE/DbWIVKRuC3GzZYB9MV0NuyGcVe1xFgtyZgvVizmSc5dV8pdWNJdeuYE5LQ2p7H81uW8dtlrnJR8Emv3r+XqaVfTd0Jf3l79Njvzdx75II2Jlpj/lRzqZ2LAwXio7COUVZ4FQAd/h/COrOBMSj7ojnXVhU2ZGGeqWGc//weItJz4qJRuktI4Us5G2n5L0doy+3elRlHLRmnw+Lw+RvcazdXpVzPx24n8ZdFfWLZrGVdPuxqAFnEt6NOyD31b9qVPyz70bt4bv9dPSUUJpcFS815RWvlztD+a1nGtCVrH2O60PtCQrBrBjiPmlecBkBhrTwAT91cZzvw0KUVj10Tzl0HTa+9iz4v/otmuLwl+9T6+M0Y6+7tjNyJc8fbPEq9JwWTFxaHWTQ2iYqM0GgK+ALf0u4Wf9/45L3zzAtPXTmfpzqXsKtjFR+s+4qN1Hx3T8Tx48F7rNRZCrv3Ksd934ZTrqU+k2e/r63QUx04ytI1vC/tgc9Fmk5AilSmkriCEF6a1O3xefUkcD7/1fzyUfwf5z91H0oCLIORzMtkOrpwecB1HREeqdRzcqE+pNlRslEZHdCCaOwfcyZ0D7iRkhdiYs5GlO5eydOdSvtn5DWv2rsHr8RLpiyTKH0Wk3373RRLpj6SgrICsnCy2528nGB90Jsa6KQOWA19hfP71hdb2e1ZdDuInEAEnpZ4Em2B5znKT8CIToiWOKZThVKzwmFXtfj6WrGf/Tod9qwnNmYL3guucCdDuyhkHi4nUBpQCnVJJQ6l2VGyURo3X4yUtJY20lDR+lv6zo96vvLycCf+dwJ//+Wf2lO8xGYHyaoK5qfe3X+sxorOeY24RXu2IG6g+Wl1HYOjJQ3lwyYNM2DaBG9rewGn+04zV4RYaSbJxt9YARg+N5L5X/8iT+b+k6JU/EjfoZ1Dqd/4eEgPy4cR/JJ4j0xAKcLIxlWpHNVxRDoPf48ef7zctjZcC84D/AS8CzwKZGJ9/GjAK+DVmblXEoY9XKzTgRJEBHQZwd8bdBK0g1y2/ji3eLc50gXKMRSOlaKThmv2KiISO113PD3QmLns91ievOhOgpZZgEmaZ1CiswGStFeEUA82pxQs+wVCxUZSfwl7gA+AfwCeYtNqmwIXA3cD51G3drbq2sH4ifxv2NzKSM9hYuJGMTzJ4N+9dk5WZgDOROcb1Hkdl99ZfDvHzj5g/AVDy6p+grNRJMpBeToJUL5cJntLyoginSZ9SrajYKMrxUAwsBp4G3gY2Y+IAA4E7gMsJr0Ks/CiR0ZF8cvknXNzyYnLKc7j828v5xbJfsLFoo1PhXKqGS3Zaodk3Oh7aX3U1K+lBdO4W+Oi/ZpuDhUaKzIorTWoM5mPOYbenVqoXFRtFqQ5CwBpgEvACsAzj6ukF3Iap2qAcFU1bNGXGOTP4Z59/EuGN4OWtL9NlQReu//561hStcTYsxwiN1AMEbrvYy+MRDwFQ+tYj4C91+uGI603aYwjSVVc66RairaNrABUbRaludgLvAf/GWDpxwHXACGo2ntOA4zVh+MHT1MNvO/yWlYNXckOHGwB4fe/rpH+VzohlI5i7ay5Wnm1+uOI3iXHQ5rLLWEFPInO3wXsTjcVywH7l2ec4gElhz8eZjyM9b0oIr0CgVAsqNopSU+QCLwOzME/KfYFfATXdbLQxuIDsWf9dIrvw8qkvs/7s9fyq/a+I9EbyQfYHDFkzhF7revFS3kuURJY41clj4TeXe3nY+0cAKib/DSpKncKxiTgtC+xq0wQx4iM10qIxiQJH13lbOUpUbBSlJrGAL4AJGIsnGfgFMJSam3jQGMoXBTDZY9FAqSlh859e/2HrkK38Je0vtAi0YFXxKm7ecDNdv+nKa3teIxgKQiG0ioa4Qca68edsg5kTnTk2B1eRlmrp0jY6HyfbrbC2LvbEQMVGUWqDPcBLwELMzewM4GZMpe7qQlp5g7lJN3RkDkwCRpjLIdWXygOtHmDz6Zt5rftr9IjtwZbSLfz8u5/TZ0kfZmbPxApY3H2llz9hrJvg249AdFlVcZeEAxFnP8bqOUBYK2qlelCxUZTaIgjMByZiSuA0xwjOWVTfN1GexhvDxESxbkoxacrxGEEtg4hQBKObjGZZv2W83OVl2gbasqJ4BResu4Dz15xPYuo2SvpdxirS8e3fCrNfc45rH6Ny/o0QwingWYgR7rKav8wTBRUbRalttgHPY6oO+IDBGNdadczLEbFpLOnWKRjRKcFpPJhEZaNAn8fHDfE38EPPH3ii3RMk+5P5JP8Ten/Xm1Mv/IK/cR8A1muPQEGFcZPtw8k4y8WkOhdjHgakbloERmjyUKoJLVejVCsFBQVs3bqVAwfqX79dv99Pq1ataN68OV5vHT9nlQMfA2uBSzFtJ24CXsfEdn4qRfZ7Y7BswNz8EzBiU2a/3IU0bVdYVCCKe5Lu4eftfs6Y78bw8f6PechzJk1bbGbdrjQ671wPc6fA2aOclh0ejJUTwohNFEaMoux1UTiTdbUa9HGjYqNUK1u3buWll15i2bJldT2UKsTHx3Pttddy6aWXEhkZeeQdaoONwH+AKzFlb8YAb2BSpn8KjcmNBk79smzMxMtcwoWmjDBXWLOIZnzQ6wOeyXqG32f9nn39/sojH/yBidyI9fbDeIZdC1He8IaD0po9DiM8kvacaK8/QN1Wg2gkqNgo1cqBAwdYtmwZ8+bNq+uhVCElJYUzzjiDUKieRX1LgDeBy4AewPXAVIzVc6w0NjcaGAsjBhO7ScRJhMjHsU5EPELgLfJyZ+KdnHPyOfyMMbw+50/8saQd7bd+B19Ph7MvCz9+OU6PG6kqEMQIW6R9rgTUujlONGajKPWBIPAO8DXmEfBqoPdPOE5jc6MJTTCfkcz+j8MIQQTOpM5SjNvLju+cEn8K3w5YTOszF/Ak9wBQ+OqDYLkmIpVjhMz92G33yalsLy3uO+W4ULFRlPqCBXyISY/2ApdBScYxVoVsbG40IRrH+ijHuNAiMNfpLtQZgxEme4JnXHQcM2+8jP8yhr00JfaHVaxd9IIRpDyc6s/FruNCeKJAKcaVphwXKjaKUt+YD8w0PxadXcSssllY1lGWBRBXTwPsaP2jeDHWTBTGCiki/O4lQmE3VHPTtXUUgwfG8Ax3ALDt5dv5as9XRkik3UAZRqhzcCyZkH2sSIzYaL2046JGxWb48OF4PB4eeOCBsOU5OTncdNNNNG3alNjYWIYMGcLKlStrciiK0rD4ElNfLQRzK+Zy15y7CFlHEWuKs98Lam5odYa0BIjGCEUIR2SKqFodAIzoFsBvhvt4ll9TQAyDNwS5//ML2O7dboRLXlL9Oco+3gGMVSMdQxvjZ1qL1JjYvPnmmyxfvrzKcsuyGDFiBDNnzuRf//oX77zzDuXl5Zx33nls27atpoajKA2PZRD3URx+/Ez4dgJ3f3Y3wSOZLOI+a4ylVryYrLBijNgkYtxmMkdGXGIh+1WEsVRKYUgGNGmVwgRuAeDGRTlcsfIKSkN2S1MLp6KAD6eWmpSw8WM+08ZmMdYiNSI2OTk53HXXXfzjH/+osm7GjBksXryY1157jWuvvZbhw4czY8YMQqEQjz/+eE0MR1EaLBEbI/hl5C+Jj4jng80fMKftHKymP+JSa8yWDRjrJoCxaKSdcxRm8qcE9b04rrB4IBG8SfCry+Ap7qLC4+eqNbBzy1f85offOJ1AY6maKJBkv+fZ75oo8JOpEbG599576dGjB9dee22VdTNmzKBVq1acd955lcsSExMZMWIE06dPr4nhKEqDJs2XxkdXf0TzmObsj94Pt2Bqqx3q29uYLRtwJnlK4F5u/iI80RjLRCo8R1LZPuCG4bAn0JYp1s/wh+B3X/l4cceLTNg8wWkffbCnUtpIezBJBY31c60Fql1sPvvsM1599VWeffbZQ65fvXo1PXr0qLI8PT2dLVu2UFDQWB/JFOWn07dlXz6++GNOyjvJ3DyHAr8EUl0bRWCexKHxWjYeHAsmHuPmcru2JLNMBMJFk0S48hz4O78D4FdLAyQWw+2bbmdJ9hKn300exv3mdR1D+t0cQF1pP5FqndRZVlbGLbfcwj333EPXrl0PuU12djYdOnSosjwlJQUwLri4uLgq6ydMmMCECRMA2Lt3b/UNWlEOgcfjITY2lpYtW+Lx1F29/uTkZOLj4/F4PCREJDBg9wA2vr/RNGJrg7FyFmBusmfizIJvzDW9pB+NCE8Zxg0mkz1lYubBVMDNg+C8OX34zD+IM0vn8cr607m05+eMXT+Wb/p/g8/jC+/qmYfjmpPEgSKM0CnHRLWKzeOPP05xcTH3339/dR4WgLFjxzJ27FgA+vXrV+3HVxQ3Xq+Xvn37cvfdd1NUVHTkHWqIyMhIevfujd/vfFU9GzxY/7FgGKYh2xDXDtuAT3BaDTRGPJhEgV0YgYmnMuussuum2x0WorK22jnp0Lk1PLz9Hj5mHiMXZtGpTzuWFyznhe0vcFvr28yxJDZk2fsGcdx3eRhRb+g9g2qZahObLVu28PDDD/PSSy9RWlpKaWlp5brS0lJyc3OJj48nOTmZnJycKvtnZ2cD5klOUeoaj8dD165d6dy5c10PBa/XW9W6KgXeB9YAF2HEZQGwrpYHV1fEYKyaQowgeO33FJxyM9IErQATu0kAjwduHgm/f244W6O70Xbf97yx9y5OS3qKBzY+wM+Sf0bTxKZOGrW7dloBZrkPI2o12eK7EVJtYrNx40ZKSkoYPXp0lXVPPvkkTz75JN9++y3p6enMnj27yjZr1qyhXbt2h3ShKUpt4/F48Hg8dV8d2kVkZCTt2rWjV69e4ZM8F9jv0UCvmh9HWloaMTF1XHxNkgFiMTd+SXeWO5ofp9umBP9tbhgO903w8EjJb/kPv6L/7C8YcssQ5uTM4f7t9/NCsxfCz2VhXGjSzTPgOq5y1FSb2GRkZDB//vwqy8877zxGjx7NjTfeSFpaGiNHjmTSpEksXLiQc845BzDFG99//32uu+666hqOojQ6UlJSuPrqqznrrLOOvqJADY2jffv2dXb+SkTvEoC9ONaMFOcswCmu6aJZMlw0EF757Hr+Hnkf0Wu+ZELxm3TxLODFbS8ytsVY+ib3NftZGHGRO2UAY1UWYrLd6s+zSL2n2sQmKSmJc88995Dr2rdvX7lu5MiRDBw4kNGjR/PEE0+QnJzMI488gmVZ/P73v6+u4ShKoyMmJobevXvTu/dPqdBZvdRl0kQlUfYrhDMZU7z3pTidNw/BL4bB9M9ieSPiZm4sfZyOs2bw21G/5e/b/s7d6+5mYe+FzkTRJJw+OtjnKrKXRdXIlTVKal2XvV4vH3zwAUOHDuW2227jsssuw+fzMX/+fNq2bVvbw1GUBoW49+r6VS+QRAHJRovBCEOkvUyKdrpfJUAOXNgdUhPhT/m/xvL6YNFU/hh/E0n+JBblLeKLwi/M/kmYR/ICTGJAOU62mxbnPCZqXGwsy+Kvf/1r2LKUlBQmTpxIdnY2RUVFzJ07t148rSmK0sCQuI2UqZHkgAScatBx9ksskzgINIPR58NW2vFti8sgWEH8x2/yq9a/AuCJrCecFgaSIABO6rMfk5ShxTmPGvU4KorScPHjNFeT6s2S/iyZZH7X8kgqRecXF5j3P+b82vww4wV+0+wWIjwRvLf/PX4I/hB+LgsjYGUYq8aD47ZTjoiKjaIoDRcPRmi8GCtGqkC78yeKcKo3uzyAPTtB7zT4oPgcDjRLh+zdtPz8C37e6udYWPx949+djSXxIICxcmT+TfFB51IOi4qNoigNmygcF5nbrSZxmlIOmygweiiAh7fibOvmvX/zuxamnM0rW19h997dJvNM5uq4y9dgL69nXcbrKyo2iqI0bNyJAtImIAkjPAU4VZ0PkSxw3Wlmouf4LddjxSTA6sV021PCJU0vodQq5T+7/uNUECjGuM/K7fNG2+c8xmaqJyoqNoqiNHxicCpBgzPXJg4jRPEYiycWx+3mgVbtYHBfyKmIY1XXG8y+05/nt21/C8CrO1/F8lsmViPuszyMaw6MhZOHutKOAhUbRVEaPlJRIAZjeQQxwiOJAu6GaNJszW4/cP0wc4jHC01jNT6ZzNkRp9A6ojVZpVl8GfzScZ/5XK8DOE3XNCvtiKjYKIrS8PFgYjd+jDVjF94MK5YZxHTdhLAYzmVnQ1QEvP5DOiXdzoTiAnyzpnBN82sAeGP7G1XPJ9aRVNdWV9oRUbFRFKVxEItTXiYaIygSx5GCnJIK7SI+Bi4+3fw8t9Wt5oePXuC61qb549s73qaivMKJ/UTiWDd+jAWlWWlHRMVGUZTGgXTnlIC+TOqMwFg0ZZjMMREf6VlTDteebQ7x16wrIKEJ/PAtp6wP0jW6K3vK9jBv6zzTUK0Ap2aanNNnL9emaj+Kio2iKI2HBMxdrRTjQvPjTPxMwVg/MrEzYP/shQtPg4RY+HJjFNlnjgHA8/EErmthigO/sf8Nc1xpa5CHETXLPkYFTtKAckhUbBRFaTyICy2AsWTAuLikzUAAIzzROC4wC6Li4bKzzOZvRN5kfpj3FtfFjwDg3b3vUhZdZo4jx8rHsaKk7YC60g6Lio2iKI0HP+bGL6nQhRhX2cF3uiIcl5gdw7nW7nj63LfdoNeZUFxI2udLSY9J50DwAJ/lf+bsL1ZTJE6BTnHLKYdExUZRlMaFVBCIw4iBBPbF6pDyNVJk02ZQH0hJgDVZsL3/jWbhx//lopYXAfDh7g+djUP2vlE4XTyhcbfjPk5UbBRFaVxEYURGBCYF4zaTzp2FVO3kZUHAA5efaX59uegqiImH1V9wVW53AD7c9aFT0LMCI2rgWDklOHEcpQoqNkq1Um96nRyC+jw2pZqR6swVGFdZFKaKgBdj8Rzc6yZoll11ntl98uJYrEEmOaDPgm9J8iextmgt6/eth1z72HJ8cFKqC9GstMNQbZ06FQVMr6JzzjmHpk2b1vVQqhAXF0fXrl3x+XxH3lhp2EgSgBTKlMoBEtNxY1E5V+a8ntAkEb7bAhvH/JJOH7yAd+4bXHjuUN7YP5UPcz7ktx1+a45dirFkJNtNUqyLMcKmhKFio1Qrbdq04Ze//CVFRfUvD9Tn85GcnIzfr//2jR67FA1xOPXSyqha/TmIieFUAAEIRJistJc+gFc39+dPHbpD1hpu2tKaN2IxYtP9t06vHOz9PTitowtxrCelEv3WKdVKVFQUbdq0qeth1GtCoRDBYJBQqH7Wpvf5fPh8vobtdvRiBCcfM/dmH5WCUikCFRjLx0OYCF11rhGbdxZ5+NPwG+D5ezl98To8wzwszFtIUbCIGH+M2VgqFsTY55LUazmXUomKjaLUMrm5uXz++eesX7++rodSBb/fT0ZGBv369SMqKqquh3N8xGBcaD6cuTFSw8yDU77mIK/quadAUhys3gTru4wmzfsHIpfM5uzh3VkYWs3SvKWc2cTOJKjAiIvPPlYBjjWlYhOGio2i1DL79+/nnXfe4cMPP8Sy6lfqUnR0NDfffDM9evRo+GITgckYsyduEo2JrZRhLB0J5Ieq7jZyILz6CUz9vhV/6H8+fPUxt6xKYGF3WLJrCWdGnel07oy0dxQLSWI5cTV6dQ0OFZsGjGVZFBcXU1JSUu9uWgARERFER0drjOQggsEg+fn57N27t66HUoXo6GgKCwvr5f/TMePB3PD3YywQ6bQpwhPACM3B3swgXH62EZv/LYQ/XD0GvvqYIZk7oDssKVjiZLHFYdxnUnHaax/3ACblWvN9K9G7QAOmtLSUTz/9lE8//ZTS0tIj71DLdO/enQsuuIAWLVrU9VCUExWZc+PFWDR+TLaYxG6kejMY8SgCLBh2KsRGQ+Za2NJlBO1iE0jduJlue+HrqK/N9sn28dytC1LsZTJxNLrmL7GhoGLTgCkrK2PJkiW88MILFBQUHHmHWuaiiy7i1FNPVbFR6o4IjKjEY8QkH2PJuHMfLIwASbM1L0QH4MIBMHU+/O/LaO4850r4aCJjVvoZn7qRfZH7aOq30/tFsIpxhCxg/6xiU4mKTQOnvLyckpISSkrqX/emsrKyeptxpZwgeDE3fElHLsSZ0Cl3PxGag9KiLzvLiM30xXDnz6+Hjyby81U+/nBuBV8f+JoLoi9wNg7izO0pso8tlQb0LguoR1FRlMaOlJWpwAhKIk5bgHyMOBxioucF/cHvg0XLYf9JZ0OzNrTMLuX0rbAke4mTYGBhrKUYnKQBqSSg7aIrUbFRFKVxE8C40Upw4jQxGBHy4YiRu3xNCJIS4bw+EArBB5974bxRAFy/AlblrjJJALn2K4BzN5UeN2IxKYAaeEotEwwG2blzJ7t27SIYrLsiUlFRUbRu3ZomTZo07MmLypGRCZ4SuA9gBKEI4/Y6+JHbwiQTlMClA+GTr+G9xXDDjaNgymNcuQYmFK512k77MKJSgXGlSTVoH0aIEmv6AhsGKjZKrVJSUsKcOXOYNm0axcV1V4+9ZcuWjBkzhkGDBqnYnAhEYyyRKJx5NxZVheag8jUjz4ZfPwOzvoaiB3sS2eFkmmR9R7uVawn1DeGN8DruM0k0KAda4tRK07gNoB+BUssEg0E2btzIwoUL6zSD7qSTTuKCCy448oZK40AmXsZixGAnVeM05ThVBexkgTbNoF83yPwe5n4DIwZfB//9Py5fUcY2ttEupp2T2SatBsRqkvppkuV2gqMxG0VRGj+SlSZzbeLt9zKcDpsF9rKDhGHkGeZ9xmfAOdcAcOn3sK5wRdVim9K0LQIjOEGMtaNJmSo2iqKcICRgbv4SZ4m3lwHkYCwSySCT93IYcarZ5IMvINQxjaz2TYkvg/J57zluM3tb/Dhze8SqsRMOTnRUbBRFOTFwZ6XJnc+HEYZkTCA/FuNyk5pnMdC7O7RtBruyIXM5bDp9AAAtPl1ghKsQE5vJtY/pTomOtdeX1+SFNQxUbBRFOTHw4QhJBU7WmbQD8NnvMjnTAxSBpxRGnG4O8f4SKDv3EgC6rdwE5YWO2y3JPlYezjwbyXw7UONXV+9RsVEU5cTAg1MwU9oAFFI1USCEid9IZ88IGGl3FJixGJq36ccXbSCqPASLPzQCE49TpkYqP+djhCYKE785wV1pKjaKopw4ROKUlonBibdIkWspqilWiZ0AcG6GKcy5YgP48jowtbtZbi2cauI+B2ebeTAutHycyaRlNXRNDQQVG0VRThz8OFlpIUyVZildI9aIbOciMgKG9TM/f/ZVIrN62s1qvvwQSgrDN7ZwrKgIjJUkc3BOYFRsFEU5sUjEERc/xsJJwkljtggvXWO/Lj7NrP7wKw++Fh35og14Sovhk49MckABxoopto/pxZl7U44RuEbQJuinomKjKMqJhSQAuN1a8nOS/UrAxGHiMe6wAFxoi83cpdDG24VptiuNxf8zghLCWEZlGMERcRHBKeSELsypYqMoyomFH5N5FofjTpM+NILX3qYCY7GUQwu7mkBJGfg2D+Hdbva2n38AZSVO5edEjMDkY7LQQhhXnVg3JygqNoqinFhIirNM7CzCiMDBDdUkI02yzDxw8UCzet+qAWxKgW1tU6G4AL6aa+IzUidNin+WuV4B+5gnKCo2iqKceERjLI4InAmcYuWI0Mj8G5cIXWSLzboVncGCxb2amQVf/c8RGsHCiQkV4JTGOUFdaSo2iqKceMh8G+k3k4Bxq3kwwf4SjOVzUEC/Txo0S4b9+2Jhb3c+SLcrdi6aDkUV4aVpKjCiJiVsCu11J2g1ARUbRVFOPLwYF5rc+D0YQYjAWDmJ9jZSpNN+ee0OngCsu5DPkrKhTRfI2w9LPjOCkoeptSauMzl+wF52gjZUqxGx+eijjzj77LOJi4sjISGBfv36MW/evMr1OTk53HTTTTRt2pTY2FiGDBnCypUra2IoiqIoh0bmwZTjFOGUhmoRmCy0REx2WhyVls6FA+z9f7iIHeU7sc4caX7/croRFJmj48ckCEh/HD9GdPJq+LrqKdUuNi+88AKXXHIJffv25d1332Xq1KlcddVVFBUVAWBZFiNGjGDmzJn861//4p133qG8vJzzzjuPbdu2VfdwFEVRDk0k5uYfj5OuDFXjLiU4pWciYNhp4PMBW8+krCiavAHnmm0/mw4VlhGtBJw6bKUYS0dqs0lXzxOMam3pk5WVxZ133skTTzzBnXfeWbn8/PPPr/x5xowZLF68mHnz5nHeeecBMHDgQDp27Mjjjz/OM888U51DUhRFOTQBnEZpfmA74XdEaYIm7jBbhJLi4fR0+HSFHzYNZvMZLUlKSoWdmyBrNfTsEf4YH8DEakpw3GolGGvpBKJaLZuJEyfi9Xq59dZbD7vNjBkzaNWqVaXQACQmJjJixAimT59encNRFEU5PB5MppikPSdghKcM41qT1gDSn8bFBeJKW3cBe8uy4bSLze9fT696Vy3HuOyicKpBl3DCVROoVrH57LPP6NatG2+99RadOnXC7/eTlpbGs88+W7nN6tWr6dGjR5V909PT2bJlS522ClYU5QRDMtCkdE0cRnTctczKMQIRojJ1+YI+9rr1w9lXvB9ON20HmDfduMzycRqrgdOyQLqDVnDCVYGuVrHZsWMH69atY9y4cYwfP57Zs2czdOhQbr/9dp5++mkAsrOzSU5OrrJvSkoKYJIHDsWECRPo168f/fr1Y+/evdU5bEVRTlSkkkAxVVs8NyGsXA1eKjPUereHmIQ8yG/Dym0WDBwKEVGw9mso2G3ESmI10sXTwmk5cAKWrqlWsQmFQuTn5/PCCy9w8803M2jQIJ577jmGDx/OI488gmX9dLtx7NixZGZmkpmZSWpqajWOWlGUExYfxtqQys8Sp/HhlKwJYCwTabrmBU8MdOq1HoDMb1MhKgb6DDLH/PIj586aaB+7EJOZVobT5uCgYtGNnWoVmyZNmgAwdOjQsOXDhg1j9+7d7Ny5k+Tk5ENaL9nZ2QCHtHoURVFqhIMbqhVjLBKfaxsLIwxF9nZ2skDvjB0ArFnezmw38CLz/vkHzoTOSJwkBAunV44I0AkUt6nWbLT09HS+/PLLw673er2kp6cze/bsKuvWrFlDu3btiIs7wVI0lBMOn89HYmIizZo1q+uhVCE6Opq4uDg8noN9So2YKJximZE4sRa5O4rL66COnqedks/rniA71nekoAjiBl4ET/0avp4NEWWmCY4bCyNoRRjxiTr0cRsr1So2l112Gf/973+ZNWsWV155ZeXymTNn0qZNG1q0aMHIkSOZNGkSCxcu5JxzzgHgwIEDvP/++1x33XXVORxFqZc0bdqUK664goyMjLoeShX8fj+9e/cmKiqqrodSe4gbrRRjdaTgWDhifURU3a1NUgy0XkJo20Dmfwkj+reHjj1h00r4ehEMGOK44kS7JVGgEKd9tIrNsXPhhRdy3nnnccstt7Bv3z5OOukkpk6dyuzZs5k0aRIAI0eOZODAgYwePZonnniC5OTkynjO73//++ocjqLUS5KSkhg6dChDhgyp66EcEq/Xi8/nO/KGjYlEYC/GwpGUaC8mRRmq1jMLQXRpNKTNhG0DmZkJI87CuNI2rYTFH0Jv++8rPW2ScAIXAfuYpZww822qVWw8Hg/vvfcef/jDH/jjH/9ITk4O3bp1Y/LkyZVWi9fr5YMPPuCee+7htttuo6SkhIEDBzJ//nzatm1bncNRlHqJx+MhEDhBHmcbCjIPJh9j5UjlgFiMQFg4FaFLzCs6YIvNgj8xcylGQAZcAG88Cl9/DIGnzLFFqMowSQKxOLXS8jCW1AngtaxWsQFISEjg2WefDZtbczApKSlMnDiRiRMnVvfpFUVRjh3pb+NuqGbhWCIe+1WMibNEQVR5FLTKxBeTy8YdSazfBmk9BkJsAmxZCzs2QWpHc5cVganApENHYURGOntG1t6l1hVa9VlRFMWPuRsGMMJQQLi1IS2fg1Rmo0V7o8EbIq7zFwDM/ArwB6CfnY37xcxwoXGfB0zcxssJUwVaxUZRFAWMKFTgWDg+nOoB+fY2Ll9QtDcagIjOCwGY/bW9/SkXmA2+/thYLGIlgRO/icW448o5YUrXqNgoiqKAcW35MDd/mXcTi7FAygiP2wAxvhjzw0lmKsf8pVC2F8gYbpYvnQvZpUaocu3jSBzIgxGiEozABWv20uoDKjYNHI/HUy/nRNTHMSnKjyICU4K5M8q/cCQmviJpyxVAGcSXxANQHLeO9PZQUAKf7wJOag0n9YSSIlj3hXG7RVCZWFAZ9wnhlK45Abp3VnuCgFJ7+P1+0tPTueyyyygpKTnyDrVM3759SUxMrOthKMrRITEbKV3jwUzAlLpoPte6QoiNigWgIFTAsNMsVm/2MOtrOLcP0H8YbFxpJniecq4T64nHiMwBzN03GadCQXRtXWjdoGLTgImKimLw4MH06dOHUKj+lZCNjY2ladOmdT0MRTl6ojHCEotTRNM9v7Uc4xbzgzfSS6wvlsJgIef0LeGpt6OZtQQeuQUjNlP+bsTml38zwiUVpqXuWhFmPk8MRmya0KhToFVsGjBer5cmTZpU1qRTFOU4kTk2kTh3x3KcSZgFOJYOEOeLozBYSK8euURFRPPtOtizH5qlnwWBSPhhKeTshTap4UELCyMyIYzQxOD0zmmkaMxGURRF8GJu/CUYKyMFIy4lmAmYYpXYxPnM9P9y8jm7p1k251OgKBq6nw2WBUvnhCcJlONYTBGu38tq+NrqGBUbRVEUNwk4AXsvxv0l9dNC9jpbIOK9JkmgIKeA822xmb0cU5pmoD3f5ts5RlSkRUEu4enOfkxMR5q1NVLUjabUKh6Ph5iYGJKTk4mIqDufQWJiYp2eX6nHRGJiNwU4lkcIE9yX9OcgUARxHmPZFEQVMOws4GWYvQwsP3j6DjbHWzrXWDgej9NuINZ1fD/GysnDxG0aqQmgYqPUKhEREZx55plER0dTVlZ3foOkpCTS09M1RVupisRkpHRNMU5/G4+9rhiwID7CWDb53nzOSoOWTWDnfli5EXp1zoCEFNi1GXZshJadjEgl4GS3yaTOZEwlgXIabekaFRulVomIiOC0006jb9++dToOj8eD36///sohkO6cUlomFyctWdKUK4AIiPfbbrRgAR4PDOsPr8yET76GXu29kDEIFk2Dz+fAyE6muvTBlksMxqoJYERMxUZRjh+peKxVj5V6jQiAD2OJlGGsjjLCGp7F+4zY5FXkQQiGnWLEZvYX8LsLgO6DjdgsnQuX3mLm13hxuoNi/2zh9NCRkjaNjEbqHVQURTkORAykq2YCRmCK7PVBwIKUQAoAOcU5cACGdjerF62G4lKgnx23WTUPfCFzLJljs891PrkTSwO3RoiKjaIoysG42w2IlVGBSYWW7LQQpGDEJrs4GzyQmgR90qCkDD7dBHROg9TWkLcfNq02x/HiTBwFY+2UYKypIhptFWgVG0VRlIPx4rQHEPdZCCNCfowwRDqWTbY/21g/CTDsNHOI2ZmYDLRTzjMLvp1v3sVyicVJRjiAU9KmsEavrM5QsVEURTkUUgU6HpOm7L5blgJF0CTKVO/YXb67ssHasP5mk1lLMNZQT1tsMuc7kzrdPW6kJpvEg0owwtbIULFRFEU5FFK6xodTH00mdBYCAegc2xmAH4p+MOtDcHoaxEbBqk2wYzPQzRabFQuhNGTuugUYa0aOF2GfowgjOBU1f3m1jYqNoijKofBhLJBijOWRgBGFPCpn/3eO7owHD+uL11NWWAYHINKCc3uZ9Z+sBFp0hGbtoSAH9i13qgmAU8ZGWhr4MBZOI4zbqNgoiqIcDmkJEMQJ7MfZryBEh6LpENmBoBVkfd76yjvqsN7mfdY3mPjOKeeYBcsXOceWOmsJGNdZvmt5Xg1eUx2hYqMoinI4pJyMhRGcUox7LRIjEjHQM9oURfui/ItKd9j5Z5jdP1kGIR+QcQixKbePHWG/KjCCE4lx0zWyuI2KjaIoyuEI4CQJSAtndyp0IVzc7GIA3sl9x8RdIqFLR2jXHPblwdKVQNrZZp9li+CAZVxnQbNt5fGkVXQ+RmgaWRVoFRtFUZTDIckBHozweHAKcxYCfri02aV48TInew655blQAZ4iON92pc3+GmjVCVJawoF9kPWd45IrwLjMJLU6xj5vKUbcGhEqNoqiKD+GTO60MAUzIzCZZCHAC6kRqZybfC7lVjnPbXqu0jI5/1Sz+6xvAa8HetiutHWLnGQDqShwAKfFgBT9LMRpQ9AIULFRFEX5MWzXGBU4LQIC9jI7dfm+VvcB8MiOR9jj3QNeGNwLfF74fA0cOAD0Psscb81n4cf34EwgPYARmVicOTmNBBUbRVGUH8PtSqvAqcwcS6WFMjh6MBclXkR+KJ8HNz8IFZAUD6d1g4ogzF8H9DrTHG/FZ+Y4QZxmbLE4yQKFOJZUI0qBVrFRFEX5MWSGfwxGJEpxKjZLhlo8PN7tcfwePy/se4EPyz+EaDi/n9ls1mIgNR1iE2H3Zti01Vgx+6ks6lnpMhMrqpxG1b1TxUZRFOVIxGLEQAL4kiRQhBEeD3SP7c7DJz0MwJg1Y9i+b7vTKnoZEOWD7qebBT8sNpZSAk6qcx5O985onCSBRlIFWsVGURTlSEgKdAWQhJOiLJM9be5peQ/DEoaxr2If122+joyTK0iJhw07YcMO4GR7As6qz0ziQSROHMiHsWQkxVqaqTWS0jUqNoqiKEfCj5lrU2z/HIkRgwic+mbF4C308mqnV2kRaMGi/EU8tOP/GHKKOcSsJUA3W2zWfeFknQnSMtqPcbHJnJ5GUgVaxUZRFOVoiMYIRDnGxRXAWCcJGFEoAbzQ3Nuctzq+hRcvj+54lOadlwF2CnSX/uD1wfrlsLvAyT6Tpmxi4fhw5tkU0ChSoFVsFEVRjoYonLTnAsKTBEKYOTgJQDyc0+ocHm5v4jf/TboagHkroCwiFjplQCgIm752xKvYPk4BTjwoHqeZWiNwpanYKIqiHA0Bwl1o5RiBsCsJAJU9bSiDe1Pu5dqUaymK/wF/s7UUFMMX3wMn20kCaz43IuLDCFUUxoLJdx3Ti7FwGsF8GxUbRVGUo8GDE7eJtV8HJwmIdVICnggPE9Mmcmb8mVSc9CEA078ucjLSVn9uLKU41/5SCdqPUyPNh1MRugGjYqMoinK0uFsO+DHWSBTG8ijBCA0YEfFAlDeKd7u8S+vuqwF4/vMsclp0Ndus/QrKLbNPsX0MqVIQa7/nY6yofBp83EbFRlEU5WiRMjUyu18arCXgtASQqgDlQBk0LWvKwoF/xeMvpXh7d87adxehpFTI3w+7NzjFPQsw1aA9ONaSHxO3kZbRDRgVG0VRlKNFSsrEYeIqkr5cghGiRCqTBCpjMH7o1KolZ/UwpsnqNa2Y39IuDfD9l+Yu7MOITCJGrA5grBlJSCihwVcTULFRFEU5WjyYKgJB17vM9A+4tivFaScdCfhgZP8oAJI2X82cVsbflrtqphGXCoyF5E5CKLGPI6VsCmjQqNgoiqIcC3ZLaHwYK8YtCBZOurK0D7AZZk/ujNw4ggMdTwYga8VUdu7fafaTemhB+xWNEZ88nAKdDbh0jYqNoijKseDHsWosjBUSb/9+ABNfcVs5IaAUejSBlsmwO8fLmNZzCXmg+84yLt96EYWewsrOn2EuNHGvlVIZA2qoqNgoiqIcC9JywI9xbUltM7FEIjHCI5M1c8x2nhAM62UOsWBLS0JtuhARguDGb7kx60ZzXDuLrbI4p5SqicC41Rpw6RoVG0VRlGPBgxGWCIxlE8KpAB2FsXricaybBEzxziQ4f4BZNHsZ+LuZ+TZn7Yxgyv4pfJH3hRGoaNfxJUutEXTvVLFRFEU5VqIxN30RBalf5sWJ25ThWDu2O2xob/B44NNVUNayPwCj95p5N3/M+qOT4lyOIypxOJM6i2iw1QSqVWwWL17MsGHDaNasGfHx8fTp04eJEyeGbVNSUsK4ceNo2bIl0dHRDBw4kEWLFlXnMBRFUWoWmdBZgREDsTwqcAQhwrW9XdamqQ/6dITScvgmYMSm5/YyErwJfFL8CZmhTGMlSX+bchyxKsIIUAkNkmoTmxUrVjBkyBDKy8t58cUX+d///kf//v258cYbee655yq3u/HGG3nxxRf585//zAcffEDLli05//zzWbZsWXUNRVEUpWbxYtxlUu1Z5thISwCZmBnCxG2k9EwAzs8wh/jf9l7gC+Df8QM/i70QgGXFy4ywBFznyceIWKR9LKkQ3cCoNrF56623CAaDvP/++1xyySUMHTqUF154gQEDBvDqq68CsHz5ct544w2eeuopbr75ZgYPHszbb79Nu3btePDBB6trKIqiKDVPDE7g3mMvCwFN7HVeTGZZkb3eriwwrLfZ9OM1kdChJ1gW/bYb02hn8U6nhUEMxnryYKwcr/2zCFcDo9rEpqysjEAgQHR0dNjyxMREQiHzycyYMYNAIMDVV19dud7v93PNNdcwa9YsSktLq2s4iqIoNYtkpEn8Rtxb0o9G2gSkYJIEEoBYGNgV4qJg9RYobNkPgO5bTJrZzuKdRlgqcNKdPRhRK7WPWUaDTIGuNrEZM2YMAHfccQc7duwgNzeXF198kblz53LXXXcBsHr1ajp27EhMTEzYvunp6ZSVlbF+/frqGo6iKErNInGbcoyolOBM7JQUZZknI9lqhRDhg/N6mNXL/X0BiNu8DoAkX5IRpTh7/0IgGyM2kfYxKmiQpWuqTWx69OjBggULmD59Oq1btyY5OZlf//rXPP/881xzzTUAZGdnk5ycXGXflJSUyvWHY8KECfTr149+/fqxd+/e6hq2oijKTyfefg9iys1EYQSiDOfuWorJVrNjNvhgWIZZ9WF2HwCSN28CYGDiQCfZQCykSPsYRfb+0saggaVAV5vYrFu3jiuuuIL09HTef/995syZw6233sqtt97K5MmTj/v4Y8eOJTMzk8zMTFJTU6thxIqiKMdJFMaNVoy5m0ptsxiMBSLVAKSpml2WZmgXs/srG3pg+fy021tEbCkM9A10qj8X4MRuInCsGmiQcRv/kTc5Ou677z4CgQAffPABgYBJpRg8eDD79+/nt7/9Lddeey3Jycls3ry5yr5i0YiFoyiK0iCQrp0RGMGpwNxV5c5agZMiHcS42iqgSwto2wS27o9iX4sOpO5az6XZHWga3dTsZ2GsI7GUIuxj+nBaG4gQNRCqzbJZuXIlvXv3rhQa4dRTT2X//v3s2bOH9PR0Nm3aRFFReO7emjVriIiIIC0trbqGoyiKUvP4MJaNuNEKMXdVCfDLpE+pNhAAEsATB0PsrLTPAi0B+HlOT3OcMpw4UDTOHJsSjOBIoc4GVrqm2sSmRYsWLFu2jLKy8DSJr776iqioKFJSUhgxYgTl5eVMnTq1cn1FRQVTpkxh2LBhREZGVtdwFEVRaocEnPhJPEZo8nBiL6U4IiTP4kEY0t38uKDIZAucsSPOuM+K7eMV2y+pMB2FU0kgRIPr3lltbrTbb7+dq666ihEjRnDbbbcRHR3NjBkzePPNN7nrrruIiIjglFNO4eqrr+bOO++kvLycjh078txzz7Fp06ZqiesoiqLUOpEYC0QqNVv2u0zolGoCMtHTTmkebMdtluZeBjxH7Na1Tk0117wcCjHZaTLPpgjjPsvHaU/dAKi2YV555ZV89NFHPPbYY9x0002UlJTQqVMnnn32WW655ZbK7SZNmsT999/PAw88QG5uLr1792bmzJn06dOnuoaiKIpSe0hasghLOUYcpCVAwLW8hMrOnM0TIKb5RpbvPs0cZ/sqCJaDJ+AkFIQwQuauMJ2MIzhlNBix8ViW1YAMMUO/fv3IzMys62EoiqIYdgLb7J+zMeIj1ZrFGikjbN7NzrKdtPr3VPjqDvbFnESTok3w1xXQtqcRGXGfJdrH82LEKgnHrdYOaF5L13gU/Ni9Was+K4qiHC8y38aDsWoKMGIhQhOksj00ZUAxvJvzLnScC8Bqb4bZf/ty564ci4kHVeCkQ8cQXq3gAA0mbqNioyiKcrxI8zRpBx1pv/JxXF0iGnYl5/dK3oP2i/B4LBYU2alpPyw3yQUhe3vJt/LgpDtLiwGpJNBAWkWr2CiKohwvIjB+TEBfZv5L505pGSDWTimsLlkN0bl0a1nO0pAtNrtXGDdZlH3cMoxAFeC0GpDMtjJzHBpISUkVG0VRlOrAnTEm82BEgPyY2Es0UGEKF+8M7cSLl8Hd/azA7he9daXTRkAaqVn2sctwUp/BabLWQObbqNgoiqJUB3EYkRFrptz+vQinkZrtUtseuR0Li9a+1px7kpcsOlDkjYO8nXBgr5M2Le0LinGSBoKEd/MsqL1LPB5UbBRFUaoDidtIaZoEHJEow3F/eWBL/hYA2vnacUZnsPCy0rJLQf+w0ql9JvNzsI8lqdQlOKJzgAYRt1GxURRFqQ4iMLGWACaOYuFM+JSWAMXAAcgOmXqQyVYyLTzQqQkst3qabfasMvvI/JxijPUiFlIJznwdidtI0kA9RsVGURSlOpC0Z3AqCvgwQpCAUxkgElqGTD20ncGd4IUzOsAqbMtmxyojMIUYgZG6aG6hERedTBxtAP1tVGwURVGqC4nbeDCCI20BxPqIMOvbRLQBYJu1DUIwsJ1LbLavNJlrucB+nDk7EsORXjYlOEJzoFau7rhQsVEURakuxI1WjpP+LOnKUlwzBC3LW+LDx25rN6UFpQxMgtWkm2PsWQOFVnhSQB6wF9iHY9XIMSuAHOr95E4VG0VRlOpCMtGkUoCFsXKkjlkJcAB8hT5aWa0A2FS4ifQmUOhvxj6aQNkBCG4z823iceI+HozQ5AG7MG66cpxOoPU8SUDFRlEUpbrwEp4CXY6TnSZdPL1AIZwePB2AD6M+xB8D/Vp7HOsmZ7WThYZ9jAjMXJ0YKkWLHIyI5VLv4zYqNoqiKNVJgv0uqcsVOIH9IoxFEoArI64EYJpvGkTAae1crrS93znHsMvbEIUjQLEYa2cvxtIpJHzCZz1ExUZRFKU6icWIg9Q3kyy0fExFaA8QARd4LiCaaL7kS7ZZ2xjQFr7jZHOMPWucdOYYjCvNg3HLSVHPAEZwcjFWzq5aubqfjIqNoihKdSLusgBGGEpwRCKKyqKcscFYLuACAKYGp3JaC1iDad9p7VljhCQGp+OnhREgaRVdYa+PwYjNDntZPUXFRlEUpToJYKwb6V8TwsRWpKlaDJVusFH+UQD8nb+T1LSIAwndAAju/R58rvSyChxx8eN06BRhiwE2Y9x09RQVG0VRlOrEg9PfRlxh7jYDso0PLo28lD7ePmxnO//iX5zUoRV5JOAvyYaCvU6pGz9GqPwYCyeEcaWJS02SBqSBWz1ExUZRFKW6iceZ93IAIwhSRUBaRAfBi5fHIh4D4JGyR8joUMRaupr9dq510qYlOUDm1bh/99s/xwIba+HafiIqNoqiKNVNLEZgpDqztIOOxFgoUVS62IZYQxjqGUoeeWS2esYRmwNrTXzGbx9TEg5k4miFfTzJekvGuOuki2c9Q8VGURSlupE+NuJGk7k35RjRkVTmWLPu8YTHCRDgf6n/xwZfGgAF234w+1qEZ6ZJ4oEPp3WBB2cOTz0tXaNioyiKUt34MAIj1gcYYYnAcaOJm80DGYEMJsRNAF+Q1ammF3Ru1lqnNI20L/DZv1s47QykDYEPIzh5NX51Pwn/kTdRFEVRjpkmmFIyUr5GhEcERywdmzG+MayNXMvHHbbCLgjuW+OkSstkTrGMYu13sZLAqcVWT5upqWWjKIpSEyTb7yICkTj10sRSicOpBhANDyc9TOc+zQFoUbKFfxT83UkEkMZpcTh10qIxMRsRnGjqbY00FRtFUZSaIBZn9r8IQixODEbSoL0Y68UP3oCXKRmPs8vTnEjK+NeKF8kvzTf7x2DEBHvfaHtfL0bQAjiJCPUQFRtFUZSaIIApnCmVA0IYoRFrxu5tUxnDsV/eoIcfTn2YX/U7n+wmu9gdudvs4y6BIxlpQRwBEsGRpIF6hsZsFEVRagIP0B5YYf8chREHqSwgrjUpZeNKGDj79htpHxzC37wJJHmTnPk1XoxQeTHiFIPTflqqFUi30HqGio2iKEpN0Qb4DideI+VlyuyXuMAOcSdu72nvWDIyR0esFneNNHGlSSKBio2iKMoJRhKmcoCIhdQ4i3b9flBWWiWuWE5lLKYCY8nIfBt3NQHZNramLub4ULFRFEWpKSIxrrQNGFHwYkRCGp3JHBmL8LbOktYsBDFWjp/wJAFJOJAWBPGu9fUMFRtFUZSapD2m14wXIxoVOBUFpP0AOALjwQhLyHWMAE67AZlrI8eQeA1AKvU2G03FRlEUpSZJBFoD23HaApQQHl8J4iQJWDgVASQmIy60MoyFFEl43MaHEaOkWrien4iKjaIoSk3iAdIwZWQkRhOFEZVSHMsmQNXJKGIJyXopfSO9bSRW48EkI9TjO3o9HpqiKEojIQroDPyA0/xMEgXEbSZCJOIjhTYlW01ca+64jdzBm+P00KmnqNgoiqLUBqkYQcnCyRwDx6UmlsvBiQHY+wVwRMaDMyk0FWhBvY3VCCo2iqIotYEHaImxVLbiuMdiXNtU4CQGiKBIzEZiOe5U6CZAK5wEgXqMio2iKEpt4cG4vGKBLUA+4S6ywGH2cScLiJXTCpN8UM8tGkHFRlEUpbaJA7pgOmvuA4pwrBW3eEjCgFhBEUAzTEXpSBoUKjaKoih1gR8Tb2kCFLpeEsMBZ8JmNJVdPRvqXbuBDltRFKWR4MVkksVjxMU9oVPqnjUQV9mPoWKjKIpSX3DHZxoZ2s9GURRFqXFUbBRFUZQaR8VGURRFqXGOSmy2bdvGb37zGwYOHEhMTAwej4esrKwq25WUlDBu3DhatmxJdHQ0AwcOZNGiRVW2C4VCPPLII3To0IGoqCh69+7NO++8c9wXoyiKotRPjkps1q9fz9tvv01ycjJnnXXWYbe78cYbefHFF/nzn//MBx98QMuWLTn//PNZtmxZ2Hb/93//x0MPPcTtt9/Oxx9/zIABA7jqqqv46KOPjutiFEVRlHqKdRQEg8HKn1988UULsDZt2hS2zbJlyyzAmjhxYuWy8vJyq0uXLtaIESMql+3evduKiIiwHnzwwbD9Bw0aZPXs2fNohmP17dv3qLZTFEVRao8fuzcflWXj9R55sxkzZhAIBLj66qsrl/n9fq655hpmzZpFaWkpALNmzaKsrIzRo0eH7T969GhWrlzJpk2bjl4pFUVRlAZBtSUIrF69mo4dOxITExO2PD09nbKyMtavX1+5XWRkJGlpaVW2A1izZk11DUlRFEWpJ1Sb2GRnZ5OcnFxleUpKSuV6eU9KSsLj8fzodoqiKErjocFUEJgwYQITJkwAYO/evXU8GkVRFOVYqDbLJjk5mZycnCrLxVIRyyU5OZnc3Fwsy/rR7Q5m7NixZGZmkpmZSWpqanUNW1EURakFqk1s0tPT2bRpE0VFRWHL16xZQ0RERGWMJj09ndLSUjZs2FBlO4Du3btX15AURVGUekK1ic2IESMoLy9n6tSplcsqKiqYMmUKw4YNIzLSNF8YPnw4gUCAyZMnh+3/+uuv06NHDzp27FhdQ1IURVHqCUcds5k2bRoA33zzDQAff/wxqamppKamcs4553DKKadw9dVXc+edd1JeXk7Hjh157rnn2LRpU5iwNGvWjLvvvptHHnmE+Ph4+vTpw5QpU5g3bx4zZsyo5stTFEVR6gVHO1kH02mhyuucc86p3KaoqMi66667rObNm1uRkZHWqaeeas2fP7/KsSoqKqy//OUvVrt27ayIiAirZ8+e1tSpU6tl4pCiKIpSN/zYvdljWQdF6hsA/fr1IzMzs66HoSiKorj4sXuzVn1WFEVRahwVG0VRFKXGaTCTOo9EeXk527Zto6SkpK6HotQiUVFRtGnThkAgUNdDURTlR2g0YrNt2zbi4+Pp0KFDlVI4SuPEsiz279/Ptm3bNGVeUeo5jcaNVlJSQpMmTVRoTiA8Hg9NmjRRa1ZRGgCNRmwAFZoTEP2bK0rDoFGJTV1z+umnH3Gbm266qbI0z9/+9rdj3j8uLq7KstzcXP7zn/8c5SjDufDCC8nNzT3m/RYsWMDnn3/+k86pKMqJR6OZZ/Pdd99x8sknV/7e4skW7C7cXW3nbB7bnF337Kq244ERjoKCguPeJysri4svvphVq1ZV2b6iogK/v/pDcw899BBxcXHcc889R71PTY3l4L+9oih1wwk5z6Y6heZojydWx4IFCzj33HO58sor6datG6NGjaqscn3uueeSmZnJ+PHjKS4uJiMjg1GjRoXtX1BQwODBg+nTpw89e/Zk+vTpP3re8ePHs2HDBjIyMhg3bhwLFizgrLPOYuTIkZWFTS+99FL69u1Lenp6ZasGgA4dOrBv3z7A1Kc79dRTycjI4JZbbiEYDAIwc+ZM+vTpQ+/evRk8eDBZWVk8//zzPPXUU2RkZPDpp5+SlZXFoEGD6NWrF4MHD2bLli0AjBkzhltvvZXTTjuN3//+93Tu3LmyRUQoFCItLU1bRijKCUCjyUarb3z77besXr2aVq1accYZZ7B48WLOPPPMyvWPPvoo//73v1m2bFmVfaOionj33XdJSEhg3759DBgwgJEjRx42PvHoo4+yatWqymMtWLCApUuXsmrVqsosrYkTJ5KSkkJxcTH9+/fniiuuoEmTJpXH+O6775gyZQqLFy8mEAhw2223MXnyZC644AJuvvlmFi1aRMeOHcnOziYlJYVbb701zLIZMWIEN9xwAzfccAMTJ07kjjvu4L333gNMpuDnn3+Oz+cjMTGRyZMnc+eddzJnzhx69+6tLSMU5QSg0Vo2dc2pp55KmzZt8Hq9ZGRkkJWVddT7WpbFfffdR69evRgyZAjbt29n9+5js9ROPfXUsHTgZ555ht69ezNgwAC2bt3KunXrwrafO3cu33zzDf379ycjI4O5c+eyceNGvvzyS84+++zKYx2u39AXX3zBddddB8D111/PZ599VrnuqquuwufzAfDLX/6SV199FTAC+Itf/OKYrktRlIaJWjY1hLRUAPD5fFRUVBz1vpMnT2bv3r188803BAIBOnTocMzpvbGxsZU/L1iwgDlz5vDFF18QExPDueeeW+V4lmVxww038Mgjj4Qtf//994/pvEcaS9u2bWnevDnz5s1jyZIlVVpNKIrSOFHLpg4JBAKUl5dXWZ6Xl0ezZs0IBALMnz+fzZs3/+hx4uPjyc/PP+z6vLw8kpOTiYmJ4fvvv+fLL7+sss3gwYOZNm0ae/bsAUzn1M2bNzNgwAAWLVrEpk2bKpcf6pynn346b731FmDE8qyzzjrseG666SZGjx4dZvEoitK4UbGpQ8aOHUuvXr0qEwSEUaNGkZmZSc+ePXn11Vfp1q3bjx6nSZMmnHHGGfTo0YNx48ZVWT98+HAqKio4+eSTGT9+PAMGDAhb7/F46N69O3/9618ZNmwYvXr1YujQoezcuZPU1FQmTJjA5ZdfTu/evbn66qsBE6N59913KxME/vWvfzFp0iR69erFa6+9xtNPP33Y8Y4cOZKCggJ1oSnKCYSmPh8lNZH6XNcEg0GaNWvGrl27arW2WGZmJnfddReffvpptRxPU58VpX7wY6nPjTZm09iEoSZIT0/npptuqlWhefTRR3nuuec0VqMoJxiNVmyUI/P999/X+jnHjx/P+PHja/28iqLULRqzURRFUWocFRtFURSlxlGxURRFUWocFRtFURSlxlGxqSOkIOeP8d5771W2IwB48MEHmTNnznGfe9myZXz00UfHvN+OHTu48sorf9I5X375ZXbs2PGT9lUUpeHTaMWmRQvweKrv1aJF7V/DwWLz5z//mSFDhhz3cX9MbH6srE6rVq2YNm3aTzrnTxEbqTqtKErDp9GKzTHWrTzu4xUWFnLRRRfRu3dvevTowZQpUwBT4PKUU06hZ8+e/PKXv6S0tLTKvu6GaNOmTWPMmDF8/vnnzJgxg3HjxpGRkcGGDRsYM2ZM5c3+cMft0KEDf/zjHyvbExyc3lxWVsaDDz7IlClTyMjIYMqUKTz00ENcf/31nHHGGVx//fVkZWVx1lln0adPH/r06VPZJC0rK4sePXoARgjGjRtH//796dWrFy+88ELlOR577DF69uxJ7969GT9+PNOmTSMzM5NRo0aRkZFBcXHxj47/3nvvpU+fPjz66KP06dOn8rjr1q0L+11RlIZDoxWb2mbmzJm0atWK5cuXs2rVKoYPH05JSQljxoxhypQprFy5koqKCp577rmjOt7pp5/OyJEjeeKJJ1i2bBmdOnWqXHek4zZt2pSlS5fyq1/9iieffDLsuBEREfz5z3/m6quvZtmyZZXlZ9asWcOcOXN48803adasGZ988glLly5lypQp3HHHHVXG99///pfExES+/vprvv76a1588UU2bdrExx9/zPTp0/nqq69Yvnw5v//977nyyivp168fkydPZtmyZXg8nh8df5MmTVi6dCn3338/iYmJla0TJk2apCVuFKWBomJTTfTs2ZNPPvmEe++9l08//ZTExETWrl1Lx44d6dKlCwA33HADixYtOu5zHem4l19+OQB9+/Y96tYGI0eOJDo6GoDy8nJuvvlmevbsyVVXXRXmyhNmz57Nq6++SkZGBqeddhr79+9n3bp1zJkzh1/84hfExMQAh25JcKTxiwCCKdo5adIkgsEgU6ZMqWxjoChKw0IrCFQTXbp0YenSpXz00Uc88MADDB48mEsuueSo9nU3RTvWVgKHQtobHEtrA3cbgKeeeormzZuzfPlyQqEQUVFRVba3LIt//etfnH/++WHLZ82adRwjrzqWK664gj/96U8MGjSIvn37hjV8UxSl4aCWTTWxY8cOYmJiGD16NOPGjWPp0qV07dqVrKws1q9fD8Brr73GOeecU2Xf5s2b89133xEKhXj33Xcrlx+udcDRHvdwHE1LgpYtW+L1ennttdcOGag///zzee655ypbJPzwww8UFhYydOhQJk2aRFFREXDolgTHMv6oqCjOP/98fvWrX6kLTVEaMCo21cTKlSs59dRTycjI4E9/+hMPPPAAUVFRTJo0iauuuoqePXvi9Xq59dZbq+z76KOPcvHFF3P66afTsmXLyuXXXHMNTzzxBKeccgobNmyoXH60xz0c5513HmvWrKlMEDiY2267jVdeeYXevXvz/fffh1kaYoXddNNNdO/enT59+tCjRw9uueUWKioqGD58OCNHjqRfv35kZGRUxozGjBnDrbfeSkZGBpZlHdP4R40ahdfrZdiwYUd9jYqi1C8ab4uBFtWbkda8Oew6wQtJf/PNN9x9990sXLiwVs/75JNPkpeXx1/+8pdDrtcWA4pSPzgxWwyc4MJQ3WRmZnLdddfx6KOP1up5L7vsMjZs2MC8efNq9byKolQvjVZslOqlX79+/PDDD7V+XncMS1GUhovGbBRFUZQaR8VGURRFqXFUbBRFUZQaR8VGURRFqXFUbBooWrJfUZSGROMVm8bQY+AwBINBFRtFURoUjVdsarvHAPD6669XVhG45ZZb+Oqrr+jVqxclJSUUFhaSnp7OqlWrWLBgAWeffTYXXXQRXbt25dZbbyUUCgGmwOXAgQPp06cPV111FQUFBUB46f0333yzSsl+RVGU+kzjFZta5rvvvmPKlCksXryYZcuW4fP5WLt2LSNHjuSBBx7g97//PaNHj67sB7NkyRL+9a9/sWbNGjZs2MD//vc/9u3bx1//+lfmzJnD0qVL6devH//4xz8qzyGl90ePHh1Wsl+qNSuKotRXdFJnNTF37ly++eYb+vfvD0BxcTHNmjXjwQcfpH///kRFRfHMM89Ubn/qqady0kknAXDttdfy2WefERUVxZo1azjjjDMA0+hs4MCBlfu4S+8riqI0JFRsqgnLsrjhhht45JFHwpbv3LmTgoICysvLKSkpqSxq6W4rIL9blsXQoUN58803D3kOd0FMRVGUhoS60aqJwYMHM23aNPbs2QOY0vqbN2/mlltu4S9/+QujRo3i3nvvrdx+yZIlbNq0iVAoxJQpUzjzzDMZMGAAixcvriy9X1hYeNgSMUdqE6AoilKfOCqx2bZtG7/5zW8YOHAgMTExeDyeKh0gMzMzGTt2LN26dSMmJoZ27doxatQoNm3aVOV4oVCIRx55hA4dOhAVFUXv3r155513quWC6oru3bvz17/+lWHDhtGrVy+GDh3KK6+8QiAQ4LrrrmP8+PF8/fXXlQUl+/fvz+23387JJ59Mx44dueyyy0hNTeXll1/m2muvpVevXgwcOJDvv//+kOdzl+zXBAFFUeo91lEwf/58q1mzZtYFF1xgDRs2zAKsTZs2hW3zu9/9zjr99NOtZ5991lqwYIE1efJkq1u3blZKSoq1ZcuWsG3vu+8+KyIiwnriiSesefPmWWPHjrU8Ho/14YcfHs1wrL59+1ZZtmbNmvAFzZtbFlTfq3nzoxrb0TB//nzroosuqrbjnehU+dsrilInHOreLBxVzObss89mt536+9JLLzF79uwq29x7772kpqaGLTvjjDPo2LEjL774In/+858B2LNnD08++STjx4/nnnvuAUwzr/Xr1zN+/HguvPDC49FOB+0xoCiKUm84Kjea13vkzQ4WGoD27duTmprK9u3bK5fNmjWLsrIyRo8eHbbt6NGjWbly5SHdbo2Nc889lw8++KCuh6EoilJr1GiCwHfffceePXvCuiiuXr2ayMhI0tLSwrZNT08HYM2aNTU5JEVRFKUOqDGxqaio4NZbbyU1NZUbb7yxcnl2djZJSUlVUn9TUlIq1yuKoiiNixqbZ3P77bfz+eef8+GHH5KcnHzcx5swYQITJkwAYO/evcd9PEVRFKX2qBHLZvz48UyYMIGJEycybNiwsHXJycnk5uZiWVbYcrFoxMI5mLFjx5KZmUlmZuYh40OKoihK/aXaxebhhx/mscce45lnnuH666+vsj49PZ3S0lI2bNgQtlxiNd27d6/uIdVrFixYwMUXXwzAjBkzePTRR2t9DI888ghpaWl07dqVWbNm/ei2d9xxB3FxcbU0MkVRGgvVKjbPPPMMDzzwAA8//DC33377IbcZPnw4gUCAyZMnhy1//fXX6dGjBx07dqyewbQAPNX4OoYOA5ZlVVZxPhZGjhzJ+PHjj3m/42HNmjW89dZbrF69mpkzZ3LbbbcRDAYPuW1mZiY5OTm1Oj5FURoHRy0206ZNY9q0aXzzzTcAfPzxx0ybNo2FCxcC8NZbb3HnnXcyfPhwBg0axJdffln5cmeYNWvWjLvvvptHHnmEf/zjHyxYsIBf/epXzJs3r0pdseOimjsMHOl4WVlZdO3alZ///Of06NGDrVu38qtf/Yp+/fqRnp7OH//4x8ptZ86cSbdu3ejTpw//+9//Kpe//PLLlSI9ZswYpk2bVrlOrImdO3dy9tlnk5GRQY8ePfj000+P67KmT5/ONddcQ2RkJB07diQtLY0lS5ZU2S4YDDJu3Dgef/zx4zqfoignJkedIHDVVVeF/X7bbbcBcM4557BgwQJmzpyJZVnMnDmTmTNnhm0r2wgPP/wwcXFxPP300+zatYuuXbvy9ttvV7qTGirr1q3jlVdeYcCAAYC5zpSUFILBIIMHD2bFihV06dKFm2++mXnz5pGWlnbMlZzfeOMNzj//fO6//36CwSBFRUVVtrnrrruYP39+leXXXHNNFctp+/btleMFaNOmTdi8KOHf//43I0eOpGXLlsc0XkVRFDgGsTk4oH8wL7/8Mi+//PJRHcvn8/HAAw/wwAMPHO3pGwTt27cPu3G//fbbTJgwgYqKCnbu3MmaNWsIhUJ07NiRzp07A2Yyq2TZHQ39+/fnl7/8JeXl5Vx66aVkZGRU2eapp5467mtxs2PHDqZOnRr2wKAoinIsaNXnasTdAmDTpk08+eSTzJ07lxUrVnDRRRdRUlJy1Mfy+/2VcZ9QKERZWRlgSgctWrSI1q1bM2bMGF599dUq+951111kZGRUeR0q+aB169Zs3bq18vdt27bRunXrsG2+/fZb1q9fT1paGh06dKCoqKjKpFxFUZQfQ/vZ1BAHDhwgNjaWxMREdu/ezccff8y5555Lt27dyMrKYsOGDXTq1OmwvWs6dOjAN998w89+9jNmzJhBeXk5AJs3b6ZNmzbcfPPNlJaWsnTpUn7+85+H7Xssls3IkSO57rrruPvuu9mxYwfr1q3j1FNPDdvmoosuYper1lxcXFxlGwRFUZSjQcWmhujduzennHIK3bp1o23btpXdN6OiopgwYQIXXXQRMTExnHXWWYfsS3PzzTdzySWX0Lt3b4YPH15pNS1YsIAnnniCQCBAXFzcIS2bYyE9PZ2f/exndO/eHb/fz7PPPovP5wPgwgsv5KWXXqJVq1bHdQ5FURSPdaRgTD2kX79+ZGZmhi377rvvwmqw0YLqzUhrDmgh6XpJlb+9oih1wqHuzULjtWxUGBRFUeoNmiCgKIqi1DgqNoqiKEqN06jEpgGGn5TjRP/mitIwaDRiExUVxf79+/XmcwJhWRb79+8nKiqqroeiKMoRaDQJAm3atGHbtm3a6+YEIyoqijZt2tT1MBRFOQKNRmwCgUD1VYxWFEVRqpVG40ZTFEVR6i8qNoqiKEqNo2KjKIqi1DgNslxN06ZNiY2NJTU1ta6HUmPs3bu3UV8fNP5r1Otr2Oj1HTtZWVns27fvkOsapNjAj9fgaQw09uuDxn+Nen0NG72+6kXdaIqiKEqNo2KjKIqi1DgNVmzGjh1b10OoURr79UHjv0a9voaNXl/10mBjNoqiKErDocFaNoqiKErDoUGJzdatW7nyyitJTEwkISGByy+/nC1bttT1sI6ZadOmccUVV9C+fXuio6Pp2rUrf/jDH6q0h87JyeGmm26qTPUeMmQIK1eurKNRHx/Dhw/H4/HwwAMPhC1v6Nf40UcfcfbZZxMXF0dCQgL9+vVj3rx5lesb8vUtXryYYcOG0axZM+Lj4+nTpw8TJ04M26akpIRx48bRsmVLoqOjGThwIIsWLaqjER+ebdu28Zvf/IaBAwcSExODx+MhKyurynZHez2hUIhHHnmEDh06EBUVRe/evXnnnXdq4UoOzdFcX2ZmJmPHjqVbt27ExMTQrl07Ro0axaZNm6ocr0auz2ogFBYWWmlpaVZ6err17rvvWu+9957Vo0cP66STTrIKCgrqenjHxGmnnWZdddVV1uuvv24tWLDAeuqpp6zExETrtNNOs4LBoGVZlhUKhawzzjjDat26tfXGG29YH3/8sXX22WdbTZo0sbZu3VrHV3BsvPHGG1aLFi0swLr//vsrlzf0a3z++ectv99v3Xnnndbs2bOtmTNnWo8++qj1/vvvW5bVsK9v+fLlVlRUlHXuueda7733njV79mxr7NixFmD95z//qdzuuuuusxITE60JEyZYc+bMsS677DIrKirK+vbbb+tu8Idg/vz5VrNmzawLLrjAGjZsmAVYmzZtqrLd0V7PfffdZ0VERFhPPPGENW/ePGvs2LGWx+OxPvzww9q5oIM4muv73e9+Z51++unWs88+ay1YsMCaPHmy1a1bNyslJcXasmVL2LY1cX0NRmz++c9/Wl6v11q3bl3lso0bN1o+n8/6+9//XocjO3b27NlTZdkrr7xiAdbcuXMty7Ks9957zwKsefPmVW6Tm5trJScnW7/5zW9qbazHS3Z2ttW8eXPrjTfeqCI2DfkaN23aZEVFRVlPPfXUYbdpyNf3hz/8wQoEAlZ+fn7Y8gEDBlgDBgywLMuyli1bZgHWxIkTK9eXl5dbXbp0sUaMGFGr4z0S8hBnWZb14osvHvJmfLTXs3v3bisiIsJ68MEHw/YfNGiQ1bNnz5q5gCNwNNd3qPtOVlaW5fF4rP/7v/+rXFZT19dg3GgzZsxgwIABpKWlVS7r2LEjZ5xxBtOnT6/DkR07h5q1279/fwC2b98OmOtt1aoV5513XuU2iYmJjBgxokFd77333kuPHj249tprq6xryNc4ceJEvF4vt95662G3acjXV1ZWRiAQIDo6Omx5YmIioVAIMNcXCAS4+uqrK9f7/X6uueYaZs2aRWlpaa2O+cfweo98qzva65k1axZlZWWMHj06bP/Ro0ezcuXKQ7qlapqjub5D3Xfat29Pampq5X0Hau76GozYrF69mh49elRZnp6ezpo1a+pgRNXLwoULATj55JOBH7/eLVu2UFBQUKvj+yl89tlnvPrqqzz77LOHXN+Qr/Gzzz6jW7duvPXWW3Tq1Am/309aWlrYtTbk6xszZgwAd9xxBzt27CA3N5cXX3yRuXPnctdddwHm+jp27EhMTEzYvunp6ZSVlbF+/fraHvZxcbTXs3r1aiIjI8MefGU7oEHdj7777jv27NlTed+Bmru+BiM22dnZJCcnV1mekpJCTk5OHYyo+ti+fTsPPvggQ4YMoV+/fsCPXy9Q76+5rKyMW265hXvuuYeuXbsecpuGfI07duxg3bp1jBs3jvHjxzN79myGDh3K7bffztNPPw007Ovr0aMHCxYsYPr06bRu3Zrk5GR+/etf8/zzz3PNNdcAR76+7OzsWh3z8XK015OdnU1SUhIej+dHt6vvVFRUcOutt5KamsqNN95Yubymrq/RNE9rqBQUFHDJJZfg9/uZNGlSXQ+n2nj88ccpLi7m/vvvr+uh1AihUIj8/HxefvllLr/8cgAGDRpEVlYWjzzyCHfccUcdj/D4WLduHVdccQXp6ek8//zzREdHM336dG699VaioqIYNWpUXQ9ROU5uv/12Pv/8cz788MNDimx102DEJjk5+ZBPgod7GmkIFBcXM2LECDZu3MjChQvD2hv/2PXK+vrKli1bePjhh3nppZcoLS0N892XlpaSm5tLfHx8g77GJk2asG7dOoYOHRq2fNiwYcycOZOdO3c26Ou77777CAQCfPDBBwQCAQAGDx7M/v37+e1vf8u1115LcnIymzdvrrKvXJ88CTcUjvZ6kpOTyc3NxbKssKf/hnTd48ePZ8KECbzyyisMGzYsbF1NXV+DcaOlp6ezevXqKsvXrFlD9+7d62BEx0d5eTlXXnklmZmZfPTRR/Ts2TNs/Y9db7t27YiLi6utoR4zGzdupKSkhNGjR5OcnFz5AnjyySdJTk5m5cqVDfoaxX99OLxeb4O+vpUrV9K7d+9KoRFOPfVU9u/fz549e0hPT2fTpk0UFRWFbbNmzRoiIiKq+PzrO0d7Penp6ZSWlrJhw4Yq2wH1/n708MMP89hjj/HMM89w/fXXV1lfY9f3k/PYapmnnnrK8vl81oYNGyqXbdq0yfL7/daTTz5ZhyM7doLBoHXVVVdZUVFR1pw5cw65zbvvvmsB1oIFCyqX5eXlWSkpKdbtt99eW0P9SeTk5Fjz58+v8gKs0aNHW/Pnz7fy8/Mb9DV+8MEHFmBNnTo1bPmwYcOsNm3aWJbVsP+G55xzjtWxY0ertLQ0bPm1115rRUVFWaWlpdbSpUstwHr55Zcr15eXl1vdunWzLr744toe8lFzuNTgo72e3bt3W4FAwHrooYfC9h88eLDVo0ePGh370XC467Msy3r66actwHr44YcPu39NXV+DEZuC/2/n/l1Oi+M4gH8Nj5M6ypFYRLL6sSnTiUE2xWCUMojpTEaD2YjBYJLhu7CIUkaTsvgD/AEG9WTC+073lId7H3U713Pq/aqzfdL3rc55Uz4+PxGNRhGLxTCdTjGbzZBIJBCJRB52AX66er1u7pxsNpu76/ey3/V6RTqdRjAYxGQywWKxgK7r0DTtYQHLLsSXPRs7Z7zdbshkMvB6vRgMBlgul6jVahBCYDQaAbB3PiklhBDI5XKYTqdYLpdoNpsQQsAwDHOuXC7D4/FgOBxitVqhVCpBURRst9s3nv45KSWklOb91+/3IaW8+zDwap5WqwVFUdDtdrFer1Gv1+FwOMyF3nf4Lt9kMoHD4UA+n3947uz3+7vXsiKfbcoGAA6HA4rFItxuN1RVRaFQeNreP104HIYQ4unVbrfNuePxiGq1Ck3T4HK5kM1msdvt3nfwf/S1bAB7ZzydTmg0GvD7/fj4+EA8Hsd4PL6bsXO++XwOXdfh8/mgqiqSySR6vR4ul4s5cz6fYRgGAoEAFEVBKpXCer1+36H/4k/3nK7r5syreS6XCzqdDkKhEJxOJ+Lx+MO33P/tu3yVSuWl9wCwJh//9ZmIiCxnmx8IEBGRfbFsiIjIciwbIiKyHMuGiIgsx7IhIiLLsWyIiMhyLBsiIrIcy4aIiCzHsiEiIsv9ArLrihupUJH7AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAGQCAYAAAB4X807AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACO80lEQVR4nO2dd3xV9f3/n3ckudkkEPaKoIwAQZbgQkUQteCkLqy2KlKr/tQ6qFq1jqLVb/1qvy60oLYOCi5cYBFw4AxLBFRGkD1DyF73nt8fn/PO59wEFTQhg/eTx33c5NwzPicJn9d5z4/PcRwHRVEURalH/A09AEVRFKX5o2KjKIqi1DsqNoqiKEq9o2KjKIqi1DsqNoqiKEq9o2KjKIqi1DsNJjYbN27k3HPPJTU1lZSUFM4++2w2bNjQUMNRFEVR6hFfQ9TZlJSUkJ2dTVxcHPfeey8+n4/bb7+dkpISvvrqKxITEw/2kBRFUZR6JNgQF3366adZt24d3377Ld27dwegX79+HH744Tz11FPccMMNDTEsRVEUpZ5oEMtmxIgRlJWVsXDhwqjtw4cPB+CDDz442ENSFEVR6pEGsWxWrFjBGWecUWt7VlYWM2bM+MnjW7VqRdeuXethZIqiKMrPZf369ezatWufnzWI2OTl5ZGWllZre3p6Onv27PnJ47t27UpOTk59DE1RFEX5mQwaNOgHP2sQsfk5TJkyhSlTpgCwc+fOBh6NoiiKciA0SOpzWlraPi2YH7J4ACZMmEBOTg45OTlkZGTU9xAVRVGUOqRBxCYrK4sVK1bU2r5y5Up69+7dACNSFEVR6pMGEZuxY8fy2WefsW7duupt69evZ+HChYwdO7YhhqQoiqLUIw0iNldccQVdu3bljDPO4I033mDWrFmcccYZdOrUiSuvvLIhhqQoiqLUIw0iNomJicybN48jjjiCiy++mIsuuojMzEzmzZtHUlJSQwxJURRFqUcaLButc+fOvPLKKw11eUVRFOUgol2fFUVRlHpHxUZRFEWpd1RsFEVRlHpHxUZRFEWpd1RsFEVRlHpHxUZRFEWpd1RsFEVRlHpHxUZRFEWpd1RsFEVRlHpHxUZRFEWpd1RsFEVRlHpHxUZRFEWpd1RsFEVRlHpHxUZRFEWpd1RsFEVRlHpHxUZRFEWpd1RsFEVRlHpHxUZRFEWpd1RsFEVRlHpHxUZRFEWpd1RsFEVRlHpHxUZRFEWpd1RsFEVRlHpHxUZRFEWpd1RsFEVRlHpHxUZRFEWpd1RsFEVRlHon2NADUBSlHnE8X0c838vXPvddtvvcV8T9PuC++z2f4XlXlP1ExUZRmgpeURCxiABVQNj9utL9utKzTd7lmDBGRCJABUZIgu5nZe73cZ59/e7+Qc++MUDI8x5wXypCyg+gYqMojQERDhEHMCJSiRGEsPuqcr8XkakCYrFCE8FM+H73a7/nnCIWYYyoBIB49xxF7jWT3LHsdY9Lct/L3P1C7n4iWAF3e5x7rnggxf0+iIqPUo2KjaLUNQ4/boWIqIiQeK2QKswEXe5+FoP5XyrHec8fg5nsC919EzGTfLG7v4hBxHPOMvd88e51d2DEKtEdww73mBT3Gnnue7J7vRKsmIlgJbjXLwcKgO3u9iSghft5HCo8hzgqNoryY9Sc4MW1VFM4xAoJe/ar9OwvVolYIeXuZwF3W4XnOuWYyTnR/XoP0VaIV5DCnn0L3W0p7r5FGEGIdb8vw7rOxNUWdL/OwwhIrDuG3e73Me64CrHCFcFaMhUYcQl57i3WPTYPYyHFYgSnlfsucSDlkELFRjl08Voe4mqq9Ly8FkilZx+xUmKxIlOFmXz9mAlfXFhyfnFhFbj7pmAm3QKMJSITtFgkFUA+dqIOAzvdfcTqKPWcX9xl8RjrYw9GEBLc8W3BWCch9/s97r5x7nhlDLEYURKrRe6x2L1WC4zQyTWS3HNWee5xr7tvojvGOPd9lzv2dPc8ImTKIYGKjdL88YqJWAbiwpJYhON5l0lTPvNhJmaxYIQ97n7ivtqLmbgTsJZEOWbSFrHyu58VuJ9LfKMEY4kkuC+vFSJWUox7fL57Lwnu96UYy6OlO9Yq97oSzC/DiorP3V+spL3u+eX+dmHdbBGMdRLAJgwUEB0PEpGpdM+VhLVwZIzl7j5xWGtrtzveNHQWOkTQX7PSfPCKSjk27iHWiYhJBDO5+7ETttcaKXaPC2EmzwrM5AjWXVSKTRuWCTuIsR4qMJaECIdM6rife8WgCCMiEnOpxFgwMZjJGYy4+DDCBNbSkniOCFyRO74KrEWTj3WPRdz7SMTGXfa455V051L3nuU6pe655PMCjBAluvsUuT9LscAq3TFIvCfOc38J2LiPuP32AG3cn4tW/TVrVGyUpofXChHrpJjo2IhM/iIsPswTusRTZLLMx0zWIexkX+EeW4GZbB3MpCmitBMzOca715OAfCLW0pDjZaxilRS634vIVWGsiVR3PBKL8brphFKsVRHCWj8Bd7uDdVWBtYJauN9LTEkSDySeU+qeo9RzXrkPSSSQ5AJxw0lWnIwv3h17pTsGSV6odD+TJAevqzEZI16V7s+jHTbbTWl2qNgojRNvKrBMblUY4ZDAuAS6Y7CB7WJs8WEB5i9cnuQlgC4Tn8RsJL13p/t9MvZJvhBbVyJxEpmQRUjEzVbu7i9P82Ce3MXiwd1fJnmZ6GPd+0ryfA9WQMWtV44VKu89tnL397oKJe4j507GiqqMQUSwEusek1c+VkDk+wTP53vdccVixcibfi1jFOtIRLQIm/kmiRCl7n7FQAeM8KqV0+xQsVEaHm/xYRnWTRTGWhbydSzWTSOBd3FTRTBP9UHMpOZzj5PPxG0GZnItxz71i1UkopSImfxC7rYi95pS4Cgpx2DdTmAm9iA2jiHnrsROvvHY4H7Yvaewew3J9JJzea0w3J+P14rwe7aJuEhwXyyYSs+5xMIrxFoRYnHJz0Iy4uRnJenZkros50v3HL8H6yaT358IZAH29yLiKSLltYAA1gKtMVaOJhA0K1RslIOHN2W4HDNhScqvWC+SXiuurxislZGIdRVJ8FkmVYlLFGPdPV4LoQQzIcdgK+4lPTiEtXjEtbUD6/IBG6+QCdbrrpNxi9tJalnKPOeUGJEUOoq1IBN+wB2LjFmuKS4mn3ufcr9x2LiSuP28lkqZ5zwivvGebfIzknsBm5ot15HUaDm/93v5Ocp9izsPrOUjGXbee/Y+NJRhU7crMWIXcH8uFRgrxztmpUmjYqPUHWJtyAQsT/TemIqIjTdoLVZIECsyMtGLBSJtUeSJOc4933aiXWXeOhKw7hsJ1Oe722UCjMHWsXgtFJlwg55zSNaYJA3I8SXu2MTSAmMpSKwHrIB6YzNlns8lliQCArZVjEzuEscRYZTzyHgFEZeQZx+v2zDi2SaiEoO17sKe78UiFBEWwZHftcSlAti08FJsQoAkUVR5PqvEuirFEgTzuxY3XwRYD3TE/Ly1ILTJo2KjHDgy0Xjbp1TWeJcJxltUKJO2TEC73PMlYydIsQZkogMzaTkYUajCTtjegkpxecnEj/u1PK2DFTOv+6ymQEp2lzxti7jJRC/iKU/7ci+SVQbWfeT93+XHFnmKKHqtBBEAsGIsY5b0aS/lnq/lvkS4xH0oRDwv+T7g2UdcWyI+YoWIoMp9SuKDxK+Kia7F8RacBmtcJx/zNxDwnMPb1NPrVvNaQLlAZ+zvS2myqNgo+0aegr1Pu6XYJ1OZnGWCFmGRp32wgWIRFsnYElGQIHcRdqITt4nUjoiwiLDFuNsT3HPI5FSJSeut2RalEFPLEfCcB2ycQ2IRQWyabyXWBSQZYHK8WDLeppMBjNuoZY2fYVWNr2UCF6tMrAtvP7Rqt2AlbFkH27+BDd9CyS4oLYGqUigrgaoq8AcgGDDvkSDE+MHvw/H5qSrzU46P8giUV0BlOVREoNKBygoIR6CqyjGaHnYNq4gxr/xECPodAkQI+CEuBuJifMT5fcQnxZLSphUxLTLAnwEd20HmAIhNtq66gOeepI2N/OzkdyDCJ4kBEoMKe/ZLd38+m9x3qSNSmiQqNoc63qwvsUwku6jm997aDwlwi6vL68oqwD6xS0GiuMakMj4GG4CuxAasvd2HJZDuba0ire7zsE/IYCY4SdmVbeKSKsEEqEWwpMDRG48QwRLBxPNe5hkrWPEVi0mEWcRQfqZg3VAyiYrYlFbAnu2Qtw1Kt8LWdbB5LexYC1vXwo51EPaq1f4jeh9DtGewvoj4AkQ6HknwiOMhezj0HQlOvI1TiZUoVGF+32LhyUOJpKaLBVzg+X6r+3kLVHCaKHUqNjNnzuSll14iJyeHHTt20LlzZ84++2xuvfVWkpOTq/fbs2cPN910E6+//jqlpaUMGzaMhx9+mL59+9blcBQvNavoJUAvYiLzmmQigX16DxNdqBcmuuljzawvac5Y0/Ulk4T0BhP3STHWoqmZgivWRRnWlSKuKwlyy1OxBLHla5n8q7C1JOKeEgvFobabzZsFJdleIjaOAxXlULAX9hZAaREUFUFeEYQLzaukEPILobQQqgqhZA/k74GSfCjaA0W7oTCv5m8oigg+dsZ2ZU2gJysjPVhX3pYiEikhgRISCBMgQLj6FaQKn2uV+HAI+cMkxEFCHMTHQnwQQjEOcSEfcX6IDUDQDzFxPgIO+P3y6/ET8fuoivipLPdRgY+SSoeiUofiEofi0nIo3EW6s5PW7KAr6znSWUJwYw5szIH3/04klIL/yHPhmIsh+3j7Q5dswzKsheuNCcnfkTwwiFCVuD//De4+8negNCl8juM4P73b/jF06FA6d+7MGWecQceOHVmyZAl33XUXPXv25JNPPsHv9+M4Dscddxzr16/nwQcfJC0tjcmTJ7NixQqWLl1Kx44df/I6gwYNIicnp66G3bzwWinyKsdmDMn3kp4rIiNxBim2ExGQQLm0kpfsokpsEFomYm/WVyL2CVaCzYnYp12xJGSykQlegvjpWGGQDLMUrHgUecaS4O7jbaGSSHR2l1hXkvoLUOpA0V4o2w752yF/B2zdAcU7jNuqMA8KdsOePCjNg5K9UFIAVd7H9J9HFQF2+Nqw1WnLNtqynq6spVvUq6xGKlZGCrRLg7Zp0C4Z2rSAtq2gdQpkxEJGKrRqDa2SIV7iLVJDJJZECuZvQQL2XnekuEflZybtZwLY/mlp5vY3bISVO+CTDbBoRRHB3E8ZGvmQ03iHgSyuHrPTsjO+UdfA0VdAcqqNfyVg4zp+zN+RuN1kzDJeSWmXmE5nrHtVaVT82Nxcp2Kzc+dOMjIyorY9//zzXHLJJbz//vucdNJJvPHGG5x55pnMmzePE088EYC9e/eSmZnJ+PHjefTRR3/yOio2WAtFAvIyIYvLS54QRSBkwohgxETqOsTnIjEDCdQWYbsJS0uWKqwQiYDJ8bHYgkav90eExRtQljlUugtLM0ewhX9S0S/9uEQYU7AJAZKmKw0fxRKrBHwR2L0T9m6EHRtg+0bz2rsZ8rbArs2wewtUiD9w/6n0xVIcSKXYl0whyeRHkskPJ1FIEkUkUUAKhSRXv/JpwR7Sql95pLObljj48fuhTaorIKnQJg3ap0L7DGifYt7btYA2SRDrdRuKu6+mW9Mb85LfF+7P0Od+L3UyfqwoS1IGWDEudH83krodxrbjKcbW1RQZr+A738FLX8CaJasYV/VvxvNvurABACeUjO/EK+DU6yClk80wk79JbzwnFRsTlPHGY5dCCGIEx1t/pDQKfmxurlM3Wk2hARg8eDAAmzdvBmDWrFm0b9++WmgAUlNTGTNmDG+88cZ+ic0hgze9VCbYYmyQvtKzj/i7vYVyMqGAjVXEYlxhZZj/1GLB1KxDASs6EkcJYZMEJDtLJvcCrIUjGVRF2LoU8c9L7yxxmYgIypilMFGy3Lx+fJmcJNW2KN/EObauM69d62FbLmxfb16V3pStfROOTaQ0sR17Y1uzy9eGLVWt+b6iNbllrdhU0ZI80qtf+bSggBQqnLhoQXWJj4X0ZEhLhrSQeW+ZDO3ToG8I0hOhZSK0bmOslIxYSE8FvxRuSkab1NaIxSFp0d4Ms5oV9mIxePHV+NpbB+NtOCrHyudyPa87UTLW5Gs5T9je+zlD4Zz+sLe4F09+cB9D37+HIwtmcyMPcVLZfHj37zD3MTj1Zjh3krnJcozwyH16kzFkDN5x78EI0GagC1ZslUZPvScIfPDBBwD06tULgBUrVtCnT59a+2VlZfH8889TVFREUtLBCGs2IuQpTvpPlWAEQPpoSUxFJly/5zgwk/NezH/KRPcc0tpdAuSSIixiEsKKF9g29nlY9wrY9VRaULsuRdwtIgLimgObNiuBfsm6kiJAyfqSOIpsk8C7xEqq8mHNd7BjNWz+Djauhq1rYNvan4x7kJSG07ozZSmd2BnXmQ0VnVgd7sjXxe1ZtLs9i/I7UFSRHF2j4iE2BjqkQ4c06N8C2mRA6xbQOh4yEqBVBqSnGwFJ90EoFttQUroLiPUgv1uwiRTiCpRJFuzvVFyEMrFLqrBYrDIpi2B79xe3p8S2JNvOe27vNSW5QiwFEXSpg/KKE1gXlzxU4Dl/FaTGwS1j4dpf+fnne6dx7pun0bVkMbf6HuDcyv/ArHvg42fhwodg4DgI+ux5vUIjiRiO5/qyAmghJmmgIwdhFlPqgnr9NW3evJk77riDk08+mUGDBgGQl5dH165da+2bnm4egffs2dO8xaYCM8kUYWITe7CxEQngyxOlt3BPJhZvzEQmILEq/JgU4wjGaokA2zCTfQK2hbxYMEGMuMRiA7LefmNS/4E7Rq8vXRIJQp53sbZkrFLdLk+tck9e68UPOGHYvB52fANrv4Ft38LGb2DTtyaO8kPEJUC7btCmG5FWmexOzWRdpCtflWbyxa4uLN6azDeboWTdvg8PBuCIDOjeETLbQWZbyGwJXZOgUzdo1cI1Dva645QGl2K1iUtRXH3yu5L79BZt1qy5kQcHEVdvrYnsI33NwNanSEJGwP35imCBfbAQoUkg2moEKz5eq0WuI79vERgJzktNkLcOSFLMJfYjFpnPfh9fClcPh18PgT++OoBxC6dzNNfyXOhauucthv87D455G66ZAgGPtSj/H+TnIGLjrU8SwdkOtCfailMaJfUmNkVFRZxxxhkEg0GmTZv2i883ZcoUpkyZApjYUJOiDNP+ZD1m8pe1S+Q/lLjCZIKXeEWVZ5vXPSbxCnnyk4nNWxUuWV0S65BJI9bzvUxw8pQta5Z4M4AkVVcyumSijMEWYHrrUuQ4QepXgpiTbFwL61fAxpWwfiVsWmlEpcLbX8VDXAK0Pxw6HA4djyDc5nA2052v6c6SPW1YudHHyu/hm8VQ9gNx+9YtoFcn6NUOerSHHt3giA7QpQ0E87Gi4Q6RvURnz3kTKeR7x/O5POV7LaQYzO/Jm5otMTQRmjjMhClxFmnhIhO7/O/0upcksSIRK0AV2M7K8sAgDxDSvDOW6PRwsSJlIpdsQ6mRkf1FEOVvQR4a5AFCLCmxciLYYL/7M2vdCv71e7hwIIx/5hh6lHzBpOR/ck/Z9fgXPg95uXDtqxBsZe5L/s6lWamMUR5iJE0+xv1dJWBqqZRGTb2ITWlpKWPGjGHdunV88MEHURlmaWlp7Nmzp9YxeXl51Z/viwkTJjBhwgSAaiup0VOGEZitGCtGJo0E7FOstCiRdib5mP9EeZgn6RDWcvHGZASpJQm5xwaxNSV52BURPdlE1W6vUmwaqWSBSaV/ECtYIi4y2cj1pcBSkMm3xIGdG2HTcli/HHK/hu+/hk3f/HAcpVUH6NALOvaELj2obNeTdYEeLN/dgZVb/KzcAis/g283Q8UPiErHVtC7M/TuAr07Qq806N3XxFEAW/mf4jlIMqIEeZL2/cQ+NZ+kRXS9AlUzrlKzU4D8HL3uLK+b1Id1d4plkoD5vcqxEkcTgZLPJYvM+/cjrWmkg4I8QEjWl+h9HFbYZKzy91qF/RsBm/knD0xikUlcT9xe5XDq4bDoLjj3iQB/zZ3AR3GD+G/yGOJWfQR3DoXbPoSW7c15xUIG616Tv0t5AJOHH+ljp8sTNGrqXGwqKys599xzycnJ4b///W+t2pmsrCzee++9WsetXLmSzp07Nw8XmoNpV78WMxmL6e9t3igTk8y94iJLdY+RJoVBbLGj18UBxhpJxQqLuMIky8zby0taspRgffMShPfGSLxPtFWe8+COIR/7FOkDSoqNoGz9CnLd17qvTJrwvsjoBF37QMcsaNeb4s69+ZaerNiVyqpcWLUJVi2DNVtMlfu+6OyKSlamKy6doXcapLQi2hrYS3TGUs2WL2AtREEmS7Eq5T69IiQi4B2fCLLs4+xjHzm393comYEyNm+mnlw30bOPg00DFmtMfr9Coud7qXmSMXrTjUUUYrGFl5I4IksQBLExILEuvE005W9ThCgFG4OUlGZ5kIqDrmnw8R3wm8dgRs4AsiJfsLjNGFK2L4Gpv4M73gWfz45d0qGl8ajXjevNgtyCyVDT+E2jpU5/NZFIhIsuuoh58+bx1ltvMXTo0Fr7jB07lmnTpvHBBx8wfPhwAAoKCnjzzTe58MIL63I4DUMYU3y2BetWqcL+p5FYh9S1gLVuJJXXj5mExNXWEutKkMC6PM163V2S1SSfSwppkfsu7VlkYoj1nEcEsRQbC/J7zusDdm+Fr5bC9qWwfimsXQpbVptCx5qktILMvtC1L07XvuyK7cPK+N58vSuFbzbBN7nwzYewafe+f4w+H3RrB706Qq8OkNXNiErPTpDsjVEI0mnA+xct7j9vIoNsk/1kIpUJWGpAaoqEJDmIdSKTqBwnacUi2FUYEZAWLBLUl6wzaVkjyQPi0hJLQFylct5i7N9ACrZjtg/ze5YaKT/mYaDM8306tiectBUo9pxb3GHe33s8NjFE6rXkQUQsJGm0KVmGMnav8PiwcSfXIgoF4MVLTcHpcws70G/323wX6kPssjkw+wk46SrbZbs6lR3bSSKe6C4OIn47gbZo/KaRUqdi84c//IEZM2Zw2223kZiYyGeffVb9WceOHenYsSNjx45l2LBhjB8/Pqqo03Ecbr755roczsFHhGYb0T3FZFLyYScIESCJwciEL1ld4nILYp7QxUct+4n7LJ7o1h8iVl6rRSyqWKxASbaR7CdP7AAVDuxZD8sWwfol8P1iyF1i2qvUJBCE9r3g8GyqOvdjc2o2K8r7sjS/Ld/s9PHNKvjmv1BYUvtQMH23jugAvTpDzw4mrtK7GxzRyc3ukslarC+ITvmu6YLyWhZiRXi3yRIAggiQiIQ8rUsWoNc9JYWjIhIi5OLa8R4HNm5SiI17yH6SLSgTeBG2jkV+l4WYyT7oXi8fG6tJxPxdSHxDkjHE/SUPFvJzE3ecjEla9oglle9+nQy783bzafGnfFr+Kbv37qYqUkW4KkxmUibDAsM4Ku4oUuJS7M9XEkTEapfzijUv1pKn3ioYD1MnQkI8PDG3HZf5n+JfjIPnboTOI6H74TZeI78j+fsUUROLyXHPvxcjcFp/0yip06LOrl278v333+/zszvvvJO77roLMPGZG2+8kddff52ysjKGDRvG3//+d7Kzs/frOo2yqNPBiMwGzH8CcUNIsV2Zu49YEjJJefuOiWtCnhxl8pD4Skvs5CDB/RB2sawEPBle7ivZ3VaAeeIVi6ra1+7ApnXwfQ6sWQS5i2DdYijOr32PianQOZvS9keyqVV/vg705/OiXqzYGMc322Dddoj8gOsrPclYKT27uMLSEXq2gq7tISD3JE/IfqwLS3z3XgtFJtFy7IQkCRYiGlLP49TYloy1AkRIxNoQYZIYj7hAE7BupiJ3PCIKUkzbAmsh7cFmAIJNRZcJV4REUtNlHwnMy9+Ft95FrCPZBtYSkb8t8UCLJdsC20Yo6F6/AvO3EI99UAlDflw+/9r8L6ZumcrSkqX8GD58jE4ZzTVJ13BK/Cn4A377UCQCJGIglrL8LiQxxf3ZRMrgomfg5U9hZsx4zql8AbJHwx3vGPPWW9CJ+3MRi0l+n/J1yL1Hdac1GAetg8DBolGKTSGwBtsORt7lP5hYMCIelTW24fna63oQK6UQ8x9UfOLydOtNCZXJRuIyYcyEJuIX70DBBvguB1Z+CZtzYN2ifQqL06I1Je0GsiVtACuDR/KpcyQf78rkm00+dhfW2t0M1Q+ZbYyQ9GgFvY4wbq+enaCV120k1KyCD2OtPu/kEo9NzZWJJQk78cvPI97dhnvPYgXI5Ivn5yc1TCnYJ3CxFERsKt1t6UTHybxdECRVXKwbb4aXpChLUF2KbMXCCmP/RuKxMbZSzMSZhM2O82OTOUQYE4l2dXrjMeJ2CrvnFtHFPa7C3N/airVMXj+ZF7e8SGnEPBmF/CGGJA9hWMowusR3IRgJQhhWlK7g08JPWVKyhErHmG+Hxx3O39L+xpmpZ9pWMyLSYjkHibb0JcHAtbzLK2D0A7Dimx2s8R1BirMXbn0TBv6qdhxIXMm455IHKLBLc7cH2qDutAbgoHUQOGQJYyqaxWUmgXV5UsbzmVgtEvyUSUmC1N7jAp5jxdUj4iETkUzO4kYR9wlA6S746kv4/ktY8wWs+wIKa6eNVya3ZUf6QL6LH8jnziDeKxjAwh3tqcjf9//WpJBrmbgWSo906NkVuh/mur4cTMJCOh7XHNGTMESn1opoxNTYBjZJogzrNhJLTupMxM3idSsGPNvysWIs26Q2RsbitbBEFFpi3WleN5cIpVgMJVgLUybHInd7GjZ5owDrPpOxeK3ROM++0qy0FfbBJOxeLwbbSFUyFeXvRs4l9y/WpmfSzq3K5d619/LchucIO+aP7+SMk5nQeQJj24wlLiYuehE6KTqugt1Vu3lm+zM8tuMxVpev5qxtZ3Fm6Zk8mv4onao62Z+vpCaLS1NS+MEG/SMQ54PXroNj7m7Nn7f8hUe4Dmfqdfh6jITEOLsQXZV7r2LJyUMD2B55UnScxMFpea3sN2rZ1AX5wPdY15kEZ71WjVgq4lqQ+ggRHu/XYc8+YNNTZdKLxfasksK+xHITV9n6Oaz6HDZ+YdrV16A0riW5yYNY7AxmXsVg5hQOZAsd9nlbnVpBj3YmQN+zK/ToAj1aQock8CVhJ0xJkfb+55Z0W7mHmu4wmRy9sQSZOKUCX7odSKpykWcfcT9J+56WWBGT+Ie4W+SpXlyPYg1IQarsIxO9HB+HDfLvJbrFvVggKdhJVNye3kle7kHcYN5YTwQjXvIzEIumZoacV0Sk5kceMESQRaCkHscbzJeXH7YWbeWez+7h6WVPUxWpIuALcHHfi7n16Fs5vOXh5lxeV50kD8j9lWAm8yKoKqjiiW1PcNvm2yiMFJLiT+E/Xf/DKXGn2DFXYNOuRTQkpiTxHFccv82HYZMq+aisP1mshHH3w7m32BimuAq91q8kakhMLAy0dq/XxfPzUQ4K6karTxzMaoJ52P88UjQpLhypdpZ6lwpsoB5sMaR8LYIlE7UngSCvMo/psS+ztngebTevp+emfHptKKDL1jyCYe8MBeX+eL6JGcCH4aP4uGoIXzCE9XTF61+IDcIR7aFnWzdA3wV6tjdB+6Rkohs8SpykiOhCyDKs/1x+JpJ04HWHSZBdMrqCWEsE7OQradglRHeVllqgFp6fjcTFJIFCnoBlrCIE0iJGrAMpnJUiwSqsu6wCa0VJDEKytCqxIhnvXltcfKnYeAxEZ2t5J2+whZA1YzVihXiLOOUBQ6w6qTMRd1nAc8wPuI7yy/J54OMHeOTzRyitKsXv83NR34u4Y/gddE/vvu+DfgyJI26Bzbmbueq7q5hVMIsAAR7v/DgT0iZEu4klQzIJ+/sXC1RiOn545WN44u9zmctIwrFJBB7/DtLbWRed/N4rMH8r8gAj8a8yrLi1J9q6VuoddaPVJxVE/4cS1xbYp1Nv0FyecGW79zcgx9WU/6oyirZ+wCebHqJs03zO3BimXXH0LhF8rKAXnzGMLxjC5xzF15E+hMvNBRISyujStoRzO+5lYJck+rQK0qMdZGaati3VadreyXVffx3eWhJBJkZv/EhiNDXdYTJBe8+fgLGEZHLFPV72814nhejsPnF1ScGmnM/bQ0ue9CF6mYOwZ5vUcUgyQVtsayEpxJV7kGPlqbwVNjMKd4wiTBJLkZ+biIzcTxq1rRBJXBAL6RdMluFImH8u+Se3zbuNXSW7ADir51nce9K99M7o/fNPHOe+WkCHrh14LfM1/vzpn/nrpr9y5YYr2Vi2kXva3WNjcnJfIjRiDXuD/+VwTi/49NSTef3dMziz4g0qnvsTsVc/a+t5IDpZwmvlgRXjckxH8QSse1RpUNSy+aUUYLoESEGcZJSJ20FiNZKVI5MXRK9bX4x9Mt2zA9YspGrDQgrXzSdpxzJinGirZTfpfMZQPmUYn3MUXzCEAlKJS90OGasob7kUMlZBq2+g1SpI3Fk9afnw0SHYgcxAJoclHMZhsYdxWOAwuoW60S2mGxmBDHxBn7VEyjFPkTJWiTtIYF/ce5IlJkF9cZ2IiEhyQJF7Tu9Tp4inWAPivhFLz5tNFiE6VVja7EjcRFxbEj+TDDCZ7KWQUtw64pKUQL83Zd3bucHjjqouipTfpcSNRHh9Nfb31XjJcfXIR99/xDXvXsOy7csAOK7zcTw06iGGdBhS9xdzgL3wz7n/5MoVVxImzENdHuKPqX+0rXvEhSbJAd5OBGWY32kSVPhh3I1r+M+mLOKogMmfQd+j7MNcGbWtnFTPudOxDzhJmOw0tW4OCupGq092YJIDvP8RJF4jLpIfE5ugQ2T7GjbnzKVg9Xxabv2StiXroy4RwcfX9OFThvEpw/iCYYTTj6B3Ox+92kGvNtCrNfQ8DJJigHgo3lvMuoR1rKlaw5qKNaytXGte4bVsqNxAmGjx8pLkT+LwuMM5IuEIDo89nCPCR3BEyyPoldiLlGCKjXN4s8NSiM4EE3dYOSbeIUFysEWC8rQqT6ghrEuqCusmKcFMVolYwRIrRCwYsFldktrsw6YkS/sUb9KFCJvEVMRNFfSct+ZrX8LRyCayXSW7uPm/NzNt6TQAOqd25sGRDzKu9zh8vnoebDm88P4LjP9yPADPHfYcv+nwG/OAIuJcgk3CqMJmS0qLHWDVRnj7+kncGHmA3e2G0vLhT0wqtINtzwTWcpaHAjmPFEYHMVZqav3etmJQsalPNmEql71iI8FomeBqiM0Xmz/n6zdm0GHjErLzv6JtZFfUKYtJ4FOG8QlD+SQ5kw1tD2NYm8MZmdGRrFZwRAji0rFNC4OYyTUVm168B9sHDWxVegJUxVaxsXQj68rWsS68jnVV61hbvpZ14XWsLV1LfiT/B2+3c2xnsuKzyErKIiuYRd/EvmQlZhFKDplriztMgvoSDJcMLBEWqWL3Bn4lviL1GnIOb4Bd8GEXUpOiSbG+ZN8AtduqiHUjVoi0apGYid9znUYmIj+F4zg8v+x5/vjeH9ldupvYQCyTjpnELcfeQkJMwk+foK6ohIfffZgbltxAgABz+87lBN8J1pVYiBVvcT9D9INAGKa8XcjYfx1OW7ZTMOHfpIy8yHwuSQIQHcsRazgVG1trgXkA6YgGDQ4CKjb1yUaMb1hcZtJGpKZlU0J1e5i7Ft/KXY9Prj7FDjL4KDCYL9Iy+bp9O/Z0SyKzdSXnts7i1NgTCUVCNmHAW7Et7iLJZpIAtdQ6uEHX6oByvvuZuKSkilysFDdDaPeu3ayOX8135d/xXcl3rC5fzTel3/BN2TdUOBIYsQQI0COxB9lJ2WTHZZOdkE3/tP60jW9rEwMkxuFgYyQSJI5g3SAS85I4ksS1RHjErScBf6nbED99OVZMfO7PwCsmEh/xikozYOPejUx4awKz18wG4KTMk3j8tMfp0apHwwwoDDfNvImHvnmI9nHtWdZ3Ga0SWlkXqPx+yrF/21IK4BbHOhH4nxunceOm37E7tgMt//kttEq0QlOFrTeT72Mxfw9iOcn/mU6Y2J5Sr6jY1CebMGvEeMVG2sNIbYJkQbmdk+fkz2Hn/Y+zt21XfD2OYmC/IQxM6kqwLBid7uytmZDsNokfSNGfiITEFCQdVLLBwNYfSFabVMMnu++F2NoNGbtkkkkmFybVdW35WlYEVrCieAUrilbwVeFXfFv2LZGoLAhDm5g2HJl8JP3T+9M/pT/9Q/053H84/kR/tAUiNUTSFLIFtpZF4ijy1CrCUtP1JcFmEZea8ZJmiuM4TF0ylRveu4GC8gLSQmn87+j/5eJ+F9e/y+wnqCqv4oRnTmDhroWMbTmW13u8ji/ii07r99ZEyQOBdLiIgXWbI+RfO4QBziK+O/7PHHHr3TYW5223IxZzCtbFFo9NCElAV/Y8CKjY1Cc7MU03q7B1CCIufuwE760bkbhE2PO1CIpMjjXTnyuwFdQONuNJ/NeSSi0CJP+BxeKRALj3XYLtUhPjFRdJVfVW1Etat9R3uO6w0tJSVuStYFnxMpaFl7GsYBlLC5ZSUOWtmjQkBZPITsnmyIQjOTLlSAa0H0Dv1N7EOrHW2pAsNBENyXITS02y2iQdWFxmhxjbi7Zz+ZuX89Z3bwFwRo8zeOL0J2iX3K6BR2b5fvv3ZD+Tzd6qvfxfj//jD53+YP9PVGG+9iYKSKGqx9L5z/Mf8+u3j6OUeKoe/Zbk1p1sFwlvzzRxIUvqfSL2b1ey0jrQrB8+GhoVm/qkANMPTbLRZKKUtiaSceYNinozzyRhQOo7pAbH20dKsqmks3EsNuApXW/jsU04peI+6J4/EVsbIhXWidjVNaWtiLQWEZ94gef8YmVJE8kybEGitxWKey+O45Drz2Vp/lKWbl/KkoIlLClawuayzbV+hDG+GLJSs8hukU12Wjb9W/cnu0026cnp0cF6+TnpZMGsb2dx+azL2VmykxahFjx22mNc0OeCBrdm9sWML2fw63d+TcgfYsmgJfT097QdzuVvTix2iedAtfszHIH55/+ak4tmkNP+Igb9/d/24UiQhyRvEbE8TFUA7dxrdUFToesRFZv6pBzTE02KCyuxVoE8pUvarVTKS2zBdatVfy2xHUmdlXN6m1KKy0ssGGnxIum8IlppWB+2uPjS3POIKOFeJ5nq1NXqHl1SKCeJBZXYlNIKz7GS1CbxoxKse0O6BCTa43aW7GRJ0RKW5JvX4j2LWV2wep8/2o4pHenTug9ZGVnm1TqL3hm9SYo9dPuQ7C7ZzXVzruPfX/0bMLGZZ894lk6pnRp4ZD/OJS9fwvPfPs+g1EF8MuATYgIx5qHH2xpI/tYl6UX+vkpg5aJcut3fkzgqWH3DZxw+6ih7cnlg8rrUItg4X4XnswxM37RD0BI+GKjY1CcRTKuavdiMNBEYERyJ1xQRXVcS8Hy9L+sGojtBiyAkY1OJ3WAqcdj/ULK/uMrKsa1TwDZw3It1w0kgH4xFIz2/wK4OGsb+x5U2Lt5aGEk0EEtJ4jHeBARpCSMxFaCwvJDlO5azbNsylm1fxtJtS1m+YzkllVIlGU2nlE5kpmWS2cJ9pWXStUVXWiW0Ij0+nfT4dGIDsfs8tqniOA4zV87k6nevZkfxDkLBEPedeB/XDLkGv+/gZjr4fL7q1/6yt2Qv/R7vx4biDdzR9Q7+0usv0XVm4oL2/trCRDVR/e+tkxi57gGWxw+jzysL8fl9NqnAm2wnf8vinqvE/H8pxvytd0L7ptUTKjb1zV6MK82b+gxWUPZl3ewrdiNPc96FwKQGwfFsk/5ZUocSxPbpwt0uMSIJiEqBpqQZSzqwiE4c0dZRLNH9u2Q+k7iTCKIEY0VEYj3vktr6M1xf4UiYtXvWsmLHClbsdF87VvDt7m+pCNfOiKtJUmwSaaE0QsEQoWCIuGAcoWCIgC9g1mdxwlRFqqiKVFEZrqQiXFH9qoyYXFyfO2ifz0dsIJbEmEQSYxNJik0iOTaZ9snt6ZjSkU4pneiU2onu6d3pnNq5zif/Tzd+yi1zb+GjDR8B0DPUk9+1+h1tYtrU6XX2l9atWzNgwABat259QMct+G4BJ710En6fnw+HfsjRkaPtAnHeBy4J9hdiH1hiIT+vgMpLDifD2cGCX/2HE64YZx6kvHEbb/qzxPriMFa5JJTEAF1pVtmIjQUVm/omjOmPVoDN7y/Bugakkj4G20csxv1MfNY13WkiMGK5lGIbTspTWQBbCBdLdR1N9WTvd68rRW4iPlLVn4CN5ci+EqORfl3e3l7iVpO+YJJGfBDjKVWRKtbnryd3Ty65+bnV7xv2biCvNK/6Fa7RceFgkRCTQK9Wveid0Zs+rfvQv21/jmx7JBmJGQd0nspwJe+sfodnljxTnQCQFpdG/7z+5M7MxYk03H/bwYMHM2nSJAYOHHjAx9701k08tOghusR3YenQpbSIa2H+P+QRvQx3ufu1V0iAzx56kqFzf896/2G0fHwlyR3i7EMaWKtGziVrHonF1BLz99wGu2SDUmdob7T6JoCpUpamlbJCpmTVRLArREqXWsnqEsHx9IeKaqkvloYPGwAV/7Q8xYkV0Yroddp9mMBoOXatGIm9SEwogE13lu1SpyL/SSWxoBGkEgf9Qbqnd//R5pGO41BQXkB+WT5lVWWUh8vNe1U5VZEqgv5g9SvgDxAbiI16Bf1BHMchHA5TUVlBJBKhMlJJcWUxxRXFFFcWU1BewJaiLWwu3Mymwk1sKtjE6j2r2V68nUVbF7Fo66KoMbVLake/1v3oltaNbi26cVjaYXRI6kDQH8Tv8+Pz+Vifv55Vu1exYucK3l33bnUvs/hgPNcPvZ5x7cfx4L0PsmD9AhryGbFTp06Ul5f/9I774L7R97Hg+wXk7MphwooJTB84HV+Mz8YgwcY9a3pCwzDk0svJ/eBRMitX8c6Tj3Ha/TfYz+X/W4znGOlrJ/HTAmwdmrfljVLv6I+6rkjETPbbsALj7T4s1ofEPMRVJqLi1hUAdu14qZ+RNjCtsJXvYJ/gJCVaCjqlRb3EUiRVWeI24k6QbDLJ7PmFrq/Ggs/nIzWUSmro5/coiUQiLFu2jIULF1JUVPSD+7V0/2WTDUBJbAk7nB3scHawLbKNLc4Wtjpb2VpkXgdCa19rhsYN5cphVzJy2Eg2bNjws++nsRAbjOWlc17iyH8eyYwdMxi5aSRXpF9hY3ziRva2IIpg/h8Ugz82SNnFD8LUXzFs6T1sXHspnbql2+O9sRspCJb/L5LZKA9xyah1cxBRsakrfJh1NCoxtTfykxWfslgs8oQlhZeyiJTEQaQiWgRIREiewrwV8WAX/RJXgvzn9MZOJDgf8hwvotJEBaW+EbF57LHH2LZt2y86VzzxxLWII9wqTCQ1QqRFxLwnRqL6q/mKfATyAgR2BwhsDVC+o5zlactZm7CWk4acVCf31Rjo3rY7T454kvFzxnPtimsZNGwQRyYdad3H4vqSByZJ/U8FgtBr3Gksf3UEffPfZ+Hkv9LpiYes0HibqErPvkqs4EhX6BJMRw2Jeyr1jopNXSJraPiA7dj6gZqCIqsNyoQvXQYkK0wsD6mST8OIjazTIf9hvDU1IihSNS1JBN5KemW/cRyH8vJyCgoKyM/P/+UnzMd0B/8JajZIDfgDlJWVNajbrD64aMhFLFi3gGdWP8M5i88h5+gc0hPSzf+XNKIXoJP2NiIKPh+trv8b3DmQkZv+wdJPr6b/0V1tNwKwqfvSfV2KoWVBP/Ey5KNtbA4SOgXVNUFMlXImtrBSLBFvzy7v8r/edv0i/9Jyvw3mP18LzFNYS0xTwW5Ab+BIoD+QDfRyr9sa27ZDrqEojQk//GPMPxiUPojc0lzGLx1PpDxiH8K8Sw9IoowQhnZHDmBJxwuJo4Kdj/8ZR9oryd97LLZRrSTLJGAsmr3Y+OkejDAp9Y5OQ/WBHyMKR2DEQmIx0unWu+qiZHOJC2EX5j9Ea6AP0A8YAgwFjna/7ocRm/YY14KImrrElCZEKDnEzFNn0jK2Je/ufpe/fP8Xu+icFEZLuKzS83I57I/3Uk4sI/Jf4NN3lpqNkjkpjVq9eGu8ZMXZKs81lHpFxaY+CWHy+bOxwpOIfdKSgKgkCvQAfgX8BhgHjAAGuudoiU0IUFFRmgldunbh5eNexo+fu7+9m1cKXzEPUFLblYL5u09wt0m6fgBSe2XyVdYf8OPgTP0TESlellR/QTLbZJvUmvkwD3YiOkq9omJzMIjFCE0vYBDGSjkWOAEYBZwJnON+3xMjLFL7oijNmSCc3O9kHuj3AAC/Wf4bluxdYj6TOKYUYnqb1bputT6TbqXQl8wxpbNZMH2Bbb0kBdYl2A7q0k1aOmyIV6EIE+9R6hWdzg42Acx/oETM05VYOopyqJIMf8z+I5d0vYSSSAljvxzLtj3brEsMaguNKyjxLVrx7VE3AZA+80+E8x0jHEXYxriSnFOK+UxiNt6WSruBhqkDPmRQsVEUpWHxga+Nj6cGPMXR6UezqWwTZ648k7JAmREAt8amusefxG1igSTInnQ9u3wZ9K/4jI+mvWljotJkVlL9vdtkVVnJYJOsN6XeULFRFKXhSYC41nG8OuhVOid05vO9n3P5ustxUhxbY5aGEYoUrEegDGJ8SawZ/mcA2r91K1VlYWO1SEslQawkER9py1SAFRuN3dQbKjaKojQ8PiAN2qS1Ydbxs0gMJPLC5heYvGaybavk7WwRwVg7bj3NoOsmsCnQhSOqVrDwyem2k4YXESBvooAUOZdg4ztKvaBioyhK48BdFDC7RTYvDnwRHz5u++Y2Xln/SvRMJd3THapX9AwG4tgw4k4Auvz3TqqqqmyigLR8kuSACs92ca1JAWg+7GOFc6UOULFRFKXx0AoIwNg2Y3mgv8lQu3jtxSwuXmzrbAow8RtpzRQDJMKQGy8mN3A4XcNryPmf581+kmkmTTol/lOEEZYKbAwo5H6m1k29oGKjKErjIQYTm/HDjZk3cmnnSymNlDL267FsC22zrZhaYmI30kw2CMGYIOtP/gsAnf/7FyKRcrtwXyp2BVBZOkOWSy/EWjRxmK4Czas7UKNAxUZRlMaFKyK+eB9P9niSY1ocw+ayzZydczblReXW9eUtbi4HCuGYK8/jm0Af2oc38NVj/zTiUbPIU/qkSQNbER9xtXkXQFTqDBUbRVEaF2KJOBCXEscrA1+hU6gTn+75lKtWX4Xjq2F2yMKCQYiN85N70l0AtJ03GcdXXrvjhiyw5p39pP5Nuk7L4odKnaFioyhK46MF1V3T27Rqw+vHvU68P56p26fyj+//ER2/KcJmqAXhhOvPYmWgL22rNvHNk1PN+WShwVKsVSSr6kqXdWngKef96dXHlQNAxUZRlMaH1NW4S0QPaDmAaf2mAXBD7g3MK59n62XSMa63FCAe4pP8fHOiyUxrOeuvkFduxCMP20W62H0VYGI0IjpgBKcKbWFTx6jYKIrSOEnCFnSWwHkZ5/Gn7n8i7IQ5b+l5bNi7wa5C63WVOXDixLP42teX1pWb2PDvqUZgZGVO6TDgXeIjjGljs8c9VzwmaUBb2NQZKjaKojROYjDWSpDqzLF7ut3D6IzR7KrYxdmrzqbUqZGnHAaKIC3WT85gY90kvDkZ4iqMMNUQJcJEr3sTxsRrZME1tW7qDBUbRVEaL7LUgA9IgUBigBf7vchhcYexqGgRE1dNxAk7xg0mK29Wmv1HXHUWX5NFq/KN7HzlX7XPva9EAVn5tgSTKFCOWjd1hIqNoiiNlxhMTEYsjThIS03jtSNfIyGQwPM7nufxrY9biyQeI1DJ0OkwPx/1vdWc54XJUOVpfFZB9NIFuO9+rJUjnQe0yLNOCP70Loqy/xQVFbFx40YKCgoaeii1CAaDtG/fnjZt2uD363NWkyEZM+nnYQSgHPq17MfU7Kmcv/h8rl99PYPiB3FU2lG1Hp+HXv1rVl95J4cXr6HkrekkjLzIWCsy88mfqWSopWBER4pBHUwsJ6me7/EQQMVGqVM2btzIM888w9KlSxt6KLVITk7mggsu4MwzzyQuLq6hh6PsLzEYiyUJY8GUme/P63Aen+z5hEdzH2XcN+NYPHgxrWJbRR16ZI8gD3T8E7dsuozSf95HwrEXQIq/dpPOMCYDTRZYi8MIVzwma60CXXfqF6Jio9QpBQUFLF26lHnz5jX0UGqRnp7OMcccQySinRabFD5MFlk+JsaSiLFwHHjwsAf5cteXfFr4KeNXjuft7LcJ+NxlPMuBUuh1wXi+f/AvdNm7ivDyNwiceFbta0SwyQiSGh1wtwUw1k1Gfd5k80d9CYqiNH7chdIow3YYSILYcCzTe0ynVbAVc/LmcO/ae22iQAEQgNNHxPJs6o0A7J1yPzg1WgNUYmt2wIibdBSQ4k4pIlV+Nio2iqI0DdIxglCOjbHEQad2naqXJPjLhr/wwd4PjFC0ApIhkACtL7qMnbQiffMXsGSBPacsMxDax/Xi3Fcp2i+tDlCxURSlaRCLcaOFMNZGBdV1MyNbj+S2w2/DwWH8t+PJC+RF1dRcNCaBJ4PXAlD49P12qYEwxm0mi6dVYBMIZHaU+pt8tF/aL6BexWb06NH4fD5uv/32qO179uzh8ssvp1WrViQmJnLyySezfPny+hyKoihNHT8mMy3GfS/DigVwZ+adDEsexqaKTVz+zeU4HndZSiIUnfIHikgkecV7sHix+cBdfC1qkbVCbDNOqbGR1Ty1X9rPpt7E5qWXXmLZsmW1tjuOw5gxY5g9ezb/+Mc/eOWVV6isrOTEE09k06ZN9TUcRVGaAwkYgZD1aBIxglAOwcIgL/Z+kZRACq/tfI2ntzxtjokARfDbU9KZwgQAKt580BwbrPESQYsz52QvRmT82EQBtW5+FvUiNnv27OH666/n73//e63PZs2axcKFC/nXv/7FBRdcwOjRo5k1axaRSIS//e1v9TEcRVGaCz7MwmllGBGJxyQLuP3OusZ35anuTwFw3err+HbPtybIH4GeWZDT93oqCRL8aAZs+z763FVEr28ji61FMCIDNjVaOWDqRWxuueUW+vTpwwUXXFDrs1mzZtG+fXtOPPHE6m2pqamMGTOGN954oz6GoyhKc8Jr0UgWe5jqRdfOP/x8ftPxN5RGSrl0zaWEk8Lmsxg4/4JO/Idf43fCODMeseeswsyGiUT3TwtjsuACGPdaFdpR4GdS52Lz8ccf8/zzz/PYY4/t8/MVK1bQp0+fWtuzsrLYsGEDRUVFdT0kRVGaE0GMRZOInfwjWJHwwSM9H6FDbAc+K/yMv2+2HpbTh8ELaX8EIDzraSjIr+6lRjx2qQFZzVMsHL973TJMYoGWah0wdVrUWVFRwZVXXsmNN95Ijx499rlPXl4eXbt2rbU9PT0dMC64pKTavSGmTJnClClTANi5c2fdDVpR9oHP5yMxMZF27drh89Vc6vHgkZaWRnJycoOOoVGSBOzCuND2YARDYi4OtKhowTM9nuHU5afy59w/c3qr0+md2JtAAIadPYD3/3kSI8rnwYwpcMHN1nLxEsEUk0awyxjEufulu18r+02dis3f/vY3SktLue222+rytABMmDCBCRNMcG/QoEF1fn5F8eL3+xk4cCA33HADJSUlDTaOuLg4srOzCQa12UcUUuRZipn0U7GFl6VAFYxuNZrL213OM1uf4dKVl/LJgE8IhoNcdjxMmHojI5x5hN98lMBvroeYmOjzhzECI+vcxGKtmypMHEg7ChwQdfYXvGHDBu677z6eeeYZysvLKS8vr/6svLyc/Px8kpOTSUtLY8+ePbWOz8vLA8yTnKI0ND6fjx49enD44Yc39FDw+/1q2eyLFhiXVjlGcELu12Xu11XwP13/hzl5c/iy8Ese+f4R/pjxR9q3hbhjR7Pqo570yvsGPnwFRpxvz+tg29dIoEH6piW55y7CrCSqzwD7TZ39qNatW0dZWRnjx4+v9dlDDz3EQw89xJIlS8jKyuK9996rtc/KlSvp3LnzPl1oinKw8fl8+Hy+RtUdOi4ujs6dO9OvX7+oGpKDTffu3UlISGiw61cThxGEQkxcRSyRkPs9kEIKT/V7itO+PI07NtzBOW3PoWt8Vyae6eORj/4fT/J7nBmP4BOxcTDCIuvoeJF2OeWYFOxSdz9lv6gzsenfvz/z58+vtf3EE09k/PjxXHbZZXTv3p2xY8cybdo0PvjgA4YPHw6Y5o1vvvkmF154YV0NR1GaHenp6Zx33nkcd9xxDSo26enpdOnSpcGuX00AM+knY/uXeZcPAHDg1JRTOa/VeUzfNZ0/rP4Db/V7ixEDfVzf9mLytt1K+srPYOXncPhR5phk99xEn6e6f5q0rinFJCk0nueRRk2diU2LFi044YQT9vlZly5dqj8bO3Ysw4YNY/z48Tz44IOkpaUxefJkHMfh5ptvrqvhKEqzIyEhgezsbLKzsxt6KI3HrSdLPadgXFv52AJMqLZE/rfH/zI7fzbv7H6HGTtm8Os2v+bCMYk8/fQV3MLf4OVH4M8v2mJObyZaBFtzA7YzdBHGladLD+wXB12T/X4/b731FiNHjuSqq67irLPOIhAIMH/+fDp16nSwh6MoTQpx7zX0q9EQgxGacsykL0sCSKJACRCEtnFteaDbAwBcu/pa8svzufQkeNL3B6oI4Hw0A3ZuthaStK8pxCQDVGLb10QwFlUYIzjKflHvYuM4Dvfee2/UtvT0dKZOnUpeXh4lJSW8//77jeJpTVGUJkiq+16BsUySMK4wB2uZVMIVGVcwLHkY2yu285d1f6F9KvQb2pnXOAtfuApmT9l3+xrpUCDta4rd64UwlpTW3OwX6m1UFKVpI405K7ETfwQjFikYsUgFfws/j/d7HD9+/rH1H3ztfM3lY+Ex/gCAM+spqPR02hTx8ravicFYPUVYK8cm3io/goqNoihNGz92Bc8IRiTKiA7y+4Aw9Pf358p2VxImzLWrr2X0EIfv0ofzNVn48rbDh68ai6gCY7nE17iWZKoFqe65RgnanHM/ULFRFKXp400UCGI7NQsSX/HDvd3vpWVMS+bnz+f1PTP5zWhftXXDK/9nBEXqaaRtDZ53KfCMca+jzTn3CxUbRVGaPjEYgajAWCNJVMdqqhdKc5d7To9J56+H/RWAP67+I+ePLONfXMxeUuDrhbBuqc1sk1cBtp5H8iMcjDUlhaXKj6JioyhK8yAF6wKTFjbJnm0O1eJzWcZlHJl4JBvLN/Ku8zB9eyXxHJeY88x60lgv3lcEG5/Zi3HTVWGLSWs3RVFqoGKjKErzwJsGLfixa+CI+CRDICXAg70eBGDy5smcO6qQp7jSHDP3BSjxdOWUjtIpGBELYNKqCzDuuTiM+Ogqnj+Kio2iKM2DAMaFFo+xOsJYi8ZHtRtN6nBGhEZwavqpFIYL+bbb3eTGZfERx0JpEfz3RXPOKozYeNvXyHlkqegSd5uuc/OjqNgoitJ8SMDMaikYkSikdp8UaTUTA3/r/jf8+Jm2538ZMayAJ5lo9pn1FFQ4RlS8DTmFMEbUpOOAWDbhermrZoGKjaIozYcgRgAimCSBOIwAVGIsnHKqhQYf9Enqw2/b/ZYqp4r83v/gFc5hj78lrF4CuTnmeOkmUOmeK4zNRpNrSgq0ZqX9ICo2iqI0H3yY1v/i/orHxGoSMJbHXne/Kvu6u9PdhPwhPm55J8lpAf4ZudTs8+pTJiut2H0VYeI0edju0A5GfOT82r7mB1GxURSleRGLSUmWNe/8GAslBiNEyRhxCJlX+7T2/L7j7yEQJqX/2zzD5ea4BS9DVaHtHCCdBFLc8xZixKsCY92E3O+1fc0+UbFRFKV5EcCITRzWfSZuMOneHIttRVMFk9pMIsGfwLoed/ItPfk0cCyUFsO8/5hzyjnisEsNSHFnISZm43P30ay0faJioyhK8yMeIwiJ2I7NNdeokQSCcmid3JprO10Lbb8iqf06ngpfZvZ5+59mvypsplvNcyS5n+91r6Hta/aJio2iKM0PcXnFYjsLeFvPiNA4VK9Hc2PnG0kOJFPU+ylmMI6SQDKs+BTWrTCut7h9XCeCcZ/JmjaF2CUKlChUbJQ6pVGtdVKDxjw2pY7xYxY2K8fGWaRRZyU2tuKxdloGW3Jdx+ugz0uUkMgLjrty8Jx/GjdZETZhQLLaxKUm14xxP6+sx3trotTZSp2KAmatouHDh9OqVauGHkotkpKS6NGjB4FATX+K0ixJxMxwpVgrJxYjBrJWjWSUuVzX6Tr+d9P/Utj5Q57e8Duu4CmY82+47AGIcXOdJYXacc/jw6ZYJ2CtpoT6v8WmhIqNUqd07NiR3/3ud5SUlPz0zgeZQCBAWloawaD+2R8S+DEutN3YYkuxbJKwDTWxn6WXpnNNu2v4a78X+HLDk3wf35su+Ssh5104dqw9h4PtKiBFnXK9WIzl1IracaJDGP1fp9QpoVCIjh07NvQwGjWRSIRwOEwk0jhzZAOBAIFAoOm7Hf2YgH4IY8FI3EYWVvPi6Qx9Q+YN/G/fIyl5p5LHy37DA0yCd581YiMLpiVjhSTGPW8pxs0mqdFlGOtKAVRsFOWgk5+fzyeffMKaNWsaeii1CAaD9O/fn0GDBhEKhRp6OL8cyR5LxUz+O7HBfKEcIzQxgB9a0pJrDr+QB7rP4V/fXcxk3634P30Ldu2Clq2M9VIz2l2FEZkAxqqR5pwJ1LagDlFUbBTlILN7925eeeUV3n77bRynceXIxsfHc8UVV9CnT5/mITZSbFnsvidg28/4MZZKMTZ7zeWPnf/I3/vezNbvxvBJ4skcW/QefPwSXHhNdFabD9voU+puHPecKdhlCBQVm6aM4ziUlpZSVlbW6CYtgNjYWOLj4zVGUoNwOExhYSE7d+5s6KHUIj4+nuLi4kb59/SzScO0mZGJ31t7k+9uq5GqnOHL4LfHt2TKG6U8WnQZx/IevPUcnHaNFRiwfdHSiLZ24rEuNRUbQMWmSVNeXs5HH33ERx99RHl541sqsHfv3px66qm0bdu2oYeiHMoEMa6vfKz14rrMSMO4vmp2a3bgTz2vZsrh7/DmqjGUxSQT+m4RbFkFXXvZ/cqxGW+VGOsJjAUVxrjUNCsNULFp0lRUVPDFF1/w1FNPUVTU+DoAnn766QwZMkTFRmlYZJ0bWXsmiHWlSfxGrBJPZ+iuMV057tg3+GhVPK/GncqFlf+B/74AV9xr9pX2NRKXiWDcZ5KpJu67MJqVhopNk6eyspKysjLKysoaeii1qKioaLQZV8ohhA8jNgGMhSNZY/tqX1OMdbf54KHTTuKo5wqZUvR7LsQVm9/dDWG/EZp4rLXkd88ZwbjtJBNNs9IA7SCgKMqhgLSakZiNpEB729cUue+eZIEhLfvSts8iPuR4dsZnwLb1sOwTI1r7yjQLY9fREaumDO2VhoqNoiiHArJ6p7SvScK2r6nAxHP25e5y4PKTUnHw82zwdLNtwb/Mu3SSlrVzqjBC5VpFBN1zV6C90lA3mnKQCYfDbN26lW3bthEON9wauqFQiA4dOtCyZcumX7yo7B/JGPdWGUZUZJmAIqxA1BSFIEw6JZv7Hi3m+cIbuIln4f2Z8Pv/g0CMtWzESspwv/a77wkYCyeVQz4rTcVGOaiUlZUxd+5cZs6cSWlpaYONo127dlx66aWcdNJJKjaHCrLOjTdeI0tGe9vXOJ73Mkj0+TnyyC0s/rwv3ya3o0fhVlj6Xxh2mt2vCiMs5e4rFito0vjzEM9KU7FRDirhcJh169bxwQcfNGgG3WGHHcapp57aYNdXGgCxZBIxSQLSwgaiYy+yCJqsSxML15/akYs/h38xhnuZAu+/ZMRGhCaRaMulHCNksjRBKYd8VprGbBRFOXSQrszSv6yA2o/cZZiuzbJkAHD20fEEY8t5ufAms+Gj16Go1CYE1HSR+bBWlBjwja8U7qCiYqMoyqGDuLd8mDoYWWVTlo+WdWqk9YxLQghOHFzOWrqTk9oWSotg0dtGtGqKlbjhZFG1UozAHeJZaSo2iqIcOviwi6pVYQQhFWPxVGBiK7ifVWEsF1eMfnuCMYde9J9t9pn7srFcCrEWTKV77gTM7Opz3ysxYnMIl52p2CiKcmgh8ZVijJXjx1o86Zg4Szw2jTlkXqcfB8FgmBl7bjbn+ewdKC02X3tTqEswgiNLGogVdYiv4KlioyjKoYW0rwlgJ39xdQXdl3QHCFG9Vk1KDJw8CDbRhU9btIbyUvj8bds5APeYNPeYIqIbgOJuO0RRsVEU5dAiiG1dE4NNV64Z5A9j63JizGvccKMqMwJnmH0WzDDCUolNrfa5X8diOwhIOnQJh6wrTcVGUZRDjyRsfY1U+ntFoAoTiwFb8AmMPQb8foeZecaV5nz6NhQWG4smkdrta3wYt1wpRmj82HTrQwwVG0VRDj1isE0zfdilBiSQL6nPNTLNWrWA4/rCRqc7n6a3xFdeCsveseva1BSsoHstsWoq3PMfgqjYKIpy6CFr2VRglxpIwlghEtSPYPufeV5nHmPMl5kxblHw3FeNu60Qk822FxObKcMuSw0mDnQIN+ZUsVEU5dAkntqrdEqVfwtMSnQKRoCSMW6yIJwxzOz6Wp4p8Ix89iY4ZdaC8WMExY8RHW+cJg4jSodgY04VG0VRDk3coD9xGAsnjImtSKKA1MhInUyh2SezC2R3h9zKfixJS8ZfWgyL3zfHSPuaFEytTQCTHLAHm+0WwXYVOIRQsVEU5dBE4jYhjDCUYITCG+SXdW6kq4AbwznzWPP+auhE88UHr9oC0CTsCqA+rHhVYmptYtzzHWKuNBUbRVEOXRIwIhDCio+0rnGwC6B5FlQDOMMVm9f2Xg9A+ONXIVJlLJqaKdQONtVa2uHI+jeHECo2iqIcuojIVGBb2ciiavnY2IsT/ep/GHTMgBUlw/k2NY5AQT6s+NjsLx0EKrFJBrKqZ6zns0MsBbpexOadd97h+OOPJykpiZSUFAYNGsS8efOqP9+zZw+XX345rVq1IjExkZNPPpnly5fXx1AURVF+mCDW4vBhBSGEieWkYlOkpVdaGHw+GDsUwMcbyYMAcD543WatlWKsol1YIRO3WYxnn0OIOhebp556ijPOOIOBAwfy2muvMWPGDMaNG0dJSQkAjuMwZswYZs+ezT/+8Q9eeeUVKisrOfHEE9m0aVNdD0dRFOXHEWGRXmYSwJf+aIkY91gL92vMPmNdV9rbpVcCUP7xDAg4trbG555DMtAKsJ0KYjEp0odQN4E6XTxt/fr1XHfddTz44INcd9111dtPOeWU6q9nzZrFwoULmTdvHieeaIJrw4YNIzMzk7/97W88+uijdTkkRVGUHyeEeewWCyeMrbURvMsPuCtwnjAQkuLh490XsiP+Ulpv3wK5K+CwPrZ9jXcF0DDGNdfKvZ4sbRBX3zfYOKhTy2bq1Kn4/X4mTpz4g/vMmjWL9u3bVwsNQGpqKmPGjOGNN96oy+EoiqL8NDHYzs/J2BU6BcfdJmnRbtPNuFgYfRRECPBWyyPMrh+9biwkKRL1CpYsxlaF7ThdUk/31AipU7H5+OOP6dmzJy+//DLdunUjGAzSvXt3Hnvssep9VqxYQZ8+fWodm5WVxYYNGxp0qWBFUQ5BZFVNia0kYawNib+UYLsM1Oh99iu3wPOdyAUAlHz4snWd1UxtrsIkCsi5y7BxoEOAOhWbLVu2sHr1am666SYmTZrEe++9x8iRI7n66qt55JFHAMjLyyMtLa3Wsenp6YBJHtgXU6ZMYdCgQQwaNIidO3fW5bAVRTnUScRYGmXY7s0pGHER66MSu6ia6wI79UiTLDBn+/+jNAiJq1fAlu21W9dIMoC4zCTFupxDJm5Tp2ITiUQoLCzkqaee4oorruCkk07iiSeeYPTo0UyePBnH+flVTBMmTCAnJ4ecnBwyMjLqcNSKohzyeOtgvDhAS4zwJGKTCdwEgNYtYEgPKAqnMi+jtTkk522bBBDAWC7SoqbE/T7iXq90H9dsptSp2LRs2RKAkSNHRm0fNWoU27dvZ+vWraSlpe3TesnLywPYp9WjKIpSrwQwAhGP7d5cSnTLGmlt410mIA5+dYz5ck7MaAAKP3op+twRTNPPePe4Amz8J+h+fwhQp9loWVlZfPbZZz/4ud/vJysri/fee6/WZytXrqRz584kJSXV5ZAUpdERCARITU2ldevWDT2UWsTHx5OUlITPV3NhlkOABExdTAoma0zSnwV3xU4qMDOn+yP61dHw53/CnD1/BJ4nbvGHUFkB/lhjxcgibbjvEUyCQKJ7zTJsA9BmTJ2KzVlnncU///lP5syZw7nnnlu9ffbs2XTs2JG2bdsyduxYpk2bxgcffMDw4cMBKCgo4M033+TCCy+sy+EoSqOkVatWnHPOOfTv37+hh1KLYDBIdnY2oVCooYdy8JF+ZrJsdCkmriKzpKxHExt9WHZ3aN8KvtvVj6/SQ/TLK4NFH8JRJ9tYkJcwpmanChPPEYsnnmZNnYrNaaedxoknnsiVV17Jrl27OOyww5gxYwbvvfce06ZNA2Ds2LEMGzaM8ePH8+CDD5KWllYdz7n55pvrcjiK0ihp0aIFI0eO5OSTT27ooewTv99PINDMH7P3hR+7qmYVpntAFXaVzQpMzKYGPh+cdhQ88zbMTh5Iv7yFFH78MsmDTzbHiYtOlosGuxRBiftZzbVvmiF1KjY+n4/XX3+dP/3pT9x5553s2bOHnj178sILL1RbLX6/n7feeosbb7yRq666irKyMoYNG8b8+fPp1KlTXQ5HURolPp+PmJia3RqVRkEyxsVVgV0iwIcJ4sdjxMeb5+T2PjutrxGbD8uv5GYWUvXlWzZNWrLOwFg1LT3He5ccaEHtZaWbEXUqNgApKSk89thjUbU1NUlPT2fq1KlMnTq1ri+vKIry84nFiEohdsnoEoxFI1aJtLSRJQNiYcRxEPMQvLft1+yN/Q1pW7fDtlxon2nTsKS7dBUmKSDB3R5yzyO1PM0U7fqsKIoiBLGta6ow7q0IteMuZdg1bmIhJRmO7QuVxPHfDOOhKfv0dbt/JcZdlojtWLAX62aTdjjNGBUbRVEUwY9Jb/ZhstK8SzqDEYUirBXimUFPG2rePw6eDUDewhfN/hXuOWWZAblO0H0VYeM3zXhBNRUbRVEULwnYFTslPbkC6zYLU3uBNEyfNIB38q4CoOVXSyG/3K7wKQ0+8bwnuNtF1Jpx6xoVmyaOz+drlDURjXFMirJfSNxGOjwnYKycMLbtjCQKyCsCWe2gQ0tYXXgEX6WHiKuoIrz6YyNSRZg4UL77LjU8UiwaxrjRmvHqnXWeIKAcPILBIFlZWZx11lmUlZU19HBqMXDgQFJTUxt6GIpyYEjMpqYV48dkkrkLqFGFsUbKgHLw+eHUIfDMu/BhyhD65X3Ils+eo9OQEdHnF1GRVUCltY2kWTfTEicVmyZMKBRixIgRDBgwgEik8XXzS0xMpFWrVg09DEU5cGKx3ZnFzeUnunWNbI+hOh4zepgRm08qL+VqPsSf89/o81ZhZt1kjEVUiLGeUtzz7MW0tmmGqNg0Yfx+Py1btqzuSacoSh0RwsRsUjECIHU2glT/yzLSLiMGQiAAs7b+mrLA72j3/TbI3wktMoxwSeGoLEEdh23GKbEhEaRmhsZsFEVRaiLpyX5sjY0sGx3GZpDVEIUWyTC0NxRHEvk4ow1+B/I+/o8RFD8m4aDmCqCx7vWkIWczTYFWsVEURdkXKdhlotMwQlGJCfLDvhtnRmDUkebLL+NOB2DnJy9Vf0aBe7wUcUpPNOkkUIGJ5TRDmqGxpjRmfD4fCQkJpKWlERvbcOXSqampDXp9pQmQiHGhFWJX75SF06SDgCCJApVwSm+4E5hb8Bv+xFTSVi6GkGOaqIGxZiQZIMY9Nxjx8mMLSZuZKaBioxxUYmNjOfbYY4mPj6eiouKnD6gnWrRoQVZWlqZoKz9MALt+jdTISGwFbNuacqrb1pAAgwZDiySYv+c4dof8tM4rpWLTN8R26mWOkzVyYojuxRbExIiKMGLUzJ6FVGyUg0psbCxHHXUUAwcObNBx+Hw+gkH981d+hAB2iehy9+V9NvF5toeotkQCwMmDYOYCP5+k92LMlhWs+3gKPS942OwgxZsp7jGxGCupFCM2Pox1o2KjKD8f6XisXY+VRo8PE0/Zi7FA9hI9Y5ZghGYfojBqMMxcAF8GzmIMKyj/8h0Y97CxWPwYUfG6yXwYi6kQI1yl2Ky1ZkIz8woqiqLUIVJgGcFYInEYl9cPLKQGgAMj3SSBN3ZeAEDnlWthV8RmtBVghKXSPbeDEbYYd7sUjjYjVGwURVF+iCB26Wa/+7W41Rxs0ae0rSkHCqFrInRrC1+V9WJzYixpJWG27pprBSsG29Rzt3stSbX2YSwbFRtFUZRDBBEYsT7AWCfJmMXOEjGCJCnRsg5OEEYOBPCxqMVgANZ/Pi363AH32FistSPWUgSTONCMULFRFEX5MeKw7jI3vZkgxgKJwfZOS8L0TksFkmGku+TAp5GzAAgs/TD6vJIokOw5/153ewwqNoqiKIcUce67FHl62xBKR+cgRiCkDQ1w4gDw++GVHUZsDv9uK+GySrtMdCVGaGQWluw3qeWR1jXNBBUbRVGUH0OExMEIjyQJSH80Wd3TiwNpIRjQDVaHD2NjUiJppQ6rcl62K3TiHl+CjfvIkgZF1C4cbeKo2CiKovwUKdgkgWRMrEbiMzVxkwQohhHZZtPS5GEAbF72kjlXGka0AhhBKQD2YNxpPmwvtmbUJ03FRlEU5adIwAqAd1sKRhwqMWK0ByMcEbN9RD+z68cVZwAQWvVldLq0j+j4Tym2N5osOdBMlopWsVEURfkppHWNCI70NZPeZonufiFslloCHDsE4mLh1d2nANB7zS6KKgujzx3GLtgWg3GrFbvnKqPZpECr2CiKovwUEpdJxi7hLLOnxG5isIWZ7is+AY7OgjV0Z3t8EhklsGTJi0as5BXGCI0kFwQx1kyp+95wLQTrFBUbRVGUn8KHsVaqsKnQFRihKMZmknkJA2VwUpY5wdIkE7fZvmiGcbuVYF1mhdhuz5IOLVlppfV1UwcXFRtFUZT9IYTtGtACIz5FGNHxzqRilRQC5XBif7P5o4pTAYj/ZpHZRwpDYzFCJTEf6QAdg2302QziNio2iqIo+0MMdgE1WSYgDpMkEMYmCRS47zFAEAYfDglxMGvvCACy1uWzO7TbZp6BTRCQ8xZiREeacjaDehsVG0VRlP1B1qCJwaYlB7GCE8KIgsRdwkAEYmPhuL6wgiwKYkJ03Qs5a16LboEDRqzi3ReY9jcx7nmaQdxGxUZRFGV/8GEEJeR+XYxdcqAKE4ORdOhkz3uCcaVFCPBV0gAAtn/5qrGApPtzgXtO6VYgMaBijCBJEWgTRsVGURRlf4nDWCQhjNBIkkAJxgqpGbspAwrhxJ5m08LKkeY037j1NtLEU1YDLcC6zWKxbrQK9l1A2oRQsVEURdlfYrGB+1RskoAIhlCFzTALwIBekBQP7xadAED33F3kl+ab/ZIxqc9xGPEpB/Lc8wWwotXE621UbBRFUfYXqbWR1jUBjAAlYASnEuP6KsQu+eyDYACOy4IvGUyVz0f2Nvi84H3javMuWiu1NvHuNcRVV0mTj9uo2CiKohwI0oyzCpt1loCxdHwYyySAzVBzXyf0gRIS+TaxB0EHNi571bjfZNXPKmzSgFg6ZRg3WpAmv+SAio2iKMqBICttxmK7PoOth0nHWCyeBAFiYXgfs9vnkRMAcFYutEWcUpeThxUqsKt3Slp1E663UbFRFEU5ECQRIAYTwK/AiIFYIF7KMRZJBQzoAYkheK9kOAAd126k3FduxEVEJRUjQAUYiyeCsXLKaPLr26jYKIqiHAiyVHQpJkEgESMODrZIU/qllVOdVBATA8f0hs8wS3gO3hQhp/BL24EgmepCUOIwYlOOsXKkw4CKjaIoyiFEMjZgL33T4rAWjjR2jo0+7Pi+8D1d2BWTRqtS+Pa7d4yQxGCsGElvdjCiI+vmVLn7FNXXDdU/KjaKoigHitTARLDLDYiVI0sGyEqbkklWAsO7AvhYFDgKgOJv59lzFGGLPIuxa+iIyEghaRNFxUZRFOVAEXdXPEYo/NhK/3hM7CUFE2+R1jU+GNwfQrGwoOx4AFLWrLQtcKSGR1xlXjdaAsaNVkmTdaWp2CiKohwo0oRTAvhV2NYystSAdH+uxFhB8RAXD0N6wOcYy6bXhkK2V2y3+1dihEVEqgRj7Yg7rgk35VSxURRF+TkkYyyPOKzlAUY0whjXV4To7s6Y4s5FDCSCj/7bIGfHQuM6K8GmVUP0ktHetOcm2idNxUZRFOXnEI8RgiqMuKS428ox69JAdCp0xHx23GFQQCprYroRG4GNq94yn0sbHInblLvnTnGvU4gRroL6va36QsVGURTl5xDAiIsf24hTmmsmup9LckARpmCzEIZ1B78PPqk6BoBw7qfGSor1vHwYUZHaGqnFqcA2/2xiqNgoiqL8HIIYEQhRvXYN5e57PEZwEjz7pgAtIKUNZB8GXzhDAGi5di2OU6M1QBgTt0nExGkKsMWkpajYLFy4kFGjRtG6dWuSk5MZMGAAU6dOjdqnrKyMm266iXbt2hEfH8+wYcP48MMP63IYiqIoBwept5HVOvdiYy6SNCCCJFZPAI7tbZpyAvTdUsma3WuMm6zIfXmaeFYv1iYrhEp7myZGnYnNV199xcknn0xlZSVPP/00r776KoMHD+ayyy7jiSeeqN7vsssu4+mnn+buu+/mrbfeol27dpxyyiksXbq0roaiKIpycJBuz37swmpV7jbpm+bNTisHCuHYbvAV/aggSK+dsGzvQluXI73RirBr2cj6OSJmTbC4s2Ynn5/Nyy+/TDgc5s033yQpKQmAkSNH8tVXX/H888/z+9//nmXLlvHiiy8ydepUfvvb3wIwfPhwsrKyuOOOO5g1a1ZdDUdRFKX+kWJOWdMmxX3f4X4ewVojJVSnRh+TBRXE8bWvLwOcJez4bg60v9SuAoq7r8RoWmFjQBFs37QmFAips6FWVFQQExNDfHx81PbU1FQiEdODYdasWcTExHDeeedVfx4MBjn//POZM2cO5eXldTUcRVGU+keWb47FWCGSnZaEXaumGJOdJnGWMHRIga4Z8KVjXGnkfmmLP8NE91lLdc/pzUJrgnGbOhObSy+9FIBrr72WLVu2kJ+fz9NPP83777/P9ddfD8CKFSvIzMwkISEh6tisrCwqKipYs2ZNXQ1HURSl/vFhhAVMUoBU/UswX+psWmE7CiQAcXB0D1NvA9By/QacEscIUxHGXeZNn47BiIuslVNOk1tMrc7Epk+fPixYsIA33niDDh06kJaWxh/+8AeefPJJzj//fADy8vJIS0urdWx6enr15z/ElClTGDRoEIMGDWLnzp11NWxFUZRfRgJm8k/EiI8sgCbdAyTQ76O6RxoVcExPWMwAwCQJbHA2GFEJuPuG3PMUYBMCpMN0gCYXt6kzsVm9ejXnnHMOWVlZvPnmm8ydO5eJEycyceJEXnjhhV98/gkTJpCTk0NOTg4ZGRl1MGJFUZQ6QFburMRYIamYiv8iojPTijBi4/ZVO6YXfE0fKgnScxes2P257YWWhLGUpF9asXt+sJ0EimhSi6nVWYLArbfeSkxMDG+99RYxMeYnPGLECHbv3s3/+3//jwsuuIC0tDS+//77WseKRSMWjqIoSpMhgBEbKcCMc7eluNvK3JcIB4ADfdpDbCjEirIs+rOMHd/8F476tbFqJJNNstliMeIjXQR82LhNnc3i9UudWTbLly8nOzu7WmiEIUOGsHv3bnbs2EFWVha5ubmUlEQ391m5ciWxsbF07969roajKIpycJC0Z5n6SrBusBjsejcSaykC9kCgCI7qZl1p4c2LqpeQJohdeiDfPa+DbWkjYtOEmnLWmdi0bduWpUuXUlERHbX6/PPPCYVCpKenM2bMGCorK5kxY0b151VVVUyfPp1Ro0YRFxdXV8NRFEU5eCRhJv8UorPSyjACEo+1eGKBFkBLGNYbltIfgNQN62pno/ncfcXaKXGvJYWfTWh9mzozwK6++mrGjRvHmDFjuOqqq4iPj2fWrFm89NJLXH/99cTGxnLkkUdy3nnncd1111FZWUlmZiZPPPEEubm5dRLXURRFaRBkoTNJe67EWCTi8irDZpLJrBuGow+D+zgSgMzNeykrLCPkC9l+aMlEL1tQ4Z5HLJ9CoGV931zdUGeWzbnnnss777xDeXk5l19+Oeeccw4ff/wxjz32GA8++GD1ftOmTeO3v/0tt99+O6effjobN25k9uzZDBgwoK6GoiiKcnCRppwVRPdMi2Cyx8qw6dDSxqYIjuoCy8gGoM8OWFX2lU2nTnHPLWvaFGPFRxZsK8YuJd3I8Tm1OsA1fgYNGkROTk5DD0NRFMWSC+zGpjfHYpcMkDVupD4mSPXqnr3+BG9t7UY31jHrT/cytu9tRnD8npdksbmLsBHBCE8A6IddXK2B+bG5uQk1O1AURWnEJGGD+LLGTRm2+7Pf/SwZE79xxWZoprVuijd8YpclKMFYLlJ+KMsZ5GPEqty9niza1shRsVEURakLpFOXLKRW6H4fwYiGZKiJKy0MBGBYLys2MRtXRls0Dkas/NgEAekmIMsayHUaOSo2iqIodUEMRnCkc3M8tlOzg12LRoTHTYs+qpMVm4zNW4145GOLNiUmI9ZMGNuNwKHJFHeq2CiKotQF0mpGKv4lUSDefd+LERtZQsB1k2W1gtUxfQE4fFsl+U6+cbslu+dy3H33YF1xBVjBaSJNOVVsFEVR6gI/1uUFxlVWjl02IOR+XomxXiqAiNGkjM6ZFJJE++II3+Z/bGM2RZiYjLfHmixV4GBreZpAU04VG0VRlLoiEWNlxGHcX7KqZhhjkYiLrQU2fhOEId38fE0fAHZunGfFBIyYiLBUuu/iQpMWOdFNWRolKjaKoih1RQgjNFUYkyUR41ILY6v9xTrxLPN8VAdYjnGllW3MMQJVQPQaNiI4xRjhKiN6VdBGjoqNoihKXSEpzX6MCFRirBjJHivFuNBkCWh3/ZshHai2bOK2rjHi4WarEcbGZgqxK3aWYdfM2UOjTxJoIv1CFUVRmgCSEFCMEYISzCwrRZcRd58SjFUSASqgow82h3pBGbTZXIBT6eCr8tnWNGIWJGLdZtJpoIzotXMaKWrZKIqi1BU+TCZZBWbij8VYI1XYfmcRjLtN+p054KuAxLbGjdZjdwXbyrcaoSnBZLHtwLjUStzzSTZaCcbyKcSud9NIUbFRFEWpSyRluQxjlYQwlo6Ih8RvCjHuL7fupkeXNuyiJalVlXxXPs8uNRALpLvnKQV2usfKcgURjJB54zuNEBUbRVGUuiQeY3UEscsNJGJEoQwjMLuwtTjuujeDO/hYQRYAO3cuMPtLoajU78RgxCeCsXb2uuepwLa1aaSo2CiKotQlsmaNJAqIGPgwIiFpynHYDLMqGNSaarEp27XMLgvtc/ePuK9E9yXdA/KxYtOIO0BrgoCiKEpdEsTEbfKw3ZuLMKKzFyMyEsj3ZJClJ8DWhO5QAjEbd1mRkY7RfmxDz4jnPHnu1wUY0QnV4739AtSyURRFqWtS3fcKzCzrw6Ynex/xfdGvYGuT/txxeymlkVLbsFPcadKcswpbFJrknjuPRl3cqWKjKIpS1yRgRCKIsWoKscsLyJLRIiSOfbXpbNxoPQuKWB7+yhyTgLFcfO5+ldg4Thi7SugOTCyokaJioyiKUteE3Je0lSmgOhGAeKyAiJXjutN6dGvPXlJoGS5mVeWHtkgUbCFoPLb1jcR0UjDitbG+b+zno2KjKIpS18Rha2pKsA06K7HLDcS4+4n4xMOAw3x8Sw8Atm9baM4l1gzueaQTtFwnghGtVGADjbYDtIqNoihKXSOdBCowiQGxGEGJxfYzi1CrxUxqPGyM7QZAydodZr+we5y4zryuNBEuH8ZFJy1tGiEqNoqiKPVBGmbyj8UuFR2HCejLsgNhbA8191WWZiyblM0lOHGOsWYkZiMFnAkYa0YSBcAIUZBGW9ypYqMoilIfJGMsD1nLRuIsYGM3SRgxSbCvpE4mSaDbrgjfB76PTgxwsEJTiRWtIHb1zz0H4d5+Bio2iqIo9YGsbZOAtWrisdaMxFb8GKvEfbU+7HAADi8qZFnVMruGjbjipOuztLKR1GhJg1Y3mqIoyiGEWDOSvlyFbV0jNTOVtV/dj+gOQLeqLSwv/cq63uLc84rQxBPtRpPGn420i4CKjaIoSn0gdTUyyyZga2wkgSDJ3S6p0nGQ0SGJbb42xFHBlNVTbXqzxGvEQopgs9qkU4FYSI0QbVejKIpSX7TCpCPHYro0y/ID5e7nQfYpEDMGnMcXkSXsbbHcCIx0HkjEFnM6GLGqxLaxkfhQI0QtG0VRlPqio/vuw7q9ghiLR1KX9+FKG/+7u1hxThH3db7HCJUkEYjrDYzQeN1oMe65U+r5nn4matkoiqLUFxlUu8eqLZAK92uJ5zjYjs4uab40FqcsjjYHwkQ34BThkpRn2TeVRomKjaIoSn2Rgqm3kZU75T0G40qLYKyefcVaRIQka83bjFOERrLbgu7nAYygNUJUbBRFUeqLWIwrbR3W+pAmnLKgmjTkrLmss9TPiAXkTRKQTLcqjOAEMeKUgoqNoijKIUlXYBvWVebHzLxl7ueSbVajdU31ejZgkwQCmFiNdB9IdD8XMWpLo43Eq9goiqLUJ0lAB2ATRhQiGHdakufrmlZNTeKwhZuSOp3g+cznni+tjsdeh6jYKIqi1Cd+IBPTRkbcZSFs+xlZBK1GkkB17Yx3wbSIZ3/crwPu910wgtRIUbFRFEWpbxKAw4HVGHEQ6wRsynNNZDloWRJaYjOSEBD0nKMNjTblWVCxURRFORi0xojM99i2MlVEJwDUjNuIBeNZzZN4bPJABJNe3YHoGE8jRMVGURTlYOAD2mMEZBM2fVnSm71pzkIEY71IWrMIinR5zsBkuzXSFjVeVGwURVEOFj6gHSaYvx6ziqcUaHotG1mawGutSGwmgk2pbkGjt2gEFRtFUZSDTTLQC9gN7MIssiapzV5XmldIIhgLJx3Tcy2OJoWKjaIoSkMQxAT2W2GWji503yv2sV8CRqCSaNQZZz+Gio2iKEpDEsBkkqVgM9AkBdq7CmcTR8VGURSlsSDi0gxppI0NFEVRlOaEio2iKIpS76jYKIqiKPXOfonNpk2buOaaaxg2bBgJCQn4fD7Wr19fa7+ysjJuuukm2rVrR3x8PMOGDePDDz+stV8kEmHy5Ml07dqVUChEdnY2r7zyyi++GUVRFKVxsl9is2bNGv7zn/+QlpbGcccd94P7XXbZZTz99NPcfffdvPXWW7Rr145TTjmFpUuXRu335z//mbvuuourr76ad999l6FDhzJu3DjeeeedX3QziqIoSiPF2Q/C4XD1108//bQDOLm5uVH7LF261AGcqVOnVm+rrKx0jjjiCGfMmDHV27Zv3+7ExsY6d9xxR9TxJ510ktO3b9/9GY4zcODA/dpPURRFOXj82Ny8X5aN3//Tu82aNYuYmBjOO++86m3BYJDzzz+fOXPmUF5eDsCcOXOoqKhg/PjxUcePHz+e5cuXk5ubu/9KqSiKojQJ6ixBYMWKFWRmZpKQEL0maVZWFhUVFaxZs6Z6v7i4OLp3715rP4CVK1fW1ZAURVGURkKdiU1eXh5pabWXiUtPT6/+XN5btGiBz+f70f0URVGU5kOTqVWdMmUKU6ZMAWDnzp0NPBpFURTlQKgzyyYtLY09e/bU2i6WilguaWlp5Ofn4zjOj+5XkwkTJpCTk0NOTg4ZGRl1NWxFURTlIFBnYpOVlUVubi4lJSVR21euXElsbGx1jCYrK4vy8nLWrl1baz+A3r1719WQFEVRlEZCnYnNmDFjqKysZMaMGdXbqqqqmD59OqNGjSIuziy+MHr0aGJiYnjhhReijv/3v/9Nnz59yMzMrKshKYqiKI2E/Y7ZzJw5E4BFixYB8O6775KRkUFGRgbDhw/nyCOP5LzzzuO6666jsrKSzMxMnnjiCXJzc6OEpXXr1txwww1MnjyZ5ORkBgwYwPTp05k3bx6zZs2q49tTFEVRGgX7W6yDWWmh1mv48OHV+5SUlDjXX3+906ZNGycuLs4ZMmSIM3/+/Frnqqqqcu655x6nc+fOTmxsrNO3b19nxowZdVI4pCiKojQMPzY3+xynRqS+CTBo0CBycnIaehiKoiiKhx+bm7Xrs6IoilLvqNgoiqIo9U6TKer8KSorK9m0aRNlZWUNPRTlIBIKhejYsSMxMTENPRRFUX6EZiM2mzZtIjk5ma5du9ZqhaM0TxzHYffu3WzatElT5hWlkdNs3GhlZWW0bNlSheYQwufz0bJlS7VmFaUJ0GzEBlChOQTR37miNA2aldg0NEcfffRP7nP55ZdXt+b561//esDHJyUl1dqWn5/P448/vp+jjOa0004jPz//gI9bsGABn3zyyc+6pqIohx7Nps5m1apV9OrVq/r7tg+1ZXvx9jq7ZpvENmy7cVudnQ+McBQVFf3iY9avX8+vfvUrvv7661r7V1VVEQzWfWjurrvuIikpiRtvvHG/j6mvsdT83SuK0jAcknU2dSk0+3s+sToWLFjACSecwLnnnkvPnj256KKLqrtcn3DCCeTk5DBp0iRKS0vp378/F110UdTxRUVFjBgxggEDBtC3b1/eeOONH73upEmTWLt2Lf379+emm25iwYIFHHfccYwdO7a6semZZ57JwIEDycrKql6qAaBr167s2rULMP3phgwZQv/+/bnyyisJh8MAzJ49mwEDBpCdnc2IESNYv349Tz75JA8//DD9+/fno48+Yv369Zx00kn069ePESNGsGHDBgAuvfRSJk6cyFFHHcXNN9/M4YcfXr1ERCQSoXv37rpkhKIcAjSbbLTGxpIlS1ixYgXt27fnmGOOYeHChRx77LHVn99///383//9H0uXLq11bCgU4rXXXiMlJYVdu3YxdOhQxo4d+4Pxifvvv5+vv/66+lwLFixg8eLFfP3119VZWlOnTiU9PZ3S0lIGDx7MOeecQ8uWLavPsWrVKqZPn87ChQuJiYnhqquu4oUXXuDUU0/liiuu4MMPPyQzM5O8vDzS09OZOHFilGUzZswYLrnkEi655BKmTp3Ktddey+uvvw6YTMFPPvmEQCBAamoqL7zwAtdddx1z584lOztbl4xQlEOAZmvZNDRDhgyhY8eO+P1++vfvz/r16/f7WMdxuPXWW+nXrx8nn3wymzdvZvv2A7PUhgwZEpUO/Oijj5Kdnc3QoUPZuHEjq1evjtr//fffZ9GiRQwePJj+/fvz/vvvs27dOj777DOOP/746nP90HpDn376KRdeeCEAF198MR9//HH1Z+PGjSMQCADwu9/9jueffx4wAvjb3/72gO5LUZSmiVo29YQsqQAQCASoqqra72NfeOEFdu7cyaJFi4iJiaFr164HnN6bmJhY/fWCBQuYO3cun376KQkJCZxwwgm1zuc4DpdccgmTJ0+O2v7mm28e0HV/aiydOnWiTZs2zJs3jy+++KLWUhOKojRP1LJpQGJiYqisrKy1fe/evbRu3ZqYmBjmz5/P999//6PnSU5OprCw8Ac/37t3L2lpaSQkJPDNN9/w2Wef1dpnxIgRzJw5kx07dgBm5dTvv/+eoUOH8uGHH5Kbm1u9fV/XPProo3n55ZcBI5bHHXfcD47n8ssvZ/z48VEWj6IozRsVmwZkwoQJ9OvXrzpBQLjooovIycmhb9++PP/88/Ts2fNHz9OyZUuOOeYY+vTpw0033VTr89GjR1NVVUWvXr2YNGkSQ4cOjfrc5/PRu3dv7r33XkaNGkW/fv0YOXIkW7duJSMjgylTpnD22WeTnZ3NeeedB5gYzWuvvVadIPCPf/yDadOm0a9fP/71r3/xyCOP/OB4x44dS1FRkbrQFOUQQlOf95P6SH1uaMLhMK1bt2bbtm0HtbdYTk4O119/PR999FGdnE9TnxWlcfBjqc/NNmbT3IShPsjKyuLyyy8/qEJz//3388QTT2isRlEOMZqt2Cg/zTfffHPQrzlp0iQmTZp00K+rKErDojEbRVEUpd5RsVEURVHqHRUbRVEUpd5RsVEURVHqHRWbBkIacv4Yr7/+evVyBAB33HEHc+fO/cXXXrp0Ke+8884BH7dlyxbOPffcn3XNZ599li1btvysYxVFafo0W7Fp2xZ8vrp7tW178O+hptjcfffdnHzyyb/4vD8mNj/WVqd9+/bMnDnzZ13z54iNdJ1WFKXp02zF5gD7Vv7i8xUXF3P66aeTnZ1Nnz59mD59OmAaXB555JH07duX3/3ud5SXl9c61rsg2syZM7n00kv55JNPmDVrFjfddBP9+/dn7dq1XHrppdWT/Q+dt2vXrtx5553VyxPUTG+uqKjgjjvuYPr06fTv35/p06dz1113cfHFF3PMMcdw8cUXs379eo477jgGDBjAgAEDqhdJW79+PX369AGMENx0000MHjyYfv368dRTT1Vf44EHHqBv375kZ2czadIkZs6cSU5ODhdddBH9+/entLT0R8d/yy23MGDAAO6//34GDBhQfd7Vq1dHfa8oStOh2YrNwWb27Nm0b9+eZcuW8fXXXzN69GjKysq49NJLmT59OsuXL6eqqoonnnhiv8539NFHM3bsWB588EGWLl1Kt27dqj/7qfO2atWKxYsX8/vf/56HHnoo6ryxsbHcfffdnHfeeSxdurS6/czKlSuZO3cuL730Eq1bt+a///0vixcvZvr06Vx77bW1xvfPf/6T1NRUvvzyS7788kuefvppcnNzeffdd3njjTf4/PPPWbZsGTfffDPnnnsugwYN4oUXXmDp0qX4fL4fHX/Lli1ZvHgxt912G6mpqdVLJ0ybNk1b3ChKE0XFpo7o27cv//3vf7nlllv46KOPSE1N5dtvvyUzM5MjjjgCgEsuuYQPP/zwF1/rp8579tlnAzBw4MD9Xtpg7NixxMfHA1BZWckVV1xB3759GTduXJQrT3jvvfd4/vnn6d+/P0cddRS7d+9m9erVzJ07l9/+9rckJCQA+16S4KfGLwIIpmnntGnTCIfDTJ8+vXoZA0VRmhbaQaCOOOKII1i8eDHvvPMOt99+OyNGjOCMM87Yr2O9i6Id6FIC+0KWNziQpQ28ywA8/PDDtGnThmXLlhGJRAiFQrX2dxyHf/zjH5xyyilR2+fMmfMLRl57LOeccw5/+ctfOOmkkxg4cGDUgm+KojQd1LKpI7Zs2UJCQgLjx4/npptuYvHixfTo0YP169ezZs0aAP71r38xfPjwWse2adOGVatWEYlEeO2116q3/9DSAft73h9if5YkaNeuHX6/n3/961/7DNSfcsopPPHEE9VLJHz33XcUFxczcuRIpk2bRklJCbDvJQkOZPyhUIhTTjmF3//+9+pCU5QmjIpNHbF8+XKGDBlC//79+ctf/sLtt99OKBRi2rRpjBs3jr59++L3+5k4cWKtY++//35+9atfcfTRR9OuXbvq7eeffz4PPvggRx55JGvXrq3evr/n/SFOPPFEVq5cWZ0gUJOrrrqK5557juzsbL755psoS0OssMsvv5zevXszYMAA+vTpw5VXXklVVRWjR49m7NixDBo0iP79+1fHjC699FImTpxI//79cRzngMZ/0UUX4ff7GTVq1H7fo6IojYvmu8RA27rNSGvTBrYd4o2kFy1axA033MAHH3xwUK/70EMPsXfvXu655559fq5LDChK4+DQXGLgEBeGuiYnJ4cLL7yQ+++//6Be96yzzmLt2rXMmzfvoF5XUZS6pdmKjVK3DBo0iO++++6gX9cbw1IUpemiMRtFURSl3lGxURRFUeodFRtFURSl3lGxURRFUeodFZsmirbsVxSlKdF8xaY5rDHwA4TDYRUbRVGaFM1XbA72GgPAv//97+ouAldeeSWff/45/fr1o6ysjOLiYrKysvj6669ZsGABxx9/PKeffjo9evRg4sSJRCIRwDS4HDZsGAMGDGDcuHEUFRUB0a33X3rppVot+xVFURozzVdsDjKrVq1i+vTpLFy4kKVLlxIIBPj2228ZO3Yst99+OzfffDPjx4+vXg/miy++4B//+AcrV65k7dq1vPrqq+zatYt7772XuXPnsnjxYgYNGsTf//736mtI6/3x48dHteyXbs2KoiiNFS3qrCPef/99Fi1axODBgwEoLS2ldevW3HHHHQwePJhQKMSjjz5avf+QIUM47LDDALjgggv4+OOPCYVCrFy5kmOOOQYwC50NGzas+hhv631FUZSmhIpNHeE4DpdccgmTJ0+O2r5161aKioqorKykrKysuqmld1kB+d5xHEaOHMlLL720z2t4G2IqiqI0JdSNVkeMGDGCmTNnsmPHDsC01v/++++58sorueeee7jooou45ZZbqvf/4osvyM3NJRKJMH36dI499liGDh3KwoULq1vvFxcX/2CLmJ9aJkBRFKUxsV9is2nTJq655hqGDRtGQkICPp+v1gqQOTk5TJgwgZ49e5KQkEDnzp256KKLyM3NrXW+SCTC5MmT6dq1K6FQiOzsbF555ZU6uaGGonfv3tx7772MGjWKfv36MXLkSJ577jliYmK48MILmTRpEl9++WV1Q8nBgwdz9dVX06tXLzIzMznrrLPIyMjg2Wef5YILLqBfv34MGzaMb775Zp/X87bs1wQBRVEaPc5+MH/+fKd169bOqaee6owaNcoBnNzc3Kh9/vjHPzpHH32089hjjzkLFixwXnjhBadnz55Oenq6s2HDhqh9b731Vic2NtZ58MEHnXnz5jkTJkxwfD6f8/bbb+/PcJyBAwfW2rZy5croDW3aOA7U3atNm/0a2/4wf/585/TTT6+z8x3q1PrdK4rSIOxrbhb2K2Zz/PHHs91N/X3mmWd47733au1zyy23kJGREbXtmGOOITMzk6effpq7774bgB07dvDQQw8xadIkbrzxRsAs5rVmzRomTZrEaaed9ku006JrDCiKojQa9suN5vf/9G41hQagS5cuZGRksHnz5uptc+bMoaKigvHjx0ftO378eJYvX75Pt1tz44QTTuCtt95q6GEoiqIcNOo1QWDVqlXs2LEjahXFFStWEBcXR/fu3aP2zcrKAmDlypX1OSRFURSlAag3samqqmLixIlkZGRw2WWXVW/Py8ujRYsWtVJ/09PTqz9XFEVRmhf1Vmdz9dVX88knn/D222+Tlpb2i883ZcoUpkyZAsDOnTt/8fkURVGUg0e9WDaTJk1iypQpTJ06lVGjRkV9lpaWRn5+Po7jRG0Xi0YsnJpMmDCBnJwccnJy9hkfUhRFURovdS429913Hw888ACPPvooF198ca3Ps7KyKC8vZ+3atVHbJVbTu3fvuh5So2bBggX86le/AmDWrFncf//9B30MkydPpnv37vTo0YM5c+b86L7XXnstSUlJB2lkiqI0F+pUbB599FFuv/127rvvPq6++up97jN69GhiYmJ44YUXorb/+9//pk+fPmRmZtbNYNoCvjp8HcAKA47jVHdxPhDGjh3LpEmTDvi4X8LKlSt5+eWXWbFiBbNnz+aqq64iHA7vc9+cnBz27NlzUMenKErzYL/FZubMmcycOZNFixYB8O677zJz5kw++OADAF5++WWuu+46Ro8ezUknncRnn31W/fJmmLVu3ZobbriByZMn8/e//50FCxbw+9//nnnz5tXqK/aLqOMVBn7qfOvXr6dHjx785je/oU+fPmzcuJHf//73DBo0iKysLO68887qfWfPnk3Pnj0ZMGAAr776avX2Z599tlqkL730UmbOnFn9mVgTW7du5fjjj6d///706dOHjz766Bfd1htvvMH5559PXFwcmZmZdO/enS+++KLWfuFwmJtuuom//e1vv+h6iqIcmux3gsC4ceOivr/qqqsAGD58OAsWLGD27Nk4jsPs2bOZPXt21L6yj3DfffeRlJTEI488wrZt2+jRowf/+c9/qt1JTZXVq1fz3HPPMXToUMDcZ3p6OuFwmBEjRvDVV19xxBFHcMUVVzBv3jy6d+9+wJ2cX3zxRU455RRuu+02wuEwJSUltfa5/vrrmT9/fq3t559/fi3LafPmzdXjBejYsWNUXZTwf//3f4wdO5Z27dod0HgVRVHgAMSmZkC/Js8++yzPPvvsfp0rEAhw++23c/vtt+/v5ZsEXbp0iZq4//Of/zBlyhSqqqrYunUrK1euJBKJkJmZyeGHHw6YYlbJstsfBg8ezO9+9zsqKys588wz6d+/f619Hn744V98L162bNnCjBkzoh4YFEVRDgTt+lyHeJcAyM3N5aGHHuL999/nq6++4vTTT6esrGy/zxUMBqvjPpFIhIqKCsC0Dvrwww/p0KEDl156Kc8//3ytY6+//nr69+9f67Wv5IMOHTqwcePG6u83bdpEhw4dovZZsmQJa9asoXv37nTt2pWSkpJaRbmKoig/hq5nU08UFBSQmJhIamoq27dv59133+WEE06gZ8+erF+/nrVr19KtW7cfXLuma9euLFq0iF//+tfMmjWLyspKAL7//ns6duzIFVdcQXl5OYsXL+Y3v/lN1LEHYtmMHTuWCy+8kBtuuIEtW7awevVqhgwZErXP6aefzjZPr7mkpKTqZRAURVH2BxWbeiI7O5sjjzySnj170qlTp+rVN0OhEFOmTOH0008nISGB4447bp/r0lxxxRWcccYZZGdnM3r06GqracGCBTz44IPExMSQlJS0T8vmQMjKyuLXv/41vXv3JhgM8thjjxEIBAA47bTTeOaZZ2jfvv0vuoaiKIrP+algTCNk0KBB5OTkRG1btWpVVA822lK3GWltAG0k3Sip9btXFKVB2NfcLDRfy0aFQVEUpdGgCQKKoihKvaNioyiKotQ7zUpsmmD4SfmF6O9cUZoGzUZsQqEQu3fv1snnEMJxHHbv3k0oFGrooSiK8hM0mwSBjh07smnTJl3r5hAjFArRsWPHhh6Goig/QbMRm5iYmLrrGK0oiqLUKc3GjaYoiqI0XlRsFEVRlHpHxUZRFEWpd5pku5pWrVqRmJhIRkZGQw+l3ti5c2ezvj9o/veo99e00fs7cNavX8+uXbv2+VmTFBv48R48zYHmfn/Q/O9R769po/dXt6gbTVEURal3VGwURVGUeqfJis2ECRMaegj1SnO/P2j+96j317TR+6tbmmzMRlEURWk6NFnLRlEURWk6NCmx2bhxI+eeey6pqamkpKRw9tlns2HDhoYe1gEzc+ZMzjnnHLp06UJ8fDw9evTgT3/6U63loffs2cPll19enep98skns3z58gYa9S9j9OjR+Hw+br/99qjtTf0e33nnHY4//niSkpJISUlh0KBBzJs3r/rzpnx/CxcuZNSoUbRu3Zrk5GQGDBjA1KlTo/YpKyvjpptuol27dsTHxzNs2DA+/PDDBhrxD7Np0yauueYahg0bRkJCAj6fj/Xr19fab3/vJxKJMHnyZLp27UooFCI7O5tXXnnlINzJvtmf+8vJyWHChAn07NmThIQEOnfuzEUXXURubm6t89XL/TlNhOLiYqd79+5OVlaW89prrzmvv/6606dPH+ewww5zioqKGnp4B8RRRx3ljBs3zvn3v//tLFiwwHn44Yed1NRU56ijjnLC4bDjOI4TiUScY445xunQoYPz4osvOu+++65z/PHHOy1btnQ2btzYwHdwYLz44otO27ZtHcC57bbbqrc39Xt88sknnWAw6Fx33XXOe++958yePdu5//77nTfffNNxnKZ9f8uWLXNCoZBzwgknOK+//rrz3nvvORMmTHAA5/HHH6/e78ILL3RSU1OdKVOmOHPnznXOOussJxQKOUuWLGm4we+D+fPnO61bt3ZOPfVUZ9SoUQ7g5Obm1tpvf+/n1ltvdWJjY50HH3zQmTdvnjNhwgTH5/M5b7/99sG5oRrsz/398Y9/dI4++mjnsccecxYsWOC88MILTs+ePZ309HRnw4YNUfvWx/01GbH53//9X8fv9zurV6+u3rZu3TonEAg4//M//9OAIztwduzYUWvbc8895wDO+++/7ziO47z++usO4MybN696n/z8fCctLc255pprDtpYfyl5eXlOmzZtnBdffLGW2DTle8zNzXVCoZDz8MMP/+A+Tfn+/vSnPzkxMTFOYWFh1PahQ4c6Q4cOdRzHcZYuXeoAztSpU6s/r6ysdI444ghnzJgxB3W8P4U8xDmO4zz99NP7nIz39362b9/uxMbGOnfccUfU8SeddJLTt2/f+rmBn2B/7m9f88769esdn8/n/PnPf67eVl/312TcaLNmzWLo0KF07969eltmZibHHHMMb7zxRgOO7MDZV9Xu4MGDAdi8eTNg7rd9+/aceOKJ1fukpqYyZsyYJnW/t9xyC3369OGCCy6o9VlTvsepU6fi9/uZOHHiD+7TlO+voqKCmJgY4uPjo7anpqYSiUQAc38xMTGcd9551Z8Hg0HOP/985syZQ3l5+UEd84/h9//0VLe/9zNnzhwqKioYP3581PHjx49n+fLl+3RL1Tf7c3/7mne6dOlCRkZG9bwD9Xd/TUZsVqxYQZ8+fWptz8rKYuXKlQ0worrlgw8+AKBXr17Aj9/vhg0bKCoqOqjj+zl8/PHHPP/88zz22GP7/Lwp3+PHH39Mz549efnll+nWrRvBYJDu3btH3WtTvr9LL70UgGuvvZYtW7aQn5/P008/zfvvv8/1118PmPvLzMwkISEh6tisrCwqKipYs2bNwR72L2J/72fFihXExcVFPfjKfkCTmo9WrVrFjh07qucdqL/7azJik5eXR1paWq3t6enp7NmzpwFGVHds3ryZO+64g5NPPplBgwYBP36/QKO/54qKCq688kpuvPFGevTosc99mvI9btmyhdWrV3PTTTcxadIk3nvvPUaOHMnVV1/NI488AjTt++vTpw8LFizgjTfeoEOHDqSlpfGHP/yBJ598kvPPPx/46fvLy8s7qGP+pezv/eTl5dGiRQt8Pt+P7tfYqaqqYuLEiWRkZHDZZZdVb6+v+2s2i6c1VYqKijjjjDMIBoNMmzatoYdTZ/ztb3+jtLSU2267raGHUi9EIhEKCwt59tlnOfvsswE46aSTWL9+PZMnT+baa69t4BH+MlavXs0555xDVlYWTz75JPHx8bzxxhtMnDiRUCjERRdd1NBDVH4hV199NZ988glvv/32PkW2rmkyYpOWlrbPJ8EfehppCpSWljJmzBjWrVvHBx98ELW88Y/dr3zeWNmwYQP33XcfzzzzDOXl5VG++/LycvLz80lOTm7S99iyZUtWr17NyJEjo7aPGjWK2bNns3Xr1iZ9f7feeisxMTG89dZbxMTEADBixAh2797N//t//48LLriAtLQ0vv/++1rHyv3Jk3BTYX/vJy0tjfz8fBzHiXr6b0r3PWnSJKZMmcJzzz3HqFGjoj6rr/trMm60rKwsVqxYUWv7ypUr6d27dwOM6JdRWVnJueeeS05ODu+88w59+/aN+vzH7rdz584kJSUdrKEeMOvWraOsrIzx48eTlpZW/QJ46KGHSEtLY/ny5U36HsV//UP4/f4mfX/Lly8nOzu7WmiEIUOGsHv3bnbs2EFWVha5ubmUlJRE7bNy5UpiY2Nr+fwbO/t7P1lZWZSXl7N27dpa+wGNfj667777eOCBB3j00Ue5+OKLa31eb/f3s/PYDjIPP/ywEwgEnLVr11Zvy83NdYLBoPPQQw814MgOnHA47IwbN84JhULO3Llz97nPa6+95gDOggULqrft3bvXSU9Pd66++uqDNdSfxZ49e5z58+fXegHO+PHjnfnz5zuFhYVN+h7feustB3BmzJgRtX3UqFFOx44dHcdp2r/D4cOHO5mZmU55eXnU9gsuuMAJhUJOeXm5s3jxYgdwnn322erPKysrnZ49ezq/+tWvDvaQ95sfSg3e3/vZvn27ExMT49x1111Rx48YMcLp06dPvY59f/ih+3Mcx3nkkUccwLnvvvt+8Pj6ur8mIzZFRUVOt27dnD59+jivv/6688Ybbzj9+vVzMjMza9UCNHYmTpxYXXPy6aefRr2k2C8cDjvDhg1zOnbs6Lz00kvO7NmzneHDhztpaWm1CrCaCtSos2nK9xiJRJwTTzzRSU9Pd5544glnzpw5zuWXX+4AzrRp0xzHadr3N2PGDAdwRo0a5bz++uvOnDlznD/84Q8O4Fx//fXV+5133nlOixYtnKefftqZO3euc8455zhxcXHOokWLGnD0+2bGjBnOjBkzqv//Pf74486MGTOiHgb2935uueUWJy4uzvmf//kfZ/78+c7EiRMdn89XXdDbEPzU/b300kuOz+dzRo8eXWveWbFiRdS56uP+mozYOI7jfP/9987ZZ5/tJCcnO0lJSc4ZZ5yxT/Vu7HTp0sUB9vm68847q/fbvXu389vf/tZJS0tz4uPjnZNOOslZunRpww38F1JTbBynad/j3r17nauuuspp3bq1ExMT4/Tt29d54YUXovZpyvf3zjvvOMOHD3datWrlJCUlOdnZ2c5jjz3mVFVVVe9TUlLiXH/99U6bNm2cuLg4Z8iQIc78+fMbbtA/wg/9nxs+fHj1Pvt7P1VVVc4999zjdO7c2YmNjXX69u1by8o92PzU/V1yySX79TNwnPq5P+36rCiKotQ7TSZBQFEURWm6qNgoiqIo9Y6KjaIoilLvqNgoiqIo9Y6KjaIoilLvqNgoiqIo9Y6KjaIoilLvqNgoiqIo9Y6KjaIoilLv/H/15cM68+k0CwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -480,7 +485,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAGQCAYAAAB4X807AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACDKUlEQVR4nO2deZyNdfvH32ebfTFj39eyjC0h6ilJ4amoxFOiXyqh0qInpZJW0V7aKUop0oJKtKBF24OkaLENsmQdZjtnznL//viea+4zjYTmmO16v17nNefc516+t+X+zLU7LMuyUBRFUZQo4iztBSiKoigVHxUbRVEUJeqo2CiKoihRR8VGURRFiToqNoqiKErUUbFRFEVRok6pic2WLVvo378/qamppKSk0K9fPzZv3lxay1EURVGiiKM06mzy8vJo164dsbGx3H///TgcDsaOHUteXh6rVq0iMTHxWC9JURRFiSLu0rjolClT2LBhA7/++ivNmjUDoG3bthx33HG88MIL3HTTTaWxLEVRFCVKlIpl06NHD7xeL0uXLi2yvVu3bgB89tlnx3pJiqIoShQpFctm9erVnHfeecW2Z2RkMHv27L89vlq1ajRq1CgKK1MURVGOlszMTHbv3n3Q70pFbPbu3UtaWlqx7enp6ezbt+9vj2/UqBHLli2LxtIURVGUo6Rjx45/+V2piM3RMHnyZCZPngzArl27Snk1iqIoypFQKqnPaWlpB7Vg/sriARg2bBjLli1j2bJlVK9ePdpLVBRFUUqQUhGbjIwMVq9eXWz7mjVraNWqVSmsSFEURYkmpeJG69u3LzfffDMbNmygSZMmgAksLV26lIkTJ5bGkhRFOQr8fj+///47Xq+3tJeiHEPi4uKoV68eHo/nsI8pldTn3Nxc2rVrR3x8fGFR55133kl2djarVq0iKSnpkMd37NhREwQUpQywceNGkpOTqVq1Kg6Ho7SXoxwDLMtiz549ZGdn07hx4yLfHerZXCputMTERBYtWsTxxx/PpZdeyqBBg2jcuDGLFi36W6FRFKXs4PV6VWgqGQ6Hg6pVqx6xNVtq2WgNGjTg7bffLq3LK4pSQqjQVD6O5u9cuz4riqIoUafc1NkoilL2qfVILf7I/aPEzlczsSY7bt5xyH1OPvlkvvrqq0PuM3ToUG666SZatWrFAw88wO23335ExyclJZGTk1NkW1ZWFq+//jrXXHPN39xFcc4++2xef/11qlSpckTHLVmyhJiYGE4++eQjvmZpo5aNoiglRkkKzeGe7++EAuDFF18sLKt44IEHjvj4g5GVlcWzzz570O8CgcAhj50/f/4RCw0YsTnS9f7dWo4VKjaKopRrJKloyZIlnH766fTv358WLVowaNAgJNn29NNPZ9myZYwZM4b8/Hzat2/PoEGDihyfk5NDjx496NChA23atGHu3LmHvO6YMWNYv3497du3Z/To0SxZsoRTTz2Vvn37Fgrb+eefz4knnkhGRkZhBxQwLbekh9hrr71G586dad++PcOHDycYDAKwYMECOnToQLt27ejRoweZmZk8//zzPP7447Rv354vvviCzMxMzjjjDNq2bUuPHj0KZ4INGTKEESNGcNJJJ3HLLbdw3HHHFXZeCYVCNGvW7Jh3YlE3mqIoFYbvv/+e1atXU6dOHU455RSWLl3Kv/71r8LvJ06cyNNPP83KlSuLHRsXF8e7775LSkoKu3fvpkuXLvTt2/cvg+ETJ07kp59+KjzXkiVLWLFiBT/99FNhSvDUqVNJT08nPz+fTp06ceGFF1K1atXCc/z888/MmjWLpUuX4vF4uOaaa5gxYwb//ve/ueqqq/j8889p3Lgxe/fuJT09nREjRpCUlMTNN98MQJ8+fbjsssu47LLLmDp1Ktdffz1z5swB4Pfff+err77C5XKRmprKjBkzuPHGG/nkk09o167dMe/EopaNoigVhs6dO1OvXj2cTift27cnMzPzsI+1LIvbb7+dtm3bcuaZZ7J161b++OPI3IKdO3cuUnsyadIk2rVrR5cuXdiyZQtr164tsv+nn37K8uXL6dSpE+3bt+fTTz9lw4YNfPPNN5x22mmF50pPTz/o9b7++msuueQSAC699FK+/PLLwu8GDBiAy+UC4IorrmD69OmAEcDLL7/8iO6rJFDLRlGUCkNsbGzhe5fLdUTxihkzZrBr1y6WL1+Ox+OhUaNGR1xLEjlleMmSJXzyySd8/fXXJCQkcPrppxc7n2VZXHbZZUyYMKHI9vfee++Irvt3a6lfvz41a9Zk0aJFfPfdd8yYMeMfn/9IUctGUZRKhcfjwe/3F9u+f/9+atSogcfjYfHixWzatOmQ50lOTiY7O/svv9+/fz9paWkkJCTwyy+/8M033xTbp0ePHrz11lvs3LkTMM2IN23aRJcuXfj888/ZuHFj4faDXfPkk09m5syZgBHLU0899S/XM3ToUAYPHlzE4jmWqNgoilJi1EysWabPB6aDfNu2bQsTBIRBgwaxbNky2rRpw/Tp02nRosUhz1O1alVOOeUUWrduzejRo4t937t3bwKBAC1btmTMmDF06dKlyPcOh4NWrVpx//3307NnT9q2bctZZ53F9u3bqV69OpMnT6Zfv360a9eOiy66CDAxmnfffbcwQeCpp55i2rRptG3blldffZUnn3zyL9fbt29fcnJySsWFBqXUG+2for3RFKVs8PPPP9OyZcvSXka5IhgMUqNGDXbs2HFEjSz/KcuWLWPUqFF88cUXJXK+g/3dH+rZrDEbRVGUY0hGRgZDhw49pkIzceJEnnvuuVKJ1QgqNoqiKMeQX3755Zhfc8yYMYwZM+aYXzcSjdkoiqIoUUfFRlEURYk6KjaKoihK1FGxURRFUaKOio2iKCVGrVrgcJTcq1atkl2fNOQ8FHPmzGHNmjWFn8eNG8cnn3zyj6+9cuVK5s+ff8THbdu2jf79+x/VNV9++WW2bdt2VMeWNCo2iqKUGEfYSuyYn+9w+LPY3HvvvZx55pn/+LyHEptDtdWpU6cOb7311lFd82jERrpOlzQqNoqilFtyc3M555xzaNeuHa1bt2bWrFmAaXB5wgkn0KZNG6644gp8Pl+xY2W0AMBbb73FkCFD+Oqrr5g3bx6jR4+mffv2rF+/niFDhhQ+7P/qvI0aNeKuu+4qHE/w5/TmgoICxo0bx6xZs2jfvj2zZs3i7rvv5tJLL+WUU07h0ksvJTMzk1NPPZUOHTrQoUOHwrk1mZmZtG7dGjBCMHr0aDp16kTbtm154YUXCq/x4IMP0qZNG9q1a8eYMWN46623WLZsGYMGDaJ9+/bk5+cfcv233norHTp0YOLEiXTo0KHwvGvXri3y+WhRsVEUpdyyYMEC6tSpww8//MBPP/1E79698Xq9DBkyhFmzZvHjjz8SCAR47rnnDut8J598Mn379uXhhx9m5cqVNG3atPC7vztvtWrVWLFiBVdffTWPPPJIkfPGxMRw7733ctFFF7Fy5crC9jNr1qzhk08+4Y033qBGjRp8/PHHrFixglmzZnH99dcXW99LL71Eamoq//vf//jf//7HlClT2LhxIx9++CFz587l22+/5YcffuCWW26hf//+dOzYkRkzZrBy5UocDsch11+1alVWrFjBHXfcQWpqauHohGnTppVIixsVG0VRyi1t2rTh448/5tZbb+WLL74gNTWVX3/9lcaNG3P88ccDcNlll/H555//42v93Xn79esHwIknnnjYow369u1LfHw8AH6/n6uuuoo2bdowYMCAIq484aOPPmL69Om0b9+ek046iT179rB27Vo++eQTLr/8chISEoCDjyT4u/WLAIJp2jlt2jSCwSCzZs0qHGPwT9AOAoqilFuOP/54VqxYwfz58xk7diw9evTgvPPOO6xjI4eiHekogYMh4w2OZLRB5BiAxx9/nJo1a/LDDz8QCoWIi4srtr9lWTz11FP06tWryPaFCxf+g5UXX8uFF17IPffcwxlnnMGJJ55YZODb0aKWjaIo5ZZt27aRkJDA4MGDGT16NCtWrKB58+ZkZmaybt06AF599VW6detW7NiaNWvy888/EwqFePfddwu3/9XogMM9719xOCMJateujdPp5NVXXz1ooL5Xr14899xzhSMSfvvtN3JzcznrrLOYNm0aeXl5wMFHEhzJ+uPi4ujVqxdXX311iXWJVrFRFKXEqFnCEwH+7nw//vgjnTt3pn379txzzz2MHTuWuLg4pk2bxoABA2jTpg1Op5MRI0YUO3bixImce+65nHzyydSuXbtw+8UXX8zDDz/MCSecwPr16wu3H+55/4ru3buzZs2awgSBP3PNNdfwyiuv0K5dO3755ZciloZYYUOHDqVVq1Z06NCB1q1bM3z4cAKBAL1796Zv37507NiR9u3bF8aMhgwZwogRI2jfvj2WZR3R+gcNGoTT6aRnz56HfY+HQkcMKIpy1OiIgeizfPlybrrpJj777LNjet1HHnmE/fv3c9999x30ex0xoCiKUkFYtmwZl1xyCRMnTjym173gggtYv349ixYtKrFzqtgoiqKUUTp27Mhvv/12zK8bGcMqKTRmoyiKokQdFRtFURQl6qjYKIqiKFFHxUZRFEWJOio2iqKUHGV9xkAJUJba9pcnVGwURSk5KsKMgUMQDAZVbI4SFRtFUco9r732WmEngeHDh/Ptt9/Stm1bvF4vubm5ZGRk8NNPP7FkyRJOO+00zjnnHJo3b86IESMIhUKAaXLZtWtXOnTowIABA8jJyQGKtt9/4403irXtVw4PFRtFUco1P//8M7NmzWLp0qWsXLkSl8vFr7/+St++fRk7diy33HILgwcPLpwJ89133/HUU0+xZs0a1q9fzzvvvMPu3bu5//77+eSTT1ixYgUdO3bkscceK7yGtN8fPHhwkbb90rFZ+Xu0qFNRlHLNp59+yvLly+nUqRMA+fn51KhRg3HjxtGpUyfi4uKYNGlS4f6dO3emSZMmAAwcOJAvv/ySuLg41qxZwymnnAKYYWddu3YtPCay/b5ydKjYKIpSrrEsi8suu4wJEyYU2b59+3ZycnLw+/14vd7CxpaRowXks2VZnHXWWbzxxhsHvUZkU0zl6FA3mqIo5ZoePXrw1ltvsXPnTsC019+0aRPDhw/nvvvuY9CgQdx6662F+3/33Xds3LiRUCjErFmz+Ne//kWXLl1YunRpYfv93Nzcv2wT83ejApSDo5aNoiglR82aJZtBdhgzC1q1asX9999Pz549CYVCeDwezjvvPDweD5dccgnBYJCTTz6ZRYsW4XQ66dSpEyNHjmTdunV0796dCy64AKfTycsvv8zAgQPx+XwA3H///YVTLSORtv3x8fF8/fXXGrc5THTEgKIoR015GzGwZMkSHnnkEd5///3SXkq550hHDKgbTVEURYk66kZTFKXScPrpp3P66aeX9jIqJWrZKIqiKFGnRMXmrbfe4sILL6Rhw4bEx8fTvHlzbrvttmKZG/v27WPo0KFUq1aNxMREzjzzTH788ceSXIqiKIpShihRsXnkkUdwuVw88MADLFiwgKuvvprnnnuOs846q7AlhGVZ9OnThwULFvDUU0/x9ttv4/f76d69O7///ntJLkdRFEUpI5RozOa9996jevXqhZ+7detGeno6l112GUuWLOGMM85g3rx5LF26lEWLFtG9e3cAunbtSuPGjXnooYeKVPoqiqIoFYMStWwihUaQFhJbt24FYN68edSpU6dQaABSU1Pp06cPc+fOLcnlKIpyrKkFOErwFaUJA0uWLOHcc88FzDNp4sSJ0bnQIZgwYQLNmjWjefPmLFy48JD7Xn/99SQlJR2jlUWHqGejffbZZwCF+dirV68ubIgXSUZGBtOnTycnJ6fc/6EqSqWlpCcCHMH5LMvCsiycziP7Hbpv37707dv3CBf2z1izZg0zZ85k9erVbNu2jTPPPJPffvsNl8tVbN9ly5axb9++Y7q+aBDVbLStW7cybtw4zjzzTDp27AiYVhJpaWnF9k1PTweoEH+oiqIcGzIzM2nevDn/93//R+vWrdmyZQtXX301HTt2JCMjg7vuuqtw3wULFtCiRQs6dOjAO++8U7j95ZdfZuTIkYDpDvDWW28Vfie/+G7fvp3TTjuN9u3b07p1a7744ot/tO65c+dy8cUXExsbS+PGjWnWrBnfffddsf2CwSCjR4/moYce+kfXKwtEzbLJycnhvPPOw+12M23atH98vsmTJzN58mQAdu3a9Y/PpyhKxWDt2rW88sordOnSBYDx48eTnp5OMBikR48erFq1iuOPP56rrrqKRYsW0axZsyPu4vz666/Tq1cv7rjjDoLBIHl5ecX2GTVqFIsXLy62/eKLL2bMmDFFtm3durVwvQD16tUrDDVE8vTTT9O3b19q1659ROsti0RFbPLz8+nTpw8bNmzgs88+o169eoXfpaWlHdR62bt3b+H3B2PYsGEMGzYMoNBKUhRFadiwYZEH95tvvsnkyZMJBAJs376dNWvWEAqFaNy4MccddxwAgwcPLvzl9XDo1KkTV1xxBX6/n/PPP5/27dsX2+fxxx//x/cSybZt25g9ezZLliwp0fOWFiXuRvP7/fTv359ly5Yxf/582rRpU+T7jIwMVq9eXey4NWvW0KBBA43XKIpyRES2/9+4cSOPPPIIn376KatWreKcc87B6/Ue9rncbndhmUYoFKKgoACA0047jc8//5y6desyZMgQpk+fXuzYUaNG0b59+2KvgyUf1K1bly1bthR+/v3336lbt26Rfb7//nvWrVtHs2bNaNSoEXl5eTRr1uyw76WsUaJiEwqFGDRoEIsWLWLOnDlFftsQ+vbty9atWwsTBwAOHDjAe++9d8yDdIqiVCwOHDhAYmIiqamp/PHHH3z44YcAtGjRgszMTNavXw/wl3NrGjVqxPLlywGTpeb3+wHYtGkTNWvW5KqrrmLo0KGsWLGi2LGPP/44K1euLPb6swsNzHNw5syZ+Hw+Nm7cyNq1a+ncuXORfc455xx27NhBZmYmmZmZJCQkFI5AKI+UqBvt2muvZfbs2dxxxx0kJibyzTffFH5Xr1496tWrR9++fenatSuDBw/m4YcfJi0tjQkTJmBZFrfccktJLkdRlGNNTUo2I+3vJwwUoV27dpxwwgm0aNGC+vXrF07ejIuLY/LkyZxzzjkkJCRw6qmnHnQmzVVXXcV5551Hu3bt6N27d6HVtGTJEh5++GE8Hg9JSUkHtWyOhIyMDP7zn//QqlUr3G43zzzzTGEm2tlnn82LL75InTp1/tE1yholOmKgUaNGbNq06aDf3XXXXdx9992Aic/cfPPNzJkzB6/XS9euXXnsscdo167dYV1HRwwoFRlJ4Q2FQpTFCSAOhwOXy4XD4Sh3IwaUkuNIRwyUqGWTmZl5WPulp6czdepUpk6dWpKXV5QKQSgUYvXq1Xz//fdHFG84VtSqVYuTTjqJWrWiVHGpVEh0xICilDECgQDffvstkyZNKszSLEt07tyZOnXqqNgoR4SKjaKUQXJzc9mxYwe7d+8u7aUUY/fu3YWBczBuP4fDUYorUo41R+Pe1Xk2iqIcNXFxcezZs6dMxpaU6GBZFnv27CEuLu6IjlPLRlGUo6ZevXr8/vvv2tWjkhEXF1ekWP9wULFRFOWo8Xg8NG7cuLSXoZQD1I2mKIqiRB0VG0VRFCXqqNgoiqIoUUfFRlEURYk6KjaKoihK1FGxURRFUaKOio2iKIoSdbTORqmUSGflslj5HgwGCwd4KUpFQcVGqZTk5OSwcuVKMjMzy5zgBAIBli9fjs/nK+2lKEqJoWKjVEr27dvH22+/zbx588qkFXHgwAFyc3NLexmKUmKo2CiVEr/fz65du8qkZaMoFRFNEFAURVGijoqNoiiKEnVUbBRFUZSoo2KjKIqiRB0VG0VRFCXqqNgoiqIoUUfFRlEURYk6KjaKoihK1NGizgrOvn37yMzMJCcnp7SXUozY2FgaNGhAzZo1cTgcpb0cRVGiiIpNBWft2rU8//zz/PLLL6W9lGLUqFGDK6+8krPPPhuXy1Xay1EUJYqo2FRw9u/fz6pVq1i+fHlpL6UYdevW5dxzz9V2MYpSCdCYjaIoihJ1VGwURVGUqKNioyiKokQdFRtFURQl6qjYKIqiKFFHxUZRFEWJOpr6rCiKUpJYQCj8ElxU+l/tVWwURVH+KSEgD9gPZAMF4ReYp2wMEAckAynhz5WsaYaKjaIoytESAvYB24EDgD+8TawYB8bScWCsmx0Y0UkDagCJx3i9pYiKjaIoytHgBdYDu4EAEAy/wIhLCFtkLIwAucL75gK7gPpAdSrFk7gS3KKiKEoJsw/4BcjCjtEEI95HWjTycoV/usPvQ8AGjOutCca1VoFRsVGUMobD4aBGjRrUqVMHj8dT2sspRsuWLUlKSirtZZQee4CVmBhNEFtoQhiBkRcYcXFiC44bY9k4wz89wB/h98dToQVHxUZRyhhut5tTTjmFQYMGkZqaWtrLKUaVKlVo0KBBaS+jdMgGVoR/hjAxGgsjFpFWzV+50GS7GztjzcII2FqgRXi/CoiKjaKUMRwOB/Xr1+fUU0+levXqpb0cRQgC32NiLfJZXmLJBMI/xY0mIuPAjueI0Lgpagn9AaQDtaN5E6WHio2iKMrhsB7YiBGOALY1E8AWFygaq4GiMRzxiorbLdK6iQEyManRFTBLTcVGURTl7/Bi4jQiMME/vcAWGcGJLTRgxKQg/DkG2+0mxzkxWWrbgOOidielhoqNoijK37EJU0sj8RQRHXlFutLAdqGJG80J+MLfxWJiPRLD+TPbgYZUuGSBqDZQ6N27Nw6Hg7FjxxbZvm/fPoYOHUq1atVITEzkzDPP5Mcff4zmUhRFUY6eZRixCIR/SocAf3ibWCjyU56sVng/L0aQRHT8EcfKuYLhzzmY1OoKRtTE5o033uCHH34ott2yLPr06cOCBQt46qmnePvtt/H7/XTv3p3ff/89WstRFEU5OrIw9TBQVCT8GOHwYsTCF/EzP7w9H1tkguHPYgmJwIjIiPD4MYWiFYyoiM2+ffsYNWoUjz32WLHv5s2bx9KlS3n11VcZOHAgvXv3Zt68eYRCIR566KFoLEdRFOXo2YCxNEQgIi2aSOEQIQpGHOsIb8sP/3RE7Ev4vXQf8EW8P0BRt1wFICpic+utt9K6dWsGDhxY7Lt58+ZRp04dunfvXrgtNTWVPn36MHfu3GgsR1EU5ej5HtvyEDEQ0fFRtEUNGFeaD5749F6eePVi3slcYKc+e8P7yDlErMQVF8QIUQ5FRasCUOIJAl9++SXTp08/qAsNYPXq1bRu3brY9oyMDKZPn05OTk7lrk5WFKXskINJd3ZT1JqRVObI1GWwCzld0Hb5h5yR+w2zY+pA7d4m4O/CCI4E/yOFSjoLuDBCdLDkgXJMiVo2BQUFDB8+nJtvvpnmzZsfdJ+9e/eSlpZWbHt6ejpgXHAHY/LkyXTs2JGOHTuya9eug+6jKIpSomzGCE4IWwAkSUA6PIvASFuaIPi3Z3J67rf4iMHR+d+2gEjqs4/iHQgiXwVUOEpUbB566CHy8/O54447SvK0AAwbNoxly5axbNkyrapWFCX6BIGfMU9JicWI4IhASDKAJASEg/6/fzUZJxazY3vSpmoDs11SnX3hc4qgSKJApEsNKlxhSondzubNmxk/fjwvvvgiPp8Pn89X+J3P5yMrK4vk5GTS0tIOar3s3bsX4KBWj6IoyjFnP6bAMgZj3Ui8JtJlJsWYYLvVfF6qrnsRgOda1ORcZ007Ey0W27KJwYiYBztF2olp8FmDCjfZs8TEZsOGDXi9XgYPHlzsu0ceeYRHHnmE77//noyMDD766KNi+6xZs4YGDRpovEY5JsTGxtKgQQPatm2LZZWttJ+YmBjq1q2L213BfrUtb/yGEQPp1CzZZJFtZoQIV1rBb2+SEtzF97Tnfyd/R6o31Z7M6cUMTwO767MkBkQmEVRA502J/Wtu3749ixcvLra9e/fuDB48mCuvvJJmzZrRt29fpk2bxmeffUa3bt0AOHDgAO+99x6XXHJJSS1HUQ5Jeno6F110EaeeemqZExun00nDhg1JSEgo7aVUXvKw+6CBsTLysZtqRlo0QgCwLHL+9yTpwFOpfahd7RUcWQ47KUASBOIxwiLD1JzYrjkvFbIZZ4mJTZUqVTj99NMP+l3Dhg0Lv+vbty9du3Zl8ODBPPzww6SlpTFhwgQsy+KWW24pqeUoyiFJSEigXbt2tGvXrrSX8pc4HJVsSH1ZYium1iVyDk0eRUcDCNKWxgH88SXp2SvYRTXe6PIHbYI17XMUYCwZF8aNJm1rPNiFn2BEqUZ0b680OOZeQafTyfvvv89ZZ53FNddcwwUXXIDL5WLx4sXUr1//WC9HqcQ4HI4y/VJKiQDGhSZuLTfG9SXFmQfrixauucn9nylkn+wYjrf9m9QM1TTHhLATDeS4yPNI0sFuoBUVri8aHIN8h4O5KNLT05k6dSpTp06N9uUVRVGOjJ2YjgGRYwNigGSMtRNP0SQBMNbKgXXEb5uLjxi+bNIb4sdTK6+WnfYcg90bLR4jNrHYVo0IWdso318poRHISoDT6cTpLHupLU6nU3+DV8oWQezEgEjXloVdS5OLPZdGBMkBgZWP4sbiNQZTvaNpLFyvoJ7dmFMEh/B7ccmJBXUAY9XUieYNlh4qNhWc2rVr8+9//5sWLVqU9lKKkZ6eTtOmTVVwlLJDFsaykVk0UvMSg3GlWeF9ghR1deXvhHUvAzA/5b8k1JsIQP1A/aJWTUH4POKek+SAvPA+ndCx0Er5pGnTpgwfPpyCgrJXkuxyuahSpUqZtLqUSkgIY9XIFE0wT8jIdGcwVk0edpDfCdbPk3BbXubSl7NbtuI11xYA6ofCcehIq0Zm2QQjPicA9YEmUbq3MoCKTQUnPj6e+Pj40l6GopR99mOsGgnYS3sZMAITj927TASnAAgeIPjL07iByZ5beKsJPODZDEBDX0Pb1ebHjtG4MO44B1Al/GoBpEb7JksPFRtFURQLM0rAiy02LswTUjoxR45wFivFA6x8HndwP59zKic2O4VYK8QWd9iy8dU3AuWJOI9kr8VgijeTMCLT6hjcZymiYqMoipIF7Ai/F1GJnDUDtvhENt/05xNY+yhu4GHH7bzYBLYGt+J3+KkRqEF8IN7uFCC1Nsnhz8nhVwImKaAC1tZEomKjKErlJgRswp41I0PM4iK+j8xhEVdaCPh5Cm7fTv5HR2o37UXN6rDEsx6ApgVNbYFyYbvhErHFJi78aoWd4VZBUbFRFKVykwX8EX4vWWYBTEzFixEVL0VHODuAkJfg9w/iAiZwBw91cIATfk78GYDjOd5YLVKX48S4zAj/jMd8nwbUjfI9lgFUbBRFqbxEWjXSENOLLSjx2L3MZNaM9DP7cSquvG2spB2eZufRrLY5x8qYlQC0c7QzVosLkxhgYT47sC2aWKApRnQqOCo2FZzc3Fx27dqF1+v9+52jhMPhIDU1lapVq+LxVHBfgVK+2IPJQJNBZuL28mPXxUhLGWm+GQMEvQSXPYALuJ+xjOvsKHyafhX7FQCdrE5GREIYUSF8fqnZicV83yzaN1k2ULGp4Kxbt44ZM2awYcOGUluD0+mkR48eDBgwoHAiq6KUOkFMZ2fpUeYGsrHbxojbzEHRiZohYNWLuHK38gNtCTTtR9s65rusmCx+cv1EjBVDx1BHYxFJI06xXuIwguMBGmC71io4KjYVnJ07d7J48WKWLVtWamtwu92kpaXRp0+fUluDohRjN6YHmkzPlGp+D3YdTQJGfJLC+7gBXz7BL41Vcw93Ma6b0+zvhi+tLwE4kROJiw1nGMg4AbFuxKqJwxRxVpIGGio2lYCyMq+lrKxDUSjA1NVIsWVM+L0kAkin5gKKjgcIAsufw5W3nRWcQLDpBXSoTmHG2QJrAQBnOc4yQiUxHnfET7Fq6mKSAyoJKjaKolQ+/sC4zCQpoAAjMNJ8M/LJKLGcXCCQTfCLibiAcdzL+F4Oey6NCz52fAxAr2AvY7mIyMikzliM0MQAjamwfdAOhjalUhSlcpELbA6/F/eZGyMC0k4mNrw9HnvCZirwvydx5e/iK7oS3+oc2tWi0PW21r+W3/iNFFLoHNPZnF86Dch5JF5TA6gW7RstW6hloyhK5cHCTOGUJACxYvKxe5X5sd1pB7CtkgN7CH75MC7gTscDPHuaw+wTTgJ4yfcShOAC9wW4E9125wAZTyAvDyZWU4msGlDLRlGUykQ2dluaYPiz9CtLwIhKIkYIEjAWjvRLWzwBV8EBPuIsmnQ6nebiBvOC1+9lWmgaAFc5rjLnlxhNHOZJKy60quFXJUMtG0VRKgdBTFKAHxOjCWHPqPFiBEHSmz3YXZqdwB9bCH3zNE7gLtdEZp8ePj5cNjYtNI2d7KSdqx0nx5xsu88CmEw2ad7pxlg1lbDcTMVGUZTKwZ7wSwaXSTuaAuwMNAf2JM4Ahd0DrMV34gz6mMlFnHFqB+pVodBy8Qa93J97PwBj48bi8IRzmRMpWijqxlg01Y/FzZY9VGwURan4eDFtaVwYUfGHX3HYFk429rA0L8aqcQC//QDfTacAD4/Gj+eTHuFz+syxU5xT2MY22jvbc2HChcYSkkJRSQiQeE0ljNUIKjaKolRsLOB3bEtGUpB92LNr/BhrJh/btRaexBn69BacWDzLNVzRqympVcLnDUJOfg7j88cDMC5+HI6gw1g0AYrOvHFgss8qWQZaJCo2iqJUbA4Au8LvwwH9wmw06X2Wh532nBV+7wZWLcD560dkkcrsGmP5rHP4fOGg/4M8yB/WH3T2dOb8pPPtNjeREz3lZyMqrVUDKjaKolRkApiamgDGesmmaAqyBPkd4X0SMRaND7AC+OfcjAcYzx2M61cNdwqF/dF+cvzERN9EAB6LewxHrMNudSMpzyI2taiUGWiRqNgoShkmGAySlZXFgQMHCIVCpbaOmJgY0tLSSExMxOEoR828dgF7MULjoKiwyAA0L+ZJWICdogyw5CU8u1azkUZsaHkdvVqFzwMEggEuz72cAAGGJwznlNhT7HoaP2YwmszGiQXqUekLTVRsFKUMk5+fz8KFC/noo4/w+/2lto46deowYMAAOnXqVGprOGLyMFaNM/zyAjnYowMi93NhxCKbcPeA/fg/GIsHuN35EA/2izPiEZ5HM/HARJYFl9HA2YCHUh8qOhxNhE2KQWsBVaJ+t2UeFRtFKcP4fD5WrlzJ7Nmzyc/PL7V1NG/enC5dupQfsQkCW7DTlyUxIC78XSJGZCSI7wu/dwK5EJp7H5783XzBv2hyZn+aVQ8flwPLYpdxT949AExNmUpKfIp9jiBFh6XFY8YIlCNjMFqo2ChKGceyLEKhUKl2zbYsq3x17d6LqakRYzAOIy5gu80k48zNnzLSfsX68klCOJiY9ARvnusoHBOQU5DD4KzBBAhwQ8IN9HD1MOdIwgiVjBOQBIFa4W2Kio2iKBUMH8aqCWLEIzv8Xoo1xQKxwtuktiYsPr4Zo4i1AkxhKFcMOJFE6S4QCyO9I/k19Cut3K2YUHtC0fhPELtmx42xntSqKUTFRlGUikMIIzTSTFO2xWHPpJGMMynazMeO2Xz/PrG/fEgWqSxqMZ7XT8aIiA9eOfAKr+S9QjzxvJn4JvG+ePMElWmeSdgjBZyYeTWSbKBU9vwIRVEqFFkY95kPO0gPxvoAO3ZjYWeLxYW/t7zkvXkDAOOddzP+4ho4QoAbfnT/yNXZVwPwVPWnyEjLMMKVjBEvsV5kVEEKxoWmFKKWjaIoFQMfpiWN9D7bjxGXPMyv1cHwe6mvycYe0RwL/rceImH/Bn6kNennjqRJNcCCbF82/ff2J598hsQN4YrEK8z1CrAneUqXaHf4Wk3Qp+uf0D8ORVHKPyHMnJoCCnuWFRZVJmC70KQ9jYfCzDOCwN6NsHACAI+mP83kf7sL63BG5o3kt+BvtPa05pkqz+BwOexpmzIUTVKpnZjBaCnH4J7LGepGUxSl/LMX2I1taUgVvx/zlPNjRCYGW4hiMEIUsjjw8nV4Ql5mcAnDRnQjJmwJvZr7KtNzp5PgSODNOm+SkJhgjpVf073h88Viu+Qaok/Wg6B/JIqilG+kozOYJ1o+pn9Z5E9f+H0eJj6TQ6FIBNfMJWXtB2SRyk9dH+XkhkA8/Ob5jatzwnGa5Kdo6WhZmCxACCNU8eGf0gKnTvizUgx1oymKUn4JYjo6S/GmWDYOjBDIILRk7DRnN0Z0sgByyJ12PSnAIwnjuW1ALQiAL8fHRVkXkWvlcnHSxVxe5XI7JuPHHoTmC68jDpONpkkBf4laNoqilF/2APuws8/EfSbzZCLrYGLD72X0cyLse20cKXlb+B8d6Tp8BCnVgXgYnT2alQUraeJuwgvpL+DAYawhccdJxwFJd3ZiujpXwgmch4uKjaIo5ZNcTO8zMGJSgMkwy4l4+TEWTDZ2+nM4mB/auoKUb58kiJN5rSZzTisXOODNgjd5Kv8pPHiYWXMmKYkpxqqRmEwKxmqS2hwXZvqmJgUcEnWjKYpS/vBjss+ka7OMdAYjCJIY4InY38JuUeMNsPvxodQgxPMxNzFqxAngg1+9v3Ll3isBeKz6Y3Ryd7JbzxC+XggjXOKSi8F0CtBf3Q+J/vEoilK+sIA/MBaLFGnGYBdwSqaZWDJx4Z/O8PZE2PXu49TY+z2ZNKTuVfeQXhVyU3Lpf6A/OVYOFyVdxLUJ19q1Of6Icydg3GcOjNg0iLiG8peoZaMoSvkiC9iOXUzpw7jUwGScSdGmTN/0YNxe+YAbgn+sJ+XjcQC8efzz3HJCElbIYtiuYfzk/4nm7uZMqTsFR4zDiEsAu9GmCJgIWiqQHu0brhio2CiKUn7Ix7jPHBiBkbHO0v8sAbsBJ+F9xKXmBLwhfn/oKhpaXt6OGcRVN/WGEDy952lez36dREci71R/h2Rvst2gU9KdPdgzbULh89VDn6KHibrRFEUpHwSBbdgxGonJxGDHVGLC+4GxauKxLSALtsyZQsOdi9lJdapc9ThpyfCF4wtuyroJgKl1ptIqpZXdO81BYTsbkjEWjghN3fBn5bBQTVYUpXywC5Pq7MSuccnDnrApLWgiU5PjKHSFeXdvJu2D0QDMbfU0V3Wszqb8TfTb3o8AAW5KvYn/pP/HjsU4MSnSMjpAfnowIlP92Nx2RSEqYjN//nwmTpzIihUrcDqdHH/88Tz00EOcccYZAOzbt4/Ro0czZ84c8vPz6dq1K48//jht2rSJxnIqNenp6Zx00kmkpaWV2hpcLhctW7YkNlb7rStHSRZGbKTBZhATP5ECSxkhAEYscrBrbmIAy2LThKtobmWzMLYfl9wwgBxHDn139WV3aDc943ryYNKDxu0m/0x92OMCnNguOicmKUBrao6IEhebF154gZEjRzJy5EjuvPNOQqEQK1euJC/PjMmzLIs+ffqQmZnJU089RVpaGhMmTKB79+6sXLmSevXqlfSSKjXHHXcc1157beGff2ngcDioVq0aKSlaiKAcBT5MnCYfu0OAVPAHKBxsRgF22xiZUxMw23+eNYWWez5iD+lUG/kMcYkhBmz7P1b5VnFczHHMbDITt+U2+8dhF4gmYheJSrpzLdR9dhSUqNhkZmZy44038vDDD3PjjTcWbu/Vq1fh+3nz5rF06VIWLVpE9+7dAejatSuNGzfmoYceYtKkSSW5pEpPSkoKrVq1Ku1lKMrRIe1o8rAbXkprf7AbYYr1IaOdYzDuMy/s25pJ/QX/BWDxSc/S/4RajNo5infz3iXVkcq8uvNIc4ctf6nViZyD48AWtESgJjp98ygo0QSBqVOn4nQ6GTFixF/uM2/ePOrUqVMoNACpqan06dOHuXPnluRyFEUpz1jATozbzINxjR3AnlEjtS+5GCtGZtTkYUQqFixPiK0TLyeJHBYl9ef8Yf9hUs4knjjwBB48vFvzXVr4WxjryU/RuhrpDpCI7Vqrjy1EyhFRomLz5Zdf0qJFC2bOnEnTpk1xu900a9aMZ555pnCf1atX07p162LHZmRksHnzZnJyckpySYqilFcOYMYGSPaZ1LbEYVfvS8dlqeRPCu+bbX5+/fQTtM5Zwk5q0PS/z/JewRxu3HEjAC/Vf4nuNbqbY8LFniRjMtiSMe1nZEyBG9PRWd1nR02JutG2bdvGtm3bGD16NA888ABNmzZl9uzZjBw5kkAgwA033MDevXtp1KhRsWPT001l1L59+0hKKv43OnnyZCZPngzArl27SnLZSiXBsiz8fj+BQODvd44iDocDj8eDy+XC4VB/zEHxAlsoGqMBu8GmxGokMy2IER0RHC+s+3Y1Hb65HYCf+76I1WA1A7cMxMLi3ir3cmnqpeacEpNJwK6rETddLHZH5xqo++wfUKJiEwqFyM7O5uWXX6Zfv34AnHHGGWRmZjJhwgSuv/76oz73sGHDGDZsGAAdO3YskfUqlQuv18s333zD8uXLS1Vw0tPT6datG8cff3ypraFME8AkBHgxT6hcjGsrsv9ZQfh7Z3ibDyMK4e7O+bk+/M8NJg4fn9e8kpR+9ei2uRs+fFyTdg1jk8ea84mI+cPnlwwzOZd8ro9mn/1DSlRsqlatytq1aznrrLOKbO/ZsycLFixg+/btpKWlsW/fvmLH7t27F6BUU3SVio3X62Xx4sVMmTIFr9dbaus47rjjqFWrlorNwQhh+p7lEG6YibFkYsPfFWBX9udht6YBM2ogHF/5/L476eVfyRZXY9L+ex1nbu5Jdiib/6T+h0n1JpmRAdKGRsYQyAhpGUkg3QJqh8+r/CNKVGwyMjL45ptv/vJ7p9NJRkYGH330UbHv1qxZQ4MGDQ7qQlOUkiAUCpGfn09WVlapis2BAwcoKCj4+x0rI/sxfc+k07L0PrOwCzbBFhzJREuk0ApaNHMRZ216hAAutg57iosLzmNnaCdnxp7J9JrTceGyB6wFMEImadRSuyMpz8mY4k11n/1jSjRB4IILLgBg4cKFRbYvWLCAevXqUatWLfr27cvWrVv57LPPCr8/cOAA7733Hn379i3J5SiKUp7IxcRpXNijAyQDbX/4e5lX48UO3guxsG77Hpq/9384sfi2/S0MafBfNgU2cVL8SbxT/x1iQ7HGYpHMs9yI9yFMcoAIlxvtfVaClOgf49lnn0337t0ZPnw4u3fvpkmTJsyePZuPPvqIadOmAdC3b1+6du3K4MGDefjhhwuLOi3L4pZbbinJ5SiKUl4owNTThDCxE1/4vRsjKmLJhGtnCptv+sOvBMgvsNjywJV0Zyu/JHbhugs+4Fffr7SNa8v8xvNJdiebfeOw4y8FGFeaK3weF7YbrS5GfJQSoUTFxuFwMGfOHG677Tbuuusu9u3bR4sWLZgxYwaXXHIJYFxp77//PjfffDPXXHMNXq+Xrl27snjxYurXr1+Sy1EUpTwQxLjOJE4jBZnSrdmNPeLZE94n0s2WC+yHdx58lkH5czngSGXMMBffW6s4znUcH9X6iHRHul03I9cAO/ssFHG9OKAKUDXqd16pKHEDMSUlhWeeeaZIbc2fSU9PZ+rUqUydOrWkL68oSnlCBqHtwQiAFzszLA87luLDWBkiBuJGcwJJMPf1VVz4m+kS8OA5nZmb+jH1PfX5pPEn1LRq2vEeERUPthUTMucozECLwSQFaE/8EkW9kYqilB57gL2YB34udgNNQcYDSEU/2Jli4e7MP/2aTcu3BxCHj3cbn8IDHT+muqs6Hzf+mAZxDeyBZ8nYNTpSHBoMvxcXnQMTp9GesSWOareiKKVDDsZ9JjUzEp+RV2TRpiSperBFIQey9lqsv/dqjuc3fo1vwqCBS0lxpLCg1gKau5obERMLRgRKJm6Kq076nyViCje1X2xUULFRFOXY48MkBEgrGCd25b4P270lVkkMtissXLgZiodX75nKed4Z5DoSOO//fseKjeO9xu/RIbmDbbFISnN++HqS6ebAWDcp2OnT2mQzaqgbTVGUY4t0CCjACEwORghkIJofWyRkKFpM+CVV/g6YNn0lQ7eMBGDEmQmsrb2Xdxu8y2lJp9nzbqRoU4QrObwGqaXxhtcQj+kSIBM/lRJHxUZRlGNHCNPJWeplZDiZzKdJwE5BluSAyJiNBfjg0xVZnP7hhcTjZXLT+rx2yhamVJ9C34S+9jFi0YhLThAhk+vEYtKcNU4TVdSNpijKsWMPsC38XmI0YKwLialIlwAHxuIIUqTeZsNWC9/jl9GUDSxPqs31F2/h3pr3MrTaUCMYMdjpzFK0KbEZqd9JwFg2LkyKc5Xo3bJiUMtGUcowDocDt9tNbGwsoVDo7w+IEjExMbhc/9DHtBdj1YjVkY098CwXO/ifgxGNWOwuAeEpmXkB+GD8BK4LzmOfM4n+l2/n8pojGFtjbKHVQzImFiMFoDKSoCD8XQy2uy4djdMcI1RsFKUMExsbS9euXQkEAvj9/r8/IErUrFmTJk2aHP0J8jCZZxKjEYtG6l38EdssTGwmGP4ca95bAXjivoWMyRpLCAeD+wU5vn5PnqrxFI6Aw36aFWCPdhY3nRSASuJBHMZqqoPGaY4RKjaKUoaJj4/njDPO4OSTT8ayrL8/IEq4XC4SE4+y9bEXkxAgDTVFCMSJL1aFpDTL6GcRgfBxL8zYwIg1A3FiMa5TddafmM439WbhTnCbYwvC58jFHj0g7W/ACE0qdvZbLbQdzTFExUZRyjBOp5OkpKTy2w3djxGaHMzTJgc7cC/jniXt2Y8RGhdGBHIxLi8PfPRVDl3fu4B09jGvTk2eOdfHN43eo0pMFSMmyeFjxZUWPo4QRnRSsQeu+YGGaJzmGKNioyhKdAhikgG8GDea9DGTjsqxmIe/9CzLwa67kQmZPvj1D4v8x4fQjlX8Gp/OkEt3Mrv+xxznPM5cx4ERnETs/mlgi410DRD3WjomKUDjNMcUzUZTFKXksTDJALuwLQqplXFhi0Iw/J0He0CZZJEFYJ8XFtx+P+cF32a/M4G+l+/ljoYP06NaD5NRJmIinaKlM4AkAEhyQUz4/PGYvmcapznmqGWjHDaWZXHgwAH27dtHMBj8+wOihMvlIi0tjZSUFBwO/fW0zGFhRGY3doZZEHu0s1gyYNe6SDV/AYUB/YAPJo17l7tyxhHCwcALg7Q/7j/cVP0m23Um/c682E005bwJ2EkChNdSB62nKSVUbJTDJhAI8NVXXzF37lyys7NLbR0pKSmcf/759OjRA7db/wmXKSwgCyM0fuz2M/mYh7wj/NmNHbwX95aMZQ6nQT/+zPfcvGkwALedksrmDnX5ptZL5heMP7vOJF4TF16HZKBJooEDU7ip451LDf2fqhw2oVCIX3/9lXfffZddu3aV2jpq1KhBq1at6N69e6mtQfkLcjDTNkVIpN5FCjPBjsuAsUxyMZaJ1MTEw6sztzHwyz4kkscrTWvwzFk5LG/2NklxSXZWm7SuCbevKTJxM9J9JvNpqqBxmlJExUY5YkKhUKmm4ZbmtZVDkIfJPAtiLI087G7L0u9MiByGJrEbF+CFxT/k0eKN86jHVr6sWothA3fwQt1pNLeam32SsJtpWhHnA3u0cwymwWYexlqqhUaoSxkVG0VR/jn5mC7OQYwI5GM6BEh/M3GXgW2ZSLuY+PC+wG9/BMl9cBDdWcbmuGpccMUO+qVfzGVpl9nnTsAIh7SykdhMQcQ5pe4mBeM+0yddqaNaryjKP6MAIzQ5mNoZmUEj3Zrjw58lGy0BI0A5GJEJAYmwew8sHXMz5wbnsN+VQq/Ld5OU1ojnGz+PwwqbRTImAOyBZ5KRJp2eZaqnNtgsU6jeK4py9AQwQnMAIyKSTSaNNaVdjNTTSHZYAkYUAHLA64BX73yKUXlPUICH8y8u4NeaDr6o+xqpcanmuCBFxYbwex92H7WEiOvVwB66ppQ6KjaKohwdQYzQSDpzNsaykaeKzKIR8Qlgu7xiKYzjWB547o53uOGPGwC4/dzGLDnuN26udjOnxJ1iBEw6CySGzyPTNP0YKybOPh9+zGyaqtG7deXIUTeaoihHThDTWDMLE4T3YQf8xV0m1oY0wfRixEjEKcGcZ8qTX3D1L5fgxOKtU3vxaMffaBnXkvuq3Wf2k0QDsF1nkSOeZbyz1OxUQzsElEFUbBRFOTJCwB+Yws3I4WciBILU0jjC72VKZgGFsZpZc9cw4PO+xOHjh3YX8Z8zFuLCxfRm04lLjTOWjBMjVJEdAQqw63jEUpLRAnVQn00ZRP9KFEU5fELADoyFIhbGXuxfWw9ghEe6Lou1AXaac1iAPp2/mZNf70UaWWxo1JdBA37ACsAtVW+hY2xH21JKCV9HCjJlHEESRngSsd1pdbG7CChlCrVsFEU5PGSk8y6MKywX230mrrN4irq2crEbbMrkzRB8v3IX9Z8/i/r8Tma1f/HG6DasDvzC8THHMy59nDlOrCQZFSBtbtzYXQEiBqtRF+OaU8okatkoivL3SL+zHRHb4rAzvwRpESOCIB0CpINAHKzfcQDnA7053vqNTYntyL/nYe7ZfRoAk5tOJi4+zhyTh22lSGGoWFNgj3eOw8RoxE2nlElUbBRFOTQhTK+zPeH3bmBfxPcHsBMDxAoRYjAiETKvHRvy2HVzX7qEVrAtpim1HpxPj9z/4Lf8DKs+jG6p3cxxbmzXmWSySQGo9ECLwR6IVg1NCCjjqBtNUZS/JoSJyezAuMxyMC40efi7sJtgFmC71/KwLZCw6+xAto/1t1xIF/9n7HLVJvXJj5kRv4CleUup6arJg9UftK8bWZcjs20kww3shp5VgZrok6wcoJaNoigHx8JYNFuxrYY4isZMwO5tFvk0OYCxaMIi4XUFWHnDQE7LX8BeRzWc4z7FWzuFW366BYDH6j1GlYIqdnNNERuZdyNFojHYlo0H0/NMZ9OUC1RsFEUpTqTrDMwDfx920D5iZHMx95UkCoR7mQXygnxz3RBOz36XLEcV8m/9mLoZLRmWOYw9gT10T+nOwFoD7Y7Nsdh1NT7s9Oo4TAaadCmoiz2VUynzqNgoilKUEEZkdmAEIBsjAAXY4uLCrnMBu7uyfB9urhmygnx74xWcvnsG2SSx5+YPadq5Pd8c+IYpWVPwODw82/hZM6PGHXENcZ1J1wCxknzhn3XD11DKDerpVBTFJoTJOtuKHegXl5XEaKSIE4qmPB/ACFN4DLQVG+K7/17FKX9MJ4dENg39kKbduxCMD3LtzmsBuDn1Zlo4WxQtBg396b0017TC69AhaOUStWwURTFIHY24y9yY5AAw1koexuJwc3DXWVz4HDmAJ8SyW0bQZes08ojn50s/oFPPf0E+vJTzEivyVlAvph531L/Djs8Ewi9v+DoSo4kJXzMWkxCQcpDrK2UeFRul0uDxeDjuuOPo0aMHPp/v7w+IEvXr16dmzZqldv2DEsQu2CzAFhZxa0lmWD5GHELYBZ0iPvEYoXGFWDX6KjptmEo+cawY9D7/6tsNQrDXu5fbN98OwKMNHyUxIdFcOwlbcGRAWgDbVWYBaWiKczlGxUapNCQkJHD22WfTsWNHQqHQ3x8QJeLi4qhbt26pXb8YQWAbdq8zEQ5XxAuM+PiwnxohTCPO+Ij9Y4KsuflK2m54hTzi+arf+5x56RmFqdF3bryTPcE9dE/uzoD0AXZdTjDi2uLc92O762oC1VHHfzlGxUapNLjdburVq0e9evVKeyllhwAmPpOL/aA/gN0ZID+8X2SHZUHa+gcIJxEE+HXM5bRa/xq5JLCozwf0uej0wnkzy/3LeS7rOVy4eKruUzgCDnsN0nVAanMC2K65OMxsGk1xLteo2ChKZcWPsWj2hd97MS6zAHbtjMRgHNiFlE5sKyQBI1ShAjaMGkTzjW+RQyIf9f2QfoNONdfxQtAV5OqNV2NhMarWKDJSM8yx4o6Lw47TyJRNsWx0rHOFQI1SRamM+IDNGNeZxFwkdTnSfSYJARKktzDiJNlhbsDhZfOt/Wiy8S32k8L7535Ev2tONb3K3IAfpmybwv9y/0fdmLrcVf8ue9qmK3xuF0VrdvIxcRvt4lxh0N8XFKWykY+ZsClxEj/GdSZPAwn8S/C/ANuSkV5l0rLGymHrTefR4PdF7KYqH5z9EZdd2sE+dyLsdO3k9g0mKeCJek+QFEqyU5pd2L3P/OH3ceFr1Q6/VyoEKjaKUpnIBbZgxELiMdIORmIyPopOxvRjWz9OjAWUBxzYxx+3nk3dnd+wg5osOO8ThlzS2uznBRLBsixGbBrBvtA+elXpxYV1L7Snb8q13RgrRtxoDqAeOi6ggqFioyiVhf2YGI0XYzFIWrNYIZFZZ2LZSGv/AoxbTNxeO3ewe3RPau77kU004NMBH3PFlccbkcqjsMfZGwfe4N1975LsTGZyw8k4PGE/mVhJnvC5Jc06HmPRJEX1T0IpBVRsFKWiE8IWGiv8yiZcfEnRmhkZThY5kyYxYv8YYH8m+0adSbXs9fxMC5b2/5ihF4cz/GT8cz5sO7CNkRtHAvB4g8dp4G5gr8kKX1dGPYewRzqnROePQSldVGwUpSIjfc62Y/c5i8HONJMaFy/GKhFXmUy/hMKhZxSA9dsqcu7qTZp3O8s4kZ/+bwFDz6lmBCOc4owDgvFBhmwcwr7gPv6d9m+uqHGFuYYv4vzS9kYSE2qg3QEqMCo2ilJRCWJEJiv8PrIjgJ+ivc482J0CAhgrRtKQwx2XrZWf4x3fl+TAfhZzOttHzmXIOSlGQLzYkzUdMGbzGD7O/phq7mpMaTUFR6zDfCcZagUYYfGa/akGpEf/j0QpPUo09Xnp0qX07NmTGjVqkJycTIcOHZg6dWqRfbxeL6NHj6Z27drEx8fTtWtXPv/885JchqIofkyx5n5sN1UWxrLJxghDAbY1I2nNDozoiBDkmH2CS+cQuK8n8YH9vEV/9oz8kEt6ppj94zAi4jTnnbFjBo9sfwS3w81bx79F3diIbgnSMUCyzyTrrGo0/zCUskCJic2qVas488wz8fv9TJkyhXfeeYdOnTpx5ZVX8txzzxXud+WVVzJlyhTuvfde3n//fWrXrk2vXr1YuXJlSS1FUSo3ktq8EyMoYqWI64rw+/zwdwfC3xdEnEPGPAOBt5/Dcf+FeEI+XnBeTcItM+l/Wpw5Xrr+uIBk+Mz3GUM3DwVgUt1JdIvpZsdlpNtAEDPK2Y2po0lDXWeVgBJzo82cOZNgMMh7771HUpJJJTnrrLNYtWoV06dP5+qrr+aHH37g9ddfZ+rUqVx++eUAdOvWjYyMDMaNG8e8efNKajmKUjnJwVg0+RgXmB+7MBOKu80kQcAfPla+cwDxFgXP30HM+xMAeMBzN6c+MI5TMxzm/N7wK5yivCR7CeesOwdvyMuIuiMY0XSEEZbk8LX9GFeZN3yddLSxZiWixCybgoICPB4P8fFFJxqlpqYWNj2cN28eHo+Hiy66qPB7t9vNxRdfzMKFC0u1E6+ilGssjMtsC3atTB6m2j8XY73kYxdORv7Pd2IEKTa8Xy5QUIDvwf8j5v0JBHBxQ9xL9L7vLiM0UmuTHL6GDz7d9yln/3o2eaE8Lq95OU8f/zQOp8POcJPrSDFodUxCgApNpaHExGbIkCEAXH/99Wzbto2srCymTJnCp59+yqhRowBYvXo1jRs3JiGhaLVWRkYGBQUFrFu3rqSWoyiVhyBmhPMmjNWQhe3eCmFX/0sNjKQxQ9FBZQkYCygrC+/ofxP7xWvkkMjQ1Pe4dsIVdGgUPj/h88WAlWTxyO5H6PVrL/JD+VyRdgUvNngRV8BlC5v0XUsMn78+xqLRZlmVihJzo7Vu3ZolS5ZwwQUX8OyzzwJmfsjzzz/PxRdfDMDevXtJS0srdmx6enrh93/F5MmTmTx5MgC7du0qqWUrSvkmgKmfycEIRwIm9hKDHfCXVxyFxZaFMRo/drGmEziQiXfsOcT9sYYd1OSG2u/z+CMdqZOCXawZa/bfF9jH0E1DeWffOwDc0uAWJtSbgNPjNC48aUeTgrG0XNiuMxWaSkeJic3atWu58MILycjI4Pnnnyc+Pp65c+cyYsQI4uLiGDRo0D86/7Bhwxg2bBgAHTt2LIklK0r5xgvswM4sy8e2XDwUHREgYkLE5wTsDLUEIHMZBbefS1zOH/xEBnc1+YAX72tImmSKpYT3zYW5vrmM2DyCHf4dpDhTeCXjFc6vfr7dMdoTPiYO2xqqhnGfqeusUlJiYnP77bfj8Xh4//338XjMv7QePXqwZ88ebrjhBgYOHEhaWhqbNm0qdqxYNGLhKIryN2RjhEYaaOZiLI4Q9sNeXFgh7JTmILYQODBtYXKBJe8QmDSYmEA+n3IG0058m9duqEK8zJgJu+K2x21n1IZRzMqaBcApiafwcr2XaZbSzOwX2VSzACM2Hszws6qo0FRiSkxsfvzxR9q1a1coNELnzp15/fXX2blzJxkZGbz77rvk5eUVidusWbOGmJgYmjVrVlLLUaKEy+UiNjaWmJjS6/seExODy1VJJ2lZwF5MWrOMTZaUZgdFh5tJH7PIdGcvRhASwvu7Laz3HsQx4zbcwFQuZ9W5z/PKiBhckh6dD4HEAM/seIY7f7+T7GA2Cc4EJjadyLW1r8VZ4DRCJ408kyjaGSAdIzTqOqvUlJjY1KpVi5UrV1JQUFDkQfTtt98SFxdHeno6ffr04a677mL27NlcdtllAAQCAWbNmkXPnj2JjY0tqeUoUcDlctG2bVuGDBlCTk7O3x8QJZKTk2ndujVOZyV7egUxrWd2YIRkP+Zhno/dy+zPfc4iuwVId+Ws8PncBYSeHoHz42kA3MpE0gfewuODHDjc4f3d8MWOLxi5biSrvKsA6JPahyebPknjKo3NeULY6dXS2sYXvnZVjOtMqfSUmNiMHDmSAQMG0KdPH6655hri4+OZN28eb7zxBqNGjSImJoYTTjiBiy66iBtvvBG/30/jxo157rnn2LhxIzNmzCippShRwuVy0alTJ1q3bl2Yzl4aOJ1OEhISKpd14wP+wGSdubAD/R7sSZcySTOyZkbGB8gflRtjcezcRfDxC3H9+gV5xDPE+RoXjOzHwK7hc7hhe8F2btl8C6/tfg2ARjGNmFR/En2S+9idAMSaCmEET9xosZimmlWi+GeilCtKTGz69+/P/PnzefDBBxk6dCher5emTZvyzDPPMHz48ML9pk2bxh133MHYsWPJysqiXbt2LFiwgA4dOpTUUpQo4XA4SEhIKJa6rkQRC7sjANjWSi52i5kQtovKE94eWayZiwnuy//2HT8SuLMv7j2ZbKUOg+Pnce99J3JqK7NvMC/Ic1nPcce2OzgQPECsI5Yxtcdw63G3Eu+ItzsBSPzFgREXsEWvFqZLgMZolDAOy7Ksv9+tbNGxY0eWLVtW2stQlOgihZpbMRZDLnY6cza2tSINMGW88gHsJADCx+VjUpxXzCM4cRAuXw7f0Ykbqs3h5bvr0DwcLl2Rs4Lh64ezLN/8/zq3yrk82ehJmjibGMFyYkTMwnwWAzcpvI4ETK+z1BL+s1DKBYd6NmvXZ0UpiwSx3WaSQSatZILY1guYoL+0+Jf/0ZHWTgJQYMHrD2DNuhMXFjO4hJeav8i8/8ZTPRlyfDmM2z6OJ3c8SYgQ9Tz1eKrxU5yXdB4Oh8Nu2umJOHcQ24WXjxGc2tjtaRQlAhUbRSlrFGCsGR/GgnBjN7KUWEkkMeHvIos1pSeZA/DlYj19OY6ls7FwcDsPsPn0Mcy/yUGcA+btmMfI9SPZEtiCEyejao3inpr3kJySbK4t4ibXFvFzYbLhpONzHXSUs/KXqNgoSlnBwgT2t2O3k8nBxEPysGtXpP1LArbrTCr0pVhzH+G2NJmE7j0PZ+YqDpDMJbxOp/7n8trl8EdwByM3juTtvW8D0DG+Iy80eYEOyR2MFSOWjMSGIsc4y9hmid3Uw1g4ivIXqNgoSlkghHGZ7cYISTx2DMSJLSQySbMAe2iZpDwLUqz59ceEJl2MM3cvv3I8//HM5Y7rWjCgg8XL217mph03kRXMIsmZxPi647m2xrW43BE9zSxsAZHIrhSKSgFnNUzBplYtKH+Dio2ilDZ+THxmP0YoZEyzjHB2YbvJwC7g9EQcL21pYgHLgrmPYE0dg9MK8QFnc3PaDF69pwrVGmTSa90wPs75GIB/V/k3zzd+ngaeBrb1IllsAexkAH/4/BYmndmDEbSaFE1GUJS/QMVGUUqTHIzQ7MVu8S+1M37s1OYczP/WWOx5M5GTNePl2Bx49kr4/E0cwL3cyfuN7+bjO2Ge81luXXUrOaEc0l3pPFnzSQbVGoTDEx4FINeTRAQ3JuPMwghgFYy15cROBqhEpU7KP0PFRlFKgxCmG8AejLAkYB7qUqgpHZPlf6j0PZOhZWAH7sFYQHt/xXqoH46tazhAMv/HdJJOP59pgzdw6a4rWZK/BID+6f15utHT1KSmcZMVhK8tGWcSo3FGbHdhhMaF6QignZuVI0TFRlGONX7s+IwLUwfjwU4CkPhHZNNMV/izjA7wYkRKal+WvoP16BAc+dmsoSX9He9w+RXHE3PKJDr/fht5oTyqu6rzbJNn6V+1vzmntLiJpahwSVxGBM6FsWr8mIyzVFRolCNGxUZRjiXZmCaaWRjhkOJMsSLcGOtCJm36MdaHfA/hkc0YsdgXgHduh7cfxgG8yQBuin+Ju689wCu1uvHl5i8BGFh1IJOqTaJafDXbegEjJtLTTJpousPnltRpca/VRdvPKEeNio2iHAtCmHTkndjuMqnGj8GuYYkMtgfCP3OxEwciv/dthwcuhl8+J4CL0TzMR/Vv4P+Gv8L1wWvJz8mnlqcWzzd+nvPSzzMCIlZTAXbTzj8H+EPha0vNThomESAJRTlqVGwUJdr4MSIjbrMs7GJJyThzYlxjjvB3EniXlOcgxtKRaZw/LMGaeDGOfX+wjdpczEziupxA0rk9mRD4FIBLky/liaZPkB6Xbp/LCh8vnZnBTgCQ2TfSiiYm/LMWWkOj/GNUbBQlWljYbrMcilonUhwZQ/HKfxdF61tkXEACsC8E7zyINWMsDivEIroziBm0P3cdizvWwBfwUsdThxeavMC5CefaacuuiOuDLWqe8HmlTicFk4Tgxrjq6qJPCaVE0DCfokQDmT0jTTQt7IwusSRk6BnY3ZzFpZWDPfFSyNsNj58Dr92OwwoxntsZkPghVa6ayIKOp+HDy5BqQ/ip3U+cm3aunb4sg9KkficQXoMImYU9A0dGE1TFdAVQoVFKCP2npCgljRdjzezCPPCl9YwPe4yzAzuVOA47SC/ZXy7sws4qwC9LYcJFsHsre0jnUl5lVcMO5FzQlr1VfqOOpw6Ta07mnCrn2C44aZYpFow0zhQXXiB8bYkVpWBnnEmWm6KUECo2ilJSWJh4zE6MS0wsC7Fa5KEu1kssxmUVWVMTxH7IxwH5IXjtYaxZd+AIBVnKyVzMTHwdv2dXr0bg8XFF9St4tOGjVHFWMWIiiQWSYSaCI+sQS6cAk8YsrrUQUB/t2qxEBRUbRSkJImtnxJpxYyyTfEz8488dm2WSplgd+eHziOWTtRMe/j9YsRAH8BCjuct9D4FzbyDQfgr1XPWY0mgKvav3ts/pxrScEStGXHF/tlIk2yyAEZ1qQI3wOhUlCqjYKMo/RVrOZGGEIxsjFg7suIx0a87FHpscKQBSa+MNn2/dInhoEOzbwR6qcinTWVy1Ld7+XaH2D1xR/Qoeq/0Yqd7UonUzEouJxSQfSHfoyE4AofCravhnTbTHmRJ1VGwU5WgJYnqa7aForMWPnc4sRZMiPlLfko3tWhMcQKwfXr4Ha94DOCyLzziNS3idP1ouJ9i3NTWT45jSdB590vqYY6Qpp1gvTuzRAJEZZ57wmmQsQV74mlJDo/EZJcqo2CjK0ZCHSQDYg/lftB/zQM/FdqE5sccEiOCALUoBinZr3pEJD14CP39NCCf3cyf3O24j0HMMdHmS/6T+h2erP0vVtKr2OiKz2GTkgHQikLoacd8VYOJAORhXWy1MzMaBokQdFRtFORJC2NZMZPW91MvIKACJw/gxD3eZagm2AEgtywFg1Zvw7DDI3c9WR10usWbwZWpTQv1PJ7XRLzzbeAaXVL3EWERejDjJbJsgRkQSsDsTxGKnTcs+qeH9XJiMszhUaJRjhoqNohwuBRSdO5OPHaOR/0k+itbORKYdS+2MI2L/YA68dD0smQbAHM7jSusl9jb/Es5rS7dqbZnefBUNYhuY/SNrZqQzs2STEXHuWOwaGynUFBGsixFHRTmGqNgoyt8hKc27MFaIzJ0RV5jEYbwYt5kD23Um6ceRrrMDGCtj/TLjNtu6Fq8jjpusR3nOORR6jsbd5TkeqDuem+JuwuWMGBojAf5k7IadXowVI7Eb6eLsxfQzyw2vo2r4pTNolFJAxUZRDoVM0czGfpBHDi2T9jLyP0lSjXOxA/ahiO/jgfwgvPYwvHknBAP85GjDRdYbrKkSDwNOoWWzXGY0+5YTEk8wQiZxHQn6i1UjloobIypi4Ui8Jh5blGqH32sigFJK6D89RTkYFsYC2YixaPIx7rNcTMwmO/xZREja/4vARDbXzIv4fucmeOAMeOM2CAZ4ghvoaH3HmtarYMQJXNvqJJa1XGaEhvB54sI//RHXkvNJMoA7vE8ixmoSF5oFNEBn0Ciljlo2ivJn/MAOjJD4MA/7PIylIAIijTIj585EpjtL3Uw8ZrRALvDtDHjmGsg7wE5nLf4vNI2FnlPh39dQvfMHTGvyOue4z7HjK5HBexGdAkzsRzo0S3cAsag82BlpVTBTNbV+RikDqNgoimBhHuQ7MA91aVopGWUiNlKUCXbqsQwck4JJecA7gNBeeORa+GYmAHM5j6GhKeyuuRX6d+ScZk15qekqasbUNGvIxW53I9aICJhkoSWGvxMxjA1/nxo+tiZGbDQ+o5QR1LBWFDCCsh3IxLjP/BixEXGRdjI5GItHOgGI9SExHHf4O4mzrPgYbmgL38wk35HAUKZwPu+yu8trxA3rznMZN/BevfeM0Mh5pPhSAv5Bimacge0682CEh/BxQUy3Zk0EUMoYatkolZtIa0ZiItIgU+IvEoyXTDCp/M+J2Ca4MIH4Pfnw4hj4YBIA/3N2YWDoVdYnJsP5Z3Ni+13MaPYNzT3NTaZbHEWtIQu7x1keds2ONNaMHHYWCL9qYNxmYnUpShlCLRul8lKAsWbWY4RjP0ZksjFxlrzwtn3YGWCRXQBisN1evojzbvgOxp4AH0wi4HBzB/fTNfQF64/7FcfV7bn95A58nfE1zeObm1/3kjGiIWIi1pRcJw7jEkvFWDzJGCGKxQiMB9OtuTYqNEqZRS0bpfIhmWZ/YNenxGLER2pUxEUl+0sqswiMIF0AsoGAH96+D2Y+AKEga10tuTj4KivcraDnDTT813xeqzebfzn/Vfwc4j7zYo8ZiBxu5oh4JWLHcCyMyGjbGaWMo2KjVC4KMKnMuzEP5/2Yh3wWxjqJx3ZVidhIZhnYRZSOiO9jgXU/wbOXwcYVhHDwBKO4Izgeb61foN+J/F+rTkxqtJJUV6oRulyMhRLZciay5Y0P25oSd1kBtsUTAtIxbjMdC6CUA1RslMpBCCMsO7Er6iWrzI1xn4lVk4d52PuxU5zBtj4C4XMlA+4AvPUIvHoXBArY6m7EJYGX+dxxKpzyIKlnPMHkek/xn7r/sQP2KRQfchbCtmAk7iMWjB9juch6LIz7rBqaBKCUG1RslIqPD5MAcADbQpA2//Lwjkxn9mC7uXKwXVbST0zqXdb/Cs9fBr99C8CLzqsYFXiUnCq74YJudGvt4tXGy6jvrW8ETCZgijWTFL6upFjLXJpQxLVkdLNkxDkwac3qNlPKGZogoFRcghh32TqMRSMZZDLMTFr8H6BoOrMQWddyIHwMgBWEDx+FW9vDb9+yy12XXizgqtBkctrPxjXiRCaefC6ftvqU+gn17dqXyCQCsIecpWBcYRIP8kf8lGJRB8Zl1gCTLKBCo5Qz1LJRKh4WxlrYhj1qWRIAwA66SzqzxF9EjKQdjPzviAm/zwO2/ApPXw4/fw3ADNdlXBt4gv2JPujbh+Pb/saMWh/RMaVj0cy1JOyWM3L9SGIxmWZgLJkUjPBJP7OqGLFRt5lSTlGxUSoWfkzvsu3YNSgyd2Y/5mEto5el55ggnZl94e8lS80JOIPw3uMw807we9ntqcNl/snMD54DLd+Gc0cwrHE/Hmswk0R/orGSJB4EtqDFYXckiOypJpllkd2b/dgtZ1JK8M9IUUoBFRulYmBhXGE7sDO5pDgzAbsYU+IxUssi82cis8/EkvGGP+9YA49eDr99B8AM9xBG+h9jf5wDzh5EWvsFvFT7RS6od4E9TyYUPrcE/F3YGWeRfdNkmqf8T7Qwo5r9mEma1dHZM0qFQMVGKf94MTGZnZgHeU7ET2/4JYkB8vAXUZCstEhLprDmxQ9vPAxv3QOBAnZ76nKZ/wXmB86B4z6APldxRr2WTK+xirquuuY8IliSxebETl3+c4Q0JmJbKrYYWZgkgKoHOUZRyikqNkr5JYhxme3G7pQsFozER+Kxp2rKtEyxakQYpIBT2sLEA1u+h8evhMzvAZjuHsp1/kfIiXVCrytwnfAq99e/j9F1R+OyXCaBIA8jGmBbS9JyRoo1/9xyRgTQH35fHZPSLP3OFKWCoGKjlD+kon8bxnVmYR70MdhxGVd4m0zMlIQAEYHc8DYRI0kgyPXCa/fCnIcgFOSPmIYMLpjCJ4GzcDRbiNXnSppWi+P1ukvpnNrZrupPwY7DiJssMh4TE75GLMa95gqvrQCTBBDEuM3S0f+VSoVE/1kr5YsCjLtsH+ahHYsRDrEgJC7jx3aPyThm+dcuD3qJ7SSGj/nhS5h8FWz9BQsHL7iv5+aC8fjigF6XY7V/maE1h/J47cdJ8iXZ7f2lbiYOuyYmctCZZKW5w/tJdlpknEhbzigVHBUbpXwQxFgtW7FrVsQ9JplfUvgoMRmZNSPBeh9GWGSMsz987l0H4M3b4INnAdgc24KBvhf5KnAK7uYfEjhnKNXSCnixzhzOq3ueOcYdXo/UwQhSmyMjCcB2kcWH1yBdoi2My6wa2kBTqfCo2ChlGxkBsBPzcIeio5d92PUpka34JftLXGfSLDMH27UGsOI9eOFq2LuVoMPNw84x3O27AyuhAP49kEDrmZyTcg4v1nqRWu5atoXkwe4I4OfggfxE7C4BFnabGrGG6mBSmzUJQKkEHNY/899//53rrruOrl27kpCQgMPhIDMzs9h+Xq+X0aNHU7t2beLj4+natSuff/55sf1CoRATJkygUaNGxMXF0a5dO95+++1/fDNKBcMH/A6sxTTKzMFupJmLEZ9c7DYuUpEvbrQc7Kp9cV/JcLNd2+GJATChL+zdyurYzrS3VnBb8D5ovYCCa5qR1O59Xmr8Eu+1fI9acbVs95ggVoxYS+K6k1dk7Uwsdip1LGYkQDoqNEql4bD+qa9bt44333yTtLQ0Tj311L/c78orr2TKlCnce++9vP/++9SuXZtevXqxcuXKIvvdeeed3H333YwcOZIPP/yQLl26MGDAAObPn/+PbkapIAQwlsw6TBKAtJdJCL93Y6waaVKZg91ORmIkMjVT3GwSCwmFYPFkuLolfP0WPlci/3U+TlvfV2xIrQsD++DrfwHdarTixyY/ckXqFTicDnNtcYPJ1EwRODfF58yIG0/cevHYItMA2xpTlEqCw7KsPzfOKEYoFMLpNLr04osvctVVV7Fx40YaNWpUuM8PP/xA+/btmTp1KpdffjkAgUCAjIwMmjdvzrx58wDYuXMn9evXZ8yYMdxzzz2Fx/fo0YNdu3axatWqv110x44dWbZs2RHdqFIOkHYx28I/xUIg/FncZpI9JinFnvD7fZiHehxGlA5gWzluYOsaeHY4/PIlAEtiz+Yy37NspiGJnaeTe8Z1xMUXMLH+RK5LvA6nw2nERNKZwYiXdAEQSyoBu5lnFewOzqnh/WV0QG3scc+KUgE51LP5sCwbEZpDMW/ePDweDxdddFHhNrfbzcUXX8zChQvx+Yw/Y+HChRQUFDB48OAixw8ePJgff/yRjRs3Hs6SlIqEpC5nYqyZA9i1MPGYh3c8tqgEsOMvYmW4Ir7Pxlg54sayvDDjThjVHn75kv0xNbmImXT3vU92rRi4/F/knn0ZJ6W1ZGXjldxQ+wacyU67/uXPzTnFipHkA5k/Iy4zb3j9UtOTDjTCWD0qNEolpcQSBFavXk3jxo1JSCjqH8jIyKCgoIB169aRkZHB6tWriY2NpVmzZsX2A1izZg2NGzcuqWUpZR0fsAeTZQbmQS2ZXi6MZZCHERv51yrpwjKOOYSxNqSeRo5zA99/Ci9dDdvXAjDdM4wbCiaS604lvdsk9na9BY/H4u5q47ml5i24g2674DMJW3Cg6P8WqZ1JwnbXJWInLkjftVqoNaMolKDY7N27l7S0tGLb09PTC7+Xn1WqVMHhcBxyP6WCI+3/d2Ie1C5sa0TqVkRUpOVLPkaM5AHvxs4+kywxEYq8nfDSTbB0BgCZsa0Y7HuBpf5/0aDZRvb3OoW91X+mdWxrXm30Ku2T2xvxCmFnsUnbGonB+P50LVkn2HEkb3j/VExKs/Y1UxSgHKU+T548mcmTJwOwa9euUl6NctTIxMytGItFHuIujPssBnssgAw2k6QAZ/i7HMwDXdxk4j7zAcEQLH4RXr0VcrPwO+O4l3E86PsvCUlOGva+m00Z9+BwOBhdbTT31biPWEesOX8ydj81ERgJ9EvcRYasFYSvGcIWwCAmvbkWtlWkKApQgmKTlpbGpk2bim0XS0Usl7S0NLKysrAsq4h18+f9/sywYcMYNmwYYIJQSjlD6mW2Y2IqXuyWMh7sQL+8j8NOGADbRSUWj1ToS4GkC9i40tTMrP8GgM9jezPE9wwbaULnrmv44dRebEr4nUaeRkxvNJ1TXafa3QVE1JIwgiZxmhC2aFjhdYlLT+p1JAEhGSM0YpEpilJIiWX5Z2RksHHjRvLy8opsX7NmDTExMYUxmoyMDHw+H+vXry+2H0CrVq1KaklKWUAGmW0GfsFYLxKX8WIH1aWR5f6I7VIX48C2OCR3UuIz+UD2AZg6CsacCOu/Ya+nNv9hFt1883HVrUf74TfyXa8MfAm/c3na5fzQ+AdOTT3VCJhkvIloScxFpmfKTBzpAkD4pwidzMWpg0lrVqFRlINSYmLTp08f/H4/s2fPLtwWCASYNWsWPXv2JDbW9OPo3bs3Ho+HGTNmFDn+tddeo3Xr1pocUJEoALYAqzHFmT7sLLJc7CaaIeyYhwMjKtnYac4iAJL1JRlobguWz4LrW8D7TxCy4BnXDTTy/8L7MQM4/4Lv2H5lLVbWfpIarhrMqTeHqfWmkuJOsWM7yeFrS6KB1OlIvCYFM18mCSNOqeHt0jCzHtAYk/KsKMpfcthutLfeeguA5cuXA/Dhhx9SvXp1qlevTrdu3TjhhBO46KKLuPHGG/H7/TRu3JjnnnuOjRs3FhGWGjVqcNNNNzFhwgSSk5Pp0KEDs2bNYtGiRYW1OEo5J4AJ/v+BERVJEZYAujTBlHiHWAoS55Dgvxe7El9iJgWEizh/hZdGwqpPAPgh5iSGFDzHyuAJ9DgxmwM9/sOcBPNv9j+p/+GZms9QLbGasYSk8zPYrWxisWfegN2VAOzkhYSI7R6gBkaMNDajKH/LYRV1AsWyx4Ru3bqxZMkSAPLz87njjjt4/fXXycrKol27djz44IOcfvrpRY4JBoNMmDCBKVOmsGPHDpo3b864cePo37//YS1aizrLKFJYuQUjJgUY0cjGjm1IkWMQO/6ST9GpltLeBewMtNTw/rm58MZ4WPgIBP1ku9O5KTCRl7iSRjXhpH6v83atK/Bbfmq4ajCpziQuSrvIiFYituutAGOdOMLvpfOzZMR5MEIZhz3dU0YzS/PMcpNeoyjHhkM9mw9bbMoSKjZlDOnIvB3Tw0yq6aVBZQHmoZ2HeZCDESURGws7RlOAecinhD9L9prbgp/mwLQbYfdmAF52XsnNoYnkxlTl/LN+5utO/djErwBcVeUqJtaYSLoz3c4iS4i4XjbGopH1p2DEowBjYUkSQipG7GKw62a0OFNRDsqhns36u5ly9IQwwvA7ZmKmWCXy0I7FBP7BuL6ysR/4Yj0EsBMGxF0m6c1J4W27f4VXr4efPgJgtfsErgw8y7ehLvTouJ/8noOZGfM6ABmxGTxX7zlOjQ/38IvF7gYtSQAOjPilYM+8ke8lWUCGseWF11YdE7vR/zGKclTofx3lyJH2Mlsw1f8B7PYsUi9jYQRH5riAbblEuthEZHLD+0jlfQDYmwPz74f3HzMuM2cVxoTu5/nACJrWCXLm2Q+yqN7thAiR5krjvvT7GJ46HHe82678d2NEJbKFjXSAlvhQcngfGU0gA9BkGFot7LEAiqIcFSo2ypGRjXGX7cLusixDy+QBLfUoIiwSjLewuzVnh7dJzYrESwBcFnwxE2aNhn1bCeFgKkO5LfQA/oSqnPLvd/k641LWOvNx4+bqqldzT817qGpVtbsISEZZCLufmRSGijtP0pcje67FYScxiDUjrj9FUY4aFRvl75Gg+o7wS6r1I4sxfZgHeXZ4X3FLuSP2k1b/UrwJ5sEfF37vAdatgjeug5/NHKQVzk6MCD3Nckcn2nT9il/+dRFfJGzFgYPBqYO5J+4emqQ3sVvXgLFS8sLriMeO/USmV4vI5WFiMCHssczpGGtGW80oSomhYqMcGhGZ7dg9zHyYfzlZ4X3kwZ6EeWhLGnE2Rd1W0rAycnSzFH3m7IE547A+fR6HFWKPszq3hCYwLXQ59ZptwHPWSfxQ838AnJ94PvfWuZc28W3MsYV1N9ipyRLE/3PnZqmjEQtLstCkDU117Mw3RVFKDBUb5eB4MYH/ndhupwDG1SWtZmQkszSulGJMiXVIinMOdmNLcZdJexhnAD6dAm+Phdy9hHDxNNdzd+hurGp+XGcNYMvx74AD+ib35e4qd3OCdYJtDcm0zBB2+rTgxggg2CnXcm1p4JmMPaK5GtoBQFGihIqNUhSxZLZhREaC/9nYmWKRw8PysBtjSpv/IMZlJunMIkwiSnKe1Utg9g2w2QzM+4Qe3MCTrI1vSODUu7E6TwK3n34J/bg9/XZOTD/RnPNA+Hyx4bWFsGMy0sQT7O4DQYzbLBE7IcAf/pyAjgFQlGOAio1iEJGRbswSc5EWLhJQL8BOeZaCR3mgy3RN6SmWF/4uASMM+wjPqtkIb9wC35kK/0wacROPMsfRB6vzM9DtPtwJB7g45WJuq3obrUKtbJdbZLxFXGOuiJ9J4et5sQebSXeCyFEGHqAuxmWmCQCKEnVUbCo7Xkw8ZgtGQJzYLf/zMSKRg201SGNMiYWIxRKZZeYMHxcTcWwM4MiGNyZgLX4MR8BHLgk8wO08xk14W86HM1uRXn0vw5OHc22Va6nrqmtEwoddCyPXj8FOmZZmmjKmWep1pFN0AHMeKS5NwbSakS4FiqJEHRWbyooXY8VswVggEseQwkdp3i3t9t3YRY/Ss0x6mckYAInTeMOfpYYmPwRfTceafTuOrO04gNcYxBgmsrXu79DrTFo1y+L6lJu5NOlSEpzhaa9iVcVix1ik34VYWzIu2okRHonLBLGTDxLC91EFqI1xoymKckxRsalsSOB/C3atC9ipyxL8z8U8yOWhnoN5YCdjV9aLK036nlnYrf+94eM3fgmzboTNy3EA39KZG3iSb9OrQo8bOftELzfG3c2ZVc/E4XTYbrjI9GmxVOKw40GRbW7EynFhrBYfdhGmuPpqojUzilKKqNhUFmSmzGaKjj+2sN1mvvC+UhTpx84uk2wyicO4Iz4Hsa0PiaNkbYAXb4UVJi7zO3W5lQd5I74HMd0f4drTgtxQcwLHxRxn1uPHiIZYLonYiQDSgUDiNSIi4j4LRhxfELFvEJPKXB07e01RlFJBxaaik48RmI2Yh7cTO1tL6mUip2Umhj9LEaRke0nMJDF8nBdj5UhsR3qdZWWR98FYYj5/AXcwQB7xPMQtPOy+mrTT3uPpcz/mspR7SMxLtP/1xWL3UwPbmpHsMUm5FsFwYk/yTMYe05z0p2NrYqc2K4pSqqjYVFTyMQKzDmOdiKUiw8rkJVlbDsxDPS/8SsDOKJOHvtTbiBtNXGUxsPfAH/z63X9pOf8tquQbE2k6l3K7826qnbyFD3rv5fSqQ815XdhdCMRVJ50GDmAPNhMXmbjVxPr6c52MCJFYWHUw8Rl1mSlKmUHFpqKRC6wH1mJa80tasgTbfdh1LvIzHjury4XdnkYsG7GApO0+QBzs8+1jrm8OmT8+zUXv/0DXvaaU/wv+xU08QnzHWnxyXi1a1Glix3Ek2SByWJm4vOIw1olYX3ItwmtNxi4klcSBSJGpisky08JMRSlzqNhUFA4AvwJrsOtZJC4jVoukAfuwW+nL5wLMA90XfiVhpzZLEWQB5CTk8F7ue7wReIMdmz5k4sIQQzaZFLZ1NOUWHiK/7dlMPTuONvWxxzknhtfixQiEtLHxYHeLBjsu48LOkpP+a1LjI2KUEF5/VUyWmcRzFEUpc6jYlHf2AN8BP2J6lUkNjEXR3/Al9iEjmqUjsiQDiBCI+0osnjyw8i0+d3/OywUvM9s7m/SsXMZ/4uTSn4zI7CWNexnHL02v4e7zYujSCtsqkSQEsIP+Ml4AjEUi15ceZtKXLB4jdBJLCmBPy/SEt9UKb9NeZopSplGxKa/8DnwGrMJ2iUnFvPyUAWZO7EFhCeHvZBSAFEpK+xcRIDdk52XzivMVns57ml/5ldR8GPuFk1HfuIkNBfARw9OM5KP6YxkzII0nmmJbI9J8UzLUJOFAanEk1RqM2IhgSHabuMa8FBVPiePURYeZKUo5Qv+rljd2A18CqzFikk5Rq0AC7zKXxY9xU8nESSg+78VHkfjJTnbypPdJnuZpDnCAmACM+y6N/y72k+LPAUK8wcXMqPkA1/RpzE0Z4JAuAeKGk1ToREyCgqRXR1b/F0SsW9xf0q9MXG+R7W9iMQKj7f8VpdyhYlNeCAK/AF9jxEMmS4ol8+cOAGKxWNitWiQJQAL/kgwQju/ssfYwkYk843iGfPJxhOCun1oyckEW1fK2A7CEbjyf9jD/6deJ91qDQxIQpL5G0pPlM9gZZyKG0iAzFTvLTZIXkjAiGYvt9gtiOjLXxgiRoijlDhWb8oAfWI6xZiSALmnM4nKSuIjMivFjHujSvFIaYgYwWWoOCrO68jx5PO5+nAfdD5LtMG0F7ljblWve30+d/WsAWE0rnk6ZyOnnncvrLRw4xToRi0MEQyr5JbAv8SGppcnFtsREmJLC9yQZaZJpFsC2ZJLRuIyilGNUbMo6fmAFpl5GMrLkYR2K2C+IXYApD3siPgvi6joAIUK8lvQat8fezlbnVgCu2XIy/53noMmupQBspQ5PJ95Lm56X8XQnN64YbNEQYYjBzmoT95ZYIGLNSNPLZAoTD3BhF4fmY2esSZp1E0y9jIqMopR7VGzKOhuATZi/KZlKKT3BxG3mjPgJttBE4ojYHgtLXUu5sdqNLItfBkDfP1pz/5y6tNm+EIAsUnkh/jbqnnkd952cgDsyVTrOnKMw4yyEHYeJbJYpnZe94W2SsBDEiFFc+KeMapY2NLUw6cxaL6MoFQYVm7LMHkycRgL5IjKR8ZBI6+avRAYKhSjTlcmtNW/lzaQ3AWi/pxaT5nSm65YPcPMTXmKZHnMdCWfcxk0nppvnvUzYdGDXukR2EhCrKoaiVo647zzYBZnx2AkEktIs82aqo8F/RamgqNiUVQIYoQHbKonsBGBFbD9UIWM4bpPvzOeh1IeYmDoRr9NLrZw4nn2nJ703fEw88wjiZKbnSkJd7mJIx/rEpFC0/kWERLLWZHxAYni/yE7LSdhtcaSLdAF2IWdyxLEujMjUjjheUZQKh4pNWWUfJpAPdnfjSCLThQXHn34CltNinmseN6beSKYrk0QvPD/nbAb+spQU5gEw33Uh2W3vo98pLYmRNGMRGEmhlnHPMpxMXGKSaCDJAsGI7anYLjNxv0m9jIhMTey5OIqiVFhUbMoiFqZTc+hP24N/2ufPgfNIsXHBGucaRlUZxUeej4gtgLvndOfan36imjUfgM+dZ7GrxXjObdGJ2OSI60k8RqwXyRSTrDIRHGnmKbUzIirSwdmPbR2JAHkwQf96aIaZolQiVGzKIvmYQkgXtkUjrjM4tEXjgN3Wbu5OuJvnY57HGQgxck5XbluVSZ3QYgCWO7uwreV4erY7g1gnRhgi62CkUabUz7ixBUdSlmWbZMXJd7HYMRrCnyVjLQUjMtpeRlEqHSo2ZRFpjAkHD/oLfwr++ywfk2InMd4znpxANpe+dxJ3rdxKo9DXAKxxtmVz8/vpfuK5nBgbPtiLnc0mXZ094Ze4ziI7LEssRn6KpeOJ+CzItjRM2/+qaNt/RamkqNiURbIpmgAQKTiyTboDhBMAPnV/ytXOq1lvbWDg+1256/utHBcWmXXOFmQ2v4fTTulPK4+zaPdkySiTVv8x2AIjLWhkeFlkUgAR1/djD09zYVszSUB9TPW//ktTlEqNPgLKItKkMrKHmbyEsPsr5AwxNDCU6dbLXPzev3hvZYjmoS8ByHQ2Y1PzcZzc/RKauV3GigEjIFL7IlMvJYXZhV3ZL2MH4jH/UiKnZsZH7BuDneLswIhRA7RWRlGUQlRsyiJidfw5NiNdlOU98KPrR6YFplF383G8tOJbYilgi7Mxm1vdyUk9L6VRyG2LloiFWB8y9dKJ/S9Bzi9pyJJy7QrvkxxxLrFk5HgRmWporYyiKEVQsSmLiKg4KSo6kjAg2xzQ2tma5x3P81GTj/i84aUkptblpLMvpX7QY8dhJMYiVoYIThx21hjY1opkmSVg9zQTq0UyyySuI3UzdTG1MpExG0VRlDAqNmURmUETaeGIVSKZXV7z0+VzMTx2OMPzh8NV2O4xFyarTc4nYwQiBUdiNpFzcKSFjIiLxI7EGoqNOCYZE5NRkVEU5W9QsSmLJGM3zJQHvfQlE0sF7Mac0jpGCjHzsetj8jGiIoITxM40k6aejvA1pRYmFHG8FHZKA07pHt0Ak8as7jJFUQ4DFZuySBx2wF1qXSTu4sEIiIiHBPcliwxskRHBkFb/Uqwp55JamrCVVDhqOS58nIeiIpMINMS4zOKjc+uKolRMVGzKIjKRcif2fBhxefkwIiDFlhJDKcCIRD72zJvI9xKbicwqixzXnIrdiVksH/mZAjTCWDI6vExRlKNAxaYs4sB0P96NPVFTrBz5G4t0mUnNjZ+ilkwCtsiIcPixkw9iw8cnhI+Tws248DVTgGYYl5mKjKIo/wAVm7JKFUwcZT+20MRgxCOAbblIo0wJ6ItrTUZGS3pypBUTHgNdWDNTA9uycWGKMZtjRCYpyvepKEqlQMWmrOLCWBWrsFOOpeZFZsGI4MgIZSf2vBixXGQsgVT/S5sZwvulYepi4jEC1xLjMpPeZoqiKCWAik1ZJgWTWpyJsVCkdY3EZ2QImbSLkaaasdiWCxS2tCmsn3Fi90Srgqn0b4mxZlKifVOKolRGVGzKOvUwwrAVe3wy2IWYkrosQ82kL5kfu1ZHhEa25WAsoqbASUBrVGQURYkqKjZlHXGnOYEt2JX/0l1ABETSmSMHn4klFIz4fld4/38D/8LEahRFUaLMYU0V+f3337nuuuvo2rUrCQkJOBwOMjMzi+yzbNkyhg0bRosWLUhISKBBgwYMGjSIjRs3FjtfKBRiwoQJNGrUiLi4ONq1a8fbb79dIjdUIXFhrJAMTK2LpEFLwaW0j4n70zbZLlloeUA7YBRwDio0iqIcMw5LbNatW8ebb75JWloap5566kH3mTlzJqtXr+b666/nww8/ZOLEiaxYsYKOHTuyZcuWIvveeeed3H333YwcOZIPP/yQLl26MGDAAObPn//P76ii4sSMUD4BaIzJHJOgvwwyi8FOX45sQ+PAxGSuBC7BZJ8piqIcQxyWZR1qPBdgLBGn0+jSiy++yFVXXcXGjRtp1KhR4T67du2ievXqRY7btGkTjRs3ZuzYsdx7770A7Ny5k/r16zNmzBjuueeewn179OjBrl27WLVq1d8uumPHjixbtuywbrDC4gP2An9gx2CkHY10aU7B1OvURWMyiqJEnUM9mw8rZiNCcyj+LDQADRs2pHr16mzdurVw28KFCykoKGDw4MFF9h08eDBXXHEFGzdupHHjxoezrMpNLKYBZm3skczSrkZa0ehUTEVRyghRnQT/888/s3PnTlq2bFm4bfXq1cTGxtKsWbMi+2ZkZACwZs2aaC6pYiJJA4nhlxRnKoqilBGiJjaBQIARI0ZQvXp1rrzyysLte/fupUqVKjgcRSeDpaenF36vKIqiVCyilvo8cuRIvvrqKz744APS0tL+8fkmT57M5MmTARMfUhRFUcoPUbFsxowZw+TJk5k6dSo9e/Ys8l1aWhpZWVn8OS9BLBqxcP7MsGHDWLZsGcuWLTtofEhRFEUpu5S42IwfP54HH3yQSZMmcemllxb7PiMjA5/Px/r164tsl1hNq1atSnpJiqIoSilTomIzadIkxo4dy/jx4xk5cuRB9+nduzcej4cZM2YU2f7aa6/RunVrzURTFEWpgBx2zOatt94CYPny5QB8+OGHVK9enerVq9OtWzdmzpzJjTfeSO/evTnjjDP45ptvCo9NSUkptFhq1KjBTTfdxIQJE0hOTqZDhw7MmjWLRYsWMW/evJK8N0VRFKWMcNhiM2DAgCKfr7nmGgC6devGkiVLWLBgAZZlsWDBAhYsWFBkX9lHGD9+PElJSTz55JPs2LGD5s2b8+abb3Luuef+g1tRFEVRyiqH1UGgrKEdBBRFUcoeh3o2R7WoU1EURVFAxUZRFEU5BqjYKIqiKFFHxUZRFEWJOio2iqIoStRRsVEURVGijoqNoiiKEnVUbBRFUZSoo2KjKIqiRB0VG0VRFCXqqNgoiqIoUUfFRlEURYk6KjaKoihK1FGxURRFUaJOuRwxUK1aNRITE6levXppLyVq7Nq1q0LfH1T8e9T7K9/o/R05mZmZ7N69+6DflUuxgYo/06ai3x9U/HvU+yvf6P2VLOpGUxRFUaKOio2iKIoSdcqt2AwbNqy0lxBVKvr9QcW/R72/8o3eX8lSbmM2iqIoSvmh3Fo2iqIoSvmhXInNli1b6N+/P6mpqaSkpNCvXz82b95c2ss6Yt566y0uvPBCGjZsSHx8PM2bN+e2224jOzu7yH779u1j6NChhaneZ555Jj/++GMprfqf0bt3bxwOB2PHji2yvbzf4/z58znttNNISkoiJSWFjh07smjRosLvy/P9LV26lJ49e1KjRg2Sk5Pp0KEDU6dOLbKP1+tl9OjR1K5dm/j4eLp27crnn39eSiv+a37//Xeuu+46unbtSkJCAg6Hg8zMzGL7He79hEIhJkyYQKNGjYiLi6Ndu3a8/fbbx+BODs7h3N+yZcsYNmwYLVq0ICEhgQYNGjBo0CA2btxY7HxRuT+rnJCbm2s1a9bMysjIsN59911rzpw5VuvWra0mTZpYOTk5pb28I+Kkk06yBgwYYL322mvWkiVLrMcff9xKTU21TjrpJCsYDFqWZVmhUMg65ZRTrLp161qvv/669eGHH1qnnXaaVbVqVWvLli2lfAdHxuuvv27VqlXLAqw77rijcHt5v8fnn3/ecrvd1o033mh99NFH1oIFC6yJEyda7733nmVZ5fv+fvjhBysuLs46/fTTrTlz5lgfffSRNWzYMAuwnn322cL9LrnkEis1NdWaPHmy9cknn1gXXHCBFRcXZ33//felt/iDsHjxYqtGjRrWv//9b6tnz54WYG3cuLHYfod7P7fffrsVExNjPfzww9aiRYusYcOGWQ6Hw/rggw+OzQ39icO5v//+97/WySefbD3zzDPWkiVLrBkzZlgtWrSw0tPTrc2bNxfZNxr3V27E5oknnrCcTqe1du3awm0bNmywXC6X9eijj5biyo6cnTt3Ftv2yiuvWID16aefWpZlWXPmzLEAa9GiRYX7ZGVlWWlpadZ11113zNb6T9m7d69Vs2ZN6/XXXy8mNuX5Hjdu3GjFxcVZjz/++F/uU57v77bbbrM8Ho+VnZ1dZHuXLl2sLl26WJZlWStXrrQAa+rUqYXf+/1+6/jjj7f69OlzTNf7d8gvcZZlWVOmTDnow/hw7+ePP/6wYmJirHHjxhU5/owzzrDatGkTnRv4Gw7n/g723MnMzLQcDod15513Fm6L1v2VGzfavHnz6NKlC82aNSvc1rhxY0455RTmzp1biis7cg5WtdupUycAtm7dCpj7rVOnDt27dy/cJzU1lT59+pSr+7311ltp3bo1AwcOLPZdeb7HqVOn4nQ6GTFixF/uU57vr6CgAI/HQ3x8fJHtqamphEIhwNyfx+PhoosuKvze7XZz8cUXs3DhQnw+3zFd86FwOv/+UXe497Nw4UIKCgoYPHhwkeMHDx7Mjz/+eFC3VLQ5nPs72HOnYcOGVK9evfC5A9G7v3IjNqtXr6Z169bFtmdkZLBmzZpSWFHJ8tlnnwHQsmVL4ND3u3nzZnJyco7p+o6GL7/8kunTp/PMM88c9PvyfI9ffvklLVq0YObMmTRt2hS3202zZs2K3Gt5vr8hQ4YAcP3117Nt2zaysrKYMmUKn376KaNGjQLM/TVu3JiEhIQix2ZkZFBQUMC6deuO9bL/EYd7P6tXryY2NrbIL76yH1Cunkc///wzO3fuLHzuQPTur9yIzd69e0lLSyu2PT09nX379pXCikqOrVu3Mm7cOM4880w6duwIHPp+gTJ/zwUFBQwfPpybb76Z5s2bH3Sf8nyP27ZtY+3atYwePZoxY8bw0UcfcdZZZzFy5EiefPJJoHzfX+vWrVmyZAlz586lbt26pKWlce211/L8889z8cUXA39/f3v37j2ma/6nHO797N27lypVquBwOA65X1knEAgwYsQIqlevzpVXXlm4PVr35z76pSolQU5ODueddx5ut5tp06aV9nJKjIceeoj8/HzuuOOO0l5KVAiFQmRnZ/Pyyy/Tr18/AM444wwyMzOZMGEC119/fSmv8J+xdu1aLrzwQjIyMnj++eeJj49n7ty5jBgxgri4OAYNGlTaS1T+ISNHjuSrr77igw8+OKjIljTlRmzS0tIO+pvgX/02Uh7Iz8+nT58+bNiwgc8++4x69eoVfneo+5XvyyqbN29m/PjxvPjii/h8viK+e5/PR1ZWFsnJyeX6HqtWrcratWs566yzimzv2bMnCxYsYPv27eX6/m6//XY8Hg/vv/8+Ho8HgB49erBnzx5uuOEGBg4cSFpaGps2bSp2rNyf/CZcXjjc+0lLSyMrKwvLsor89l+e7nvMmDFMnjyZV155hZ49exb5Llr3V27caBkZGaxevbrY9jVr1tCqVatSWNE/w+/3079/f5YtW8b8+fNp06ZNke8Pdb8NGjQgKSnpWC31iNmwYQNer5fBgweTlpZW+AJ45JFHSEtL48cffyzX9yj+67/C6XSW6/v78ccfadeuXaHQCJ07d2bPnj3s3LmTjIwMNm7cSF5eXpF91qxZQ0xMTDGff1nncO8nIyMDn8/H+vXri+0HlPnn0fjx43nwwQeZNGkSl156abHvo3Z/R53Hdox5/PHHLZfLZa1fv75w28aNGy2322098sgjpbiyIycYDFoDBgyw4uLirE8++eSg+7z77rsWYC1ZsqRw2/79+6309HRr5MiRx2qpR8W+ffusxYsXF3sB1uDBg63Fixdb2dnZ5foe33//fQuwZs+eXWR7z549rXr16lmWVb7/Drt162Y1btzY8vl8RbYPHDjQiouLs3w+n7VixQoLsF5++eXC7/1+v9WiRQvr3HPPPdZLPmz+KjX4cO/njz/+sDwej3X33XcXOb5Hjx5W69ato7r2w+Gv7s+yLOvJJ5+0AGv8+PF/eXy07q/ciE1OTo7VtGlTq3Xr1tacOXOsuXPnWm3btrUaN25crBagrDNixIjCmpOvv/66yEuK/YLBoNW1a1erXr161htvvGEtWLDA6tatm5WWllasAKu8wJ/qbMrzPYZCIat79+5Wenq69dxzz1kLFy60hg4dagHWtGnTLMsq3/c3e/ZsC7B69uxpzZkzx1q4cKF17bXXWoA1atSowv0uuugiq0qVKtaUKVOsTz75xLrwwgut2NhYa/ny5aW4+oMze/Zsa/bs2YX//5599llr9uzZRX4ZONz7ufXWW63Y2Fjr0UcftRYvXmyNGDHCcjgchQW9pcHf3d8bb7xhORwOq3fv3sWeO6tXry5yrmjcX7kRG8uyrE2bNln9+vWzkpOTraSkJOu88847qHqXdRo2bGgBB33dddddhfvt2bPHuvzyy620tDQrPj7eOuOMM6yVK1eW3sL/IX8WG8sq3/e4f/9+65prrrFq1KhheTweq02bNtaMGTOK7FOe72/+/PlWt27drGrVqllJSUlWu3btrGeeecYKBAKF++Tl5VmjRo2yatasacXGxlqdO3e2Fi9eXHqLPgR/9X+uW7duhfsc7v0EAgHrvvvusxo0aGDFxMRYbdq0KWblHmv+7v4uu+yyw/ozsKzo3J92fVYURVGiTrlJEFAURVHKLyo2iqIoStRRsVEURVGijoqNoiiKEnVUbBRFUZSoo2KjKIqiRB0VG0VRFCXqqNgoiqIoUUfFRlEURYk6/w8uxI58jQoIOgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAGQCAYAAAB4X807AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAB+MklEQVR4nO2dd3hUZdqH75lkkkknoXcQFCQgiKCgq0gVC1j5LOCqqyK6WFcUG1YEldW1ouCCoqgIKiBSLIAF2wIiCBZa6EhLID2ZmfP98c4z7wxBKSakPfd1zZXMqe9ROD+e7nIcx0FRFEVRyhB3eS9AURRFqfqo2CiKoihljoqNoiiKUuao2CiKoihljoqNoiiKUuao2CiKoihlTrmJzaZNm7jkkktISUkhOTmZiy66iI0bN5bXchRFUZQyxFUedTZ5eXm0b9+e2NhYHnvsMVwuF/fffz95eXksX76chISEo70kRVEUpQyJLo+bjh8/nnXr1vHrr7/SsmVLAE444QSOPfZYXnnlFe64447yWJaiKIpSRpSLZdOzZ08KCgpYtGhRxPZu3boB8Pnnnx/tJSmKoihlSLlYNitXruT8888vsT09PZ2pU6ce9PxatWrRrFmzMliZoiiKcqRkZGSwa9euA+4rF7HZs2cPqampJbanpaWRmZl50PObNWvG4sWLy2JpiqIoyhHSqVOnP9xXLmJzJIwbN45x48YBsHPnznJejaIoinI4lEvqc2pq6gEtmD+yeAAGDx7M4sWLWbx4MbVr1y7rJSqKoiilSLmITXp6OitXriyxfdWqVbRp06YcVqQoiqKUJeXiRuvfvz933nkn69at45hjjgFMYGnRokWMHj26PJakKMoRUFxczObNmykoKCjvpShHEa/XS6NGjfB4PId8TrmkPufm5tK+fXvi4uJCRZ0PPPAA2dnZLF++nMTExD89v1OnTpogoCgVgPXr15OUlETNmjVxuVzlvRzlKOA4Drt37yY7O5vmzZtH7Puzd3O5uNESEhKYP38+xx13HFdeeSUDBw6kefPmzJ8//6BCoyhKxaGgoECFpprhcrmoWbPmYVuz5ZaN1qRJE957773yur2iKKWECk3140j+n2vXZ0VRFKXMqTR1NoqiVHzqjanH77m/l9r16ibUZfud2//0mFNPPZWvv/76T4+57rrruOOOO2jTpg2PP/44995772Gdn5iYSE5OTsS2rKws3nrrLW666aaDPEVJzjnnHN566y1q1KhxWOctXLiQmJgYTj311MO+Z3mjlo2iKKVGaQrNoV7vYEIB8Oqrr4bKKh5//PHDPv9AZGVl8dJLLx1wn8/n+9NzZ8+efdhCA0ZsDne9B1vL0ULFRlGUSo0kFS1cuJAzzzyTSy65hNatWzNw4EAk2fbMM89k8eLFDB8+nPz8fDp06MDAgQMjzs/JyaFnz5507NiRdu3aMWPGjD+97/Dhw1m7di0dOnRg2LBhLFy4kNNPP53+/fuHhO2CCy7gpJNOIj09PdQBBUzLLekh9uabb3LyySfToUMHbrjhBvx+PwBz586lY8eOtG/fnp49e5KRkcHLL7/MM888Q4cOHfjyyy/JyMigR48enHDCCfTs2TM0E+zqq69myJAhnHLKKdx1110ce+yxoc4rgUCAli1bHvVOLOpGUxSlyvDDDz+wcuVKGjRowGmnncaiRYv429/+Fto/evRoXnjhBZYtW1biXK/XywcffEBycjK7du2iS5cu9O/f/w+D4aNHj+ann34KXWvhwoUsXbqUn376KZQSPGHCBNLS0sjPz6dz585cfPHF1KxZM3SNn3/+mSlTprBo0SI8Hg833XQTkydP5uyzz+b666/niy++oHnz5uzZs4e0tDSGDBlCYmIid955JwD9+vXjqquu4qqrrmLChAnccsstTJ8+HYDNmzfz9ddfExUVRUpKCpMnT+a2227j008/pX379ke9E4taNoqiVBlOPvlkGjVqhNvtpkOHDmRkZBzyuY7jcO+993LCCSfQq1cvtmzZwu+/H55b8OSTT46oPXnuuedo3749Xbp0YdOmTaxevTri+M8++4wlS5bQuXNnOnTowGeffca6dev49ttvOeOMM0LXSktLO+D9vvnmG6644goArrzySr766qvQvgEDBhAVFQXAP/7xDyZNmgQYAbzmmmsO67lKA7VsFEWpMsTGxoZ+j4qKOqx4xeTJk9m5cydLlizB4/HQrFmzw64lCZ8yvHDhQj799FO++eYb4uPjOfPMM0tcz3EcrrrqKkaNGhWx/cMPPzys+x5sLY0bN6Zu3brMnz+f77//nsmTJ//l6x8uatkoilKt8Hg8FBcXl9i+d+9e6tSpg8fjYcGCBWzYsOFPr5OUlER2dvYf7t+7dy+pqanEx8fzyy+/8O2335Y4pmfPnkybNo0dO3YAphnxhg0b6NKlC1988QXr168PbT/QPU899VTeeecdwIjl6aef/ofrue666xg0aFCExXM0UbFRFKXUqJtQt0JfD0wH+RNOOCGUICAMHDiQxYsX065dOyZNmkTr1q3/9Do1a9bktNNOo23btgwbNqzE/r59++Lz+Tj++OMZPnw4Xbp0idjvcrlo06YNjz32GH369OGEE06gd+/ebNu2jdq1azNu3Dguuugi2rdvz6WXXgqYGM0HH3wQShB4/vnnmThxIieccAJvvPEGzz777B+ut3///uTk5JSLCw3KqTfaX0V7oylKxeDnn3/m+OOPL+9lVCr8fj916tRh+/bth9XI8q+yePFibr/9dr788stSud6B/t//2btZYzaKoihHkfT0dK677rqjKjSjR49m7Nix5RKrEVRsFEVRjiK//PLLUb/n8OHDGT58+FG/bzgas1EURVHKHBUbRVEUpcxRsVEURVHKHBUbRVEUpcxRsVEUpdSoVw9crtL71KtXuuuThpx/xvTp01m1alXo+4gRI/j000//8r2XLVvG7NmzD/u8rVu3cskllxzRPV977TW2bt16ROeWNio2iqKUGofZSuyoX+9Q2F9sHnnkEXr16vWXr/tnYvNnbXUaNGjAtGnTjuieRyI20nW6tFGxURSl0pKbm8u5555L+/btadu2LVOmTAFMg8sTTzyRdu3a8Y9//IPCwsIS58poAYBp06Zx9dVX8/XXXzNz5kyGDRtGhw4dWLt2LVdffXXoZf9H123WrBkPPvhgaDzB/unNRUVFjBgxgilTptChQwemTJnCQw89xJVXXslpp53GlVdeSUZGBqeffjodO3akY8eOobk1GRkZtG3bFjBCMGzYMDp37swJJ5zAK6+8ErrHE088Qbt27Wjfvj3Dhw9n2rRpLF68mIEDB9KhQwfy8/P/dP133303HTt2ZPTo0XTs2DF03dWrV0d8P1JUbBRFqbTMnTuXBg0a8OOPP/LTTz/Rt29fCgoKuPrqq5kyZQorVqzA5/MxduzYQ7reqaeeSv/+/XnqqadYtmwZLVq0CO072HVr1arF0qVLufHGGxkzZkzEdWNiYnjkkUe49NJLWbZsWaj9zKpVq/j00095++23qVOnDp988glLly5lypQp3HLLLSXW99///peUlBT+97//8b///Y/x48ezfv165syZw4wZM/juu+/48ccfueuuu7jkkkvo1KkTkydPZtmyZbhcrj9df82aNVm6dCn33XcfKSkpodEJEydOLJUWNyo2iqJUWtq1a8cnn3zC3XffzZdffklKSgq//vorzZs357jjjgPgqquu4osvvvjL9zrYdS+66CIATjrppEMebdC/f3/i4uIAKC4u5vrrr6ddu3YMGDAgwpUnfPzxx0yaNIkOHTpwyimnsHv3blavXs2nn37KNddcQ3x8PHDgkQQHW78IIJimnRMnTsTv9zNlypTQGIO/gnYQUBSl0nLcccexdOlSZs+ezf3330/Pnj05//zzD+nc8KFohztK4EDIeIPDGW0QPgbgmWeeoW7duvz4448EAgG8Xm+J4x3H4fnnn+ess86K2D5v3ry/sPKSa7n44ot5+OGH6dGjByeddFLEwLcjRS0bRVEqLVu3biU+Pp5BgwYxbNgwli5dSqtWrcjIyGDNmjUAvPHGG3Tr1q3EuXXr1uXnn38mEAjwwQcfhLb/0eiAQ73uH3EoIwnq16+P2+3mjTfeOGCg/qyzzmLs2LGhEQm//fYbubm59O7dm4kTJ5KXlwcceCTB4azf6/Vy1llnceONN5Zal2gVG0VRSo26pTwR4GDXW7FiBSeffDIdOnTg4Ycf5v7778fr9TJx4kQGDBhAu3btcLvdDBkypMS5o0eP5rzzzuPUU0+lfv36oe2XXXYZTz31FCeeeCJr164NbT/U6/4R3bt3Z9WqVaEEgf256aabeP3112nfvj2//PJLhKUhVth1111HmzZt6NixI23btuWGG27A5/PRt29f+vfvT6dOnejQoUMoZnT11VczZMgQOnTogOM4h7X+gQMH4na76dOnzyE/45+hIwYURTlidMRA2bNkyRLuuOMOPv/886N63zFjxrB3714effTRA+7XEQOKoihVhMWLF3PFFVcwevToo3rfCy+8kLVr1zJ//vxSu6aKjaIoSgWlU6dO/Pbbb0f9vuExrNJCYzaKoihKmaNioyiKopQ5KjaKoihKmaNioyiKopQ5KjaKopQeFX3GQClQkdr2VyZUbBRFKT2qwoyBP8Hv96vYHCEqNoqiVHrefPPNUCeBG264ge+++44TTjiBgoICcnNzSU9P56effmLhwoWcccYZnHvuubRq1YohQ4YQCAQA0+Sya9eudOzYkQEDBpCTkwNEtt9/++23S7TtVw4NFRtFUSo1P//8M1OmTGHRokUsW7aMqKgofv31V/r378/999/PXXfdxaBBg0IzYb7//nuef/55Vq1axdq1a3n//ffZtWsXjz32GJ9++ilLly6lU6dOPP3006F7SPv9QYMGRbTtl47NysHRok5FUSo1n332GUuWLKFz584A5OfnU6dOHUaMGEHnzp3xer0899xzoeNPPvlkjjnmGAAuv/xyvvrqK7xeL6tWreK0004DzLCzrl27hs4Jb7+vHBkqNoqiVGocx+Gqq65i1KhREdu3bdtGTk4OxcXFFBQUhBpbho8WkO+O49C7d2/efvvtA94jvCmmcmSoG01RlEpNz549mTZtGjt27ABMe/0NGzZwww038OijjzJw4EDuvvvu0PHff/8969evJxAIMGXKFP72t7/RpUsXFi1aFGq/n5ub+4dtYg42KkA5MGrZKIpSetStW7oZZIcws6BNmzY89thj9OnTh0AggMfj4fzzz8fj8XDFFVfg9/s59dRTmT9/Pm63m86dOzN06FDWrFlD9+7dufDCC3G73bz22mtcfvnlFBYWAvDYY4+FplqGI2374+Li+OabbzRuc4joiAFFUY6YyjZiYOHChYwZM4ZZs2aV91IqPYc7YkDdaIqiKEqZo240RVGqDWeeeSZnnnlmeS+jWqKWjaIoilLmlKrYTJs2jYsvvpimTZsSFxdHq1atuOeee0pkbmRmZnLddddRq1YtEhIS6NWrFytWrCjNpSiKoigViFIVmzFjxhAVFcXjjz/O3LlzufHGGxk7diy9e/cOtYRwHId+/foxd+5cnn/+ed577z2Ki4vp3r07mzdvLs3lKIqiKBWEUo3ZfPjhh9SuXTv0vVu3bqSlpXHVVVexcOFCevTowcyZM1m0aBHz58+ne/fuAHTt2pXmzZvz5JNPRlT6KoqiKFWDUrVswoVGkBYSW7ZsAWDmzJk0aNAgJDQAKSkp9OvXjxkzZpTmchRFOdrUA1yl+CmjCQMLFy7kvPPOA8w7afTo0WVzoz9h1KhRtGzZklatWjFv3rw/PfaWW24hMTHxKK2sbCjzbLTPP/8cIJSPvXLlylBDvHDS09OZNGkSOTk5lf4/qqJUW0p7IsBhXM9xHBzHwe0+vH9D9+/fn/79+x/mwv4aq1at4p133mHlypVs3bqVXr168dtvvxEVFVXi2MWLF5OZmXlU11cWlGk22pYtWxgxYgS9evWiU6dOgGklkZqaWuLYtLQ0gCrxH1VRlKNDRkYGrVq14u9//ztt27Zl06ZN3HjjjXTq1In09HQefPDB0LFz586ldevWdOzYkffffz+0/bXXXmPo0KGA6Q4wbdq00D75h++2bds444wz6NChA23btuXLL7/8S+ueMWMGl112GbGxsTRv3pyWLVvy/ffflzjO7/czbNgwnnzyyb90v4pAmVk2OTk5nH/++URHRzNx4sS/fL1x48Yxbtw4AHbu3PmXr6coStVg9erVvP7663Tp0gWAkSNHkpaWht/vp2fPnixfvpzjjjuO66+/nvnz59OyZcvD7uL81ltvcdZZZ3Hffffh9/vJy8srccztt9/OggULSmy/7LLLGD58eMS2LVu2hNYL0KhRo1CoIZwXXniB/v37U79+/cNab0WkTMQmPz+ffv36sW7dOj7//HMaNWoU2peamnpA62XPnj2h/Qdi8ODBDB48GCBkJSmKojRt2jTixf3uu+8ybtw4fD4f27ZtY9WqVQQCAZo3b86xxx4LwKBBg0L/eD0UOnfuzD/+8Q+Ki4u54IIL6NChQ4ljnnnmmb/8LOFs3bqVqVOnsnDhwlK9bnlR6m604uJiLrnkEhYvXszs2bNp165dxP709HRWrlxZ4rxVq1bRpEkTjdcoinJYhLf/X79+PWPGjOGzzz5j+fLlnHvuuRQUFBzytaKjo0NlGoFAgKKiIgDOOOMMvvjiCxo2bMjVV1/NpEmTSpx7++2306FDhxKfAyUfNGzYkE2bNoW+b968mYYNG0Yc88MPP7BmzRpatmxJs2bNyMvLo2XLlof8LBWNUhWbQCDAwIEDmT9/PtOnT4/414bQv39/tmzZEkocANi3bx8ffvjhUQ/SKYpStdi3bx8JCQmkpKTw+++/M2fOHABat25NRkYGa9euBfjDuTXNmjVjyZIlgMlSKy4uBmDDhg3UrVuX66+/nuuuu46lS5eWOPeZZ55h2bJlJT77u9DAvAffeecdCgsLWb9+PatXr+bkk0+OOObcc89l+/btZGRkkJGRQXx8fGgEQmWkVN1o//znP5k6dSr33XcfCQkJfPvtt6F9jRo1olGjRvTv35+uXbsyaNAgnnrqKVJTUxk1ahSO43DXXXeV5nIURTna1KV0M9IOPmEggvbt23PiiSfSunVrGjduHJq86fV6GTduHOeeey7x8fGcfvrpB5xJc/3113P++efTvn17+vbtG7KaFi5cyFNPPYXH4yExMfGAls3hkJ6ezv/93//Rpk0boqOjefHFF0OZaOeccw6vvvoqDRo0+Ev3qGiU6oiBZs2asWHDhgPue/DBB3nooYcAE5+58847mT59OgUFBXTt2pWnn36a9u3bH9J9dMSAUpWRFN5AIEBFnADicrmIiorC5XJVuhEDSulxuCMGStWyycjIOKTj0tLSmDBhAhMmTCjN2ytKlSAQCLBy5Up++OGHw4o3HC3q1avHKaecQr16ZVRxqVRJdMSAolQwfD4f3333Hc8991woS7MicfLJJ9OgQQMVG+WwULFRlApIbm4u27dvZ9euXeW9lBLs2rUrFDgH4/ZzuVzluCLlaHMk7l2dZ6MoyhHj9XrZvXt3hYwtKWWD4zjs3r0br9d7WOepZaMoyhHTqFEjNm/erF09qhlerzeiWP9QULFRFOWI8Xg8NG/evLyXoVQC1I2mKIqilDkqNoqiKEqZo2KjKIqilDkqNoqiKEqZo2KjKIqilDkqNoqiKEqZo2KjKIqilDlaZ6NUS6SzckWsfPf7/aEBXopSVVCxUaolOTk5LFu2jIyMjAonOD6fjyVLllBYWFjeS1GUUkPFRqmWZGZm8t577zFz5swKaUXs27eP3Nzc8l6GopQaKjZKtaS4uJidO3dWSMtGUaoimiCgKIqilDkqNoqiKEqZo2KjKIqilDkqNoqiKEqZo2KjKIqilDkqNoqiKEqZo2KjKIqilDkqNoqiKEqZo0WdVZzMzEwyMjLIyckp76WUIDY2liZNmlC3bl1cLld5L0dRlDJExaaKs3r1al5++WV++eWX8l5KCerUqcO1117LOeecQ1RUVHkvR1GUMkTFpoqzd+9eli9fzpIlS8p7KSVo2LAh5513nraLUZRqgMZsFEVRlDJHxUZRFEUpc1RsFEVRlDJHxUZRFEUpc1RsFEVRlDJHxUZRFEUpczT1WVEUpTRxgEDwI0RR7f9pr2KjKIryVwkAucA+IBvIB3wY4YkCvMFPcvATA1SzphkqNoqiKEdKAMgEtgJZGIEBIyRSq+wGcoI/twFxQBpQB0g4imstZ1RsFEVRjoR8YB2wHfAT6TqTn67gR7oxeYLH5gG7gEZAbarFm7gaPKKiKEopswdYCeylZIzGh3WRuTAWjfwsxgiOGyM6a4PXOAbjWqvCqNgoSgXD5XJRp04dGjRogMfjKe/llOD4448nMTGxvJdRfuwCfsBYJ8UYkfEH9wWw7jOwFo2ITRRGjKKxAvV7cNtxVGnBUbFRlApGdHQ0p512GgMHDiQlJaW8l1OCGjVq0KRJk/JeRvmwF/gekwzgw4iFJAKAEZ3wwL877HsUNivNHzzPjxGY3cBqoDVWoKoYKjaKUsFwuVw0btyY008/ndq1a5f3chTBByzBuNACYR8/RmzEnRbuQhOiw451B3+P2u86v2MSB+qX8XOUEyo2iqIoh8JqTIxFLBMRGbFm5LvgwrxhJVYjadAxwWM9YceLMGVgUqOrYJaaio2iKMrBKMBYNcVECotkoUmqs4iGFHCGu9iig/sLMEKzf+GnC+Oe2wocW0bPUY6o2CiKohyM34BNmBoZiHR/hbvODkS4NeMDYjGiFR7PCReq7UBTqlyyQJk2UOjbty8ul4v7778/YntmZibXXXcdtWrVIiEhgV69erFixYqyXIqiKMqR83Xwpx8oxIhFEVZsioLbC4O/i0XjCu7PD253hR0XCF5HPuKay8YUilYxykxs3n77bX788ccS2x3HoV+/fsydO5fnn3+e9957j+LiYrp3787mzZvLajmKoihHxjZMLMWFEQw/ViBEXPafbC6iJCJD8Jh8bJp0IVZgxOoRodpVJk9SrpSJ2GRmZnL77bfz9NNPl9g3c+ZMFi1axBtvvMHll19O3759mTlzJoFAgCeffLIslqMoinLk/IixNnxYi6Y4+F3EphATiynACkwA84Z1gtsLg99FVBysuIg4ye85lBSwSk6ZiM3dd99N27Ztufzyy0vsmzlzJg0aNKB79+6hbSkpKfTr148ZM2aUxXIURVGOjCJgGSagL0IjYiOxmv27BQQTAUYuHM6oNy7g7bUz7DEF2MJPyVATS0msmwBGbKTPWhWh1BMEvvrqKyZNmnRAFxrAypUradu2bYnt6enpTJo0iZycnOpdnawoSsVhE6b+xYUVBxGI/S2P/ToHdF3yOT1yv2VabEuof74RLA/GgonFplBDZDq1CJpaNn9MUVERN9xwA3feeSetWrU64DF79uwhNTW1xPa0tDTAuOAOxLhx4+jUqROdOnVi586dpbdoRVGUAxHAuNAcrHtLYjVQMgNN2tFEQ87ODM7M/Y5CYog6pZf5Z70PY9lEYQRHrguRlo1YPVWMUhWbJ598kvz8fO67777SvCwAgwcPZvHixSxevFirqhVFKXv2YCybaGw8RTLIJAYT/pF4TQGsXjgONw5T47txTFp9G6+ROhs3NnFA4jti2YjQVLHClFJ7nI0bNzJy5EheffVVCgsLKSwsDO0rLCwkKyuLpKQkUlNTD2i97NmzB+CAVo+iKMpRZxVGYKKw7i2HyPoYsHGb4DanqICmG14FYGwnF++40oyYFGDcZ5L+HIMRlmislePBCFZ9qtxkz1ITm3Xr1lFQUMCgQYNK7BszZgxjxozhhx9+ID09nY8//rjEMatWraJJkyYar1GOCrGxsTRp0oQTTjgBx6lYzvGYmBgaNmxIdHQV+6dtZSIbY9W4sfGU8JoaOHAhpxvWLH6XY52d/OBqx9d/W0hqdqqN0RRgJnZKHzWwnaBd2Ay3Kui8KbU/zR06dGDBggUltnfv3p1BgwZx7bXX0rJlS/r378/EiRP5/PPP6datGwD79u3jww8/5Iorriit5SjKn5KWlsall17K6aefXuHExu1207RpU+Lj48t7KdWXDMyI5/DuANJmZv+uzOFdAAIO0cufBeD5FseRGr2ZRBLNuTHYeI10EZDOAtKc0xf8VMFmnKUmNjVq1ODMM8884L6mTZuG9vXv35+uXbsyaNAgnnrqKVJTUxk1ahSO43DXXXeV1nIU5U+Jj4+nffv2tG/fvryX8oe4XNVsSH1FoQBYg+135gbisYPSDvRvk6AFtHPjVzQvWspOavF2329p629h9xdh3WgHEhoHI0SJQK2yerjy46h7Bd1uN7NmzaJ3797cdNNNXHjhhURFRbFgwQIaN258tJejVGNcLleF/ijlxGaMVSNxGBkHQNjv4R8p3PTBjm9NIfvMtMspqLWFFr4WtrZG3Ghg3XL+/X7fDbShyiUHwFF4pAO5KNLS0pgwYQITJkwo69sriqIcOkXAuuDvkoocg4mzxGJEKC7seInpuCA3aw3H75tBITH8eFpDAI71H2sEqSh4HXfY7zIiWmJBhZg38gll+YDlRxXUT2V/3G43bnfFS21xu936L3ilYrEFY12ET9yUYs5YjNCISIAVJGDdon/TDoePvYPY0MZ07myX387sdGPExIu1YuT6EqvJAk4HqmhCropNFad+/fqcffbZtG7duryXUoK0tDRatGihgqNUDIqB9ft9d2MEAoxF4sW6xWIItajx5e3g2J2vAeBN/xfLPGcDkF6cbq4j2WgSq5E0ZxGdXCAJOLXMnq7cUbGp4rRo0YIbbriBoqKigx98lImKiqJGjRoV0upSqiHbMYWcYdZKqOpf2spEYQQnF2vhuOGX756jLQV8Gt2fY9rEszF6IzX8NWjtD/4jTzLQ5NryR176rXmBDkDdsnzA8kXFpooTFxdHXFzcwQ9UlOpMMWbkM0S2/Y/GZKJJexlpSRNDqFmmU7CPpptfACD32LuYm/wRAN3yuxFVHGXjMj5s25pYIC+4PRmTfXYSJdOqqxAqNoqiKL9jU5sl40xSlMWykf5o4vqKM9t+XfIyrdnLt67T6X18V7ok3QjAZbmXWQvJg7VopGu0ByMyyUBzoNFReM5yRMVGUZTqTTGRGWhge6GJ20ymbEZje5u5wSnOp87GfwOwuem9fFfreVZ4V9CoqBEXZF5gm2qGN9hMwFhL8UANjGi1xyYdVFFUbBRFqd7swKQ0S/8zcZ/J0LPwLgJubLA/BtZ8M55jnR384OqEu7uLf9X/FwD/2fEfvAGvcbc5wevFYcQrKfg9JbitDtDsKDxnOaNioyhK9UXqaqQRZhQHHvkshZcyNC0ABApIXfUEAF+3vIE7m1yA3+VneM5wLvZcbKwWESc/xkLyYAQmBmPheDBFnLFH42HLFxUbRVGqL79jmm6KkORj4zV+bC+zsFk1ErtZ88kEWga2stzVnscuGEOBq4DrCq7j8ZzHjZiIyHgwwgJGaOS7ByNIzY7Gg5Y/KjZVnNzcXHbu3ElBQcHBDy4jXC4XKSkp1KxZE4+nijumlcpDAbABY7kUYbsBiPvMh3WryWROF8H6mAJSVjwOwORjz2F7wii6+rsy1j8WV5zLiJf0QQPb6TncuokGjsMKURVHxaaKs2bNGiZPnsy6desOfnAZ4Xa76dmzJwMGDAhNZFWUcmc71qoBY9WIwIBtlClJAWHDzdYseJWW/i2scLVjzPkvE+VEMb5gPNFR0eb48Iw1h1A9TsjiicFkoR1zFJ6zgqBiU8XZsWMHCxYsYPHixeW2hujoaFJTU+nXr1+5rUFRIsgFNmLbyBRh3ob718HEBvfHEbJyHCefGj8Yq+aV43sSSPgPt/lvIz0q3cZmpEuAC9sTTVxo3uB9mmA6PFcTVGyqARVlXktFWYeisAUjJsWYWIwkAcg2sWLyg8dLyxlg9SdjOc6/jR9dHXjxvAnEO/Hc67o3su9ZLPbtKu60OKzoxAEtyvgZKxjaJ0RRlOrFPmArNp6Sh7FaZFxAYvD3eIyASK1NAThZ2dRaOhqAV9r1hPh93MiN1A7UNuIiLjKZgROD2e4JfmRfE4wbrRqhYqMoSvXBj0kKkJ5kki3mxbaTKQj7GRvc7wKS4ZdPniUtsJPv3V0Ye85YvHi5M+pOI0iSgyOxHrFmosKuE4MRoaZH42ErFio2iqJUH/YCu7BpzQFMj7NCjIXjD/4u9TR7CRV1+nfvptGKpwB4rVMv8OZxrXMt9aLrGQERYfEGf5fMtfCCzmigIaags5qhYqMoSvXAhx0hIEWbYr2IILiwQXtpKVNsvv7y3iiSnH18Ed2LCX2eA+BWz622Qad0C3AFz5OGnW5s8oFYNdVwqoaKjaIo1QMp4BT3mQiBjGt2YQQogBEGmaiZAAU7N9FitensPOOMsyiM3se57nM5NupY230gGpuFBlZsJDstGmhMtbRqQMVGUZTqQAGwGWt5OBj3WU5wn1g6UcFtko2WbU5f8+4DeClkjvf/mPg3kyAwzDvMFGQmYF1kklQQiy3kjA3uT8R0dq6GVg2o2CiKUtVxgE2YNGY/psZGmmsmYjPQwAiEVPTHA7GQueJH2myaRBEeZpzXhkz3brq7u3NGwRlGoMAmCMh1/cHzxdqRWE01y0ALR+tsFEWp2mRjOjtLM83o4E/JHivAZpzlY5tiFgIxsP2Du0jFYXrKdbza9lHcuHk2+VlcblfkyGepr4khsv2NuNIaU22tGlDLRlGUqkx4qrN8z8YIjFg6UUQWb+4lVOy58fO5HJ/5MVmk8J9LtuDHz9DoobQLtLP90vKxLW+kaafEaaQVYCOMpVONUctGUZSqy+9AFtZ9BjYxIBHbisYf3JaEEaIiwPER+PBOAN5ofA3fNP4PTdxNeCz+MVszAyYhQKwXsWgC2H5oCVR7qwZUbBSlQuP3+8nKymLfvn0EAoGDn1BGxMTEkJqaSkJCAi5XJXlrFmCabUoLmThMLY0LkwQgbjMRjjysaLhh5dv/Jb1wJRmuZtx/8TQAxsaPJcmVZK2ZmLB7SQcCaU/jwnYL8Jb501Z4VGwUpQKTn5/PvHnz+PjjjykuLj74CWVEgwYNGDBgAJ07dy63NRwWkhQgoiID0XKxzTZjgh+ZYeNgXGjxUFSwl/qL7gfgqRN6sK/GBP7u+TvnJJ9jEwCkYWcUNiFAtgeTC0gAGhyNB674qNgoSgWmsLCQZcuWMXXqVPLz8w9+QhnRqlUrunTpUnnEJgvYiU0EkEB+EcF5NBhRkOaZPmxX5hxY/uKjdHJ28W10F146bxL13fV5JuYZ01dNGmq6gteOxwhVIcYNJ50DXJhYjVg/1RwVG0Wp4DiOQyAQKNeu2Y7jVJ6u3T6MVePDikhh8HeppxEXmgTyneA+D+z4/Vfar3+WAC5u7hUFHh+vp71OWmyaTTTwht1L+p7JWGnpGJAC1Cvzp600aDaaoihVBwfYhsk4k3TkfRgLJBcjBsXB46KC+/Iw1k0AKISt427Hg4/XU/qyuMsibo++nd70tl0C5D7RwXtIRwIXVrzcQHP0n/NhqNgoilJ1yMWIDZh4jQ/b7l9qXsTFFY8t4AxaJD/NmUWHvXPIIoW7/+8nTvaczOhaoyPFJRpjHTnYws0kbP1ONFCbatuW5o9QsVEUpWrgx7jPpL+ZzJARy6Mg+JHpnOFFmMVQXFxAypxbAXioxSn4GuXwbsq7xLhjzDEBbIcBie9EY0SnKHgtuV4TjIApIVRsFEWpGuzAZJNJtpi4yPIxrjNptCmdBLIwllDQ4vlu7JM09q9jhfs4Xvi/hbyR/AZNvU3NeQGMoORgxw9IFptYSNHBe9TGWDpKBOpRVBSl8pOLqamRBpvi7vJgRz/HB/dFYcUh35yzZfV6Tvp5FABDeyYzLO0Ozk0415ybQGTGWRw2fVp+OhiLJg5j1VSSUqSjiVo2iqJUbgLAFuzwM6mf8WOsEcL2ifiAcXnFgeNz2DLuZuIoYHLKaTg94ni0xqPWAtqHtWYgMrNN4kHSlkYLOP8QtWwURanc7AAyg787GHGIwgiMxE1EIMSVJvUxsfDN1Bmcmv0RWSQz8opdfJoyn2hvdKT7zCEyRpOAzWiT5IEkoGZZP2zlRS0bRVEqL+HuMxmMJkPLEjGCEf67J+z3fbB3cw5N5t4MwH3pJ/B8qxdp4DQw1woErxUXvFc0tsOzD9tPTYo8m2EtHKUEKjaKolRO/JR0n0lasyQEiCjIWGaph0kEEmDRs8Np5Gzmf57W1Lm2Jz1r9bTD0HIx4lUcPC8v7HwRMBGX2lTrWTWHgrrRFEWpnIj7TILxUshZiG1L48MkAUimmGz3wDdffctZW8fix80rF7dlXMII6y6TlGlv8HcHIzRJ2CmefmwRZzWewHmoqNgoilL5yMH0PgOT7izxFBnPLMWVidgMNImxZEO+30f8pOuJIsCLjc/kqd7jcBe4jWCJW0ymb8pb0odtdRMX/LgwEzjF1ab8IepGUxSlcnEg95mMXpZgvtTaiDCIWy0WSIXJz99Fe99PZLgb0OXOUaR6U6EGofECoZYzYFOc44P7k7CNOFOAOmX9wFUDtWwURak8ONiBaDIvJi+4rzj4u3R1lvk00dhRzR744OtPGLh2LABfnHcDf4/rYiwhmUUjSQaxWPeZF5vuLEkD0ZihaPoWPST0P5OiKJWHvZhYjfzuxlogYsFIMad0dnYINdrcvmc3NcY/QBwFfFSnB38fMMIcIwIDNrMtAZtsUBi8rhcjQgB10U4Bh4G60RRFqRwUA1sx4iAZZjGYl39412Vf8HixaoLZYwFPgBdeGE734u/Y4arJqcNfi2zSGYcRmARsn7N4jKAkYrsIuILH1EeTAg4DFRtFUSo+DiZOI5M3ozDWSHZwWzbGtZYf/EgzThEIP9z75Rju+m0KAOvOfZzUGo0jxw0UYGtxYrFJBgT3yfWiMdlnYuEoh0SZuNFmz57N6NGjWbp0KW63m+OOO44nn3ySHj16AJCZmcmwYcOYPn06+fn5dO3alWeeeYZ27dqVxXKqNWlpaZxyyimkpqaW2xqioqI4/vjjiY3Vv53KEbITk+YchREVqZlxMNaMtI4huE3GPweD/TN//5jur80gmWy+rXMWXQZcb44TqyiAHRst7WYKsdZRHFZcagFpZfeoVZVSF5tXXnmFoUOHMnToUB544AECgQDLli0jL89E8RzHoV+/fmRkZPD888+TmprKqFGj6N69O8uWLaNRo0alvaRqzbHHHss///nP0H//8sDlclGrVi2Sk7XqTTkC8jFJAQXB71HY2heZlB0b/D3cKglmoG3I2cC8517jxeKv2eNKpf3dr0G0y4iMNNp0YRttilvNj513I0NK44EGqE/oCChVscnIyOC2227jqaee4rbbbgttP+uss0K/z5w5k0WLFjF//ny6d+8OQNeuXWnevDlPPvkkzz33XGkuqdqTnJxMmzZtynsZinJkyIjnAmwPMl/YJxebDOAPnuPBWCcOFBYXcs2n9zJj3YcA7LnkRVrWq2ebcQanc+INXkNqdKKC1yvEtrgBM+ZZa2qOiFLV5wkTJuB2uxkyZMgfHjNz5kwaNGgQEhqAlJQU+vXrx4wZM0pzOYqiVGYkzVkaa0psphBbNyMiI0kB+7ATOr1w05a7eWDaOpLIYXmDC2l5zmXmWonY6v88jJiFt6WRmhwZlOYAqWhNzV+gVMXmq6++onXr1rzzzju0aNGC6OhoWrZsyYsvvhg6ZuXKlbRt27bEuenp6WzcuJGcnJzSXJKiKJWVvcAujBAUYost47FJAiIEkpacSKje5s3f3yTlxR1093/LLndtjh/2inGfSTabXCsl+HsyprBT5tfImAIneB91n/0lStWNtnXrVrZu3cqwYcN4/PHHadGiBVOnTmXo0KH4fD5uvfVW9uzZQ7NmzUqcm5ZmIm6ZmZkkJiaW2D9u3DjGjRsHwM6dO0vsV5SD4TgOxcXF+Hy+gx9chrhcLjweD1FRUbhcmjt7QAow7jOp3pd2M0XYtjEOtpI/vCjTgZXZKxkz412+3faxudy1/6VWvdq2w0AORlyigh+ZVxNeV+PGiJeDqakp+VpSDoNSFZtAIEB2djavvfYaF110EQA9evQgIyODUaNGccsttxzxtQcPHszgwYMB6NSpU6msV6leFBQU8O2337JkyZJyFZy0tDS6devGcccdV25rqND4MGnO0pcsG+tGkzdWuCvNj7FWEs3+3JhcBvx6E5M/ycRLIT+3/AfHn9EvcqiazLSJCV5PBEZGPCdis9SSMV2dlb9EqYpNzZo1Wb16Nb17947Y3qdPH+bOncu2bdtITU0lMzOzxLl79uwBKNcUXaVqU1BQwIIFCxg/fjwFBQUHP6GMOPbYY6lXr56KzYFwMB0C9mG7N0vtSzzWgknAiIV0aHYwbrdYuGnXzVz9an1OdL5gW0xzWt/xH9v9WepkojECkxi8nlw3PnhdmVXjxdTUSHcB5YgpVbFJT0/n22+//cP9breb9PR0Pv744xL7Vq1aRZMmTQ7oQlOU0iAQCJCfn09WVla5is2+ffsoKio6+IHVkX3ANmxmmEzclCmbRVgLRTLUpNmmG97Y+Qab3ihk4r538RFF7J2TcaUlmfOkdY10a5brBTPXQpaOiE4xJiFAX0mlQqmGuy688EIA5s2bF7F97ty5NGrUiHr16tG/f3+2bNnC559/Htq/b98+PvzwQ/r371+ay1EUpTKRh4nTyNCzXEwBZ07w9wJsRlp28Jx8e/oa1jD8+1eYtOxz3DhknPoAaR272kFnydg+aRL4FyELTzCQljdpaPZZKVKqls0555xD9+7dueGGG9i1axfHHHMMU6dO5eOPP2bixIkA9O/fn65duzJo0CCeeuqpUFGn4zjcddddpbkcRVEqCz5gM9bdJW1kvNhaF7BDy8T15QMywZfg4/Jfh/DiO/E0YgsZNbrS8ur7jEglBI+XepwobLFmUfD3aGyLG7FsGqLZZ6VIqYqNy+Vi+vTp3HPPPTz44INkZmbSunVrJk+ezBVXXAEYV9qsWbO48847uemmmygoKKBr164sWLCAxo0bl+ZyFEWpDASA7ZiYi6QkS4aZ9C0LzzbLwQ43SwJyYfTmJzj55aZc4JtAtjuF+o+8BcnRxnLJxoiHZJ75sJln0jVALB4vRoDqBs9RSo1Sb1eTnJzMiy++GFFbsz9paWlMmDCBCRMmlPbtFUWpbOzGJAXEYgSnGGPdSH8zsXa82PEBxYQslR/cPzBt5nK+3W6KwnOvHk9So2bm2jHBcyVF2hd2/djg9aR4U4pDawM1y/SJqyU6z0ZRlPJjH0ZoirHDz2KwWWbyKcKKgVgjASj0FHL1Vw/y7he/4KWQta2vp8WpA2wcBmwMRtxpYjElBbeLtSOJBlq8WSao2CiKUj7kY+I0hZiXfRxGWKKxjS/BioCkOoMRg31w347RDJsArVjN5oR0Woz4jx1+Fu46k2LN2OC5UqcjIhMbPK4BOjqgjFCxURTl6FOMLdyU7gD52L5kLowgyJA0GRcgsZto+F/MYrJe2Magog/JdSVQ6+Fp4A0GWqKw7W18wevkYi2W4EA14oI/A5jMsxpl+dDVGxUbRVGOLgGMRSNDznxY91m4oHgwyQBStBlFqENzoVPIPf+dyIdbXwdg30Vjqd+wtb1HDHZEdPh8Gsk8k5iPdH9OQSdvljEqNoqiHD0c7CC08PHNIgwyl0asEhEgsLUx2XDL/57jlc/nEEcBq9v9g2P/70pbcyOZamIdyVtOMtwk9uPHCFEsRmj0bVimaBhMUZSjxx5gK9Z15sYE/wsxYiHZYpKaHIftgRYNxMNHe77jnFc+oQXrWZfcjmPve9FYKWK1xGLTmvOJHB9QhG19E95kM6nsH726o1quKBUYl8tFdHQ0sbGxBAKBcltHTEwMUVF/sUGYtKKRCZmZ2HiJFG462KaY0VjrJuj22lucy/ePTeBh3ydkuZNpNGIGeIJ+Mune7CKyaDMWY8FI/MeLLRytg6Y5HyVUbBSlAhMbG0vXrl3x+XwUFxcf/IQyom7duhxzzDFHfgFpRVOEsTRkcJkIjCQBgLE6JFFAqvqD6crDRz3Hi3vGE8BF/pDXqVG3uW3WKb3UpMeZdAsQd52MKJBJnvGYyZvq3zkqqNgoSgUmLi6OHj16cOqpp+I4zsFPKCOioqJISEg4+IEHohCbeRaD7QggY5xdlEwMkPHMkgZdDCOmvcvIH5/CjcPSM26hY68LbBxHamnCizYlTboIO8o5ATsCuiGa5nwUUbFRlAqM2+0mMTGx8nZDL8ZmngUwHQJyMUIgXZjd2HHMErCPw9TKBCv/31/1AxdPe5Q0Mlnc4FQ6DX3GXF8sFz+2vYwUfsp/Mj+2gDM6+L0xGqc5yqjYKIpSNvgxMZp9GCGRWpkYQsH+UGxGXFzh9TDBzgGr92XhjLqf9vzEOm9jOj44Cxx3ZOKAjB6ICvu+f4saHzYxoCaa5nyUUW+loiilTwD4HZPmLG4xyUCTRpjyHcyLPz74XbozF0NOcRHv3nU/FxfPZq8rkbTHZuJOS7VJAFIrE94tWj7SJcAJHpuAEaQG6DC0ckAtG+WQcRyHffv2kZmZid/vP/gJZURUVBSpqakkJyfjcuk/TyscUkuThRGFfIz7TIopxcoBE8cJENkHLejuCuBw1yNP8lLWiwRwse2G52l9TAdznlgrccGPpDXLYDRJhY7FutncmKmbUuSpHFVUbJRDxufz8fXXXzNjxgyys7MPfkIZkZyczAUXXEDPnj2JjtY/whUKB9PFeRvW2vBgLAn5KdX7YuXkYLPRRBwCcNPYF/j36lEALOt1Gx17XW1dZ1FEus7kE2xlE1HDQ/B+dbEp0cpRR/+mKodMIBDg119/5YMPPmDnzp3lto46derQpk0bunfvXm5rUP6ATExCQPi45nBc+/0uRZuSfZYDxMId703k/s+eIIE8lrY6j46D/23dYT5sm5tcjPtNugOI20yKOOOC107ETN5UQ7jcULFRDptAIFCuabjleW/lT8jCxGkkHpOJefE7mCQBaT3jYNxnUukvdTUes3/4VxO5fPILNGILq9I60PHhaRDtKtliRlxn0VgRkSmcsZgx0EXB4zVOU+6o2CiK8tfJxhRtSjZZTPB3ERRp4S+zZHKw1f1S3FkMj679L6f8ZxqdnaVsjW3I8f/+GFyxRmjcGJGSZAOxhiS7TVKbJRvNF7x+4+AxSrmiYqMoyl8jG9iIcV1FYcVDmmGCzTwLH80s7rBCIA5GbRhL4qNfc6F/LnvdKdR69BNcybWNK0z6p0mH6ATsKIJijBBJfY24z6TB5v6uPKVcULFRFOXIycE01hR31j5s2/4cbGIA2OFlYARgH6Fg/qNrn2THo5t4Pv9NivDgvms6MS2Pt2nM4jorDt7LwbaxEVeZl0gXW2rwo1QIVGwURTky8rCTNnMwFk14MaW4uSRYn40VjmggDpw8hwd2P8iqp/cybc+LAOy79r/UOvFM6xaTCZ1SEErwGh6s4CRiC0SLMZlndcvu0ZXDR8VGUZTDJxcTo8nFdmcOd53JJEyJsUg6ch6h7suO1+HOPXfy/dh8Ptk4ATcOW3s/SoPzrjTWSSE29hIcmhbqo+bDWkwiaD5sl+i6aMl6BUPFRlGUwyMXY9GI60xm0RRhxERazexPbPCYKPD7/Ny0+ia+nFLEopXT8VLIppOG0HjIfXbcQBxGYKRTtLytpImnfI/CZLSJ2DX6g/sr5YqKjaIoh04+xqIpxnQF8GAEJrztTAG2mFLqYMQNFge+HB9X/341X8zOZ9E335NKFptaXkDjO1+AgMsIRj7GNSaZbJIiLRaSDzPKWURHrJqGaEJABUXFRlGUQ0NcZzkY8RDXmQTsJaayv4tLOgR4ochTxGXbL+PLz/P46uP1NGYzW+r8jcZPvAVxUZHTOmOwCQXhrjNx0znYOI0bU0tTSZtjVwdUbBRFOTjiOhMLohhjwUg8RVrI7B8nkQwyoCC3gIu3XcyXi/exYHourfiNbSntafjUh+ALmiMJGIEqwLrkINJ1JunN0ozTC9TAZJ5ph4AKi4qNoih/jmSdFWFdZ7nYTDA/RhwkOaAweJ5YIfGQuzeX87eez9cr9zD7nQRO4gd2xreg3hNzIb6GEZB8jHi4sS6zeOxgNR/WcpFWN/mYuTT1UKGp4Gi+hqIof0w2sAErLp79PpKJFp6RFo0dkuaHbLI5e8vZfPnrdt57PY0zna/IjKlPzec+wdWknm1hU4id3gm231l4E09JpwYjNLXQ0c6VBLVsFEU5MNmYcc7Spbko+JFCSrCtY8IR15kP9mXt4+ytZ/Pdul1MnXAsZwc+Ym90LRJHfoY7tbkRiQRsm5sc7MTNADYmIxZUcfD3lOB966GZZ5UEFRtFUSJxMEKzGfOCl0r/PGxNi2ScidiIm0uaYsZD1t4sztp8Fos37WTS+BO50P8+2VE18D70CZ7mx9t4j/RNSw5+Dx/v7Me64wgekx/83gibQKBUeFRsFEWJJAtj0Ug3AHGZhWedgZ2qKbGbHExMJQb2OHvos6kPP2zeycRXTmagbxp57kQ8j88htm0Hmy6db44PiUl494FobJ+z8EacsZgUZxElpVKgYqMoisEB9mCmbAYwL3Wp+Afzwgfz0g93nbmxxZf5sCtvF7039ebHrbuZ8EpX/l78LnmuBBg+B2/rLubcROw8GhmwJrEbaegp9TTSD61G8H6N0BTnSoiKjaIoRlwyMU01Zf5MNMadJnUt+Rjhkc7OMqtG9ifAjqwd9NrUi5+2ZzJu7OlcXfQ2Ba44And9RGLHv0X2OfNg3GI+jJXix7rpwnugJWAnctYOnqOZZ5UOFRul2uDxeDj22GPp2bMnhYWFBz+hjGjcuDF161agLpF+YBdGaCByRozEZOTlno9tdintaZLMMVsCW+i1qRe/bs/lv2NP5ZqitylwefE9OIvETt3MsTIiQCwTcclJxpmITBJWdMSiqo3JPlOhqZSo2CjVhvj4eM455xw6depEIBA4+AllhNfrpWHDhuV2/wj8wHaMBSOpxfuC+6Rbs8RRxHUmMZUETHwnGzLcGfRc25OMrX5ee7kLfy9+lwJXHL47Z5F4cg9zjSSMQEkHAqn8ByNw4bEgyTwT0asF1ESFphKjYqNUG6Kjo2nUqBGNGjUq76VUDHyYMc57MC/2XIwISOGmE9wmMZpYSrrOEuG3zN/oubEn27bFMGlcJwYWTyXfFY9/2EcknnSmLdYM73MmVpN0a5bAv2SfSV2N19yDOmgtTSVHxUZRqiNFmIyzPYRGMoeyu+RlT3CbDEPLw7b9D4rH8qLl9N7Ym8wtKUwZ35qLfe+R50rAeXgOiR1ON0Ij6c3ytpGWM+EDz2IwWWeyDrFgEjE9z1RoKj0qNopS3SjA1tBIsN4Xtj/cwxiFbfkvI52zAAe+DXzL2b+dTf6Ghkyf2JBz/B+S407GNWIOCSefas6PxhZrJmBdZ8VEWkgiLlJb42BcZ/UpWTSqVEpUbBSlOpGLsWik0aXUyMgQNDDCEC4w4UQBCfDZrs84f8v5sP5YZk9KoUfgY/ZG1SRmxMfEtepoCzwlViPXk4yzouC2KIzwSP+zWIyFE4uxaPQNVWXQ/5WKUl3IBLZhRMYb3ObFCEMR1nUmRZbSKUDcaMH97+S8w9+3/J2EXzsy522HLs7nZHrqEv/vT4lt3Nack0tkirLEfeKxfdASg9uKMO1nZGxALKaWRt9OVQr1hCpKVScA7MZkncnLXNxVknHmhB0vMZVobKxlL1AIT299msvXXE7astP5/K1cujjfszOmCYnPfkHscW2NVZIUvL7U5UCkqy58HEF4uxsRoIZov7MqiP7bQVGqMn5MEoAIjRRrFmILLKWSPxZj6Yi1IS60WAgUBxiWMYynM5+m6bfn8encn2nJWrbFt6bOk58QVbeRjcFEYywVSWeW+EwRto5GstAkuy0WI1INw45RqhQqNopSVSnGiMyu4PfwPmd+bAPMaCLHOIMVGzcUOAX8fdvfmZo5lfaf/R+zv/ySBmxjc+pJNHxxLi5PLVvsKY0x5Zpx2FEB4U02i7GCJGnQKjRVGhUbRamKFGI6AkgzzWhM4F/cWvvPjQEbVxErJAt2J+zm/DXns2jfInrOvI5pP0ylBnvZUPdMmr40AxKSrcstJ3it8C7NIibSIcCz3z2LMRZNA7SDcxWnVGM2ixYtok+fPtSpU4ekpCQ6duzIhAkTIo4pKChg2LBh1K9fn7i4OLp27coXX3xRmstQlOpNHibjLHu/z16MBZIb/L4v+N2H7d4MoT5na4vX0vWnriza+w2XvXUzs354gxrsZV3zS2j61ByISbbHx2HiLWI1iZtMBqL5g9+lgFNcbqmo0FQTSk1sli9fTq9evSguLmb8+PG8//77dO7cmWuvvZaxY8eGjrv22msZP348jzzyCLNmzaJ+/fqcddZZLFu2rLSWoijVlyxgIybzTALvcURO1fRg3VvFGIukCJt1BnyX8x1dN3Vldf4G7nj1Jt5c/SJeCll30o0c8/Q74PGa8/ZPLHBhLJUkrPhICnQsptYmAdPB2YvOpKlGlJob7Z133sHv9/Phhx+SmGi67PXu3Zvly5czadIkbrzxRn788UfeeustJkyYwDXXXANAt27dSE9PZ8SIEcycObO0lqMo1Qvp2izjAaIw1kR4SnO4MITPjQFjcWSbX2fkzuDytZeTn+Ph3+Ou5I6sFwDI6PUQx/xrBLhcRiD2YdOoJbvMjy3SjA7eOz54fYnH+IO/N0JjNNWIUrNsioqK8Hg8xMXFRWxPSUkJNT2cOXMmHo+HSy+9NLQ/Ojqayy67jHnz5pVrJ15FqbT4gR2YrgBFmDTnAowY5GDcZrnB79kY19b+RAOJ8OLmF7lo9UX4dqXyzvO9uCPrv/iIYtPF/6XZjQ8SCra4MXU04R0BpF4nPMtMJngWhn2viQpNNaTUxObqq68G4JZbbmHr1q1kZWUxfvx4PvvsM26//XYAVq5cSfPmzYmPjxyxl56eTlFREWvWrCmt5ShK9aAI2IBpqBnAaEEM1l0mPz1Yd1U+RoRECICAE2D478MZumsoSRuP45OXWnJp/vvkuRLYfceHNB74D2PFFNlbh6wjL8ZtFo8VEOncLPdNDO7X9OZqS6m50dq2bcvChQu58MILeemllwAzP+Tll1/msssuA2DPnj2kpqaWODctLS20/48YN24c48aNA2Dnzp2ltWxFqZzISOUtWIshmkhBEAtDiMa6syTjbB8UJRVx7YZreXPXmzRf/jdmfbCbNs4X7I6qS/TIWdTt0MmeL8PU9s84C5+0Gd4ZIBk7eVM7A1RrSu1/++rVq7n44otJT0/n5ZdfJi4ujhkzZjBkyBC8Xi8DBw78S9cfPHgwgwcPBqBTp06lsWRFqZw4mMyy3zHusQBGeGKwQfvi4CcP22tMal9kGFosZOdlc/HPF/NJ3id0WXgBHyz8hnr8zsa4dOo89hHeVk3tfWOIzDgTkSvCJgfI+vxha/ADdYMfFZpqS6n9r7/33nvxeDzMmjULj8dEJHv27Mnu3bu59dZbufzyy0lNTWXDhg0lzhWLRiwcRVH+AInPZGLiIAmYWIy05ZdaGQnSF2MEIQcbwA8mDOws3sk5m89hce5iLn9vEK/+9B7x5LO6dg9aPPceblcNI2ppWCGRN0YSNgFB0pohIqON1ODxyZh5NCo01ZpS+9+/YsUK2rdvHxIa4eSTT+att95ix44dpKen88EHH5CXlxcRt1m1ahUxMTG0bNmytJajlBFRUVHExsYSE1N+TveYmBiioqph3/lijDWTjREQP0ZEcrATLX3YNjPhPyU7LdhYc5NnE31+6cMv2WsZMWEQD297E4CfW1/D8U+9DJ4YY6FkY6wmL0aswjPOxJpxYywesXRSMBZVFEaU6qJjApTSE5t69eqxbNkyioqKIl5E3333HV6vl7S0NPr168eDDz7I1KlTueqqqwDw+XxMmTKFPn36EBurCfcVmaioKE444QSuvvpqcnJyym0dSUlJtG3bFre7GvWRzcO0nsnExk6kEFOsikKM8BRgxEHiKlJAGXz5/7rjV3pv7c32PTm8/kpf/p5jhGbV6aNpc+td4AmaMcHizpC4iNUiQhcuIOK6cwfX6sJkndVC2/0qQCmKzdChQxkwYAD9+vXjpptuIi4ujpkzZ/L2229z++23ExMTw4knnsill17KbbfdRnFxMc2bN2fs2LGsX7+eyZMnl9ZSlDIiKiqKzp0707Zt21A6e3ngdruJj4+vHtaNgynU3IERkThsQF4mbEp/M8L2S6NNgt+D//5bWrCUvlv64mQkMv+1Y/mb70PyiWPbdW/Spt9FxiUXnrkmFpEXKzh5GIEToYvBxnCSgj/rYQo3VWiUIC7HcZyDH3ZozJkzhyeeeIKVK1dSUFBAixYtGDx4MDfccEPoxZCfn899993HW2+9RVZWFu3bt+eJJ57gzDPPPOT7dOrUicWLF5fWshWlYuLH1MzsxE7IlIyz8CJJcXOBEZlCrPiItVMDvsz9kvN+PY8m37di5qwdNHc2sCOqATw0kzqdTzLHF2GSDhKxbrKisO9gBEcyzgoxAuMJHhcL1MbEayTOo1Qb/uzdXKpic7RQsVGqPEWY+IwITQHWotmHTTMuxFbxx2DdWOGh01yYs2sOF22/iN6zTmfy/74hiRx+i+9Mw0enk9C6QaRLrBAjGuFuMy/GapK1JYetS1xtcZg+Zyml959BqVz82btZjVxFqWjkAOuDP8NdWrHYv7HiOhORcWEsHLF6wv4JOTV/Kv02n88dr3Zn+v8+JYkcfmh8BS0mfU5CwwYm4ywcyWZLxmS5RWPTmOUjXQGigvdPApqgQqP8IZqMqCgVhQDmxb8VIypZwe2SFSYZZ4XYFGcRH3dwfwBjbWQDSTBp1yRuWnorb40/hf/LmUMAF4tPfZxODww3Pc7k2mIdScaZD1u8GT7SWeI0qRjR8QT3NcJaPopyAFRsFKUiUIRJAtiNcUmJiIg7S17q0qJfUpzjsC41SUNOADJh7MaxPLHoSRZNrkt7/1dkk8SGS9+i04DzbDxFMs6k1Y3MvwmEXdMJO1Y6FUiX6ER0RIBySKjYKEp5k4exZiSjKw6bPiwNLcHWtkhmWIBQp2bAvvDdMCZvDPPefZsln+2lJplkeI7D8/AM2qa3NufEYuM6MopALJdijEtOhKc47GchpsgTTMZZHSLjQ4ryB6jYKEp5IW1ntmOzyCRlORvb6FLSjMVtJpaFTMAsxiQNRIET5TBi4wgKxnzB3NXLiCLAkhrn0OqFySTWqmHvnR/8KRlnTtg95D7JwX0FmJhMNEaQooL76qHFmsoho2KjKOWBdAPIwgiHF/NSl8YaMkYZjMWTT6Q7LTyHNDgMLZAZ4M6tt3PK499x6d7vAFh4/AOccc9DuFPDcoFiw86TjLNwsQHb7kbETdKcYzDFmrXR1GblsFCxUZSjiYMRlW3Y2S9iqUi35v1zREV4pAGmnBeWIFAcW8wdn1zPkPFfku5bxz6SWDlgEmf+4wIjaDlEZopJ8D8ueK1cIufcSANNcaVJbKdu8DoqNMphomKjKEcLB9Nu5nds7zDJMpNiyuLgcTmYl7tYMoIITFHw3GTICeTwyHN/Z+S8T0gmh9+iWsP9H9C1a2tzTg1sGxupxZGMMxGxBOz4aGl/kxT83YuxehoGj1OhUY4AFRtFORoUY2IzMikzESMuMlK5KOx3yQLLx44OIGy7WBmZsGP3Nt4bMYgn180H4LOUCzjx4UmkNUmy95YBZ+EdAKSX2f7pymLFSBac9EBrgu1SoChHgIqNopQl4jbbQmQxpA+THCBZYZLxBTZWIjEbcbH5sOLghh93fUn2vTdxY+5P+IjigxMe5qLH7yXK7zIJA7FEdn4OEDkaINgBGrBJCMXBfRI7qoVmnCmlgoqNopQVAWxvszzMy1/cZhLg92FdaG5st+bo4PlSrOnCiFOwYn/2zBfoOPZh2ju72Eo9frj8VQZcda65ZjTGcioMu5a43pzgNeQ+ydjGnSnYZpo6HkApZVRsFKUsKMLUzhRirIV4bIdmKc6UTC+wLqt8jMUh6chi7UgwPyvA+y9ex/nfvU4UAT73nErqPW9w7vHHWHECIyY+jMBJ4D884yy8dkesqKjg/aMwtTQ1KZmsoChHiIqNopQm0v7ld8yLWzK9PMGfMilT2vVLnUt0cJ9YPVJvk0zohZ+Tt5llt13IRXtMo8NX6l3H5c+/SHJijMk4y8fEcsCKVQxGcHyYJAGZ3CmxGOl1JllpSZj6mUQ0EUApVVRsFKW08GFazmRhOydL7YwE/D0YESgiclTA/taGN3iNfUAyrPj8PdLG3MTf/DvYTRr/Pf0Bht1zGy6xPJKD95JiTwn0S3sZyTiT0QCSkODFiE1C8P4NsfEaRSlFVGwU5a8SXjtTiK1NkY4AsUROzJSpmeK6EreZpCILicDuAPNH3cIZX75MNH6+jurE5lvHcNeJ3YxIhA85C6+bkWQEqeMB6zKTTwx29k00psdZ+U37Vqo4KjaK8lcIYGtnJN4hmWDF2NqZQPD3BKwlA0YAYsL2O4Qsi/w9m/nxjgvpscu4zV5I/Ttn/WcMp9atbe4lIwjCs9jCRznnYzPMwMaFJPNMYkZ1MfEZTQRQyhAVG0U5UgoxSQCSQiy1M3HYeEh47UweNgEgPCMNbLfmveb3VYveJu3pm+ni380uavJ0p7t4+P478XiDyhKHdcfJbBsp1BQxiw3eX2I2DsbdJutygPqYLDRNBFDKGBUbRTlcAhirYkvwd+mQnI+1amRMcri1IFlfkgAgFoe4rjyAp5gFI6+h2//ewo3D5+6urL35UR7v2tOIVHhhpcy3CZ/kKRMzw7PZJNAvGWqSkVYXkxCgKEcBFRtFORxk7kwmNptMYieS4SVikoMN9kubGInbiGWzD9NOJhqyNq4gY9gAuu/9FT9uxqRdz3lPj6RbvVpGILKIFBx38J7xwevJCAAZVeAL/i6FmuJeq4kRGp1BoxxFVGwU5VBwMC6ybdgXuFgvMmhMhESsGQn2SxqzWBiyXyyTHPj+49EcN3EkHZwcNtOQF7s8wKO3DyY6JXiStPwX4ZB6HWk9I+nT0v5fBC8luD5JoU5DCzWVckHFRlEOhg/TCWA7dixyAUZMxHopwIiQTNmUhplSV+Ng3W3y4neBz5XFVw9cyJm/LQRgZnRf8u96nFGnnGisnvBssujgdaQ7gNTIhFtUIiKBsOOLgmuoGfxo/YxSDqjYKMofIUH9rdj4SjzGnSW1KOE9zAqwI5slS0ziIy5MLKWAUFba2mXT4ZGbOLNgG/l4GVX/Tm749300TAv6yRKCxyZhA/iSVCBTNWWip6Q7x2HdaTJSIBVjzUjBp6KUAyo2inIg/Ji4zHbMiz6LkMuLfGyWmVguYIVH2vRL0F72B9OSnb0+5r98NWd8NgUPPpbTlpnnjObhgefiSg5bQzyRFpP8bRXBcWPiLonB32WiZhQ2jhOL1s8oFQIVG0XZnzyMyOzFVuFLLKYY22pGal3EoghPH5ZU5EysVeOC3Tt+YP3wS+m5ezUAL8VdS9vHRnL/8XXN/fKJzBBzY4RDYjDSuDM8yyw88UA6FXgxiQe10PiMUiFQsVEUQayZHWHbojGxk6iwY6S3mUy7BBu72d/SScT0SgO+/ehejp/4LJ0CeWyjHk+3eYwHH/kHiYlB1UgJ3qsA23VAxC4Wm1Ag2WiFWOGTOh8Xtr9ZEhqfUSoMKjaKAiY2sgPYhXmp78P87cjHiIU0zMzBvNTlO9jMMH/wPBk+hrlWfv4W/vfgBZyx1nQCmOE+l13XP8lT3dpEioGbktMyRcAEKdb0EFm0WYgdkNYQHXSmVDhUbJTqjR8jMFnYF7b0DZOhZhKHEXKJrJURojBB+KAlQyz8+sU4kv49nDOKMsklnkfrjmDIk/+iWd1o22gzlsiMM4m5SLNOifuEt7iROhqCx8Rgstxqo3+rlQqJ/rFUqi8Sm8nBFljGYq2TGGzFvbB/F4B8IufSBF1dgb25fP3CRfzt+48B+IZTmHfWGEZe+zeiJAkgFpsEIC1uJLMsDpuEIIkA0mMNbCGpTO6UbgDadkapoKjYKNUPqZvZjQ2m5xCZzhyNnQHjYPuJ7d8FwIeJ89QglO68a81c9o26hr/lbqeYaEYn/IszH76Ph5ok2ap+sVLisLU5Mho6XNwkLiQjnhODn3xsV4KGWNFRlAqKio1SfZDCym3Y2S+yLbwNTHhFvnRklqFokgAgbjWZO5MHxBaz/OXraTP3TWrhZxXH89JJo3jigfNJ8AavsxfjhhPrJrzljIxnlsaeYKdt+rFjnqXbcw3UbaZUGvSPqVI98GFiMzuw7V7yMC9tER6xOvKwowAkPhIVdo70MxMXVwwUrf2BDaMv5oQ96wng4hnPTdQaMpwXTmts/5a5g+dlY4Qj/PpS/BmPOT4J2+RTjovHWDV+TO2M1NcoSiVAxUap2uzfBcCHsUZysa35waYaFwe3i4UR3gUArCWTgxEkl48Nb91Dvfef5VinmPU048GWD/PkowOpFx9ljivACAPYxpxerGUllhPY4k2J3yRgrKDc4BrdQCPUbaZUOlRslKpLEdaaCWAr+guw6cx52KFm4RMtw5MA8jA1MGGWDH5wfvuFjCcvpPn2XwAY576G7QNv5vVLTsQVG3at8LEDQhTGevEH7y/zZmQejdTOxGGFsRamkab+rVUqIfrHVql6BDAv+N+xFf+SzeUlMp05gJ2SKQ00xcqQ86RTgAhStJ/d7zxOwrTHaO4UsZmG3NlgBPfddxntaiYbkQurswm5vsDW50hXgmise8wdvJfU8UihJpghZ1K0qSiVEBUbpWoh82Z2YURDgukSdJeplZLxJW1owi2ZAmyMJlyocoGsX9n8yP/RaMtyAF5zDeKbi/7BW9d2x+3CTuOMx7reorGNOaVbs9xv/7EDUqiZj7WG6qNFmkqlR8VGqRpIq5ndGIGJwWaYuTEi4MW6raT1fiyRlow3eGy4JRMDFPrJmf4k0VMfolGgiC004Naa9zNkeH9eadLQtpaJx4iZdGuW7b7g9xiMkERjxxWA7drsDftZD+u+U5RKjoqNUvmRdOYczEtbrIccSnZnlqQAyQKTAL5YMmBf+NKaZvMqfn/kMupuXQHARP7OzPMu5p3rziW2IMrGWqRnWhI2uw0iM8bEdZYYPL4QE5eJCZ4THzymQdjvilIFULFRKi8+YCfGminA9jKTXmFg3V95WItB3FdubFZYNpFt+YvMyXkTRxH9/mPUdYrZTENuTr2f/7vjdD7omG6FKxubRAA29pOE7Q4thaH7t5xxsOMBPME11CUymUBRqgAqNkrlQyySbRhRyMVmlsnslyJsfUr4TJlcbHsY2RYb3JYXvHYssPEHdvx7IHV+/xmA8fyDaX36Me3KviTFes3144L3TcYUa8pETBESuXZUcA3S70xSncWNFx38KUkAWjujVEFUbJTKRQEm+P87NuAuwX5JERZLRYLt8uIXV1kxJlstEfuydzBCsbeA7PfuJ27Gf6iDnwya8s+0+7l0WGfmndje3F8sFal7kTYykrJM2D0FL1b8kjFCJVaYF+M2i0VRqiwqNkrlIIBJAJB0ZiE8yC9ZZWLJuDACJOnPYsmIKOQHjxUrZ9VX7HrmSmrtySCAi2f5J7P7nMW0q3uT5Ammg0lWWC62p5ngwY5llqFq0vNM7lmE7cXmxdbOaBKAUsVRsVEqNg7mxf47sAfzUs7FvNiLMIIhL3EJsIe3h5FxyPuC1xLXl4hPIZC3j6wJt1PjswnUAn6mNUNr38uN93RmXtPWRlQkc0yGl4kbDCITDqRBZxLGgpEi0gSsK82DsYQaBK+lSQBKNUDFRqm4FGNqZvZga1NkJHIUthW/K2y/VPwXYUVA6lwkJTkh+N0PgWUz2ff8ddTI3Wk6NLv+xeJ+Pfjo0h54a0Sbe4mVUkzkKAHC7inWiwT9pdtAANtnTbLekoE66N8+pVpxSKHIzZs3c/PNN9O1a1fi4+NxuVxkZGSUOK6goIBhw4ZRv3594uLi6Nq1K1988UWJ4wKBAKNGjaJZs2Z4vV7at2/Pe++995cfRqkiiMvsF0xPs0JsYD8z+HMfJiifh231IrNmpAgzO7jPjRUdsZT2bSNzZD/co8+nRu5OvuNkujV6my5P3siMv/fBGx1tBMuFje1IrAasNeLFiIdYVP7g+giuQQSmEGPtNMYkAqjQKNWMQxKbNWvW8O6775Kamsrpp5/+h8dde+21jB8/nkceeYRZs2ZRv359zjrrLJYtWxZx3AMPPMBDDz3E0KFDmTNnDl26dGHAgAHMnj37Lz2MUsmRppnrgU3YjLICrNXgwc5xkfhMDkZ8wkcph8dspMOyD3AHCMx9hdzrjyN12SxySOC2qFG8cNmTfPncxfRu09TGYqRRpgiO1N8UE5kAIEKWhEl/TsbEYeKAmsGftYBm2EJPRalmuBzH2T9vpgSBQAC32+jSq6++yvXXX8/69etp1qxZ6Jgff/yRDh06MGHCBK655hoAfD4f6enptGrVipkzZwKwY8cOGjduzPDhw3n44YdD5/fs2ZOdO3eyfPnygy66U6dOLF68+LAeVKngFGHqZbZgXsYFwZ9S8S+V935sx2OZ7wJGbPzYjsoS/BcXmxdYu4qsF66mxvr/AfAR5/Bgy8GMve0UOtevZ86X1v5SIFoDG7wvxsZe5PrSr8yPERpJa5Y05xTMzJkUVGSUKs+fvZsPybIRofkzZs6cicfj4dJLLw1ti46O5rLLLmPevHkUFpoqu3nz5lFUVMSgQYMizh80aBArVqxg/fr1h7IkpaoQwMRk1mBcZrJNplkWY4Pq4UH9HIwVJGnPwXHMFAW3S9cAF+AU4Jt4P8V3tqfG+v+xnbpcFjuOj6+/h+/H9KdzrXrmGk7YfZOD1yvEWjHhCQAJGAFJwCYiyCA0EZb6QFOMYKnQKNWcUvMcr1y5kubNmxMfHx+xPT09naKiItasWUN6ejorV64kNjaWli1bljgOYNWqVTRv3ry0lqVUVMLnzGRi/iSKBbOPyHqZGGyAX2pbwFgXUvkvcRE5Tro5//gZ2S8MJmn3OgBeYTAvdTyPd//ZlVaJtezAsjysFSSJBQnYolD5hAuPF+vKS8aOB5B2M6logaaiBCk1sdmzZw+pqakltqelpYX2y88aNWrgcrn+9DilClMEbMdYNDItM5tIaySYLRbqZyYzaALYdOFobOeA8PYu0cCuHRT+9w5iv5tMErCSNtyU9CBnDqnLjyd1syJRhBWVHGyvMsLuEYcRkhxs2xmpl/Fje6P5MbGa2miXZkXZj0qTEzNu3DjGjRsHwM6dO8t5NcoR4QOyMNZMeNsWeXmLcEjNDNi4i1g3Mm0zXBDCt7sCOJ+9SuFrd+Et3Es+Xh5x3cdH3Y9j1tXdaRJX28Z/wq0gD8bdtQ87Njo8mildAlLCzknGipMLk86cglozinIASk1sUlNT2bBhQ4ntYqmI5ZKamkpWVhaO40RYN/sftz+DBw9m8ODBgAlCKZUIB5OmvB1jnUitjLjNZPyyfERIcrCiI3Utkl4sFfzhBZprllEw7ka8G77FC8yhL7fWv57B18ezvENfc764yaRdjKyP4HXiMKIisR/pAOBgM+LEGioMW29d1JpRlD+h1MQmPT2dDz74gLy8vIi4zapVq4iJiQnFaNLT0yksLGTt2rURcZtVq1YB0KZNm9JaklLeOJgX+u+YfmaSTuwJbpeAengjzULMizy89UwhtuYlgC2YlOC9sw//Ww/imvMcXifAVupzW/RIVl+Qx+fnn0Z9b93IxpySnRaFEcFw6wRsHCc6bHseoXHQoc7QbszMmWTUmlGUg1Bqf0X69etHcXExU6dODW3z+XxMmTKFPn36EBtrugz27dsXj8fD5MmTI85/8803adu2rSYHVBWKMLUyP2O6M0shZjbmBb+XSBdWDLZ/WDaRBZTyT6ICrKXjAmId+HwKhUNaEzX7PzgO/IdbaZ8+mp5PprL08puoH1fXHC81MpKmLNdNxrrTxIIJd5+J+y4Z4yKTVjPxmLqZGqjQKMohcMiWzbRp0wBYsmQJAHPmzKF27drUrl2bbt26ceKJJ3LppZdy2223UVxcTPPmzRk7dizr16+PEJY6depwxx13MGrUKJKSkujYsSNTpkxh/vz5oVocpRLjxwT+t2HdUGINiNUijTSlYaVs92BbyxRhRUGSBGIxguUBtv9K0dihxKz6lFjgW07hxuR7qHHFT6w65Wxqx9a2UzKllY3U7/iwg8kkHiQzbAqD9xXh8YetLy94nkzQ1HRmRTlkDqmoEyiRPSZ069aNhQsXApCfn899993HW2+9RVZWFu3bt+eJJ57gzDPPjDjH7/czatQoxo8fz/bt22nVqhUjRozgkksuOaRFa1FnBSSAsUg2YKyS8LiMG/OCz8e6ouQlXxjc7sLW1UirfR/GAkrB/rNoZy6BmSNx5owhKlDMbtIY7nqUd8/M4dXLj2dArX62k0AAay1JrY6sMzbsuzf4XaZtxmNEKR5rtUiHgLrY+JGiKBH82bv5kMWmIqFiU4GQXmNSLyOuMRGbAmxFv7y4M7HtZlzYbsp+jLgkYAVnb/BnggOLp1M47jZiszYC8CrXMrxZb3pdsYJXmg8jpWZwVKYUekZjOxF4w64p3aF9GGslIXisD+MiE9GT8c4p2EwztWYU5Q/5s3dzpUl9ViogBZiuzJuxAXsPdsSxZIyJu0xcZRL892Otmujgdm/wPLF84oC1v1L05i3E/PwxscBSTuSm+AfZeP5nTO1bl+5Jl5rri7BJBpmISDa2v5qIhcSJJKVZssy82DY1LkzNTG10TLOi/EVUbJTDpxiTYbYVm0kmAiHpyuIikzRmqfCXj4hLDEYM3JgXvWzPB4pyCLz3GM6HTxMTKCaTGtzvephxXQsYdt5KHmz8FLEJQXMl3GoRYQhg3V9SdCmdAMCOAhBXW9AwCsVw6qKNMxWllFCxUQ4dH7ATUy+zFzuvpQjbSsaPcVFJLMaHHSwmdSrZwevJIDNJCCB4DRz43zsUvjGM2OwtBHAxnuu4t0lfmg2YyYqT7qG1q7UROElhlhqdGCLHDoB1o8VhOzkTXJ8XO1paOhPUw7SaUWtGUUoNFRvl4PgxWWAbsK38xZqJxVgzLuzcGREYD9atFu4a82Je7nnYOhZporlpOUX/vZmY1V8QC3xPZ4YmPMDP537Ac3/L5upar+Hyuuy6xHqSJIQETJqyDDyTVGZxoUnPs9jgR7oAiDVTD5uppihKqaFio/wxkrm1ERPUFxeUBNZ92NoXEY0YbAt+PyYeIj3MxNKRdGh3cFs0kLkb//sjcC14mRgnwA5qc4/rESaeuovL+89idtMnqZVfy9wrFitmMrFTkM7MsRhREUsqgJ1FA7ZIU37WJXKcgKIopYqKjVISB2PBbMXEZuRFLcPIvEQG08GIjghHHDYBQFrShPcwCy/W9Plg3niK3r2fmII9+IjieW7hoWO6UvOC11hw3D10S+lmg/lZ2BRlmcCZHLy3CKD8qZbx0UnYrswJwfX5MYIUjxkFIDEfRVHKBBUbxSJt/zdj4jLhacwSV5EZL1IcKZlnYm0UY60WedkXhl1DrlMArF5I4cRbid22nBjgU3pya/LtrOn3Xx46rR7/SppJjC/GJhxI5pgUe0qzTBd2zEBM8PrFWCtMxkFLanNh8Gc9dNaMohwlVGwUQwFGZKTyX0RC+pn5Me4oGV4mrjHJ8ApvPeMEr+dgLAnpspyPsSqy1lP82l14fpxGLLCeZvwr+lE+OHMZF/V8k9l1nqFpbFPbLLMA2xNN0qZd2LRpgvcKt6rig/fOD/4E25G5HiadWf/0K8pRQ/+6VXcKMKOYN2G7IMtYZA/GnSbBd0kV9ge/y5iAOCJHJXuxQ9CiMVZPHLAzm8AXowjMeRqPv5Bc4nmce3i6fU2anD2eT5uPoGdMT+uCA5tBFt4s0wn+LvEasaaisVM+E4PnSzq1ZMnVRxMAFKUcULGprhRiLJmNGEsGbGGjg3V9SasXSW/2Yd1QIjBgXuresO+x2KFnrgB8M4nCyfcSm7sNN/AmAxle/2Ky+j3LE+0v4sbkT/EEPLY+x8FaMzJ6Wawn6UQg7jMvtqBT3GrScFMKSetg0pk1AUBRygUVm+pGASbwn4Gtd5Eixzxsq39JT/Zhgvw5mEC7O/h7LrZORvqeSb2LjAPwAj99RcE7t+HduoRY4DtO5taE4Xx39hSu7TKbUfFTqZ1Q22aoyXya7OB1o7DJBZI9JgkLfmxtjIwFkOJMqfupgc6aUZQKgIpNdaEI4y5bhynIlH/5izUjdTJgX+YSuxEBkPHLUWHfwQqFTN70AFvWUfje3cQum4YX2ExD7o56mLfPWMup3V5iaeMnOdF7onXFiZtOmmdKIoCkKruwRZviBssP+ykWkSQNJGNiM9oBQFEqBCo2VZ1CjMisxsRQIPLlLi9oyRaTAWbSXl86N0tb/mLMyz0peJ4IkqRBZ2fh++RxmP8ssYEi8ojjSe7kqfa1qXP2q7zb9F9cXDwSV1RQAVxh58poZ0/YNaMwlpQfK47iCkvETtWUtcUBNYFa6J9uRalA6F/HqooE/n/FzJeRKZfF2N5jksYci23ZIplmfoyQSBfkHGz/siiMAEk8JBdwFxP4chxF7z+Et3AXAJO4knub9qHo3Nd4psX/cU3qF3hiPWZtBcH7iFUkPdSkhxlYSyYBIyaBsP3FwbXlYccD1MK4zORaiqJUGFRsqhoFGFfZr8Du4DZp4y/Wilgs0n7fCftd6mokEC+Wj2R+hYtUAeB14OdZ5L5/FwlZv+AFvuRv3JF6E7+d9wEPdtjBjakfEpcXZ6v/Y7ABf1mfVP2Lu0zuE8DGbPxYi0Va0Pixc2Z0PLOiVFhUbKoKucBvwApMlb1kZUmLGYnJSNGjWDNSNyNCJM0pRYCSsAWRsWHXcwMZS8l+706SNiwgAVhDC+7y3s28Pj8y/NT13Jb6X5ICSeZPWTzWHSaJBPHYQWvx2HiPjAkQ95qsLXzdscHtjVCXmaJUAvSvaGVnD7AE+AHYFdwmVkB44aXEOcJHHhcEt0ltilgYkv4sMZz44HF5GOthx0b2vT+c5J/eJgnYQyqPRN3FxNOLuOOsvbxW43GSA8k2yy2AEQfpTSbWlAjO/p0KJC4Th40VOdhgfzQmy6xO2NoURanQqNhUVjYDnwPLMaIh7iNJCRZLQF7oUlxZEHaNYiL7lYmVIxaFiEVB8NwdWWTOfpj4RS+R7BRRSAwvcCP/6dSCG/rFsCV2IIk1Es29irGpyn5sS5sYbDKAE3bfBGxSQBE2aUGEUEgAGqJZZopSyVCxqWzsAr4AfsYIQypWWIqxFoQP8+KWmhhxiUm9Sni2mbjFJAU6B2PByEs+UMjWBSNJ+PQ/pPpMcc7bXMbo1r246vyarKt7Lp4kj21JI0Ig95HOymBERGIz0olAgv+S1uzBBP/lGeSYukAa+qdWUSoh+te2suAHfgG+xohBItYK8O93nMRq3Ng0Yn/wPKlBkdhLeCFmeEC+AIgOsOq7x0j55Hka5hsf3UK6MbLxVVxwSSuWNeyKyx02W0YGkUltjLSuEUGT+IsT3J5I5AAzqZWRhp5irdXH1MyIYCmKUulQsakMFGPiMj9hs7bExSQv75AVEnbegcYf52ASCGTOjIhRWMwkUBzg6/WPUWPWy7Tduw2AlbRhVK1bOPPC7nzS9DhbpS+Zaf6w60k6tIhZNLYppmPvc0BrphjbvSANIzIJqMtMUSo5KjYVHRGa1diYi1TaS9U+lBQZ137bhJjgNfdhrY4EwAe+aB8f73iCxA/Hc8aODQBsoQFPJd3BiecP4o02dXElYFvJSLA+vIqfsJ8iLDJ3RgRFsspErKQ9jmTHxWLiMiloLzNFqSKo2FR01mKaZUZjhEbmtMgAsv1daFIkKRlf+1sEMmMGQu1niqKL+CD/KbzvT+D8zesAyCKF5+Juo1nfW3j6xDTcTti1pVrfg42rSC2P1M5IsD+8JY6IY3immbSlEauoISYOpS4zRalSqNhUZHZj4jQQaaXIC5ywfQcSl/AUY0F+90C+P5+3Cv+N+8tJXLlmHdH4KSCW8TE3kHjGfdzTuQ4eySCTLDdxfUkcSFrEyGCz3LBj44P3kxEE4WnN4i6TGps0oAHaMFNRqigqNhUVHybjTCrqw60GJ+x3+GOxCReZKLttn3sfE2L/DUumMPjnDOKdQvy4mRR1FYWdHmLw6c2IFetFrh2NHRkgxZ3SLka6DEg8SbZLUoBkpUmcJg47yTMNY81oXEZRqjQqNhWVTExcZf8srnBECKCkRRMoue33wO+MjRuDa/GH3Lp8CzWcHABmuC9kV7tHufy0dOIlBhPeDkYC+iIaMsETbA2PjHqWZIMEbIqzCJVM2XQw8ZgGmOJMbTGjKFUeFZuKiIOJ04S7yyQpYH8RCT8nvGbGRygwv8m9iacTR+H+cgF3/fA7dQOZAMx39WTDsY8z4LiTSayJFQMpCpVCUElHltqZWExCgBRuRmHSqQnesxgbY0og0qrxYiwZbTGjKNUK/eteEcnHZHxJAH7/+Mz+SOA+XGSAX9y/8HTiE0R9+T33LdlJI/9OAL53ncJvxzxO/5N60EOEQ+pjYsPuG41NTXawtS9R2MJNaW8jFpGIi4xwFgGLwvQxqx28h6Io1QoVm4pIIbblf3jmmSCWjRtr0QRHBxRRxGzPbMZHvUzthdsZsXgnx/i3AvCTqx2rmo+k76nncXKsyw5LE6GQFjUSe5EEAC92zHNR2LZobPBfGmNKaxr5GYOp/K+P9jFTlGqMik1FJJtI91k4B0gA8Lv8zHLP4v2o95kVN4uzPz6WZ5Zu4zj/RgB+c7Xm5xYP0+OMS2jrdtvkAqnYF4tI+qSFDy+Tan75Hj6GWcRIYjkyJlo+tYAm2MmaiqJUW1RsKiISI5HssvAXtcyVCWapOTg0c5qxjW1c9uHfWPRjDVoHvgNgnaslvx07gtN7XMFxgSibkRY+JiAGWygqgiIuM2n3H95hIDZsuxSFirtNRKgm0BidL6MoSggVm4qIxF+k8j5ccCQJIDg6oCiqCL/fT72tjfnvD98QSxEbXc1Z1+YBuna/kmOcaDtmQLoph0/mdGOr+SXeIwIjxZiJ2JqZmLB94QWdDiaNuXHwp1b+K4oShopNRURe5iI2YFOIpWNAsI1/rCeWDb4NFDcvZlGTp0mo2YCTelxJk4DHjgyQeTbS+l+yzKSqX64djR27HBc8RuI5UvkvbWe8YftSgGZohpmiKH+IvhoqIuKeEpEQwREXWnh35ijwRHnw4KHHNfdb60VERiZzSsAebAxGOgPkE9m7TK7vxwiOJAhIwF9qZhKB5pgMM20voyjKn6BiUxFJwr7wwbqvioLfo7GNL6WiPx9r+Uh2mMRi9hccaRcTnjkmVpTUxCRiBUZiMp7gMcmYwH89tL2MoiiHhIpNRURiJtFhP8V9JsIh/+ekWFIyyURkpICyAGvhyFA1idOI4PgwApKIqZMRywoixxAkAE0xRZmaxqwoymGgYlMRicV0Pt5BpOUR/n8rBmvdBLs3RwTtRWSk2aWkNkvcRlx04nKTZppixXiJbLDZBCM0CWXyxIqiVHFUbCoiLkzfsN3YwPyBxESsnDgi58nIMcXB/THY/mViBUmXgDyMuCVgs84SsAWbTYEWwX2KoihHiIpNRSUF49rKJNK6ETeZCI38FAGKxo55lrkxRRihkm7N4joj+L1O8H6SHBCHCfwfh4kfKYqi/EVUbCoqURiL4sfgd4nNiGgUYjsAhFs4xcFjvNjaGclCCx9eFgXsxXRdTsVYM/FAS6A1Rui06l9RlFJCxaYiI1lfa7BuNLCV/GLRFGJjM5JUIOnNUv0vCQbyPS/4eyrGqmkNpGMKMhVFUUoZFZuKTiOMe2wL1kIBIzAiOJJZFh7XkULM8NY0MhNnH0ZsGgOdgI4Y0VFLRlGUMkLFpqIThXFtRQEbsLUuEpcBKy4iNNLSRj6+sON2Bn/vCZyB6WOmIqMoShlzSG0SN2/ezM0330zXrl2Jj4/H5XKRkZERcczixYsZPHgwrVu3Jj4+niZNmjBw4EDWr19f4nqBQIBRo0bRrFkzvF4v7du357333iuVB6qSRAHHYNxcidgU5VhsmrIXm3UmA85iw44rxHSTbgf8C7gQ015GhUZRlKPAIYnNmjVrePfdd0lNTeX0008/4DHvvPMOK1eu5JZbbmHOnDmMHj2apUuX0qlTJzZt2hRx7AMPPMBDDz3E0KFDmTNnDl26dGHAgAHMnj37rz9RVcWNqdg/EZMpJuOYpehSKvwlfVla20jngNbA9cDfg9dRkVEU5Sjichxn/4kpJQgEArjdRpdeffVVrr/+etavX0+zZs1Cx+zcuZPatWtHnLdhwwaaN2/O/fffzyOPPALAjh07aNy4McOHD+fhhx8OHduzZ0927tzJ8uXLD7roTp06sXjx4kN6wCpLIaYOZwcmq6wQU2sjGWsOJg5TH1Pxn3zgyyiKopQWf/ZuPqSYjQjNn7G/0AA0bdqU2rVrs2XLltC2efPmUVRUxKBBgyKOHTRoEP/4xz9Yv349zZs3P5RlVW9iMYWfDbBDzPzYbtHhLWcURVHKmTJ9Hf3888/s2LGD448/PrRt5cqVxMbG0rJly4hj09PTAVi1alVZLqlqIkPPwrsAqNAoilKBKLNXks/nY8iQIdSuXZtrr702tH3Pnj3UqFEDlysyaJCWlhbaryiKolQtyiz1eejQoXz99dd89NFHpKam/uXrjRs3jnHjxgEmPqQoiqJUHsrEshk+fDjjxo1jwoQJ9OnTJ2JfamoqWVlZ7J+XIBaNWDj7M3jwYBYvXszixYsPGB9SFEVRKi6lLjYjR47kiSee4LnnnuPKK68ssT89PZ3CwkLWrl0bsV1iNW3atCntJSmKoijlTKmKzXPPPcf999/PyJEjGTp06AGP6du3Lx6Ph8mTJ0dsf/PNN2nbtq1moimKolRBDjlmM23aNACWLFkCwJw5c6hduza1a9emW7duvPPOO9x222307duXHj168O2334bOTU5ODlksderU4Y477mDUqFEkJSXRsWNHpkyZwvz585k5c2ZpPpuiKIpSQThksRkwYEDE95tuugmAbt26sXDhQubOnYvjOMydO5e5c+dGHCvHCCNHjiQxMZFnn32W7du306pVK959913OO++8v/AoiqIoSkXlkDoIVDS0g4CiKErF48/ezVr6pyiKopQ5KjaKoihKmaNioyiKopQ5KjaKoihKmaNioyiKopQ5KjaKoihKmaNioyiKopQ5KjaKoihKmaNioyiKopQ5KjaKoihKmaNioyiKopQ5KjaKoihKmaNioyiKopQ5KjaKoihKmVMpRwzUqlWLhIQEateuXd5LKTN27txZpZ8Pqv4z6vNVbvT5Dp+MjAx27dp1wH2VUmyg6s+0qerPB1X/GfX5Kjf6fKWLutEURVGUMkfFRlEURSlzKq3YDB48uLyXUKZU9eeDqv+M+nyVG32+0qXSxmwURVGUykOltWwURVGUykOlEptNmzZxySWXkJKSQnJyMhdddBEbN24s72UdNtOmTePiiy+madOmxMXF0apVK+655x6ys7MjjsvMzOS6664LpXr36tWLFStWlNOq/xp9+/bF5XJx//33R2yv7M84e/ZszjjjDBITE0lOTqZTp07Mnz8/tL8yP9+iRYvo06cPderUISkpiY4dOzJhwoSIYwoKChg2bBj169cnLi6Orl278sUXX5TTiv+YzZs3c/PNN9O1a1fi4+NxuVxkZGSUOO5QnycQCDBq1CiaNWuG1+ulffv2vPfee0fhSQ7MoTzf4sWLGTx4MK1btyY+Pp4mTZowcOBA1q9fX+J6ZfJ8TiUhNzfXadmypZOenu588MEHzvTp0522bds6xxxzjJOTk1PeyzssTjnlFGfAgAHOm2++6SxcuNB55plnnJSUFOeUU05x/H6/4ziOEwgEnNNOO81p2LCh89Zbbzlz5sxxzjjjDKdmzZrOpk2byvkJDo+33nrLqVevngM49913X2h7ZX/Gl19+2YmOjnZuu+025+OPP3bmzp3rjB492vnwww8dx6ncz/fjjz86Xq/XOfPMM53p06c7H3/8sTN48GAHcF566aXQcVdccYWTkpLijBs3zvn000+dCy+80PF6vc4PP/xQfos/AAsWLHDq1KnjnH322U6fPn0cwFm/fn2J4w71ee69914nJibGeeqpp5z58+c7gwcPdlwul/PRRx8dnQfaj0N5vn/961/Oqaee6rz44ovOwoULncmTJzutW7d20tLSnI0bN0YcWxbPV2nE5j//+Y/jdrud1atXh7atW7fOiYqKcv7973+X48oOnx07dpTY9vrrrzuA89lnnzmO4zjTp093AGf+/PmhY7KyspzU1FTn5ptvPmpr/avs2bPHqVu3rvPWW2+VEJvK/Izr1693vF6v88wzz/zhMZX5+e655x7H4/E42dnZEdu7dOnidOnSxXEcx1m2bJkDOBMmTAjtLy4udo477jinX79+R3W9B0P+Eec4jjN+/PgDvowP9Xl+//13JyYmxhkxYkTE+T169HDatWtXNg9wEA7l+Q703snIyHBcLpfzwAMPhLaV1fNVGjfazJkz6dKlCy1btgxta968OaeddhozZswox5UdPgeq2u3cuTMAW7ZsAczzNmjQgO7du4eOSUlJoV+/fpXqee+++27atm3L5ZdfXmJfZX7GCRMm4Ha7GTJkyB8eU5mfr6ioCI/HQ1xcXMT2lJQUAoEAYJ7P4/Fw6aWXhvZHR0dz2WWXMW/ePAoLC4/qmv8Mt/vgr7pDfZ558+ZRVFTEoEGDIs4fNGgQK1asOKBbqqw5lOc70HunadOm1K5dO/TegbJ7vkojNitXrqRt27Yltqenp7Nq1apyWFHp8vnnnwNw/PHHA3/+vBs3biQnJ+eoru9I+Oqrr5g0aRIvvvjiAfdX5mf86quvaN26Ne+88w4tWrQgOjqali1bRjxrZX6+q6++GoBbbrmFrVu3kpWVxfjx4/nss8+4/fbbAfN8zZs3Jz4+PuLc9PR0ioqKWLNmzdFe9l/iUJ9n5cqVxMbGRvzDV44DKtX76Oeff2bHjh2h9w6U3fNVGrHZs2cPqampJbanpaWRmZlZDisqPbZs2cKIESPo1asXnTp1Av78eYEK/8xFRUXccMMN3HnnnbRq1eqAx1TmZ9y6dSurV69m2LBhDB8+nI8//pjevXszdOhQnn32WaByP1/btm1ZuHAhM2bMoGHDhqSmpvLPf/6Tl19+mcsuuww4+PPt2bPnqK75r3Koz7Nnzx5q1KiBy+X60+MqOj6fjyFDhlC7dm2uvfba0Payer7oI1+qUhrk5ORw/vnnEx0dzcSJE8t7OaXGk08+SX5+Pvfdd195L6VMCAQCZGdn89prr3HRRRcB0KNHDzIyMhg1ahS33HJLOa/wr7F69Wouvvhi0tPTefnll4mLi2PGjBkMGTIEr9fLwIEDy3uJyl9k6NChfP3113z00UcHFNnSptKITWpq6gH/JfhH/xqpDOTn59OvXz/WrVvH559/TqNGjUL7/ux5ZX9FZePGjYwcOZJXX32VwsLCCN99YWEhWVlZJCUlVepnrFmzJqtXr6Z3794R2/v06cPcuXPZtm1bpX6+e++9F4/Hw6xZs/B4PAD07NmT3bt3c+utt3L55ZeTmprKhg0bSpwrzyf/Eq4sHOrzpKamkpWVheM4Ef/6r0zPPXz4cMaNG8frr79Onz59IvaV1fNVGjdaeno6K1euLLF91apVtGnTphxW9NcoLi7mkksuYfHixcyePZt27dpF7P+z523SpAmJiYlHa6mHzbp16ygoKGDQoEGkpqaGPgBjxowhNTWVFStWVOpnFP/1H+F2uyv1861YsYL27duHhEY4+eST2b17Nzt27CA9PZ3169eTl5cXccyqVauIiYkp4fOv6Bzq86Snp1NYWMjatWtLHAdU+PfRyJEjeeKJJ3juuee48sorS+wvs+c74jy2o8wzzzzjREVFOWvXrg1tW79+vRMdHe2MGTOmHFd2+Pj9fmfAgAGO1+t1Pv300wMe88EHHziAs3DhwtC2vXv3Omlpac7QoUOP1lKPiMzMTGfBggUlPoAzaNAgZ8GCBU52dnalfsZZs2Y5gDN16tSI7X369HEaNWrkOE7l/n/YrVs3p3nz5k5hYWHE9ssvv9zxer1OYWGhs3TpUgdwXnvttdD+4uJip3Xr1s555513tJd8yPxRavChPs/vv//ueDwe56GHHoo4v2fPnk7btm3LdO2Hwh89n+M4zrPPPusAzsiRI//w/LJ6vkojNjk5OU6LFi2ctm3bOtOnT3dmzJjhnHDCCU7z5s1L1AJUdIYMGRKqOfnmm28iPlLs5/f7na5duzqNGjVy3n77bWfu3LlOt27dnNTU1BIFWJUF9quzqczPGAgEnO7duztpaWnO2LFjnXnz5jnXXXedAzgTJ050HKdyP9/UqVMdwOnTp48zffp0Z968ec4///lPB3Buv/320HGXXnqpU6NGDWf8+PHOp59+6lx88cVObGyss2TJknJc/YGZOnWqM3Xq1NDfv5deesmZOnVqxD8GDvV57r77bic2Ntb597//7SxYsMAZMmSI43K5QgW95cHBnu/tt992XC6X07dv3xLvnZUrV0Zcqyyer9KIjeM4zoYNG5yLLrrISUpKchITE53zzz//gOpd0WnatKkDHPDz4IMPho7bvXu3c8011zipqalOXFyc06NHD2fZsmXlt/C/yP5i4ziV+xn37t3r3HTTTU6dOnUcj8fjtGvXzpk8eXLEMZX5+WbPnu1069bNqVWrlpOYmOi0b9/eefHFFx2fzxc6Ji8vz7n99tudunXrOrGxsc7JJ5/sLFiwoPwW/Sf80d+5bt26hY451Ofx+XzOo48+6jRp0sSJiYlx2rVrV8LKPdoc7PmuuuqqQ/pv4Dhl83za9VlRFEUpcypNgoCiKIpSeVGxURRFUcocFRtFURSlzFGxURRFUcocFRtFURSlzFGxURRFUcocFRtFURSlzFGxURRFUcocFRtFURSlzPl/8WvBukTUMPMAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -494,8 +499,10 @@ "planner.layer.optimizer.set_params(max_iterations=10)\n", "solution_dict, info = planner.layer.forward(\n", " planner_inputs,\n", - " verbose=False,\n", - " damping=0.1,\n", + " optimizer_kwargs={\n", + " \"verbose\": False,\n", + " \"damping\": 0.1,\n", + " }\n", ")\n", "plot_trajectories(\n", " initial_trajectory_dicts[best_epoch], solution_dict, include_expert=True)" @@ -507,9 +514,9 @@ "hash": "79897f2dca37465f1a50ce007bdb1248c5125cbdf40b2afbe1ada0fadb4cca51" }, "kernelspec": { - "display_name": "Theseus", + "display_name": "theseus_test", "language": "python", - "name": "theseus" + "name": "theseus_test" }, "language_info": { "codemirror_mode": { @@ -521,7 +528,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.8" + "version": "3.8.12" } }, "nbformat": 4, From 0308a9a1cc4922df37443b285361025fdd5f999a Mon Sep 17 00:00:00 2001 From: Maurizio Monge Date: Mon, 31 Jan 2022 12:35:45 +0000 Subject: [PATCH 12/15] CUDA-based solver class and autograd function (#24) * update continuous integration * cublas-based sparse LU solver class * batched sparse cuda matrix operations * cuda-based sparse autograd function and solver * update cuda installs in ci * add test to ci * fix install of torch tools in ci * add C++ extensions to gitignore * add support for damping in cusolver lu solver (all types) * testing multiple solver contexts * add cuda mark to tests requiring cuda Co-authored-by: Maurizio Monge --- .circleci/config.yml | 3 +- README.md | 1 + theseus/__init__.py | 1 + .../extlib/tests/test_cusolver_lu_solver.py | 6 + theseus/extlib/tests/test_mat_mult.py | 6 + theseus/optimizer/autograd/__init__.py | 2 + .../autograd/lu_cuda_sparse_autograd.py | 172 ++++++++++++++++++ .../tests/test_lu_cuda_sparse_backward.py | 68 +++++++ theseus/optimizer/linear/__init__.py | 3 + .../optimizer/linear/lu_cuda_sparse_solver.py | 117 ++++++++++++ .../tests/test_lu_cuda_sparse_solver.py | 169 +++++++++++++++++ theseus/optimizer/linear_system.py | 2 +- 12 files changed, 547 insertions(+), 3 deletions(-) create mode 100644 theseus/optimizer/autograd/lu_cuda_sparse_autograd.py create mode 100644 theseus/optimizer/autograd/tests/test_lu_cuda_sparse_backward.py create mode 100644 theseus/optimizer/linear/lu_cuda_sparse_solver.py create mode 100644 theseus/optimizer/linear/tests/test_lu_cuda_sparse_solver.py diff --git a/.circleci/config.yml b/.circleci/config.yml index 98e262399..f1e5e6099 100644 --- a/.circleci/config.yml +++ b/.circleci/config.yml @@ -117,8 +117,7 @@ run_tests: &run_tests working_directory: ~/project command: | pytest -s theseus/tests/test_theseus_layer.py - pytest -s theseus/extlib/tests/test_mat_mult.py - pytest -s theseus/extlib/tests/test_cusolver_lu_solver.py + pytest -s theseus -m "cuda" # ------------------------------------------------------------------------------------- # Jobs diff --git a/README.md b/README.md index 76419e0e4..a372d821f 100644 --- a/README.md +++ b/README.md @@ -26,6 +26,7 @@ The current focus is on nonlinear least squares with support for sparsity, batch ```bash pytest theseus ``` + By default both cuda and non-cuda tests are run, add the option `-m "not cuda"` to skip cuda tests when installing without cuda support. - See [tutorials](tutorials/) and [examples](examples/) to learn about the API and usage. diff --git a/theseus/__init__.py b/theseus/__init__.py index 678a11e7d..1552a5edc 100644 --- a/theseus/__init__.py +++ b/theseus/__init__.py @@ -33,6 +33,7 @@ CholmodSparseSolver, DenseSolver, LinearOptimizer, + LUCudaSparseSolver, LUDenseSolver, ) from .optimizer.nonlinear import ( diff --git a/theseus/extlib/tests/test_cusolver_lu_solver.py b/theseus/extlib/tests/test_cusolver_lu_solver.py index 48cbe51f8..961556f20 100644 --- a/theseus/extlib/tests/test_cusolver_lu_solver.py +++ b/theseus/extlib/tests/test_cusolver_lu_solver.py @@ -83,32 +83,38 @@ def check_lu_solver( assert all(np.linalg.norm(res) < 1e-10 for res in residuals) +@pytest.mark.cuda def test_lu_solver_1(): check_lu_solver(init_batch_size=5, batch_size=5, num_rows=50, num_cols=30, fill=0.2) +@pytest.mark.cuda def test_lu_solver_2(): check_lu_solver( init_batch_size=5, batch_size=5, num_rows=150, num_cols=60, fill=0.2 ) +@pytest.mark.cuda def test_lu_solver_3(): check_lu_solver( init_batch_size=10, batch_size=10, num_rows=300, num_cols=90, fill=0.2 ) +@pytest.mark.cuda def test_lu_solver_4(): check_lu_solver(init_batch_size=5, batch_size=5, num_rows=50, num_cols=30, fill=0.1) +@pytest.mark.cuda def test_lu_solver_5(): check_lu_solver( init_batch_size=5, batch_size=5, num_rows=150, num_cols=60, fill=0.1 ) +@pytest.mark.cuda def test_lu_solver_6(): check_lu_solver( init_batch_size=10, batch_size=10, num_rows=300, num_cols=90, fill=0.1 diff --git a/theseus/extlib/tests/test_mat_mult.py b/theseus/extlib/tests/test_mat_mult.py index 0aff3936f..136b53281 100644 --- a/theseus/extlib/tests/test_mat_mult.py +++ b/theseus/extlib/tests/test_mat_mult.py @@ -116,25 +116,31 @@ def check_mat_mult(batch_size, num_rows, num_cols, fill, verbose=False): assert At_w.isclose(At_w_test, atol=1e-10).all() +@pytest.mark.cuda def test_mat_mult_1(): check_mat_mult(batch_size=5, num_rows=50, num_cols=30, fill=0.2) +@pytest.mark.cuda def test_mat_mult_2(): check_mat_mult(batch_size=5, num_rows=150, num_cols=60, fill=0.2) +@pytest.mark.cuda def test_mat_mult_3(): check_mat_mult(batch_size=10, num_rows=300, num_cols=90, fill=0.2) +@pytest.mark.cuda def test_mat_mult_4(): check_mat_mult(batch_size=5, num_rows=50, num_cols=30, fill=0.1) +@pytest.mark.cuda def test_mat_mult_5(): check_mat_mult(batch_size=5, num_rows=150, num_cols=60, fill=0.1) +@pytest.mark.cuda def test_mat_mult_6(): check_mat_mult(batch_size=10, num_rows=300, num_cols=90, fill=0.1) diff --git a/theseus/optimizer/autograd/__init__.py b/theseus/optimizer/autograd/__init__.py index 401423146..6f091d7d6 100644 --- a/theseus/optimizer/autograd/__init__.py +++ b/theseus/optimizer/autograd/__init__.py @@ -3,8 +3,10 @@ # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. +from .lu_cuda_sparse_autograd import LUCudaSolveFunction from .sparse_autograd import CholmodSolveFunction __all__ = [ "CholmodSolveFunction", + "LUCudaSolveFunction", ] diff --git a/theseus/optimizer/autograd/lu_cuda_sparse_autograd.py b/theseus/optimizer/autograd/lu_cuda_sparse_autograd.py new file mode 100644 index 000000000..774aa7222 --- /dev/null +++ b/theseus/optimizer/autograd/lu_cuda_sparse_autograd.py @@ -0,0 +1,172 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# +# This source code is licensed under the MIT license found in the +# LICENSE file in the root directory of this source tree. + +import torch + +from ..linear_system import SparseStructure + + +class LUCudaSolveFunction(torch.autograd.Function): + @staticmethod + def forward(ctx, *args, **kwargs): + if not torch.cuda.is_available(): + raise RuntimeError("Cuda not available, LUCudaSolveFunction cannot be used") + + try: + from theseus.extlib.cusolver_lu_solver import CusolverLUSolver + from theseus.extlib.mat_mult import apply_damping, mult_MtM, tmat_vec + except Exception as e: + raise RuntimeError( + "Theseus C++/Cuda extension cannot be loaded\n" + "even if Cuda appears to be available. Make sure Theseus\n" + "is installed with Cuda support (export CUDA_HOME=...)\n" + f"{type(e).__name__}: {e}" + ) + + A_val: torch.Tensor = args[0] + b: torch.Tensor = args[1] + sparse_structure: SparseStructure = args[2] + A_rowPtr: torch.Tensor = args[3] + A_colInd: torch.Tensor = args[4] + solver_context: CusolverLUSolver = args[5] + damping_alpha_beta: float = args[6] + check_factor_id: bool = args[7] + + AtA_rowPtr = solver_context.A_rowPtr + AtA_colInd = solver_context.A_colInd + + batch_size = A_val.shape[0] + + AtA = mult_MtM(batch_size, A_rowPtr, A_colInd, A_val, AtA_rowPtr, AtA_colInd) + if damping_alpha_beta is not None: + AtA_args = sparse_structure.num_cols, AtA_rowPtr, AtA_colInd, AtA + apply_damping(batch_size, *AtA_args, *damping_alpha_beta) + solver_context.factor(AtA) + + A_args = sparse_structure.num_cols, A_rowPtr, A_colInd, A_val + Atb = tmat_vec(batch_size, *A_args, b) + x = Atb.clone() + solver_context.solve(x) # solve in place + + ctx.b = b + ctx.x = x + ctx.A_val = A_val + ctx.A_rowPtr = A_rowPtr + ctx.A_colInd = A_colInd + ctx.sparse_structure = sparse_structure + ctx.solver_context = solver_context + ctx.damping_alpha_beta = damping_alpha_beta + + # HACK: allows to check if the context has been reused (and overwritten) + ctx.factor_id = solver_context.factor_id if check_factor_id else None + + return x + + # Let v row vector, and w column vector of dimension n, m, and + # A an nxm matrix. Then + # v * A * w = Sum(v_i * A_ij * w_j) = [v (X) w] . A + # Where by [v (X) w] we mean the nxm matrix which is the + # tensor product of v and w, and "." is the componentwise + # dot product of the two nxm matrices. + # + # Now, we have + # At * A * x = At * b + # + # Therefore if A, b, x are parametrized (eg. by u) we have deriving + # + # (i) At'*A*x + At*A'*x + At*A*x' = At'*b + At*b' + # + # indicating A'=dA/du, b'=db/du, x'=dx/du + # + # Now, assume we have a function f of x, and G = df/dx be the + # gradient that we consider a row vector, so G*x' is df/du. + # + # To compute df/db and df/dA, make x' explicit in the (i): + # + # x' = (At * A)^{-1} (At*b' + At'*b - At'*A*x - At*A'*x) + # + # So multiplying by the row vector G we have + # + # G*x' = G*(At*A)^{-1}*At * b' + G*(At*A)^{-1} * (At'*b - At'*A*x - At*A'*x) + # = H * At * b' + H * At' * (b - A*x) - H * At * A' * x + # = (H*At) * b' + [H (X) (b-A*x)] . At' - [H*At (X) x] . A' + # = (H*At) * b' + [(b-A*x) (X) H - H*At (X) x] . A' + # after putting H = G*(At*A)^{-1} for convenience. + # + # Therefore after switching to column vectors we have + # df/db = A*H + # (where H = (At*A)^{-1}*G), while + # df/dA = (b-A*x) (X) H - A*H (X) x + # The two tensor products means that to compute the gradient of + # a block of A we have to multiply entries taken from (b-A*x) and H, + # and blocks taken from A*H and x. + # + # Here we assume we are provided x and H after the linear solver + # has been applied to Atb and the gradient G. + + # With (large) multiplicative damping, as above with extra terms: + # x' = ... - (AtA_damped)^{-1} * alpha*AtA_diag'*x + # So multiplying by the row vector G we have + # G*x' = ... - H * alpha * AtA_diag' * x + # Note that '...' the part multiplying H[j]*alpha*x[j] is AtA_diag'[j], ie + # 2 times the scalar product of A's an (A')'s j-th colum. Therefore + # (A')'s j-th colum is multiplying A's j-th colum by 2*H[j]*alpha*x[j] + @staticmethod + def backward(ctx, grad_output): + + if not torch.cuda.is_available(): + raise RuntimeError("Cuda not available, LUCudaSolveFunction cannot be used") + + try: + from theseus.extlib.mat_mult import mat_vec + except Exception as e: + raise RuntimeError( + "Theseus C++/Cuda extension cannot be loaded\n" + "even if Cuda appears to be available. Make sure Theseus\n" + "is installed with Cuda support (export CUDA_HOME=...)\n" + f"{type(e).__name__}: {e}" + ) + + # HACK: check if the context has been reused (and overwritten) + if ctx.factor_id is not None and ctx.factor_id != ctx.solver_context.factor_id: + raise RuntimeError( + "Factoring context was overwritten! Increase the number of contexts" + ) + + batch_size = grad_output.shape[0] + targs = {"dtype": grad_output.dtype, "device": "cuda"} # grad_output.device} + + H = grad_output.clone() + ctx.solver_context.solve(H) # solve in place + + A_args = ctx.sparse_structure.num_cols, ctx.A_rowPtr, ctx.A_colInd, ctx.A_val + AH = mat_vec(batch_size, *A_args, H) + b_Ax = ctx.b - mat_vec(batch_size, *A_args, ctx.x) + + # now we fill values of a matrix with structure identical to A with + # selected entries from the difference of tensor products: + # b_Ax (X) H - AH (X) x + # NOTE: this row-wise manipulation can be much faster in C++ or Cython + A_colInd = ctx.sparse_structure.col_ind + A_rowPtr = ctx.sparse_structure.row_ptr + batch_size = grad_output.shape[0] + A_grad = torch.empty( + size=(batch_size, len(A_colInd)), **targs + ) # return value, A's grad + for r in range(len(A_rowPtr) - 1): + start, end = A_rowPtr[r], A_rowPtr[r + 1] + columns = A_colInd[start:end] # col indices, for this row + A_grad[:, start:end] = ( + b_Ax[:, r].unsqueeze(1) * H[:, columns] + - AH[:, r].unsqueeze(1) * ctx.x[:, columns] + ) + + # apply correction if there is a multiplicative damping + if ctx.damping_alpha_beta is not None and ctx.damping_alpha_beta[0] > 0.0: + alpha = ctx.damping_alpha_beta[0] + alpha2Hx = (alpha * 2.0) * H * ctx.x # componentwise product + A_grad -= ctx.A_val * alpha2Hx[:, ctx.A_colInd.type(torch.long)] + + return A_grad, AH, None, None, None, None, None, None diff --git a/theseus/optimizer/autograd/tests/test_lu_cuda_sparse_backward.py b/theseus/optimizer/autograd/tests/test_lu_cuda_sparse_backward.py new file mode 100644 index 000000000..1968925d5 --- /dev/null +++ b/theseus/optimizer/autograd/tests/test_lu_cuda_sparse_backward.py @@ -0,0 +1,68 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# +# This source code is licensed under the MIT license found in the +# LICENSE file in the root directory of this source tree. + +import pytest # noqa: F401 +import torch +from torch.autograd import gradcheck + +import theseus as th + + +def _build_sparse_mat(batch_size): + torch.manual_seed(37) + all_cols = list(range(10)) + col_ind = [] + row_ptr = [0] + for i in range(12): + start = max(0, i - 2) + end = min(i + 1, 10) + col_ind += all_cols[start:end] + row_ptr.append(len(col_ind)) + data = torch.randn(size=(batch_size, len(col_ind)), dtype=torch.double) + return 12, 10, data, col_ind, row_ptr + + +@pytest.mark.cuda +def test_sparse_backward_step(): + if not torch.cuda.is_available(): + return + from theseus.optimizer.autograd import LUCudaSolveFunction + + void_objective = th.Objective() + void_ordering = th.VariableOrdering(void_objective, default_order=False) + solver = th.LUCudaSparseSolver( + void_objective, linearization_kwargs={"ordering": void_ordering}, damping=0.01 + ) + linearization = solver.linearization + + batch_size = 4 + void_objective._batch_size = batch_size + num_rows, num_cols, data, col_ind, row_ptr = _build_sparse_mat(batch_size) + linearization.num_rows = num_rows + linearization.num_cols = num_cols + linearization.A_val = data.cuda() + linearization.A_col_ind = col_ind + linearization.A_row_ptr = row_ptr + linearization.b = torch.randn( + size=(batch_size, num_rows), dtype=torch.double + ).cuda() + + linearization.A_val.requires_grad = True + linearization.b.requires_grad = True + # Only need this line for the test since the objective is a mock + solver.reset(batch_size=batch_size) + damping_alpha_beta = (0.5, 1.3) + inputs = ( + linearization.A_val, + linearization.b, + linearization.structure(), + solver.A_rowPtr, + solver.A_colInd, + solver._solver_contexts[solver._last_solver_context], + damping_alpha_beta, + False, # it's the same matrix, so no overwrite problems + ) + + assert gradcheck(LUCudaSolveFunction.apply, inputs, eps=3e-4, atol=1e-3) diff --git a/theseus/optimizer/linear/__init__.py b/theseus/optimizer/linear/__init__.py index 2e8377d76..4fd320fef 100644 --- a/theseus/optimizer/linear/__init__.py +++ b/theseus/optimizer/linear/__init__.py @@ -3,7 +3,10 @@ # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. +import torch + from .dense_solver import CholeskyDenseSolver, DenseSolver, LUDenseSolver from .linear_optimizer import LinearOptimizer from .linear_solver import LinearSolver +from .lu_cuda_sparse_solver import LUCudaSparseSolver from .sparse_solver import CholmodSparseSolver diff --git a/theseus/optimizer/linear/lu_cuda_sparse_solver.py b/theseus/optimizer/linear/lu_cuda_sparse_solver.py new file mode 100644 index 000000000..78c35f7d2 --- /dev/null +++ b/theseus/optimizer/linear/lu_cuda_sparse_solver.py @@ -0,0 +1,117 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# +# This source code is licensed under the MIT license found in the +# LICENSE file in the root directory of this source tree. + +from typing import Any, Dict, List, Optional, Type + +import torch + +from theseus.core import Objective +from theseus.optimizer import Linearization, SparseLinearization +from theseus.optimizer.autograd import LUCudaSolveFunction + +from .linear_solver import LinearSolver + + +class LUCudaSparseSolver(LinearSolver): + def __init__( + self, + objective: Objective, + linearization_cls: Optional[Type[Linearization]] = None, + linearization_kwargs: Optional[Dict[str, Any]] = None, + num_solver_contexts=1, + **kwargs, + ): + if not torch.cuda.is_available(): + raise RuntimeError("Cuda not available, LUCudaSparseSolver cannot be used") + + linearization_cls = linearization_cls or SparseLinearization + if not linearization_cls == SparseLinearization: + raise RuntimeError( + "LUCudaSparseSolver only works with theseus.optimizer.SparseLinearization," + + f" got {type(self.linearization)}" + ) + + super().__init__(objective, linearization_cls, linearization_kwargs, **kwargs) + self.linearization: SparseLinearization = self.linearization + + if self.linearization.structure().num_rows: + self.reset() + + self._num_solver_contexts: int = num_solver_contexts + + def reset(self, batch_size: int = 16): + if not torch.cuda.is_available(): + raise RuntimeError("Cuda not available, LUCudaSparseSolver cannot be used") + + try: + from theseus.extlib.cusolver_lu_solver import CusolverLUSolver + except Exception as e: + raise RuntimeError( + "Theseus C++/Cuda extension cannot be loaded\n" + "even if Cuda appears to be available. Make sure Theseus\n" + "is installed with Cuda support (export CUDA_HOME=...)\n" + f"{type(e).__name__}: {e}" + ) + + self.A_rowPtr = torch.tensor( + self.linearization.structure().row_ptr, dtype=torch.int32 + ).cuda() + self.A_colInd = torch.tensor( + self.linearization.structure().col_ind, dtype=torch.int32 + ).cuda() + At_mock = self.linearization.structure().mock_csc_transpose() + AtA_mock = (At_mock @ At_mock.T).tocsr() + + # symbolic decomposition depending on the sparse structure, done with mock data + # HACK: we generate several context, as by cublas the symbolic_decomposition is + # also a context for factorization, and the two cannot be separated + AtA_rowPtr = torch.tensor(AtA_mock.indptr, dtype=torch.int32).cuda() + AtA_colInd = torch.tensor(AtA_mock.indices, dtype=torch.int32).cuda() + self._solver_contexts: List[CusolverLUSolver] = [ + CusolverLUSolver( + batch_size, + AtA_mock.shape[1], + AtA_rowPtr, + AtA_colInd, + ) + for _ in range(self._num_solver_contexts) + ] + self._last_solver_context: int = self._num_solver_contexts - 1 + + def solve( + self, + damping: Optional[float] = None, + ellipsoidal_damping: bool = True, + damping_eps: float = 1e-8, + **kwargs, + ) -> torch.Tensor: + if not isinstance(self.linearization, SparseLinearization): + raise RuntimeError( + "CholmodSparseSolver only works with theseus.optimizer.SparseLinearization." + ) + + self._last_solver_context = ( + self._last_solver_context + 1 + ) % self._num_solver_contexts + + if damping is None: + damping_alpha_beta = None + else: + # See Nocedal and Wright, Numerical Optimization, pp. 260 and 261 + # https://www.csie.ntu.edu.tw/~r97002/temp/num_optimization.pdf + damping_alpha_beta = ( + (damping, damping_eps) if ellipsoidal_damping else (0.0, damping) + ) + + return LUCudaSolveFunction.apply( + self.linearization.A_val, + self.linearization.b, + self.linearization.structure(), + self.A_rowPtr, + self.A_colInd, + self._solver_contexts[self._last_solver_context], + damping_alpha_beta, + True, + ) diff --git a/theseus/optimizer/linear/tests/test_lu_cuda_sparse_solver.py b/theseus/optimizer/linear/tests/test_lu_cuda_sparse_solver.py new file mode 100644 index 000000000..c876e5119 --- /dev/null +++ b/theseus/optimizer/linear/tests/test_lu_cuda_sparse_solver.py @@ -0,0 +1,169 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# +# This source code is licensed under the MIT license found in the +# LICENSE file in the root directory of this source tree. + +import pytest # noqa: F401 +import torch + +import theseus as th + + +def _build_sparse_mat(batch_size): + all_cols = list(range(10)) + col_ind = [] + row_ptr = [0] + for i in range(12): + start = max(0, i - 2) + end = min(i + 1, 10) + col_ind += all_cols[start:end] + row_ptr.append(len(col_ind)) + data = torch.randn((batch_size, len(col_ind)), dtype=torch.double) + return 12, 10, data, col_ind, row_ptr + + +@pytest.mark.cuda +def test_sparse_solver(): + + if not torch.cuda.is_available(): + return + + void_objective = th.Objective() + void_ordering = th.VariableOrdering(void_objective, default_order=False) + solver = th.LUCudaSparseSolver( + void_objective, + linearization_kwargs={"ordering": void_ordering}, + ) + linearization = solver.linearization + + batch_size = 4 + void_objective._batch_size = batch_size + num_rows, num_cols, data, col_ind, row_ptr = _build_sparse_mat(batch_size) + linearization.num_rows = num_rows + linearization.num_cols = num_cols + linearization.A_val = data.cuda() + linearization.A_col_ind = col_ind + linearization.A_row_ptr = row_ptr + linearization.b = torch.randn((batch_size, num_rows), dtype=torch.double).cuda() + # Only need this line for the test since the objective is a mock + solver.reset(batch_size=batch_size) + + solved_x = solver.solve() + + for i in range(batch_size): + csrAi = linearization.structure().csr_straight(linearization.A_val[i, :].cpu()) + Ai = torch.tensor(csrAi.todense(), dtype=torch.double) + ata = Ai.T @ Ai + b = linearization.b[i].cpu() + atb = torch.Tensor(csrAi.transpose() @ b) + + # the linear system solved is with matrix AtA + atb_check = ata @ solved_x[i].cpu() + + max_offset = torch.norm(atb - atb_check, p=float("inf")) + assert max_offset < 1e-4 + + +def check_sparse_solver_multistep(test_exception: bool): + + if not torch.cuda.is_available(): + return + + num_steps = 3 + torch.manual_seed(37) + + void_objective = th.Objective() + void_ordering = th.VariableOrdering(void_objective, default_order=False) + solver = th.LUCudaSparseSolver( + void_objective, + linearization_kwargs={"ordering": void_ordering}, + num_solver_contexts=(num_steps - 1) if test_exception else num_steps, + ) + linearization = solver.linearization + + batch_size = 4 + void_objective._batch_size = batch_size + num_rows, num_cols, data, col_ind, row_ptr = _build_sparse_mat(batch_size) + linearization.num_rows = num_rows + linearization.num_cols = num_cols + linearization.A_col_ind = col_ind + linearization.A_row_ptr = row_ptr + + # Only need this line for the test since the objective is a mock + solver.reset(batch_size=batch_size) + + As = [ + torch.randn((batch_size, len(col_ind)), dtype=torch.double).cuda() + for _ in range(num_steps) + ] + bs = [ + torch.randn((batch_size, num_rows), dtype=torch.double).cuda() + for _ in range(num_steps) + ] + c = torch.randn((batch_size, num_cols), dtype=torch.double).cuda() + + # batched dot product + def batched_dot(a, b): + return torch.sum(a * b, dim=1) + + # computes accum = sum(A_i \ b_i), returns dot(accum, c) + def iterate_solver(As, bs): + accum = None + for A, b in zip(As, bs): + linearization.A_val = A + linearization.b = b + res = solver.solve() + accum = res if accum is None else (accum + res) + return batched_dot(c, accum) + + for A, b in zip(As, bs): + A.requires_grad = True + b.requires_grad = True + + result = iterate_solver(As, bs) + + # if insufficient contexts, assert exception is raised + if test_exception: + with pytest.raises(RuntimeError): + result.backward(torch.ones_like(result)) + return + + # otherwise, compute and check gradient + result.backward(torch.ones_like(result)) + + # we select random vectors `perturb` and check if the (numerically + # approximated) directional derivative matches with dot(perturb, grad) + epsilon = 1e-7 + num_checks = 10 + for i in range(num_checks): + for perturb_A in [False, True]: + for step in range(num_steps): + perturbed_As = [A.detach().clone() for A in As] + perturbed_bs = [b.detach().clone() for b in bs] + + if perturb_A: + perturb = torch.randn( + (batch_size, len(col_ind)), dtype=torch.double + ).cuda() + perturbed_As[step] += perturb * epsilon + analytic_der = batched_dot(perturb, As[step].grad) + else: + perturb = torch.randn( + (batch_size, num_rows), dtype=torch.double + ).cuda() + perturbed_bs[step] += perturb * epsilon + analytic_der = batched_dot(perturb, bs[step].grad) + + perturbed_result = iterate_solver(perturbed_As, perturbed_bs) + numeric_der = (perturbed_result - result) / epsilon + assert numeric_der.isclose(analytic_der, rtol=1e-4, atol=1e-4).all() + + +@pytest.mark.cuda +def test_sparse_solver_multistep_gradient(): + check_sparse_solver_multistep(False) + + +@pytest.mark.cuda +def test_sparse_solver_multistep_exception(): + check_sparse_solver_multistep(True) diff --git a/theseus/optimizer/linear_system.py b/theseus/optimizer/linear_system.py index a03f52028..bf68dc60a 100644 --- a/theseus/optimizer/linear_system.py +++ b/theseus/optimizer/linear_system.py @@ -40,7 +40,7 @@ def csc_transpose(self, val): def mock_csc_transpose(self): return csc_matrix( - (np.zeros(len(self.col_ind), dtype=self.dtype), self.col_ind, self.row_ptr), + (np.ones(len(self.col_ind), dtype=self.dtype), self.col_ind, self.row_ptr), (self.num_cols, self.num_rows), dtype=self.dtype, ) From 62a1ae4fe4118b206ea6ef0d99270cf981437aa2 Mon Sep 17 00:00:00 2001 From: Maurizio Monge Date: Mon, 31 Jan 2022 13:42:36 +0000 Subject: [PATCH 13/15] fix lint issues (#54) Co-authored-by: Maurizio Monge --- theseus/core/tests/test_objective.py | 2 +- theseus/geometry/se2.py | 2 +- theseus/utils/examples/motion_planning/models.py | 2 +- 3 files changed, 3 insertions(+), 3 deletions(-) diff --git a/theseus/core/tests/test_objective.py b/theseus/core/tests/test_objective.py index ab873f1b4..591e43a8c 100644 --- a/theseus/core/tests/test_objective.py +++ b/theseus/core/tests/test_objective.py @@ -281,7 +281,7 @@ def test_objective_error(): np.testing.assert_almost_equal(error, expected_objective_error) # Test the squared error function - squared_error = np.sum(expected_objective_error ** 2) + squared_error = np.sum(expected_objective_error**2) np.testing.assert_almost_equal( objective.error_squared_norm().numpy(), squared_error ) diff --git a/theseus/geometry/se2.py b/theseus/geometry/se2.py index 3c2f78179..a15bd0cba 100644 --- a/theseus/geometry/se2.py +++ b/theseus/geometry/se2.py @@ -150,7 +150,7 @@ def exp_map(tangent_vector: torch.Tensor) -> LieGroup: idx_small_thetas = theta.abs() < theseus.constants.EPS if idx_small_thetas.any(): small_theta = theta[idx_small_thetas] - small_theta_sq = small_theta ** 2 + small_theta_sq = small_theta**2 sin_theta_by_theta[idx_small_thetas] = -small_theta_sq / 6 + 1 one_minus_cos_theta_by_theta[idx_small_thetas] = ( 0.5 * small_theta - small_theta / 24 * small_theta_sq diff --git a/theseus/utils/examples/motion_planning/models.py b/theseus/utils/examples/motion_planning/models.py index 6a994f8e1..89fcd1a44 100644 --- a/theseus/utils/examples/motion_planning/models.py +++ b/theseus/utils/examples/motion_planning/models.py @@ -183,7 +183,7 @@ def forward(self, batch: Dict[str, Any]): for t_step in range(1, trajectory_len): idx = 4 * t_step cur_t += start_goal_dist / (trajectory_len - 1) - add = 2 * bend_factor * ((cur_t ** 2 - c) / c).view(-1, 1) + add = 2 * bend_factor * ((cur_t**2 - c) / c).view(-1, 1) trajectory[:, idx : idx + 2] += normal_vector * add # Compute resulting velocities From f3eb9a8cf1e798abf4af706c17b7ac11725d3fac Mon Sep 17 00:00:00 2001 From: Luis Pineda Date: Mon, 31 Jan 2022 12:41:24 -0800 Subject: [PATCH 14/15] Updated precommit config. --- .pre-commit-config.yaml | 10 ++++------ examples/tactile_pose_estimation.py | 2 +- 2 files changed, 5 insertions(+), 7 deletions(-) diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 979fe5f74..162913060 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -1,18 +1,16 @@ repos: - repo: https://github.com/psf/black - rev: 20.8b1 + rev: 22.1.0 hooks: - id: black - language_version: python3.7 - repo: https://gitlab.com/pycqa/flake8 - rev: 3.7.9 + rev: 3.9.2 hooks: - id: flake8 - additional_dependencies: [-e, "git+git://github.com/pycqa/pyflakes.git@1911c20#egg=pyflakes"] - repo: https://github.com/pre-commit/mirrors-mypy - rev: v0.910 + rev: v0.931 hooks: - id: mypy additional_dependencies: [torch==1.9.0, tokenize-rt==3.2.0, types-PyYAML, types-mock] @@ -20,7 +18,7 @@ repos: exclude: setup.py - repo: https://github.com/pycqa/isort - rev: 5.6.4 + rev: 5.10.1 hooks: - id: isort files: 'theseus/.*' diff --git a/examples/tactile_pose_estimation.py b/examples/tactile_pose_estimation.py index 2d303fa3b..901204973 100644 --- a/examples/tactile_pose_estimation.py +++ b/examples/tactile_pose_estimation.py @@ -163,7 +163,7 @@ def run_learning_loop(cfg): # cost weights, and their auxiliary variables objective = th.Objective() nn_meas_idx = 0 - c_square = (np.sqrt(cfg.shape.rect_len_x ** 2 + cfg.shape.rect_len_y ** 2)) ** 2 + c_square = (np.sqrt(cfg.shape.rect_len_x**2 + cfg.shape.rect_len_y**2)) ** 2 for i in range(time_steps): if i == 0: objective.add( From 03f76b0ff5e9e39ab439110032ae5532d57f10e3 Mon Sep 17 00:00:00 2001 From: Mustafa Mukadam Date: Tue, 1 Feb 2022 13:25:35 +0530 Subject: [PATCH 15/15] Update version (#63) --- version.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/version.txt b/version.txt index f74ea74a6..f2542220c 100644 --- a/version.txt +++ b/version.txt @@ -1 +1 @@ -0.1.0-b.1 +0.1.0-b.2