forked from cvg/pixel-perfect-sfm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrefine_sift_aachen.py
87 lines (68 loc) · 3.06 KB
/
refine_sift_aachen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import argparse
from pathlib import Path
from omegaconf import DictConfig, OmegaConf
import pycolmap
from pixsfm.refine_colmap import PixSfM
from pixsfm.configs import parse_config_path, default_configs
from pixsfm.util.database import COLMAPDatabase, pair_id_to_image_ids
def pairs_from_db(pairs_path: Path, database_path: Path):
db = COLMAPDatabase.connect(str(database_path))
pair_ids = db.execute("SELECT pair_id FROM matches").fetchall()
pairs = [pair_id_to_image_ids(pids[0]) for pids in pair_ids]
image_id_to_name = db.image_id_to_name()
pairs = [(image_id_to_name[id1], image_id_to_name[id2])
for id1, id2 in pairs]
with open(pairs_path, "w") as doc:
[doc.write(" ".join(pair) + "\n") for pair in pairs]
db.close()
def main(dataset: Path,
outputs: Path,
tag: str,
config: DictConfig):
# Setup the paths
images = dataset / 'images/images_upright/'
sift_sfm_dir = dataset / '3D-models/aachen_v_1_1'
sift_database_path = dataset / "aachen.db"
sfm_dir = outputs / f'sfm_{tag}'
sfm_dir.mkdir(parents=True)
database_path = outputs / f'aachen_refined_{tag}.db'
pairs_path = sfm_dir / "pairs.txt"
cache = outputs / f'dense_features_{tag}.h5'
refiner = PixSfM(config)
# Refine keypoints in database
_, _, feature_manager = refiner.refine_keypoints_from_db(
database_path,
sift_database_path,
images,
cache_path=cache
)
pairs_from_db(pairs_path, database_path)
pycolmap.verify_matches(database_path, pairs_path)
# triangulate new points with poses from original model
reference_model = pycolmap.Reconstruction(sift_sfm_dir)
reconstruction = pycolmap.triangulate_points(
reference_model, database_path, images, sfm_dir / "colmap")
# Refine the resulting reconstruction
refiner.run_ba(reconstruction, images, cache_path=cache,
feature_manager=feature_manager)
reconstruction.write(sfm_dir)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--dataset', type=Path, default='datasets/aachen_v1.1',
help='Path to the dataset')
parser.add_argument('--outputs', type=Path, default='outputs/aachen_v1.1',
help='Path to the output directory')
parser.add_argument('--tag', type=str, default="pixsfm")
parser.add_argument('--config', type=parse_config_path,
default="low_memory",
help="Path to the YAML configuration file or the name "
f"of a default config among {list(default_configs)}.")
parser.add_argument('dotlist', nargs='*',
help="Additional configuration modifiers.")
args = parser.parse_args().__dict__
config = OmegaConf.from_cli(args.pop('dotlist'))
if args["config"] is not None:
config = OmegaConf.merge(OmegaConf.load(args["config"]), config)
args["config"] = config
main(**args)