Skip to content

Commit 3fa8835

Browse files
authored
Adds conversational retrieval QA agent (langchain-ai#2147)
* Adds conversational retrieval QA agent * Fix build * Test change * Fix for intermediate steps * Adds docs, entrypoint * Fix typos
1 parent 7dfc3ef commit 3fa8835

File tree

21 files changed

+563
-13
lines changed

21 files changed

+563
-13
lines changed
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,166 @@
1+
import CodeBlock from "@theme/CodeBlock";
2+
3+
# Conversational Retrieval Agents
4+
5+
This is an agent specifically optimized for doing retrieval when necessary while holding a conversation and being able
6+
to answer questions based on previous dialogue in the conversation.
7+
8+
To start, we will set up the retriever we want to use, then turn it into a retriever tool. Next, we will use the high-level constructor for this type of agent.
9+
Finally, we will walk through how to construct a conversational retrieval agent from components.
10+
11+
## The Retriever
12+
13+
To start, we need a retriever to use! The code here is mostly just example code. Feel free to use your own retriever and skip to the next section on creating a retriever tool.
14+
15+
```typescript
16+
import { FaissStore } from "langchain/vectorstores/faiss";
17+
import { OpenAIEmbeddings } from "langchain/embeddings/openai";
18+
import { TextLoader } from "langchain/document_loaders/fs/text";
19+
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter";
20+
21+
const loader = new TextLoader("state_of_the_union.txt");
22+
const docs = await loader.load();
23+
const splitter = new RecursiveCharacterTextSplitter({
24+
chunkSize: 1000,
25+
chunkOverlap: 0
26+
});
27+
28+
const texts = await splitter.splitDocuments(docs);
29+
30+
const vectorStore = await FaissStore.fromDocuments(texts, new OpenAIEmbeddings());
31+
32+
const retriever = vectorStore.asRetriever();
33+
```
34+
35+
## Retriever Tool
36+
37+
Now we need to create a tool for our retriever. The main things we need to pass in are a `name` for the retriever as well as a `description`. These will both be used by the language model, so they should be informative.
38+
39+
```typescript
40+
import { createRetrieverTool } from "langchain/agents/toolkits";
41+
42+
const tool = createRetrieverTool(retriever, {
43+
name: "search_state_of_union",
44+
description: "Searches and returns documents regarding the state-of-the-union.",
45+
});
46+
```
47+
48+
## Agent Constructor
49+
50+
Here, we will use the high level `create_conversational_retrieval_agent` API to construct the agent.
51+
Notice that beside the list of tools, the only thing we need to pass in is a language model to use.
52+
53+
Under the hood, this agent is using the OpenAIFunctionsAgent, so we need to use an ChatOpenAI model.
54+
55+
```typescript
56+
import { createConversationalRetrievalAgent } from "langchain/agents/toolkits";
57+
import { ChatOpenAI } from "langchain/chat_models/openai";
58+
59+
const model = new ChatOpenAI({
60+
temperature: 0,
61+
});
62+
63+
const executor = await createConversationalRetrievalAgent(model, [tool], {
64+
verbose: true,
65+
});
66+
```
67+
68+
We can now try it out!
69+
70+
```typescript
71+
const result = await executor.call({
72+
input: "Hi, I'm Bob!"
73+
});
74+
75+
console.log(result);
76+
77+
/*
78+
{
79+
output: 'Hello Bob! How can I assist you today?',
80+
intermediateSteps: []
81+
}
82+
*/
83+
84+
const result2 = await executor.call({
85+
input: "What's my name?"
86+
});
87+
88+
console.log(result2);
89+
90+
/*
91+
{ output: 'Your name is Bob.', intermediateSteps: [] }
92+
*/
93+
94+
const result3 = await executor.call({
95+
input: "What did the president say about Ketanji Brown Jackson in the most recent state of the union?"
96+
});
97+
98+
console.log(result3);
99+
100+
/*
101+
{
102+
output: "In the most recent state of the union, President Biden mentioned Ketanji Brown Jackson. He nominated her as a Circuit Court of Appeals judge and described her as one of the nation's top legal minds who will continue Justice Breyer's legacy of excellence. He mentioned that she has received a broad range of support, including from the Fraternal Order of Police and former judges appointed by Democrats and Republicans.",
103+
intermediateSteps: [
104+
{...}
105+
]
106+
}
107+
*/
108+
109+
const result4 = await executor.call({
110+
input: "How long ago did he nominate her?"
111+
});
112+
113+
console.log(result4);
114+
115+
/*
116+
{
117+
output: 'President Biden nominated Ketanji Brown Jackson four days before the most recent state of the union address.',
118+
intermediateSteps: []
119+
}
120+
*/
121+
```
122+
123+
Note that for the final call, the agent used previously retrieved information to answer the query and did not need to call the tool again!
124+
125+
Here's a trace showing how the agent fetches documents to answer the question with the retrieval tool:
126+
127+
https://smith.langchain.com/public/1e2b1887-ca44-4210-913b-a69c1b8a8e7e/r
128+
129+
## Creating from components
130+
131+
What actually is going on underneath the hood? Let's take a look so we can understand how to modify things going forward.
132+
133+
### Memory
134+
135+
In this example, we want the agent to remember not only previous conversations, but also previous intermediate steps.
136+
For that, we can use `OpenAIAgentTokenBufferMemory`. Note that if you want to change whether the agent remembers intermediate steps,
137+
how the long the retained buffer is, or anything like that you should change this part.
138+
139+
```typescript
140+
import { OpenAIAgentTokenBufferMemory } from "langchain/agents/toolkits";
141+
142+
const memory = new OpenAIAgentTokenBufferMemory({ llm: model, memoryKey: "chat_history" });
143+
```
144+
145+
You should make sure `memoryKey` is set to `chat_history` for the OpenAI functions agent. This memory also has `returnMessages` set to `true` by default.
146+
147+
### Agent executor
148+
149+
We can recreate the agent executor directly with the `initializeAgentExecutorWithOptions` method.
150+
This allows us to customize the agent's system message by passing in a `prefix` into `agentArgs`.
151+
Importantly, we must pass in `return_intermediate_steps: true` since we are recording that with our memory object.
152+
153+
```typescript
154+
import { initializeAgentExecutorWithOptions } from "langchain/agents";
155+
156+
const executor = await initializeAgentExecutorWithOptions(tools, llm, {
157+
agentType: "openai-functions",
158+
memory,
159+
returnIntermediateSteps: true,
160+
agentArgs: {
161+
prefix:
162+
prefix ??
163+
`Do your best to answer the questions. Feel free to use any tools available to look up relevant information, only if necessary.`,
164+
},
165+
});
166+
```
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,89 @@
1+
import { FaissStore } from "langchain/vectorstores/faiss";
2+
import { OpenAIEmbeddings } from "langchain/embeddings/openai";
3+
import { TextLoader } from "langchain/document_loaders/fs/text";
4+
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter";
5+
import {
6+
createRetrieverTool,
7+
createConversationalRetrievalAgent,
8+
} from "langchain/agents/toolkits";
9+
import { ChatOpenAI } from "langchain/chat_models/openai";
10+
11+
const loader = new TextLoader("state_of_the_union.txt");
12+
const docs = await loader.load();
13+
const splitter = new RecursiveCharacterTextSplitter({
14+
chunkSize: 1000,
15+
chunkOverlap: 0,
16+
});
17+
18+
const texts = await splitter.splitDocuments(docs);
19+
20+
const vectorStore = await FaissStore.fromDocuments(
21+
texts,
22+
new OpenAIEmbeddings()
23+
);
24+
25+
const retriever = vectorStore.asRetriever();
26+
27+
const tool = createRetrieverTool(retriever, {
28+
name: "search_state_of_union",
29+
description:
30+
"Searches and returns documents regarding the state-of-the-union.",
31+
});
32+
33+
const model = new ChatOpenAI({});
34+
35+
const executor = await createConversationalRetrievalAgent(model, [tool], {
36+
verbose: true,
37+
});
38+
39+
const result = await executor.call({
40+
input: "Hi, I'm Bob!",
41+
});
42+
43+
console.log(result);
44+
45+
/*
46+
{
47+
output: 'Hello Bob! How can I assist you today?',
48+
intermediateSteps: []
49+
}
50+
*/
51+
52+
const result2 = await executor.call({
53+
input: "What's my name?",
54+
});
55+
56+
console.log(result2);
57+
58+
/*
59+
{ output: 'Your name is Bob.', intermediateSteps: [] }
60+
*/
61+
62+
const result3 = await executor.call({
63+
input:
64+
"What did the president say about Ketanji Brown Jackson in the most recent state of the union?",
65+
});
66+
67+
console.log(result3);
68+
69+
/*
70+
{
71+
output: "In the most recent state of the union, President Biden mentioned Ketanji Brown Jackson. He nominated her as a Circuit Court of Appeals judge and described her as one of the nation's top legal minds who will continue Justice Breyer's legacy of excellence. He mentioned that she has received a broad range of support, including from the Fraternal Order of Police and former judges appointed by Democrats and Republicans.",
72+
intermediateSteps: [
73+
{...}
74+
]
75+
}
76+
*/
77+
78+
const result4 = await executor.call({
79+
input: "How long ago did he nominate her?",
80+
});
81+
82+
console.log(result4);
83+
84+
/*
85+
{
86+
output: 'President Biden nominated Ketanji Brown Jackson four days before the most recent state of the union address.',
87+
intermediateSteps: []
88+
}
89+
*/

langchain/.gitignore

+3
Original file line numberDiff line numberDiff line change
@@ -10,6 +10,9 @@ agents.d.ts
1010
agents/load.cjs
1111
agents/load.js
1212
agents/load.d.ts
13+
agents/toolkits.cjs
14+
agents/toolkits.js
15+
agents/toolkits.d.ts
1316
agents/toolkits/aws_sfn.cjs
1417
agents/toolkits/aws_sfn.js
1518
agents/toolkits/aws_sfn.d.ts

langchain/package.json

+8
Original file line numberDiff line numberDiff line change
@@ -22,6 +22,9 @@
2222
"agents/load.cjs",
2323
"agents/load.js",
2424
"agents/load.d.ts",
25+
"agents/toolkits.cjs",
26+
"agents/toolkits.js",
27+
"agents/toolkits.d.ts",
2528
"agents/toolkits/aws_sfn.cjs",
2629
"agents/toolkits/aws_sfn.js",
2730
"agents/toolkits/aws_sfn.d.ts",
@@ -935,6 +938,11 @@
935938
"import": "./agents/load.js",
936939
"require": "./agents/load.cjs"
937940
},
941+
"./agents/toolkits": {
942+
"types": "./agents/toolkits.d.ts",
943+
"import": "./agents/toolkits.js",
944+
"require": "./agents/toolkits.cjs"
945+
},
938946
"./agents/toolkits/aws_sfn": {
939947
"types": "./agents/toolkits/aws_sfn.d.ts",
940948
"import": "./agents/toolkits/aws_sfn.js",

langchain/scripts/create-entrypoints.js

+1
Original file line numberDiff line numberDiff line change
@@ -13,6 +13,7 @@ const entrypoints = {
1313
// agents
1414
agents: "agents/index",
1515
"agents/load": "agents/load",
16+
"agents/toolkits": "agents/toolkits/index",
1617
"agents/toolkits/aws_sfn": "agents/toolkits/aws_sfn",
1718
"agents/toolkits/sql": "agents/toolkits/sql/index",
1819
// base language

langchain/src/agents/openai/index.ts

+39-11
Original file line numberDiff line numberDiff line change
@@ -10,6 +10,7 @@ import {
1010
BaseMessage,
1111
FunctionMessage,
1212
ChainValues,
13+
SystemMessage,
1314
} from "../../schema/index.js";
1415
import { StructuredTool } from "../../tools/base.js";
1516
import { Agent, AgentArgs } from "../agent.js";
@@ -25,7 +26,11 @@ import { BaseLanguageModel } from "../../base_language/index.js";
2526
import { LLMChain } from "../../chains/llm_chain.js";
2627
import { OutputParserException } from "../../schema/output_parser.js";
2728

28-
function parseOutput(message: BaseMessage): AgentAction | AgentFinish {
29+
type FunctionsAgentAction = AgentAction & {
30+
messageLog?: BaseMessage[];
31+
};
32+
33+
function parseOutput(message: BaseMessage): FunctionsAgentAction | AgentFinish {
2934
if (message.additional_kwargs.function_call) {
3035
// eslint-disable-next-line prefer-destructuring
3136
const function_call: ChatCompletionRequestMessageFunctionCall =
@@ -37,7 +42,10 @@ function parseOutput(message: BaseMessage): AgentAction | AgentFinish {
3742
return {
3843
tool: function_call.name as string,
3944
toolInput,
40-
log: message.content,
45+
log: `Invoking "${function_call.name}" with ${
46+
function_call.arguments ?? "{}"
47+
}\n${message.content}`,
48+
messageLog: [message],
4149
};
4250
} catch (error) {
4351
throw new OutputParserException(
@@ -49,12 +57,40 @@ function parseOutput(message: BaseMessage): AgentAction | AgentFinish {
4957
}
5058
}
5159

60+
function isFunctionsAgentAction(
61+
action: AgentAction | FunctionsAgentAction
62+
): action is FunctionsAgentAction {
63+
return (action as FunctionsAgentAction).messageLog !== undefined;
64+
}
65+
66+
function _convertAgentStepToMessages(
67+
action: AgentAction | FunctionsAgentAction,
68+
observation: string
69+
) {
70+
if (isFunctionsAgentAction(action) && action.messageLog !== undefined) {
71+
return action.messageLog?.concat(
72+
new FunctionMessage(observation, action.tool)
73+
);
74+
} else {
75+
return [new AIMessage(action.log)];
76+
}
77+
}
78+
79+
export function _formatIntermediateSteps(
80+
intermediateSteps: AgentStep[]
81+
): BaseMessage[] {
82+
return intermediateSteps.flatMap(({ action, observation }) =>
83+
_convertAgentStepToMessages(action, observation)
84+
);
85+
}
86+
5287
export interface OpenAIAgentInput extends AgentInput {
5388
tools: StructuredTool[];
5489
}
5590

5691
export interface OpenAIAgentCreatePromptArgs {
5792
prefix?: string;
93+
systemMessage?: SystemMessage;
5894
}
5995

6096
export class OpenAIAgent extends Agent {
@@ -121,15 +157,7 @@ export class OpenAIAgent extends Agent {
121157
async constructScratchPad(
122158
steps: AgentStep[]
123159
): Promise<string | BaseMessage[]> {
124-
return steps.flatMap(({ action, observation }) => [
125-
new AIMessage("", {
126-
function_call: {
127-
name: action.tool,
128-
arguments: JSON.stringify(action.toolInput),
129-
},
130-
}),
131-
new FunctionMessage(observation, action.tool),
132-
]);
160+
return _formatIntermediateSteps(steps);
133161
}
134162

135163
async plan(

0 commit comments

Comments
 (0)