Skip to content

Latest commit

 

History

History
54 lines (44 loc) · 1.3 KB

File metadata and controls

54 lines (44 loc) · 1.3 KB

Implementation-Of-Chatbot-Using-NLP

Implementation Of Chatbot Using NLP

  1. Technology Stack
  • Uses Python
  • Leverages Streamlit for web interface
  • Implements Natural Language Processing (NLP)
  • Utilizes scikit-learn for machine learning
  1. Core Components
  • TF-IDF Vectorization for text processing
  • Logistic Regression for intent classification
  • JSON-based intent management
  • Random response selection
  1. Features
  • Chat interface with message input
  • Conversation history tracking
  • Date-based conversation filtering
  • Sidebar navigation
  • Custom styling
  1. Key Functions
  • chatbot(): Processes user input, classifies intent, returns response
  • main(): Manages Streamlit application flow
  • Conversation logging to CSV
  1. Workflow
  • Load predefined intents from JSON
  • Vectorize training patterns
  • Train machine learning model
  • Convert user input to vector
  • Predict intent
  • Select random response from matched intent
  1. User Interface
  • Chat mode for real-time interaction
  • Conversation history view
  • About page with project details
  • Responsive design
  • Custom CSS styling
  1. Limitations
  • Simple intent matching
  • Limited conversation complexity
  • No advanced context preservation
  1. Potential Improvements
  • Advanced NLP techniques
  • Deep learning models
  • Enhanced intent coverage
  • Context management