forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrajectories.py
225 lines (184 loc) · 8.45 KB
/
trajectories.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# Copyright 2020 Deepmind Technologies Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Mocap trajectory that assumes props start stationary on pedestals."""
import copy
import enum
import itertools
from dm_control.locomotion.mocap import mocap_pb2
from dm_control.locomotion.mocap import trajectory
from dm_control.utils import transformations
import numpy as np
_PEDESTAL_SIZE = (0.2, 0.2, 0.02)
_MAX_SETTLE_STEPS = 100
@enum.unique
class ClipSegment(enum.Enum):
"""Annotations for subsegments within a warehouse clips."""
# Clip segment corresponding to a walker approaching an object
APPROACH = 1
# Clip segment corresponding to a walker picking up an object.
PICKUP = 2
# Clip segment corresponding to the "first half" of the walker carrying an
# object, beginning from the walker backing away from a pedestal with
# object in hand.
CARRY1 = 3
# Clip segment corresponding to the "second half" of the walker carrying an
# object, ending in the walker approaching a pedestal the object in hand.
CARRY2 = 4
# Clip segment corresponding to a walker putting down an object on a pedestal.
PUTDOWN = 5
# Clip segment corresponding to a walker backing off after successfully
# placing an object on a pedestal.
BACKOFF = 6
def _get_rotated_bounding_box(size, quaternion):
"""Calculates the bounding box of a rotated 3D box.
Args:
size: An array of length 3 specifying the half-lengths of a box.
quaternion: A unit quaternion specifying the box's orientation.
Returns:
An array of length 3 specifying the half-lengths of the bounding box of
the rotated box.
"""
corners = ((size[0], size[1], size[2]),
(size[0], size[1], -size[2]),
(size[0], -size[1], size[2]),
(-size[0], size[1], size[2]))
rotated_corners = tuple(
transformations.quat_rotate(quaternion, corner) for corner in corners)
return np.amax(np.abs(rotated_corners), axis=0)
def _get_prop_z_extent(prop_proto, quaternion):
"""Calculates the "z-extent" of the prop in given orientation.
This is the distance from the centre of the prop to its lowest point in the
world frame, taking into account the prop's orientation.
Args:
prop_proto: A `mocap_pb2.Prop` protocol buffer defining a prop.
quaternion: A unit quaternion specifying the prop's orientation.
Returns:
the distance from the centre of the prop to its lowest point in the
world frame in the specified orientation.
"""
if prop_proto.shape == mocap_pb2.Prop.BOX:
return _get_rotated_bounding_box(prop_proto.size, quaternion)[2]
elif prop_proto.shape == mocap_pb2.Prop.SPHERE:
return prop_proto.size[0]
else:
raise NotImplementedError(
'Unsupported prop shape: {}'.format(prop_proto.shape))
class WarehouseTrajectory(trajectory.Trajectory):
"""Mocap trajectory that assumes props start stationary on pedestals."""
def infer_pedestal_positions(self, num_averaged_steps=30,
ground_height_tolerance=0.1,
proto_modifier=None):
proto = self._proto
if proto_modifier is not None:
proto = copy.copy(proto)
proto_modifier(proto)
if not proto.props:
return []
positions = []
for timestep in itertools.islice(proto.timesteps, num_averaged_steps):
positions_for_timestep = []
for prop_proto, prop_timestep in zip(proto.props, timestep.props):
z_extent = _get_prop_z_extent(prop_proto, prop_timestep.quaternion)
positions_for_timestep.append([prop_timestep.position[0],
prop_timestep.position[1],
prop_timestep.position[2] - z_extent])
positions.append(positions_for_timestep)
median_positions = np.median(positions, axis=0)
median_positions[:, 2][median_positions[:, 2] < ground_height_tolerance] = 0
return median_positions
def get_props_z_extent(self, physics):
timestep = self._proto.timesteps[self._get_step_id(physics.time())]
out = []
for prop_proto, prop_timestep in zip(self._proto.props, timestep.props):
z_extent = _get_prop_z_extent(prop_proto, prop_timestep.quaternion)
out.append(z_extent)
return out
class SinglePropCarrySegmentedTrajectory(WarehouseTrajectory):
"""A mocap trajectory class that automatically segments prop-carry clips.
The algorithm implemented in the class only works if the trajectory consists
of exactly one walker and one prop. The value of `pedestal_zone_distance`
the exact nature of zone crossings are determined empirically from the
DeepMindCatchCarry dataset, and are likely to not work well outside of this
setting.
"""
def __init__(self,
proto,
start_time=None,
end_time=None,
pedestal_zone_distance=0.65,
start_step=None,
end_step=None,
zero_out_velocities=True):
super(SinglePropCarrySegmentedTrajectory, self).__init__(
proto, start_time, end_time, start_step=start_step, end_step=end_step,
zero_out_velocities=zero_out_velocities)
self._pedestal_zone_distance = pedestal_zone_distance
self._generate_segments()
def _generate_segments(self):
pedestal_position = self.infer_pedestal_positions()[0]
# First we find the timesteps at which the walker cross the pedestal's
# vicinity zone. This should happen exactly 4 times: enter it to pick up,
# leave it, enter it again to put down, and leave it again.
was_in_pedestal_zone = False
crossings = []
for i, timestep in enumerate(self._proto.timesteps):
pedestal_dist = np.linalg.norm(
timestep.walkers[0].position[:2] - pedestal_position[:2])
if pedestal_dist > self._pedestal_zone_distance and was_in_pedestal_zone:
crossings.append(i)
was_in_pedestal_zone = False
elif (pedestal_dist <= self._pedestal_zone_distance and
not was_in_pedestal_zone):
crossings.append(i)
was_in_pedestal_zone = True
if len(crossings) < 3:
raise RuntimeError(
'Failed to segment the given trajectory: '
'walker should cross the pedestal zone\'s boundary >= 3 times '
'but got {}'.format(len(crossings)))
elif len(crossings) == 3:
crossings.append(len(self._proto.timesteps) - 1)
elif len(crossings) > 4:
crossings = [crossings[0], crossings[1], crossings[-2], crossings[-1]]
# Identify the pick up event during the first in-zone interval.
start_position = np.array(self._proto.timesteps[0].props[0].position)
end_position = np.array(self._proto.timesteps[-1].props[0].position)
pick_up_step = crossings[1] - 1
while pick_up_step > crossings[0]:
prev_position = self._proto.timesteps[pick_up_step - 1].props[0].position
if np.linalg.norm(start_position[2] - prev_position[2]) < 0.001:
break
pick_up_step -= 1
# Identify the put down event during the second in-zone interval.
put_down_step = crossings[2]
while put_down_step <= crossings[3]:
next_position = self._proto.timesteps[put_down_step + 1].props[0].position
if np.linalg.norm(end_position[2] - next_position[2]) < 0.001:
break
put_down_step += 1
carry_halfway_step = int((crossings[1] + crossings[2]) / 2)
self._segment_intervals = {
ClipSegment.APPROACH: (0, crossings[0]),
ClipSegment.PICKUP: (crossings[0], pick_up_step),
ClipSegment.CARRY1: (pick_up_step, carry_halfway_step),
ClipSegment.CARRY2: (carry_halfway_step, crossings[2]),
ClipSegment.PUTDOWN: (crossings[2], put_down_step),
ClipSegment.BACKOFF: (put_down_step, len(self._proto.timesteps))
}
def segment_interval(self, segment):
start_step, end_step = self._segment_intervals[segment]
return (start_step * self._proto.dt, (end_step - 1) * self._proto.dt)
def get_random_timestep_in_segment(self, segment, random_step):
return self._proto.timesteps[
random_step.randint(*self._segment_intervals[segment])]