forked from satijalab/seurat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFindMultiModalNeighbors.Rd
79 lines (63 loc) · 2.32 KB
/
FindMultiModalNeighbors.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/clustering.R
\name{FindMultiModalNeighbors}
\alias{FindMultiModalNeighbors}
\title{Construct weighted nearest neighbor graph}
\usage{
FindMultiModalNeighbors(
object,
reduction.list,
dims.list,
k.nn = 20,
l2.norm = TRUE,
knn.graph.name = "wknn",
snn.graph.name = "wsnn",
weighted.nn.name = "weighted.nn",
modality.weight.name = NULL,
knn.range = 200,
prune.SNN = 1/15,
sd.scale = 1,
cross.contant.list = NULL,
smooth = FALSE,
return.intermediate = FALSE,
modality.weight = NULL,
verbose = TRUE
)
}
\arguments{
\item{object}{A Seurat object}
\item{reduction.list}{A list of two dimensional reductions, one for each of
the modalities to be integrated}
\item{dims.list}{A list containing the dimensions for each reduction to use}
\item{k.nn}{the number of multimodal neighbors to compute. 20 by default}
\item{l2.norm}{Perform L2 normalization on the cell embeddings after
dimensional reduction. TRUE by default.}
\item{knn.graph.name}{Multimodal knn graph name}
\item{snn.graph.name}{Multimodal snn graph name}
\item{weighted.nn.name}{Multimodal neighbor object name}
\item{modality.weight.name}{Variable name to store modality weight in object
meta data}
\item{knn.range}{The number of approximate neighbors to compute}
\item{prune.SNN}{Cutoff not to discard edge in SNN graph}
\item{sd.scale}{The scaling factor for kernel width. 1 by default}
\item{cross.contant.list}{Constant used to avoid divide-by-zero errors. 1e-4
by default}
\item{smooth}{Smoothing modality score across each individual modality
neighbors. FALSE by default}
\item{return.intermediate}{Store intermediate results in misc}
\item{modality.weight}{A \code{\link{ModalityWeights}} object generated by
\code{FindModalityWeights}}
\item{verbose}{Print progress bars and output}
}
\value{
Seurat object containing a nearest-neighbor object, KNN graph, and
SNN graph - each based on a weighted combination of modalities.
}
\description{
This function will construct a weighted nearest neighbor (WNN) graph. For
each cell, we identify the nearest neighbors based on a weighted combination
of two modalities. Takes as input two dimensional reductions, one computed
for each modality.Other parameters are listed for debugging, but can be left
as default values.
}
\concept{clustering}