forked from hunkim/DeepLearningZeroToAll
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlab-05-1-logistic_regression.py
135 lines (98 loc) · 2.91 KB
/
lab-05-1-logistic_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
"""
Logistic Regression
y = sigmoid(X @ W + b)
"""
import numpy as np
x_data = [[1, 2],
[2, 3],
[3, 1],
[4, 3],
[5, 3],
[6, 2]]
y_data = [[0],
[0],
[0],
[1],
[1],
[1]]
X_train = np.array(x_data, dtype=np.float32)
y_train = np.array(y_data).reshape(-1, 1)
N = X_train.shape[0]
D = X_train.shape[1]
C = 1
LEARNING_RATE = 0.1
MAX_ITER = 1000
W = np.random.standard_normal((D, C))
b = np.zeros((C,))
def sigmoid(x):
"""Sigmoid function """
sigmoid = 1 / (1 + np.exp(-x))
return sigmoid
def sigmoid_cross_entropy(logit, labels):
"""Compute a binary cross entropy loss
z = logit = X @ W + b
p = sigmoid(z)
loss_i = y * - log(p) + (1 - y) * - log(1 - p)
Args:
logit (2-D Array): Logit array of shape (N, 1)
labels (2-D Array): Binary Label array of shape (N, 1)
Returns:
float: mean(loss_i)
"""
assert logit.shape == (N, C)
assert labels.shape == (N, C)
probs = sigmoid(logit)
loss_i = labels * -np.log(probs + 1e-8)
loss_i += (1 - labels) * -np.log(1 - probs + 1e-8)
loss = np.mean(loss_i)
return loss
def grad_sigmoid_cross_entropy(logit, labels):
"""Returns
d_loss_i d_sigmoid
-------- * ---------
d_sigmoid d_z
z = logit = X * W + b
Args:
logit (2-D Array): Logit array of shape (N, 1)
labels (2-D Array): Binary Label array of shape (N, 1)
Returns:
2-D Array: Backpropagated gradients of loss (N, 1)
"""
return sigmoid(logit) - labels
def affine_forward(X, W, b):
"""Returns a logit
logit = X @ W + b
Args:
X (2-D Array): Input array of shape (N, D)
W (2-D Array): Weight array of shape (D, 1)
b (1-D Array): Bias array of shape (1,)
Returns:
logit (2-D Array): Logit array of shape (N, 1)
"""
return np.dot(X, W) + b
for i in range(MAX_ITER):
logit = affine_forward(X_train, W, b)
loss = sigmoid_cross_entropy(logit, y_train)
d_loss = grad_sigmoid_cross_entropy(logit, y_train)
d_W = np.dot(X_train.T, d_loss) / N
d_b = np.sum(d_loss) / N
W -= LEARNING_RATE * d_W
b -= LEARNING_RATE * d_b
if i % (MAX_ITER // 10) == 0:
prob = affine_forward(X_train, W, b)
prob = sigmoid(prob)
pred = prob > 0.5
acc = (pred == y_train).mean()
print("[Step: {:5}] Loss: {:<5.3} Accuracy: {:>5.2%}".format(i, loss, acc))
"""
[Step: 0] Loss: 2.35 Accuracy: 50.00%
[Step: 100] Loss: 0.523 Accuracy: 83.33%
[Step: 200] Loss: 0.435 Accuracy: 83.33%
[Step: 300] Loss: 0.368 Accuracy: 83.33%
[Step: 400] Loss: 0.316 Accuracy: 83.33%
[Step: 500] Loss: 0.275 Accuracy: 83.33%
[Step: 600] Loss: 0.243 Accuracy: 100.00%
[Step: 700] Loss: 0.217 Accuracy: 100.00%
[Step: 800] Loss: 0.196 Accuracy: 100.00%
[Step: 900] Loss: 0.178 Accuracy: 100.00%
"""