forked from inspire-group/hydra
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_compact_net_rand_smoothing.sh
43 lines (34 loc) · 2.34 KB
/
get_compact_net_rand_smoothing.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
dt=$(date '+%d/%m/%Y %H:%M:%S');
echo $dt
# Note: --is-semisup use additional labelled data for CIFAR-10 released by Carmon et al. Do not use this flag with SVHN.
pretrain_prune_finetune_semisup() {
# Order: exp_name ($1), arch ($2), trainer ($3), val_method ($4), gpu ($5), k ($6), pruning_epochs ($7)
# pre-training
python train.py --is-semisup --exp-name $1 --arch $2 --exp-mode pretrain --configs configs/configs.yml \
--trainer $3 --val_method $4 --gpu $5 --k 1.0 --save-dense --dataset CIFAR10 --noise-std 0.25 ;
# pruning
python train.py --is-semisup --exp-name $1 --arch $2 --exp-mode prune --configs configs/configs.yml \
--trainer $3 --val_method $4 --gpu $5 --k $6 --save-dense --scaled-score-init \
--source-net ./trained_models/$1/pretrain/latest_exp/checkpoint/checkpoint.pth.tar \
--epochs $7 --dataset CIFAR10 --noise-std 0.25 ;
# finetuning
python train.py --is-semisup --exp-name $1 --arch $2 --exp-mode finetune --configs configs/configs.yml \
--trainer $3 --val_method $4 --gpu $5 --k $6 --save-dense --dataset CIFAR10 --noise-std 0.25 \
--source-net ./trained_models/$1/prune/latest_exp/checkpoint/checkpoint.pth.tar --lr 0.01 ;
# weight base pruning
python train.py --is-semisup --exp-name $1"_weight_based_pruning" --arch $2 --exp-mode finetune --configs configs/configs.yml \
--trainer $3 --val_method $4 --gpu $5 --k $6 --save-dense --scaled-score-init --dataset CIFAR10 --noise-std 0.25 \
--source-net ./trained_models/$1/pretrain/latest_exp/checkpoint/checkpoint.pth.tar --lr 0.01 ;
}
arch="vgg16_bn"
(
pretrain_prune_finetune_semisup "semisup-$arch-trainer_smooth-k_0.1-cifar10" $arch "smooth" "smooth" "0" 0.1 20 &
pretrain_prune_finetune_semisup "semisup-$arch-trainer_smooth-k_0.05-cifar10" $arch "smooth" "smooth" "1" 0.05 20 &
pretrain_prune_finetune_semisup "semisup-$arch-trainer_smooth-k_0.01-cifar10" $arch "smooth" "smooth" "2" 0.01 20 ;
);
arch="wrn_28_4"
(
pretrain_prune_finetune_semisup "semisup-$arch-trainer_smooth-k_0.1-cifar10" $arch "smooth" "smooth" "0" 0.1 20 &
pretrain_prune_finetune_semisup "semisup-$arch-trainer_smooth-k_0.05-cifar10" $arch "smooth" "smooth" "1" 0.05 20 &
pretrain_prune_finetune_semisup "semisup-$arch-trainer_smooth-k_0.01-cifar10" $arch "smooth" "smooth" "2" 0.01 20 ;
);