You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardexpand all lines: docs/userguide.md
+71-23
Original file line number
Diff line number
Diff line change
@@ -56,7 +56,8 @@ from systems.provided.futures_chapter15.basesystem import futures_system
56
56
system=futures_system()
57
57
system.accounts.portfolio().stats() ## see some statistics
58
58
system.accounts.portfolio().curve().plot() ## plot an account curve
59
-
system.accounts.portfolio().pandl_for_instrument("US10").stats() ## produce statistics for a 10 year bond
59
+
system.accounts.portfolio().percent().curve().plot() ## plot an account curve in percentage terms
60
+
system.accounts.portfolio().pandl_for_instrument("US10").percent().stats() ## produce % statistics for a 10 year bond
60
61
system.accounts.pandl_for_instrument_forecast("EDOLLAR", "carry").sharpe() ## Sharpe for a specific trading rule variation
61
62
```
62
63
@@ -2846,7 +2847,6 @@ These classes share some useful arguments (all boolean):
2846
2847
2847
2848
-`delayfill`: Assume we trade at the next days closing price. Always defaults to True (more conservative)
2848
2849
-`roundpositions`: Round positions to nearest instrument block. Defaults to Truefor portfolios and instruments, defaults to Falsefor subsystems. Not used in`pandl_for_instrument_forecast`or`pandl_for_trading_rule` (always False)
2849
-
-`percentage`: Return the p&l as a percentage of notional capital, rather than in cash amounts. Defaults to True. Not used inin`pandl_for_instrument_forecast`or`pandl_for_trading_rule`(always False)
2850
2850
2851
2851
All p&l methods return an object of type`accountCurve` (for instruments, subsystems and instrument forecasts) or`accountCurveGroup` (for portfolio and trading rule), or even nested `accountCurveGroup` (`pandl_for_all_trading_rules`, `pandl_for_all_trading_rules_unweighted`). This inherits from a pandas data frame, so it can be plotted, averaged and so on. It also has some special methods. To see what they are use the `stats` method:
Personally I prefer looking at statistics in percentage terms. This is easy. Just use the .percent() method before you use any statistical method:
2947
+
2948
+
```python
2949
+
acc_curve.capital ## tells me the capital I will use to calculate %
2950
+
acc_curve.percent()
2951
+
acc_curve.gross.daily.percent()
2952
+
acc_curve.net.daily.percent()
2953
+
acc_curve.costs.monthly.percent()
2954
+
acc_curve.gross.daily.percent().stats()
2955
+
acc_curve.monthly.percent().sharpe()
2956
+
acc_curve.gross.weekly.percent().std()
2957
+
acc_curve.daily.percent().ann_std()
2958
+
acc_curve.costs.annual.percent().median()
2959
+
acc_curve.percent().rolling_ann_std()
2960
+
acc_curve.gross.percent().curve()
2961
+
acc_curve.net.monthly.percent().drawdown()
2962
+
acc_curve.costs.weekly.percent().curve()
2963
+
```
2964
+
2965
+
2966
+
You may also want to use *cumulated* returns, which use compound interest rather than the simple addition I normally use. See this blog for more information FIXME
2967
+
2968
+
```python
2969
+
acc_curve.cumulative()
2970
+
acc_curve.gross.daily.cumulative()
2971
+
acc_curve.net.daily.cumulative()
2972
+
acc_curve.costs.monthly.cumulative()
2973
+
acc_curve.gross.daily.cumulative().stats()
2974
+
acc_curve.monthly.cumulative().sharpe()
2975
+
acc_curve.gross.weekly.cumulative().std()
2976
+
acc_curve.daily.cumulative().ann_std()
2977
+
acc_curve.costs.annual.cumulative().median()
2978
+
acc_curve.cumulative().rolling_ann_std()
2979
+
acc_curve.gross.cumulative().curve()
2980
+
acc_curve.net.monthly.cumulative().drawdown()
2981
+
acc_curve.costs.weekly.cumulative().curve()
2982
+
```
2983
+
2984
+
Or both
2985
+
```python
2986
+
acc_curve.cumulative().percent().stats()
2987
+
acc_curve.percent().cumulative().stats() ## these are equivalent
2988
+
```
2989
+
2944
2990
#### `accountCurveGroup` in more detail
2945
2991
2946
2992
`accountCurveGroup`, is the output you get from`systems.account.portfolio`, `systems.account.pandl_across_subsystems`, pandl_for_instrument_rules_unweighted`, `pandl_for_trading_rule` and `pandl_for_trading_rule_unweighted`. For example:
@@ -3001,6 +3047,8 @@ acc_curve_group.get_stats("sharpe", "net", "daily") ## get all annualised sharpe
0 commit comments