Skip to content

Commit 1b6d5c6

Browse files
author
Robert Carver
committed
version 0.11.0
1 parent 9c6fa3a commit 1b6d5c6

File tree

9 files changed

+410
-230
lines changed

9 files changed

+410
-230
lines changed

DONE_TO_DO.md

+8-1
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,13 @@
11
# Release notes
22

3+
## Version 0.11.0
4+
5+
* Included option to show account curves as cumulative (compounding): somecurve.cumulative()
6+
* removed percentage options, now a method for account curves: somecurve.percent()
7+
* Incorporated capital into account curves: anycurve.capital
8+
* General clean up of the way capital dealt with in accounting
9+
10+
311
## Version 0.10.3
412

513
* More speed up, couple of tweaks...
@@ -187,7 +195,6 @@
187195

188196
* Simulation:
189197

190-
* vol targeting with capital adjustment
191198
* add other trading rules (some in private...?) - cross sectional carry
192199
* quandl data
193200
* stitch futures contracts

README.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -7,10 +7,10 @@ Rob Carver
77
[http://qoppac.blogspot.co.uk/p/pysystemtrade.html](http://qoppac.blogspot.co.uk/p/pysystemtrade.html)
88

99

10-
Version 0.10.2
10+
Version 0.11.0
1111

1212

13-
20160526
13+
20160527
1414

1515

1616
## Release notes

docs/introduction.md

+19-19
Original file line numberDiff line numberDiff line change
@@ -133,43 +133,43 @@ Did we make any money?
133133
```python
134134
from syscore.accounting import accountCurve
135135
account = accountCurve(price, forecast=ewmac, percentage=True)
136-
account.stats()
136+
account.percent().stats()
137137
```
138138

139-
```
140-
[[('min', '-0.07911'),
141-
('max', '0.0522'),
139+
140+
[[('min', '-7.911'),
141+
('max', '5.22'),
142142
('median', '0'),
143-
('mean', '0.0001644'),
144-
('std', '0.005173'),
143+
('mean', '0.01644'),
144+
('std', '0.5173'),
145145
('skew', '-0.5757'),
146-
('ann_mean', '0.04208'),
147-
('ann_std', '0.08276'),
146+
('ann_mean', '4.208'),
147+
('ann_std', '8.276'),
148148
('sharpe', '0.5084'),
149149
('sortino', '0.569'),
150-
('avg_drawdown', '-0.1193'),
150+
('avg_drawdown', '-11.93'),
151151
('time_in_drawdown', '0.9731'),
152152
('calmar', '0.1269'),
153153
('avg_return_to_drawdown', '0.3526'),
154-
('avg_loss', '-0.003307'),
155-
('avg_gain', '0.003418'),
154+
('avg_loss', '-0.3307'),
155+
('avg_gain', '0.3418'),
156156
('gaintolossratio', '1.034'),
157157
('profitfactor', '1.12'),
158158
('hitrate', '0.5201'),
159159
('t_stat', '2.929'),
160160
('p_value', '0.003405')],
161-
('You can also plot:', ['rolling_ann_std', 'drawdown', 'curve'])]
162-
```
163-
161+
('You can also plot / print:',
162+
['rolling_ann_std', 'drawdown', 'curve', 'percent', 'cumulative'])]
164163

165164
Looks like we did make a few bucks. `account`, by the way inherits from a pandas data frame. Here are some other things we can do with it:
166165

167166
```python
168167
account.sharpe() ## get the Sharpe Ratio (annualised), and any other statistic which is in the stats list
169168
account.curve().plot() ## plot the cumulative account curve (equivalent to account.cumsum().plot() inicidentally)
170-
account.drawdown().plot() ## see the drawdowns
169+
account.curve().percent() ## gives a % curve
170+
account.percent().drawdown().plot() ## see the drawdowns as a percentage
171171
account.weekly ## weekly returns (also daily [default], monthly, annual)
172-
account.costs.ann_mean() ## annual mean for costs (there are none in this simple example)
172+
account.gross.ann_mean() ## annual mean for gross returns, also costs (there are none in this simple example)
173173
```
174174

175175

@@ -582,7 +582,7 @@ from systems.account import Account
582582
account=Account()
583583
my_system=System([ fcs, empty_rules, combiner, possizer, portfolio, account], data, my_config)
584584
profits=my_system.account.portfolio()
585-
profits.stats()
585+
profits.percent().stats()
586586
```
587587

588588
```
@@ -595,8 +595,8 @@ Once again we have the now familiar accounting object. Some results have been re
595595
These are profits net of tax. You can see the gross profits and costs:
596596

597597
```python
598-
profits.gross.stats() ## all other things work eg profits.gross.sharpe()
599-
profits.costs.stats()
598+
profits.gross.percent().stats() ## all other things work eg profits.gross.sharpe()
599+
profits.costs.percent().stats()
600600
```
601601

602602
For more see the costs and accountCurve section of the userguide.

docs/userguide.md

+71-23
Original file line numberDiff line numberDiff line change
@@ -56,7 +56,8 @@ from systems.provided.futures_chapter15.basesystem import futures_system
5656
system=futures_system()
5757
system.accounts.portfolio().stats() ## see some statistics
5858
system.accounts.portfolio().curve().plot() ## plot an account curve
59-
system.accounts.portfolio().pandl_for_instrument("US10").stats() ## produce statistics for a 10 year bond
59+
system.accounts.portfolio().percent().curve().plot() ## plot an account curve in percentage terms
60+
system.accounts.portfolio().pandl_for_instrument("US10").percent().stats() ## produce % statistics for a 10 year bond
6061
system.accounts.pandl_for_instrument_forecast("EDOLLAR", "carry").sharpe() ## Sharpe for a specific trading rule variation
6162
```
6263

@@ -2846,7 +2847,6 @@ These classes share some useful arguments (all boolean):
28462847

28472848
- `delayfill`: Assume we trade at the next days closing price. Always defaults to True (more conservative)
28482849
- `roundpositions`: Round positions to nearest instrument block. Defaults to True for portfolios and instruments, defaults to False for subsystems. Not used in `pandl_for_instrument_forecast` or `pandl_for_trading_rule` (always False)
2849-
- `percentage`: Return the p&l as a percentage of notional capital, rather than in cash amounts. Defaults to True. Not used in in `pandl_for_instrument_forecast` or `pandl_for_trading_rule`(always False)
28502850

28512851
All p&l methods return an object of type `accountCurve` (for instruments, subsystems and instrument forecasts) or `accountCurveGroup` (for portfolio and trading rule), or even nested `accountCurveGroup` (`pandl_for_all_trading_rules`, `pandl_for_all_trading_rules_unweighted`). This inherits from a pandas data frame, so it can be plotted, averaged and so on. It also has some special methods. To see what they are use the `stats` method:
28522852

@@ -2857,27 +2857,29 @@ system.accounts.portfolio().stats()
28572857
```
28582858

28592859
```
2860-
[[('min', '-0.764'),
2861-
('max', '0.1589'),
2862-
('median', '0'),
2863-
('mean', '0.0006711'),
2864-
('std', '0.02224'),
2865-
('skew', '-5.726'),
2866-
('ann_daily_mean', '0.1718'),
2867-
('ann_daily_std', '0.3559'),
2868-
('sharpe', '0.4827'),
2869-
('sortino', '0.4677'),
2870-
('avg_drawdown', '-0.339'),
2871-
('time_in_drawdown', '0.9864'),
2872-
('calmar', '0.1109'),
2873-
('avg_return_to_drawdown', '0.5068'),
2874-
('avg_loss', '-0.01581'),
2875-
('avg_gain', '0.01534'),
2876-
('gaintolossratio', '0.9702'),
2877-
('profitfactor', '1.113'),
2878-
('hitrate', '0.5343')],
2879-
('You can also plot:', ['rolling_ann_std', 'drawdown', 'curve']),
2880-
('You can also print:', ['weekly', 'monthly', 'annual'])]
2860+
[[('min', '-1.997e+05'),
2861+
('max', '4.083e+04'),
2862+
('median', '-1.631'),
2863+
('mean', '156.9'),
2864+
('std', '5226'),
2865+
('skew', '-7.054'),
2866+
('ann_mean', '4.016e+04'),
2867+
('ann_std', '8.361e+04'),
2868+
('sharpe', '0.4803'),
2869+
('sortino', '0.5193'),
2870+
('avg_drawdown', '-1.017e+05'),
2871+
('time_in_drawdown', '0.9621'),
2872+
('calmar', '0.1199'),
2873+
('avg_return_to_drawdown', '0.395'),
2874+
('avg_loss', '-3016'),
2875+
('avg_gain', '3371'),
2876+
('gaintolossratio', '1.118'),
2877+
('profitfactor', '1.103'),
2878+
('hitrate', '0.4968'),
2879+
('t_stat', '2.852'),
2880+
('p_value', '0.004349')],
2881+
('You can also plot / print:',
2882+
['rolling_ann_std', 'drawdown', 'curve', 'as_percent', 'as_cumulative'])]
28812883
```
28822884

28832885
The `stats` method lists three kinds of output:
@@ -2941,6 +2943,50 @@ You probably won't need it but acc_curve.calc_data() returns a dict of all the i
29412943
acc_curve.calc_data()['trades'] ## simulated trades
29422944
```
29432945

2946+
Personally I prefer looking at statistics in percentage terms. This is easy. Just use the .percent() method before you use any statistical method:
2947+
2948+
```python
2949+
acc_curve.capital ## tells me the capital I will use to calculate %
2950+
acc_curve.percent()
2951+
acc_curve.gross.daily.percent()
2952+
acc_curve.net.daily.percent()
2953+
acc_curve.costs.monthly.percent()
2954+
acc_curve.gross.daily.percent().stats()
2955+
acc_curve.monthly.percent().sharpe()
2956+
acc_curve.gross.weekly.percent().std()
2957+
acc_curve.daily.percent().ann_std()
2958+
acc_curve.costs.annual.percent().median()
2959+
acc_curve.percent().rolling_ann_std()
2960+
acc_curve.gross.percent().curve()
2961+
acc_curve.net.monthly.percent().drawdown()
2962+
acc_curve.costs.weekly.percent().curve()
2963+
```
2964+
2965+
2966+
You may also want to use *cumulated* returns, which use compound interest rather than the simple addition I normally use. See this blog for more information FIX ME
2967+
2968+
```python
2969+
acc_curve.cumulative()
2970+
acc_curve.gross.daily.cumulative()
2971+
acc_curve.net.daily.cumulative()
2972+
acc_curve.costs.monthly.cumulative()
2973+
acc_curve.gross.daily.cumulative().stats()
2974+
acc_curve.monthly.cumulative().sharpe()
2975+
acc_curve.gross.weekly.cumulative().std()
2976+
acc_curve.daily.cumulative().ann_std()
2977+
acc_curve.costs.annual.cumulative().median()
2978+
acc_curve.cumulative().rolling_ann_std()
2979+
acc_curve.gross.cumulative().curve()
2980+
acc_curve.net.monthly.cumulative().drawdown()
2981+
acc_curve.costs.weekly.cumulative().curve()
2982+
```
2983+
2984+
Or both
2985+
```python
2986+
acc_curve.cumulative().percent().stats()
2987+
acc_curve.percent().cumulative().stats() ## these are equivalent
2988+
```
2989+
29442990
#### `accountCurveGroup` in more detail
29452991

29462992
`accountCurveGroup`, is the output you get from `systems.account.portfolio`, `systems.account.pandl_across_subsystems`, pandl_for_instrument_rules_unweighted`, `pandl_for_trading_rule` and `pandl_for_trading_rule_unweighted`. For example:
@@ -3001,6 +3047,8 @@ acc_curve_group.get_stats("sharpe", "net", "daily") ## get all annualised sharpe
30013047
acc_curve_group.get_stats("sharpe", freq="daily") ## equivalent
30023048
acc_curve_group.get_stats("sharpe", curve_type="net") ## equivalent
30033049
acc_curve_group.net.get_stats("sharpe", freq="daily") ## equivalent
3050+
acc_curve_group.net.get_stats("sharpe", percent=False) ## defaults to giving stats in % terms, this turns it off
3051+
30043052
```
30053053

30063054
*Warning see [weighted and unweighted account curve groups](#weighted_acg)

examples/breakout/temp.py

+16
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,16 @@
1+
from systems.provided.futures_chapter15.basesystem import futures_system
2+
from matplotlib.pyplot import show
3+
4+
system = futures_system(log_level="on")
5+
print(system.accounts.portfolio().sharpe())
6+
system.accounts.portfolio().curve().plot()
7+
show()
8+
9+
system.accounts.portfolio().as_cumulative().plot()
10+
show()
11+
12+
system.accounts.portfolio().as_cum_percent().plot()
13+
show()
14+
15+
system.accounts.portfolio().as_percent().cumsum().plot()
16+
show()

examples/introduction/asimpletradingrule.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -112,10 +112,10 @@ def calc_ewmac_forecast(price, Lfast, Lslow=None):
112112
"""
113113

114114
from syscore.accounting import accountCurve
115-
account = accountCurve(price, forecast=ewmac, percentage=True)
115+
account = accountCurve(price, forecast=ewmac)
116116
account.curve()
117117

118118
account.curve().plot()
119119
show()
120120

121-
print(account.stats())
121+
print(account.percent().stats())

examples/introduction/simplesystem.py

+3-3
Original file line numberDiff line numberDiff line change
@@ -186,11 +186,11 @@
186186
my_system = System([fcs, my_rules, combiner, possizer,
187187
portfolio, my_account], data, my_config)
188188
profits = my_system.accounts.portfolio()
189-
print(profits.stats())
189+
print(profits.percent().stats())
190190

191191
## have costs data now
192-
print(profits.gross.stats())
193-
print(profits.net.stats())
192+
print(profits.gross.percent().stats())
193+
print(profits.net.percent().stats())
194194

195195
"""
196196
Another approach is to create a config object

0 commit comments

Comments
 (0)