1
1
"""
2
2
Algos.py
3
3
4
- Basic building blocks of trading rules, like volatility measurement and crossovers
4
+ Basic building blocks of trading rules, like volatility measurement and
5
+ crossovers
5
6
6
7
"""
7
8
import pandas as pd
@@ -38,18 +39,19 @@ def apply_with_min_periods(xcol, my_func=np.nanmean, min_periods=0):
38
39
39
40
def vol_estimator (x , using_exponent = True , min_periods = 20 , ew_lookback = 250 ):
40
41
"""
41
- Generic vol estimator used for optimisation, works on data frames, produces a single answer
42
+ Generic vol estimator used for optimisation, works on data frames, produces
43
+ a single answer
42
44
43
45
:param x: data
44
46
:type x: Tx1 pd.DataFrame
45
47
46
- :param using_exponent: Use exponential or normal vol (latter recommended for bootstrapping)
48
+ :param using_exponent: Use exponential or normal vol (latter recommended
49
+ for bootstrapping)
47
50
:type using_exponent: bool
48
51
49
52
:param min_periods: The minimum number of observations (*default* 10)
50
53
:type min_periods: int
51
54
52
-
53
55
:returns: pd.DataFrame -- volatility measure
54
56
55
57
"""
@@ -75,7 +77,8 @@ def mean_estimator(x, using_exponent=True, min_periods=20, ew_lookback=500):
75
77
"""
76
78
Generic mean estimator used for optimisation, works on data frames
77
79
78
- :param using_exponent: Use exponential or normal vol (latter recommended for bootstrapping)
80
+ :param using_exponent: Use exponential or normal vol (latter recommended
81
+ for bootstrapping)
79
82
:type using_exponent: bool
80
83
81
84
"""
@@ -98,9 +101,9 @@ def mean_estimator(x, using_exponent=True, min_periods=20, ew_lookback=500):
98
101
return mean_list
99
102
100
103
101
- def robust_vol_calc (x , days = 35 , min_periods = 10 , vol_abs_min = 0.0000000001 , vol_floor = True ,
102
- floor_min_quant = 0.05 , floor_min_periods = 100 ,
103
- floor_days = 500 ):
104
+ def robust_vol_calc (x , days = 35 , min_periods = 10 , vol_abs_min = 0.0000000001 ,
105
+ vol_floor = True , floor_min_quant = 0.05 ,
106
+ floor_min_periods = 100 , floor_days = 500 ):
104
107
"""
105
108
Robust exponential volatility calculation, assuming daily series of prices
106
109
We apply an absolute minimum level of vol (absmin);
@@ -115,21 +118,27 @@ def robust_vol_calc(x, days=35, min_periods=10, vol_abs_min=0.0000000001, vol_fl
115
118
:param min_periods: The minimum number of observations (*default* 10)
116
119
:type min_periods: int
117
120
118
- :param vol_abs_min: The size of absolute minimum (*default* =0.0000000001) 0.0= not used
121
+ :param vol_abs_min: The size of absolute minimum (*default* =0.0000000001)
122
+ 0.0= not used
119
123
:type absmin: float or None
120
124
121
125
:param vol_floor Apply a floor to volatility (*default* True)
122
126
:type vol_floor: bool
123
- :param floor_min_quant: The quantile to use for volatility floor (eg 0.05 means we use 5% vol) (*default 0.05)
127
+
128
+ :param floor_min_quant: The quantile to use for volatility floor (eg 0.05
129
+ means we use 5% vol) (*default 0.05)
124
130
:type floor_min_quant: float
125
- :param floor_days: The lookback for calculating volatility floor, in days (*default* 500)
131
+
132
+ :param floor_days: The lookback for calculating volatility floor, in days
133
+ (*default* 500)
126
134
:type floor_days: int
127
- :param floor_min_periods: Minimum observations for floor - until reached floor is zero (*default* 100)
135
+
136
+ :param floor_min_periods: Minimum observations for floor - until reached
137
+ floor is zero (*default* 100)
128
138
:type floor_min_periods: int
129
139
130
140
:returns: pd.DataFrame -- volatility measure
131
141
132
-
133
142
"""
134
143
135
144
# Standard deviation will be nan for first 10 non nan values
@@ -197,7 +206,8 @@ def apply_buffer_single_period(
197
206
"""
198
207
Apply a buffer to a position, single period
199
208
200
- If position is outside the buffer, we eithier trade to the edge of the buffer, or to the optimal
209
+ If position is outside the buffer, we eithier trade to the edge of the
210
+ buffer, or to the optimal
201
211
202
212
:param last_position: last position we had
203
213
:type last_position: float
@@ -239,7 +249,8 @@ def apply_buffer(optimal_position, pos_buffers,
239
249
"""
240
250
Apply a buffer to a position
241
251
242
- If position is outside the buffer, we eithier trade to the edge of the buffer, or to the optimal
252
+ If position is outside the buffer, we eithier trade to the edge of the
253
+ buffer, or to the optimal
243
254
244
255
If we're rounding positions, then we floor and ceiling the buffers.
245
256
@@ -255,7 +266,6 @@ def apply_buffer(optimal_position, pos_buffers,
255
266
:param round_positions: Produce rounded positions
256
267
:type round_positions: bool
257
268
258
-
259
269
:returns: pd.Series
260
270
"""
261
271
0 commit comments