Skip to content

Commit 9a8d533

Browse files
author
Robert Carver
committed
resample default currency to business days
1 parent 4ec6903 commit 9a8d533

File tree

6 files changed

+248
-3
lines changed

6 files changed

+248
-3
lines changed

DONE_TO_DO.md

+2
Original file line numberDiff line numberDiff line change
@@ -129,13 +129,15 @@
129129

130130
* Simulation:
131131

132+
* pickle and unpickle cache
132133
* add cross sectional carry rule and breakout rule
133134
* vol targeting with capital adjustment
134135
* quandl data
135136
* stitch futures contracts
136137
* add new data from unstitched contracts (with explanatory post, include explanation for Nth contract stitching)
137138
* Create live config from a system object (Put final value of estimates into a yaml file)
138139
* database data
140+
* Exogenous risk model
139141
* check systems have correct attributes; check turnover, minimum size, right forecast scalars (distribution across instruments) etc
140142

141143
* Live trading:
+57
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,57 @@
1+
from systems.provided.futures_chapter15.basesystem import *
2+
import pandas as pd
3+
import numpy as np
4+
from matplotlib.pyplot import show, plot, scatter, gca
5+
from syscore.pdutils import align_to_joint, uniquets, divide_df_single_column
6+
from syscore.dateutils import generate_fitting_dates
7+
from syscore.algos import robust_vol_calc
8+
9+
from systems.portfolio import Portfolios
10+
config=Config("systems.provided.futures_chapter15.futuresconfig.yaml")
11+
12+
del(config.instrument_weights) ## so we use all the markets we have, equal weighted
13+
config.notional_trading_capital=10000000
14+
config.use_instrument_weight_estimates=True
15+
config.use_forecast_weight_estimates=True
16+
config.forecast_weight_estimate=dict(pool_instruments=False, method="one_period")
17+
18+
system = System([Account(), Portfolios(), PositionSizing(), FuturesRawData(), ForecastCombine(),
19+
ForecastScaleCap(), Rules()], csvFuturesData(),
20+
config)
21+
system.set_logging_level("on")
22+
a1=system.accounts.portfolio()
23+
24+
25+
config=Config("systems.provided.futures_chapter15.futuresconfig.yaml")
26+
27+
del(config.instrument_weights) ## so we use all the markets we have, equal weighted
28+
config.notional_trading_capital=10000000
29+
config.use_instrument_weight_estimates=True
30+
config.use_forecast_weight_estimates=True
31+
config.forecast_weight_estimate=dict(pool_instruments=True, method="one_period")
32+
33+
system = System([Account(), Portfolios(), PositionSizing(), FuturesRawData(), ForecastCombine(),
34+
ForecastScaleCap(), Rules()], csvFuturesData(),
35+
config)
36+
system.set_logging_level("on")
37+
a2=system.accounts.portfolio()
38+
39+
40+
41+
from syscore.accounting import account_test
42+
43+
print("Fit by instrument out of sample:")
44+
print(a1.stats())
45+
print("")
46+
print("Fit across instruments out of sample")
47+
print(a2.stats())
48+
49+
50+
51+
print("Test ")
52+
print(account_test(a1, a2))
53+
54+
a3=pd.concat([a1.curve(), a2.curve()], axis=1)
55+
a3.columns=["byinstr", "pooled"]
56+
a3.plot()
57+
show()

examples/mythbusting/overextend.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -263,8 +263,8 @@ def get_actual_raw_forecast(self, instrument_code, rule_variation_name):
263263
config=Config("systems.provided.futures_chapter15.futuresconfig.yaml")
264264

265265
config.use_forecast_scale_estimates=True
266-
config.instrument_fit=dict(pool_instruments=True, return_period=return_period, buckets=25,
267-
date_method="expanding")
266+
config.instrument_fit=dict(pool_instruments=True, return_period=return_period, buckets=3,
267+
date_method="in_sample")
268268
config.forecast_weights=dict([(rule,1.0) for rule in [rulename]])
269269
del(config.instrument_weights) ## so we use all the markets we have, equal weighted
270270
config.notional_trading_capital=10000000
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,131 @@
1+
from systems.provided.futures_chapter15.basesystem import *
2+
import pandas as pd
3+
import numpy as np
4+
from matplotlib.pyplot import show, plot, scatter, gca
5+
from syscore.pdutils import align_to_joint, uniquets, divide_df_single_column
6+
from syscore.dateutils import generate_fitting_dates
7+
from syscore.algos import robust_vol_calc
8+
9+
from systems.portfolio import Portfolios
10+
config=Config("systems.provided.futures_chapter15.futuresconfig.yaml")
11+
12+
rulename=["ewmac64_256"]
13+
rule_name=rulename[0]
14+
15+
del(config.instrument_weights) ## so we use all the markets we have, equal weighted
16+
config.notional_trading_capital=10000000
17+
config.forecast_weights=dict([(rule,1.0) for rule in rulename])
18+
config.use_instrument_weight_estimates=True
19+
config.notional_trading_capital=10000000
20+
21+
system = System([Account(), Portfolios(), PositionSizing(), FuturesRawData(), ForecastCombine(),
22+
ForecastScaleCap(), Rules()], csvFuturesData(),
23+
config)
24+
system.set_logging_level("on")
25+
26+
a2=system.accounts.portfolio()
27+
28+
## autocorrelation
29+
pd.concat([a2.weekly.as_df(), a2.weekly.as_df().shift(1)], axis=1).corr()
30+
pd.concat([a2.monthly.as_df(), a2.monthly.as_df().shift(1)], axis=1).corr()
31+
pd.concat([a2.annual.as_df(), a2.annual.as_df().shift(1)], axis=1).corr()
32+
33+
## recent volatility (market by market...)
34+
instrument_code="EDOLLAR"
35+
return_period=int((250/7.5))
36+
days=256
37+
38+
def get_scatter_data_for_code_vol(system, instrument_code, rule_name, return_period=5, days=64):
39+
40+
denom_price = system.rawdata.daily_denominator_price(instrument_code)
41+
x=system.rawdata.daily_returns(instrument_code)
42+
vol=robust_vol_calc(x, days)
43+
perc_vol = 100.0 * divide_df_single_column(vol, denom_price.shift(1))
44+
45+
volavg = pd.rolling_median(perc_vol, 1250, min_periods=10)
46+
vol_qq = (perc_vol - volavg)/volavg
47+
48+
## work out return for the N days after the forecast
49+
50+
norm_data=system.accounts.pandl_for_instrument_forecast(instrument_code, rule_name)
51+
52+
(vol_qq, norm_data) = align_to_joint(vol_qq, norm_data, ffill=(True, False))
53+
54+
period_returns = pd.rolling_sum(norm_data, return_period, min_periods=1)
55+
56+
ex_post_returns = period_returns.shift(-return_period)
57+
lagged_vol = vol_qq.shift(1)
58+
59+
return (list(ex_post_returns.iloc[:,0].values),list(lagged_vol.iloc[:,0].values))
60+
61+
62+
def clean_data(x, y, maxstd=6.0):
63+
64+
xcap=np.nanstd(x)*maxstd
65+
ycap=np.nanstd(y)*maxstd
66+
67+
def _cap(xitem, cap):
68+
if np.isnan(xitem):
69+
return xitem
70+
if xitem>cap:
71+
return cap
72+
if xitem<-cap:
73+
return -cap
74+
return xitem
75+
76+
x=[_cap(xitem, xcap) for xitem in x]
77+
y=[_cap(yitem, ycap) for yitem in y]
78+
79+
return (x,y)
80+
81+
82+
def bin_fit(x, y, buckets=3):
83+
84+
assert buckets in [3,25]
85+
86+
xstd=np.nanstd(x)
87+
88+
if buckets==3:
89+
binlimits=[np.nanmin(x), -xstd/2.0,xstd/2.0 , np.nanmax(x)]
90+
elif buckets==25:
91+
92+
steps=xstd/4.0
93+
binlimits=np.arange(-xstd*3.0, xstd*3.0, steps)
94+
95+
binlimits=[np.nanmin(x)]+list(binlimits)+[np.nanmax(x)]
96+
97+
fit_y=[]
98+
err_y=[]
99+
x_values_to_plot=[]
100+
for binidx in range(len(binlimits))[1:]:
101+
lower_bin_x=binlimits[binidx-1]
102+
upper_bin_x=binlimits[binidx]
103+
104+
x_values_to_plot.append(np.mean([lower_bin_x, upper_bin_x]))
105+
106+
y_in_bin=[y[idx] for idx in range(len(y)) if x[idx]>=lower_bin_x and x[idx]<upper_bin_x]
107+
108+
fit_y.append(np.nanmedian(y_in_bin))
109+
err_y.append(np.nanstd(y_in_bin))
110+
111+
## no zeros
112+
113+
114+
return (binlimits, x_values_to_plot, fit_y, err_y)
115+
116+
instrument_list=system.get_instrument_list()
117+
118+
all_scatter=dict(returns=[], vol=[])
119+
120+
121+
for instrument_code in instrument_list:
122+
this_instrument_data=get_scatter_data_for_code_vol(system, instrument_code, rule_name, return_period, days)
123+
all_scatter['returns']=all_scatter['returns']+this_instrument_data[0]
124+
all_scatter['vol']=all_scatter['vol']+this_instrument_data[1]
125+
126+
(returns, forecast)=clean_data(all_scatter['returns'], all_scatter['vol'])
127+
128+
(binlimits, x_values_to_plot, fit_y, err_y)=bin_fit(forecast, returns)
129+
130+
131+
## this time we multiply the forecast by the fitted Value

examples/mythbusting/wholesystem.py

+55
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,55 @@
1+
from systems.provided.futures_chapter15.basesystem import *
2+
import pandas as pd
3+
import numpy as np
4+
from matplotlib.pyplot import show, plot, scatter, gca
5+
from syscore.pdutils import align_to_joint, uniquets, divide_df_single_column
6+
from syscore.dateutils import generate_fitting_dates
7+
from syscore.algos import robust_vol_calc
8+
9+
from systems.portfolio import Portfolios
10+
config=Config("systems.provided.futures_chapter15.futuresconfig.yaml")
11+
12+
del(config.instrument_weights) ## so we use all the markets we have, equal weighted
13+
config.notional_trading_capital=10000000
14+
config.use_instrument_weight_estimates=True
15+
config.use_forecast_weight_estimates=True
16+
17+
system = System([Account(), Portfolios(), PositionSizing(), FuturesRawData(), ForecastCombine(),
18+
ForecastScaleCap(), Rules()], csvFuturesData(),
19+
config)
20+
system.set_logging_level("on")
21+
22+
## avgs
23+
instrument_list=system.get_instrument_list()
24+
trading_rules=system.rules.trading_rules().keys()
25+
26+
ans=dict()
27+
for instrument_code in instrument_list:
28+
ans[instrument_code]=dict()
29+
for rule in trading_rules:
30+
ans[instrument_code][rule]=system.accounts.pandl_for_instrument_forecast(instrument_code, rule).sharpe()
31+
32+
## average rule / instrument
33+
ans=[]
34+
for instrument_code in instrument_list:
35+
for rule in trading_rules:
36+
ans.append(system.accounts.pandl_for_instrument_forecast(instrument_code, rule).sharpe())
37+
38+
np.mean(ans)
39+
40+
## average Rule
41+
ans=[]
42+
for rule in trading_rules:
43+
ans.append(system.accounts.pandl_for_trading_rule(rule).sharpe())
44+
45+
print(ans)
46+
47+
## average instrument
48+
ans=[]
49+
for instrument_code in instrument_list:
50+
ans.append(system.accounts.pandl_for_subsystem(instrument_code).sharpe())
51+
52+
print(ans)
53+
54+
## portfolio
55+
system.accounts.portfolio().sharpe()

sysdata/data.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -151,7 +151,7 @@ def _get_default_series(self):
151151
What we return if currency rates match
152152
"""
153153
DEFAULT_DATES = pd.date_range(start=pd.datetime(
154-
1970, 1, 1), end=pd.datetime(2015, 1, 1))
154+
1970, 1, 1), freq="B", end=pd.datetime(2015, 1, 1))
155155
DEFAULT_RATE_SERIES = pd.DataFrame(
156156
dict(fx=[1.0] * len(DEFAULT_DATES)), index=DEFAULT_DATES)
157157

0 commit comments

Comments
 (0)