-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathutils.py
69 lines (55 loc) · 2.37 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import numpy as np
import PIL.Image
import os
import scipy
"""Helper-functions to load MSCOCO DB"""
# borrowed from https://github.com/lengstrom/fast-style-transfer/blob/master/src/utils.py
def get_img(src, img_size=False):
img = scipy.misc.imread(src, mode='RGB')
if not (len(img.shape) == 3 and img.shape[2] == 3):
img = np.dstack((img,img,img))
if img_size != False:
img = scipy.misc.imresize(img, img_size)
return img
def get_files(img_dir):
files = list_files(img_dir)
return list(map(lambda x: os.path.join(img_dir,x), files))
def list_files(in_path):
files = []
for (dirpath, dirnames, filenames) in os.walk(in_path):
files.extend(filenames)
break
return files
"""Helper-functions for image manipulation"""
# borrowed from https://github.com/Hvass-Labs/TensorFlow-Tutorials/blob/master/15_Style_Transfer.ipynb
# This function loads an image and returns it as a numpy array of floating-points.
# The image can be automatically resized so the largest of the height or width equals max_size.
# or resized to the given shape
def load_image(filename, shape=None, max_size=None):
image = PIL.Image.open(filename)
if max_size is not None:
# Calculate the appropriate rescale-factor for
# ensuring a max height and width, while keeping
# the proportion between them.
factor = float(max_size) / np.max(image.size)
# Scale the image's height and width.
size = np.array(image.size) * factor
# The size is now floating-point because it was scaled.
# But PIL requires the size to be integers.
size = size.astype(int)
# Resize the image.
image = image.resize(size, PIL.Image.LANCZOS) # PIL.Image.LANCZOS is one of resampling filter
if shape is not None:
image = image.resize(shape, PIL.Image.LANCZOS) # PIL.Image.LANCZOS is one of resampling filter
# Convert to numpy floating-point array.
return np.float32(image)
# Save an image as a jpeg-file.
# The image is given as a numpy array with pixel-values between 0 and 255.
def save_image(image, filename):
# Ensure the pixel-values are between 0 and 255.
image = np.clip(image, 0.0, 255.0)
# Convert to bytes.
image = image.astype(np.uint8)
# Write the image-file in jpeg-format.
with open(filename, 'wb') as file:
PIL.Image.fromarray(image).save(file, 'jpeg')