forked from plemeri/transparent-background
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInSPyReNet.py
152 lines (116 loc) · 5.72 KB
/
InSPyReNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import os
import sys
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
filepath = os.path.abspath(__file__)
repopath = os.path.split(filepath)[0]
sys.path.append(repopath)
from transparent_background.modules.layers import *
from transparent_background.modules.context_module import *
from transparent_background.modules.attention_module import *
from transparent_background.modules.decoder_module import *
from transparent_background.backbones.SwinTransformer import SwinB
class InSPyReNet(nn.Module):
def __init__(self, backbone, in_channels, depth=64, base_size=[384, 384], threshold=512, **kwargs):
super(InSPyReNet, self).__init__()
self.backbone = backbone
self.in_channels = in_channels
self.depth = depth
self.base_size = base_size
self.threshold = threshold
self.context1 = PAA_e(self.in_channels[0], self.depth, base_size=self.base_size, stage=0)
self.context2 = PAA_e(self.in_channels[1], self.depth, base_size=self.base_size, stage=1)
self.context3 = PAA_e(self.in_channels[2], self.depth, base_size=self.base_size, stage=2)
self.context4 = PAA_e(self.in_channels[3], self.depth, base_size=self.base_size, stage=3)
self.context5 = PAA_e(self.in_channels[4], self.depth, base_size=self.base_size, stage=4)
self.decoder = PAA_d(self.depth * 3, depth=self.depth, base_size=base_size, stage=2)
self.attention0 = SICA(self.depth , depth=self.depth, base_size=self.base_size, stage=0, lmap_in=True)
self.attention1 = SICA(self.depth * 2, depth=self.depth, base_size=self.base_size, stage=1, lmap_in=True)
self.attention2 = SICA(self.depth * 2, depth=self.depth, base_size=self.base_size, stage=2 )
self.ret = lambda x, target: F.interpolate(x, size=target.shape[-2:], mode='bilinear', align_corners=False)
self.res = lambda x, size: F.interpolate(x, size=size, mode='bilinear', align_corners=False)
self.des = lambda x, size: F.interpolate(x, size=size, mode='nearest')
self.image_pyramid = ImagePyramid(7, 1)
self.transition0 = Transition(17)
self.transition1 = Transition(9)
self.transition2 = Transition(5)
self.forward = self.forward_inference
def to(self, device):
self.image_pyramid.to(device)
self.transition0.to(device)
self.transition1.to(device)
self.transition2.to(device)
super(InSPyReNet, self).to(device)
return self
def cuda(self, idx=None):
if idx is None:
idx = torch.cuda.current_device()
self.to(device="cuda:{}".format(idx))
return self
def eval(self):
super(InSPyReNet, self).train(False)
self.forward = self.forward_inference
return self
def forward_inspyre(self, x):
B, _, H, W = x.shape
x1, x2, x3, x4, x5 = self.backbone(x)
x1 = self.context1(x1) #4
x2 = self.context2(x2) #4
x3 = self.context3(x3) #8
x4 = self.context4(x4) #16
x5 = self.context5(x5) #32
f3, d3 = self.decoder([x3, x4, x5]) #16
f3 = self.res(f3, (H // 4, W // 4 ))
f2, p2 = self.attention2(torch.cat([x2, f3], dim=1), d3.detach())
d2 = self.image_pyramid.reconstruct(d3.detach(), p2) #4
x1 = self.res(x1, (H // 2, W // 2))
f2 = self.res(f2, (H // 2, W // 2))
f1, p1 = self.attention1(torch.cat([x1, f2], dim=1), d2.detach(), p2.detach()) #2
d1 = self.image_pyramid.reconstruct(d2.detach(), p1) #2
f1 = self.res(f1, (H, W))
_, p0 = self.attention0(f1, d1.detach(), p1.detach()) #2
d0 = self.image_pyramid.reconstruct(d1.detach(), p0) #2
out = dict()
out['saliency'] = [d3, d2, d1, d0]
out['laplacian'] = [p2, p1, p0]
return out
def forward_inference(self, img, img_lr=None):
B, _, H, W = img.shape
if self.threshold is None:
out = self.forward_inspyre(img)
d3, d2, d1, d0 = out['saliency']
p2, p1, p0 = out['laplacian']
elif (H <= self.threshold or W <= self.threshold):
if img_lr is not None:
out = self.forward_inspyre(img_lr)
else:
out = self.forward_inspyre(img)
d3, d2, d1, d0 = out['saliency']
p2, p1, p0 = out['laplacian']
else:
# LR Saliency Pyramid
lr_out = self.forward_inspyre(img_lr)
lr_d3, lr_d2, lr_d1, lr_d0 = lr_out['saliency']
lr_p2, lr_p1, lr_p0 = lr_out['laplacian']
# HR Saliency Pyramid
hr_out = self.forward_inspyre(img)
hr_d3, hr_d2, hr_d1, hr_d0 = hr_out['saliency']
hr_p2, hr_p1, hr_p0 = hr_out['laplacian']
# Pyramid Blending
d3 = self.ret(lr_d0, hr_d3)
t2 = self.ret(self.transition2(d3), hr_p2)
p2 = t2 * hr_p2
d2 = self.image_pyramid.reconstruct(d3, p2)
t1 = self.ret(self.transition1(d2), hr_p1)
p1 = t1 * hr_p1
d1 = self.image_pyramid.reconstruct(d2, p1)
t0 = self.ret(self.transition0(d1), hr_p0)
p0 = t0 * hr_p0
d0 = self.image_pyramid.reconstruct(d1, p0)
pred = torch.sigmoid(d0)
pred = (pred - pred.min()) / (pred.max() - pred.min() + 1e-8)
return pred
def InSPyReNet_SwinB(depth, pretrained, base_size, **kwargs):
return InSPyReNet(SwinB(pretrained=pretrained), [128, 128, 256, 512, 1024], depth, base_size, **kwargs)