-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_optimization.py
149 lines (127 loc) · 4.91 KB
/
main_optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import numpy as np
import cvxpy as cp
import utils as ut
#from y_opt import y_opt
import resource
from scipy.optimize import minimize, LinearConstraint
def get_instrument_replica(prices, returns, m, alphas=None):
assert len(prices) == len(returns[0])
if alphas is None:
alphas = np.array([i/m for i in range(1, m+1)])
t = len(prices)
mu = returns[:, -1]
print('number of nans in returns:', np.isnan(returns).sum())
drawdown = ut.drawdown(prices)
rhos = np.array([ut.cvar(drawdown, alpha) for alpha in alphas])
# create variables
lambdas = cp.Variable(m)
v = cp.Variable()
us = cp.Variable((m, t))
aux = cp.Variable((m, t)) # aux = max(us, 0)
objective = cp.Minimize(lambdas@rhos-v)
constraints = [lambdas >= 0.,
cp.sum(lambdas) == 1.,
v*mu == [email protected](us, axis=0),
aux >= 0.,
aux >= us]
# add constraints for u and aux
for i in range(m):
constraints.append(cp.sum(us[i, :]) == 0.)
constraints.append(cp.sum(aux[i, :]) <= lambdas[i])
constraints.append(cp.sum(us[i, :]) >= 0.)
for k in range(t):
if k >= 1:
constraints.append(cp.sum(us[i, :k]) >= 0.)
constraints.append(us[i, k] >= -1.*lambdas[i]/(alphas[i]*t))
# optimization
problem = cp.Problem(objective, constraints)
problem.solve(solver=cp.GLPK)
return lambdas.value, v.value, us.value, problem.value
def forward_portfolio_optimization(returns, alphas, lambdas, m, n):
def f(y):
ret = 0.
for i in range(m):
ret += lambdas[i] * ut.cvar(ut.drawdown(y@returns), alphas[i])
return ret
def cons(y):
return returns[:, -1]@y - 1.
sol = minimize(f, np.ones(n)/n, constraints={'type': 'eq', 'fun': cons})
print(sol.message)
return sol.x
def forward_portfolio_optimization_uncons(returns, alphas, lambdas, m, n):
def f(y):
y_ext = np.zeros(len(y)+1)
y_ext[1:] = y
y_ext[0] = (1.-returns[1:, -1]@y)/returns[0, -1]
ret = 0.
for i in range(m):
if lambdas[i] > 0:
ret += lambdas[i] * ut.cvar(ut.drawdown(y_ext@returns), alphas[i])
return ret
sol = minimize(f, np.ones(n-1)/n, method='Nelder-Mead')
print(sol.message)
y_opt = np.zeros(n)
y_opt[1:] = sol.x
y_opt[0] = (1.-returns[1:, -1]@sol.x)/returns[0, -1]
return y_opt
def forward_portfolio_optimization_maxdd(returns):
_n, _t = np.shape(returns)
mdd = cp.Variable()
y = cp.Variable(_n)
objective = cp.Minimize(mdd)
constraints = [y@returns[:, -1] == 1]
for k in range(_t):
for i in range(k):
constraints.append(y@returns[:, i]-y@returns[:, k] <= mdd)
# optimization
problem = cp.Problem(objective, constraints)
problem.solve(solver=cp.GLPK)
return y.value, problem.value
if __name__ == "__main__":
n = 150
t = 454
weekly_r0 = np.power(1.03, 1./52)
r0 = np.array([weekly_r0**i for i in range(t+1)]) # adjusted returns of a risk-free asset
if n == 505:
returns = ut.get_all_adj_returns(r0)
else:
returns = ut.get_adj_returns(n, r0)
# setting max heap size limit
rsrc = resource.RLIMIT_DATA
_, hard = resource.getrlimit(rsrc)
resource.setrlimit(rsrc, ((1024 ** 3) * 8, hard))
soft, hard = resource.getrlimit(rsrc)
print('Soft RAM limit set to:', soft / (1024 ** 3), 'GB')
# forward optimization
#lambdas = np.zeros(m)
#lambdas[-1] = 1.
#ls = [0., 1.]
alphas = [1., 0.6, 0.3, 1./t]
m = len(alphas)
#alphas = np.array([i/m for i in range(1, m+1)])
#y_opt = forward_portfolio_optimization_uncons(returns, alphas, ls, m, n)
y_opt, _ = forward_portfolio_optimization_maxdd(returns)
y_opt = y_opt[:50]
returns = returns[:50, :]
#y_opt = np.array([1.66890243, -0.82224339, -0.25375047])
#print('optimal y=', y_opt)
#print('constraint violation=', returns[:, -1]@y_opt-1.)
#print('cvars for y_opt=', [ut.cvar(ut.drawdown(y_opt@returns), alpha) for alpha in alphas])
# inverse optimization
a = 0.8
#weights = np.random.uniform(0, 1, size=n)
weights = np.array([1/50]*50)
weights = weights/(returns[:, -1] @ weights)
#print('constraint violation=', returns[:, -1] @ weights - 1.)
#prices = weights@returns
#print('cvars for weighted=', [ut.cvar(ut.drawdown(weights @ returns), alpha) for alpha in alphas])
prices = a*y_opt@returns + (1-a)*weights@returns
#prices = a * y_opt @ returns + (1 - a) * ut.get_prices('^GSPC', r0)
#print('AvDD=', ut.cvar(ut.drawdown(prices), 1.))
# avdd = 0.015836979979042803
#print(alphas)
#prices = ut.get_prices('^GSPC', r0)
lambdas_opt, v_opt, us_opt, obj_opt = get_instrument_replica(prices, returns, m, alphas)
print('lambdas:', lambdas_opt)
print('approximation quality:', obj_opt/(obj_opt+v_opt))
print('v_opt=', v_opt)