-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtoy_test.py
124 lines (94 loc) · 3.39 KB
/
toy_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import utils as ut
import numpy as np
from scipy.optimize import minimize, LinearConstraint, linprog
def check_rhos(prices, alphas):
for alpha in alphas:
print(ut.cvar(ut.drawdown(prices), alpha))
def optimal_portfolio_of2(prices1, prices2, alphas, lambdas):
assert len(lambdas) == len(alphas)
m = len(lambdas)
def f(y):
ret = 0.
for i in range(m):
ret += lambdas[i]*ut.cvar(ut.drawdown(y[0]*prices1+y[1]*prices2), alphas[i])
return ret
constraint = LinearConstraint(np.array([prices1[-1], prices2[-1]]), lb=1, ub=np.inf)
sol = minimize(f, np.array([1., 1.]), constraints=constraint)
print(sol.message)
return sol.x
def optimal_portfolio_of2_beta(prices1, prices2, alphas, lambdas):
assert len(lambdas) == len(alphas)
m = len(lambdas)
def f(y):
ret = 0.
for i in range(m):
ret += lambdas[i]*ut.cvar(ut.drawdown(y*prices1+(1-y)*prices2), alphas[i])
return ret
sol = minimize(f, np.array([1.]))
print(sol.message)
return sol.x, 1-sol.x
def inverse_optimization():
x0 = np.zeros(15)
# x[:3]=u^1, x[3:6]=u^2, x[6:9]=zeta^1, x[9:12]=zeta^2, , x[12]=l_1, x[13]=l_2, x[14]=v
# cost vector
c = np.zeros_like(x0)
c[12] = 2.5
c[13] = 1.429
c[14] = -1
# equality constraints
A_eq = np.zeros((5, 15))
b_eq = np.zeros(5)
A_eq[0, 12] = 1
A_eq[0, 13] = 1
b_eq[0] = 1
A_eq[1, 0], A_eq[1, 1], A_eq[1, 2] = 4, 4, 1
A_eq[1, 3], A_eq[1, 4], A_eq[1, 5] = 4, 4, 1
A_eq[1, 14] = -1
A_eq[2, 0], A_eq[2, 1], A_eq[2, 2] = 3, 1, 1
A_eq[2, 3], A_eq[2, 4], A_eq[2, 5] = 3, 1, 1
A_eq[2, 14] = -1
A_eq[3, 0], A_eq[3, 1], A_eq[3, 2] = 1, 1, 1
A_eq[4, 3], A_eq[4, 4], A_eq[4, 5] = 1, 1, 1
# inequality constraints
A_ub = np.zeros((16, 15))
b_ub = np.zeros(16)
A_ub[0, 0], A_ub[0, 1] = -1, -1
A_ub[1, 3], A_ub[1, 4] = -1, -1
A_ub[2, 0], A_ub[2, 12] = -1, -1 / (3 * 0.4)
A_ub[3, 1], A_ub[3, 12] = -1, -1 / (3 * 0.4)
A_ub[4, 2], A_ub[4, 12] = -1, -1 / (3 * 0.4)
A_ub[5, 3], A_ub[5, 13] = -1, -1 / (3 * 0.7)
A_ub[6, 4], A_ub[6, 13] = -1, -1 / (3 * 0.7)
A_ub[7, 5], A_ub[7, 13] = -1, -1 / (3 * 0.7)
A_ub[8, 0], A_ub[8, 6] = 1, -1
A_ub[9, 1], A_ub[9, 7] = 1, -1
A_ub[10, 2], A_ub[10, 8] = 1, -1
A_ub[11, 3], A_ub[11, 9] = 1, -1
A_ub[12, 4], A_ub[12, 10] = 1, -1
A_ub[13, 5], A_ub[13, 11] = 1, -1
A_ub[14, 6], A_ub[14, 7], A_ub[14, 8], A_ub[14, 12] = 1, 1, 1, -1
A_ub[15, 9], A_ub[15, 10], A_ub[15, 11], A_ub[15, 13] = 1, 1, 1, -1
# bounds
bounds = [(0.0, None), (None, None), (None, None),
(0.0, None), (None, None), (None, None),
(0.0, None), (0.0, None), (0.0, None),
(0.0, None), (0.0, None), (0.0, None),
(0.0, None), (0.0, None),
(None, None)]
sol = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds=bounds)
print(sol.message)
print('lambdas=', sol.x[12:14])
print('v=', sol.x[14])
print('objective=', sol.fun)
if __name__ == '__main__':
p1 = np.array([4., 4., 1.])
p2 = np.array([3., 1., 1.])
alphs = [0.4, 0.7]
ls = [0., 1.]
#check_rhos(p1, alphs)
#check_rhos(p2, alphs)
print(optimal_portfolio_of2_beta(p1, p2, alphs, ls))
optimal_weights = [1., 0.]
#p = optimal_weights[0]*p1+optimal_weights[1]*p2
#check_rhos(p, alphs)
#inverse_optimization()