-
Notifications
You must be signed in to change notification settings - Fork 524
/
Copy pathdiscrete_root.cpp
66 lines (60 loc) · 1.73 KB
/
discrete_root.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#include <bits/stdc++.h>
using namespace std;
// https://cp-algorithms.com/algebra/discrete-root.html
int pow_mod(int x, int n, int mod) {
int y = x;
int res = 1;
for (; n > 0; n >>= 1) {
if (n & 1)
res = (long long) res * y % mod;
y = (long long) y * y % mod;
}
return res;
}
int generator(int m) {
if (m == 2) return 1;
vector<int> factors;
int phi = m - 1;
int n = phi;
for (int i = 2; i * i <= n; ++i)
if (n % i == 0) {
factors.push_back(i);
while (n % i == 0)
n /= i;
}
if (n > 1)
factors.push_back(n);
for (int res = 2; res <= m; ++res) {
if (gcd(res, m) != 1) continue;
bool ok = true;
for (size_t i = 0; i < factors.size() && ok; ++i)
ok &= pow_mod(res, phi / factors[i], m) != 1;
if (ok) return res;
}
return -1;
}
// returns any x such that x^a = b (mod m)
// precondition: m is prime
int discrete_root(int a, int b, int m) {
if (a == 0) return -1;
int g = generator(m);
int sq = (int) sqrt(m) + 1;
vector<pair<int, int>> dec(sq);
for (int i = 1; i <= sq; ++i)
dec[i - 1] = {pow_mod(g, (long long) i * sq * b % (m - 1), m), i};
sort(dec.begin(), dec.end());
for (int i = 0; i < sq; ++i) {
int my = pow_mod(g, (long long) i * b % (m - 1), m) * (long long) a % m;
auto it = lower_bound(dec.begin(), dec.end(), {my, 0});
if (it != dec.end() && it->first == my) {
int x = it->second * sq - i;
int delta = (m - 1) / gcd(b, m - 1);
return pow_mod(g, x % delta, m);
}
}
return -1;
}
// usage example
int main() {
cout << discrete_root(3, 3, 5) << endl;
}