forked from shuboc/LeetCode-2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
maximum-subarray.py
32 lines (29 loc) · 942 Bytes
/
maximum-subarray.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
from __future__ import print_function
# Time: O(n)
# Space: O(1)
#
# Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
#
# For example, given the array [-2,1,-3,4,-1,2,1,-5,4],
# the contiguous subarray [4,-1,2,1] has the largest sum = 6.
#
# click to show more practice.
#
# More practice:
# If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
#
class Solution(object):
def maxSubArray(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
if max(nums) < 0:
return max(nums)
global_max, local_max = 0, 0
for x in nums:
local_max = max(0, local_max + x)
global_max = max(global_max, local_max)
return global_max
if __name__ == "__main__":
print(Solution().maxSubArray([-2,1,-3,4,-1,2,1,-5,4]))