forked from microsoft/qlib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpytorch_transformer.py
294 lines (225 loc) · 9.64 KB
/
pytorch_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
from __future__ import division
from __future__ import print_function
import os
import numpy as np
import pandas as pd
from typing import Text, Union
import copy
import math
from ...utils import get_or_create_path
from ...log import get_module_logger
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from .pytorch_utils import count_parameters
from ...model.base import Model
from ...data.dataset import DatasetH, TSDatasetH
from ...data.dataset.handler import DataHandlerLP
# qrun examples/benchmarks/Transformer/workflow_config_transformer_Alpha360.yaml ”
class TransformerModel(Model):
def __init__(
self,
d_feat: int = 20,
d_model: int = 64,
batch_size: int = 2048,
nhead: int = 2,
num_layers: int = 2,
dropout: float = 0,
n_epochs=100,
lr=0.0001,
metric="",
early_stop=5,
loss="mse",
optimizer="adam",
reg=1e-3,
n_jobs=10,
GPU=0,
seed=None,
**kwargs
):
# set hyper-parameters.
self.d_model = d_model
self.dropout = dropout
self.n_epochs = n_epochs
self.lr = lr
self.reg = reg
self.metric = metric
self.batch_size = batch_size
self.early_stop = early_stop
self.optimizer = optimizer.lower()
self.loss = loss
self.n_jobs = n_jobs
self.device = torch.device("cuda:%d" % GPU if torch.cuda.is_available() and GPU >= 0 else "cpu")
self.seed = seed
self.logger = get_module_logger("TransformerModel")
self.logger.info("Naive Transformer:" "\nbatch_size : {}" "\ndevice : {}".format(self.batch_size, self.device))
if self.seed is not None:
np.random.seed(self.seed)
torch.manual_seed(self.seed)
self.model = Transformer(d_feat, d_model, nhead, num_layers, dropout, self.device)
if optimizer.lower() == "adam":
self.train_optimizer = optim.Adam(self.model.parameters(), lr=self.lr, weight_decay=self.reg)
elif optimizer.lower() == "gd":
self.train_optimizer = optim.SGD(self.model.parameters(), lr=self.lr, weight_decay=self.reg)
else:
raise NotImplementedError("optimizer {} is not supported!".format(optimizer))
self.fitted = False
self.model.to(self.device)
@property
def use_gpu(self):
return self.device != torch.device("cpu")
def mse(self, pred, label):
loss = (pred.float() - label.float()) ** 2
return torch.mean(loss)
def loss_fn(self, pred, label):
mask = ~torch.isnan(label)
if self.loss == "mse":
return self.mse(pred[mask], label[mask])
raise ValueError("unknown loss `%s`" % self.loss)
def metric_fn(self, pred, label):
mask = torch.isfinite(label)
if self.metric == "" or self.metric == "loss":
return -self.loss_fn(pred[mask], label[mask])
raise ValueError("unknown metric `%s`" % self.metric)
def train_epoch(self, x_train, y_train):
x_train_values = x_train.values
y_train_values = np.squeeze(y_train.values)
self.model.train()
indices = np.arange(len(x_train_values))
np.random.shuffle(indices)
for i in range(len(indices))[:: self.batch_size]:
if len(indices) - i < self.batch_size:
break
feature = torch.from_numpy(x_train_values[indices[i : i + self.batch_size]]).float().to(self.device)
label = torch.from_numpy(y_train_values[indices[i : i + self.batch_size]]).float().to(self.device)
pred = self.model(feature)
loss = self.loss_fn(pred, label)
self.train_optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_value_(self.model.parameters(), 3.0)
self.train_optimizer.step()
def test_epoch(self, data_x, data_y):
# prepare training data
x_values = data_x.values
y_values = np.squeeze(data_y.values)
self.model.eval()
scores = []
losses = []
indices = np.arange(len(x_values))
for i in range(len(indices))[:: self.batch_size]:
if len(indices) - i < self.batch_size:
break
feature = torch.from_numpy(x_values[indices[i : i + self.batch_size]]).float().to(self.device)
label = torch.from_numpy(y_values[indices[i : i + self.batch_size]]).float().to(self.device)
with torch.no_grad():
pred = self.model(feature)
loss = self.loss_fn(pred, label)
losses.append(loss.item())
score = self.metric_fn(pred, label)
scores.append(score.item())
return np.mean(losses), np.mean(scores)
def fit(
self,
dataset: DatasetH,
evals_result=dict(),
save_path=None,
):
df_train, df_valid, df_test = dataset.prepare(
["train", "valid", "test"],
col_set=["feature", "label"],
data_key=DataHandlerLP.DK_L,
)
x_train, y_train = df_train["feature"], df_train["label"]
x_valid, y_valid = df_valid["feature"], df_valid["label"]
save_path = get_or_create_path(save_path)
stop_steps = 0
train_loss = 0
best_score = -np.inf
best_epoch = 0
evals_result["train"] = []
evals_result["valid"] = []
# train
self.logger.info("training...")
self.fitted = True
for step in range(self.n_epochs):
self.logger.info("Epoch%d:", step)
self.logger.info("training...")
self.train_epoch(x_train, y_train)
self.logger.info("evaluating...")
train_loss, train_score = self.test_epoch(x_train, y_train)
val_loss, val_score = self.test_epoch(x_valid, y_valid)
self.logger.info("train %.6f, valid %.6f" % (train_score, val_score))
evals_result["train"].append(train_score)
evals_result["valid"].append(val_score)
if val_score > best_score:
best_score = val_score
stop_steps = 0
best_epoch = step
best_param = copy.deepcopy(self.model.state_dict())
else:
stop_steps += 1
if stop_steps >= self.early_stop:
self.logger.info("early stop")
break
self.logger.info("best score: %.6lf @ %d" % (best_score, best_epoch))
self.model.load_state_dict(best_param)
torch.save(best_param, save_path)
if self.use_gpu:
torch.cuda.empty_cache()
def predict(self, dataset: DatasetH, segment: Union[Text, slice] = "test"):
if not self.fitted:
raise ValueError("model is not fitted yet!")
x_test = dataset.prepare(segment, col_set="feature", data_key=DataHandlerLP.DK_I)
index = x_test.index
self.model.eval()
x_values = x_test.values
sample_num = x_values.shape[0]
preds = []
for begin in range(sample_num)[:: self.batch_size]:
if sample_num - begin < self.batch_size:
end = sample_num
else:
end = begin + self.batch_size
x_batch = torch.from_numpy(x_values[begin:end]).float().to(self.device)
with torch.no_grad():
pred = self.model(x_batch).detach().cpu().numpy()
preds.append(pred)
return pd.Series(np.concatenate(preds), index=index)
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=1000):
super(PositionalEncoding, self).__init__()
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer("pe", pe)
def forward(self, x):
# [T, N, F]
return x + self.pe[: x.size(0), :]
class Transformer(nn.Module):
def __init__(self, d_feat=6, d_model=8, nhead=4, num_layers=2, dropout=0.5, device=None):
super(Transformer, self).__init__()
self.feature_layer = nn.Linear(d_feat, d_model)
self.pos_encoder = PositionalEncoding(d_model)
self.encoder_layer = nn.TransformerEncoderLayer(d_model=d_model, nhead=nhead, dropout=dropout)
self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=num_layers)
self.decoder_layer = nn.Linear(d_model, 1)
self.device = device
self.d_feat = d_feat
def forward(self, src):
# src [N, F*T] --> [N, T, F]
src = src.reshape(len(src), self.d_feat, -1).permute(0, 2, 1)
src = self.feature_layer(src)
# src [N, T, F] --> [T, N, F], [60, 512, 8]
src = src.transpose(1, 0) # not batch first
mask = None
src = self.pos_encoder(src)
output = self.transformer_encoder(src, mask) # [60, 512, 8]
# [T, N, F] --> [N, T*F]
output = self.decoder_layer(output.transpose(1, 0)[:, -1, :]) # [512, 1]
return output.squeeze()