-
Notifications
You must be signed in to change notification settings - Fork 0
/
synthetic_demo.py
100 lines (77 loc) · 2.58 KB
/
synthetic_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# Synthetic Demo
import random
import matplotlib.pyplot as plt
import numpy as np
from sklearn.cluster import DBSCAN
from argos.cluster import calculate_distance_matrix
from argos.tool.stopwatch import Stopwatch
from argos.synthetic import generate_cluster
import argos.plot as aplt
if __name__ == "__main__":
print("Synthetic Demo")
s = Stopwatch()
# Parameters of Demo
no_of_cluster = 20
no_of_traj = 100
traj_length = 100
eps = 10
min_samples = 5
noise = 5
# Generating Trajectories
no_of_outlier = int( no_of_traj * 0.05)
no_of_traj_each_cluster = no_of_traj // no_of_cluster
print("-----")
print("No of Clusters : %s" % no_of_cluster)
print("No of Outliers : %s" % no_of_outlier)
print("-----")
normal_traj_list = []
for i in range(no_of_cluster):
traj_list = generate_cluster(no_of_traj_each_cluster, traj_length, noise)
normal_traj_list += traj_list
outlier_traj_list = []
for i in range(no_of_outlier):
outlier_traj_list += generate_cluster(1, traj_length, noise)
# Plotting Generated Trajectories
plt.figure(1)
plt.subplot(121)
for traj in normal_traj_list:
aplt.plot_traj(traj)
for traj in outlier_traj_list:
aplt.plot_traj(traj, "r")
# Precomputation
traj_list = normal_traj_list + outlier_traj_list
random.shuffle(traj_list)
# Calculating Distance Matrix
s.start()
D = calculate_distance_matrix( traj_list, eps)
s.stop("Distance matrix calculated")
# Clustering
s.start()
dbscan = DBSCAN(eps=eps, min_samples=min_samples, metric="precomputed")
dbscan.fit(D)
s.stop("Clustering is done")
# Postprocessing
no_of_labels = np.max(dbscan.labels_) + 1
print("Total number of clusters : %s" % no_of_labels)
clusters = [[] for i in range(no_of_labels)]
outliers = []
no = len(traj_list)
for i in range(no):
label = dbscan.labels_[i]
if label == -1:
outliers.append(traj_list[i])
else:
clusters[label].append(traj_list[i])
no_of_noise = len(outliers)
print("Number of noise points %s" % no_of_noise)
print("Noise Percentage : %.3f" % (no_of_noise / no))
# Plotting Clustered Trajectories
plt.subplot(122)
color_list = plt.rcParams['axes.prop_cycle'].by_key()['color']
for i in range(no_of_labels):
for traj in clusters[i]:
next_color = color_list[i % len(color_list)]
aplt.plot_traj(traj, next_color, alpha=0.3)
for traj in outliers:
aplt.plot_traj(traj, "k")
plt.show()