-
Notifications
You must be signed in to change notification settings - Fork 1
/
main_pretrain_encoder.py
95 lines (74 loc) · 3.8 KB
/
main_pretrain_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import os
from copy import deepcopy as dcopy
import numpy # noqa
from loguru import logger
from contrastyou import CONFIG_PATH, git_hash
from contrastyou.arch import UNet
from contrastyou.configure import ConfigManger
from contrastyou.losses.kl import KL_div
from contrastyou.trainer import create_save_dir
from contrastyou.utils import fix_all_seed_within_context, adding_writable_sink, extract_model_state_dict
from hook_creator import create_hook_from_config
from semi_seg import ratio_zoo
from semi_seg.data.creator import get_data
from semi_seg.hooks import feature_until_from_hooks
from semi_seg.trainers.pretrain import PretrainEncoderTrainer
from utils import separate_pretrain_finetune_configs, logging_configs, find_checkpoint
from val import val
def main():
config_manager = ConfigManger(
base_path=os.path.join(CONFIG_PATH, "base.yaml"),
optional_paths=os.path.join(CONFIG_PATH, "pretrain.yaml"), strict=False, verbose=False
)
pretrain_config, base_config = separate_pretrain_finetune_configs(config_manager=config_manager)
base_config["Data"]["order_num"] = pretrain_config["Data"]["order_num"]
with config_manager(scope="base") as config:
absolute_save_dir = create_save_dir(PretrainEncoderTrainer, config["Trainer"]["save_dir"])
adding_writable_sink(absolute_save_dir)
logging_configs(config_manager, logger)
pretrain_config.update({"GITHASH": git_hash})
base_config.update({"GITHASH": git_hash})
seed = config.get("RandomSeed", 10)
data_name = config["Data"]["name"]
with fix_all_seed_within_context(seed):
model = worker(pretrain_config, absolute_save_dir, seed)
val(model=model, save_dir=absolute_save_dir, base_config=base_config, seed=seed,
labeled_ratios=ratio_zoo[data_name])
def worker(config, absolute_save_dir, seed, ):
config = dcopy(config)
model_checkpoint = config["Arch"].pop("checkpoint", None)
with fix_all_seed_within_context(seed):
model = UNet(**config["Arch"])
if model_checkpoint:
logger.info(f"loading checkpoint from {model_checkpoint}")
model.load_state_dict(extract_model_state_dict(model_checkpoint), strict=False)
order_num = config["Data"]["order_num"]
labeled_loader, unlabeled_loader, val_loader, test_loader = get_data(
data_params=config["Data"], labeled_loader_params=config["LabeledLoader"],
unlabeled_loader_params=config["UnlabeledLoader"], pretrain=True, total_freedom=True, order_num=order_num)
trainer = PretrainEncoderTrainer(model=model, labeled_loader=labeled_loader,
unlabeled_loader=unlabeled_loader,
val_loader=val_loader, test_loader=test_loader,
criterion=KL_div(), config=config,
save_dir=os.path.join(absolute_save_dir, "pre"),
**{k: v for k, v in config["Trainer"].items() if k != "save_dir"})
checkpoint = find_checkpoint(trainer.absolute_save_dir)
with fix_all_seed_within_context(seed):
hooks = create_hook_from_config(model, config, is_pretrain=True, trainer=trainer)
assert len(hooks) > 0, "empty hooks"
with trainer.register_hook(*hooks):
until = feature_until_from_hooks(*hooks)
assert until == "Conv5"
trainer.forward_until = until
with model.switch_grad(False, start=until, include_start=False):
trainer.init()
if checkpoint:
trainer.resume_from_path(checkpoint)
trainer.start_training()
return model
if __name__ == '__main__':
import torch
with logger.catch(reraise=True):
# torch.set_deterministic(True)
torch.backends.cudnn.benchmark = True # noqa
main()