forked from halide/Halide
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAddImageChecks.cpp
645 lines (553 loc) · 29 KB
/
AddImageChecks.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
#include "AddImageChecks.h"
#include "Target.h"
#include "IRVisitor.h"
#include "Substitute.h"
#include "Simplify.h"
namespace Halide {
namespace Internal {
using std::vector;
using std::string;
using std::map;
using std::pair;
using std::make_pair;
/* Find all the externally referenced buffers in a stmt */
class FindBuffers : public IRGraphVisitor {
public:
struct Result {
Buffer<> image;
Parameter param;
Type type;
int dimensions{0};
bool used_on_host{false};
};
map<string, Result> buffers;
bool in_device_loop = false;
using IRGraphVisitor::visit;
void visit(const For *op) {
op->min.accept(this);
op->extent.accept(this);
bool old = in_device_loop;
if (op->device_api != DeviceAPI::None &&
op->device_api != DeviceAPI::Host) {
in_device_loop = true;
}
op->body.accept(this);
in_device_loop = old;
}
void visit(const Call *op) {
IRGraphVisitor::visit(op);
if (op->image.defined()) {
Result &r = buffers[op->name];
r.image = op->image;
r.type = op->type.element_of();
r.dimensions = (int)op->args.size();
r.used_on_host = r.used_on_host || (!in_device_loop);
} else if (op->param.defined()) {
Result &r = buffers[op->name];
r.param = op->param;
r.type = op->type.element_of();
r.dimensions = (int)op->args.size();
r.used_on_host = r.used_on_host || (!in_device_loop);
}
}
void visit(const Provide *op) {
IRGraphVisitor::visit(op);
if (op->values.size() == 1) {
auto it = buffers.find(op->name);
if (it != buffers.end() && !in_device_loop) {
it->second.used_on_host = true;
}
} else {
for (size_t i = 0; i < op->values.size(); i++) {
string name = op->name + "." + std::to_string(i);
auto it = buffers.find(name);
if (it != buffers.end() && !in_device_loop) {
it->second.used_on_host = true;
}
}
}
}
void visit(const Variable *op) {
if (op->param.defined() &&
op->param.is_buffer() &&
buffers.find(op->param.name()) == buffers.end()) {
Result r;
r.param = op->param;
r.type = op->param.type();
r.dimensions = op->param.dimensions();
r.used_on_host = false;
buffers[op->param.name()] = r;
}
}
};
Stmt add_image_checks(Stmt s,
const vector<Function> &outputs,
const Target &t,
const vector<string> &order,
const map<string, Function> &env,
const FuncValueBounds &fb) {
bool no_asserts = t.has_feature(Target::NoAsserts);
bool no_bounds_query = t.has_feature(Target::NoBoundsQuery);
// First hunt for all the referenced buffers
FindBuffers finder;
map<string, FindBuffers::Result> &bufs = finder.buffers;
// Add the output buffer(s).
for (Function f : outputs) {
for (size_t i = 0; i < f.values().size(); i++) {
FindBuffers::Result output_buffer;
output_buffer.type = f.values()[i].type();
output_buffer.param = f.output_buffers()[i];
output_buffer.dimensions = f.dimensions();
if (f.values().size() > 1) {
bufs[f.name() + '.' + std::to_string(i)] = output_buffer;
} else {
bufs[f.name()] = output_buffer;
}
}
}
// Add the input buffer(s) and annotate which output buffers are
// used on host.
s.accept(&finder);
Scope<Interval> empty_scope;
map<string, Box> boxes = boxes_touched(s, empty_scope, fb);
// Now iterate through all the buffers, creating a list of lets
// and a list of asserts.
vector<pair<string, Expr>> lets_overflow;
vector<pair<string, Expr>> lets_required;
vector<pair<string, Expr>> lets_constrained;
vector<pair<string, Expr>> lets_proposed;
vector<Stmt> dims_no_overflow_asserts;
vector<Stmt> asserts_required;
vector<Stmt> asserts_constrained;
vector<Stmt> asserts_proposed;
vector<Stmt> asserts_elem_size;
vector<Stmt> asserts_host_alignment;
vector<Stmt> asserts_host_non_null;
vector<Stmt> buffer_rewrites;
// Inject the code that conditionally returns if we're in inference mode
Expr maybe_return_condition = const_false();
// We're also going to apply the constraints to the required min
// and extent. To do this we have to substitute all references to
// the actual sizes of the input images in the constraints with
// references to the required sizes.
map<string, Expr> replace_with_required;
for (const pair<string, FindBuffers::Result> &buf : bufs) {
const string &name = buf.first;
for (int i = 0; i < buf.second.dimensions; i++) {
string dim = std::to_string(i);
Expr min_required = Variable::make(Int(32), name + ".min." + dim + ".required");
replace_with_required[name + ".min." + dim] = min_required;
Expr extent_required = Variable::make(Int(32), name + ".extent." + dim + ".required");
replace_with_required[name + ".extent." + dim] = simplify(extent_required);
Expr stride_required = Variable::make(Int(32), name + ".stride." + dim + ".required");
replace_with_required[name + ".stride." + dim] = stride_required;
}
}
// We also want to build a map that lets us replace values passed
// in with the constrained version. This is applied to the rest of
// the lowered pipeline to take advantage of the constraints,
// e.g. for constant folding.
map<string, Expr> replace_with_constrained;
for (pair<const string, FindBuffers::Result> &buf : bufs) {
const string &name = buf.first;
Buffer<> &image = buf.second.image;
Parameter ¶m = buf.second.param;
Type type = buf.second.type;
int dimensions = buf.second.dimensions;
bool used_on_host = buf.second.used_on_host;
// Detect if this is one of the outputs of a multi-output pipeline.
bool is_output_buffer = false;
bool is_secondary_output_buffer = false;
string buffer_name = name;
for (Function f : outputs) {
for (size_t i = 0; i < f.output_buffers().size(); i++) {
if (param.defined() &&
param.same_as(f.output_buffers()[i])) {
is_output_buffer = true;
// If we're one of multiple output buffers, we should use the
// region inferred for the func in general.
buffer_name = f.name();
if (i > 0) {
is_secondary_output_buffer = true;
}
}
}
}
Box touched = boxes[buffer_name];
internal_assert(touched.empty() || (int)(touched.size()) == dimensions);
// The buffer may be used in one or more extern stage. If so we need to
// expand the box touched to include the results of the
// top-level bounds query calls to those extern stages.
if (param.defined()) {
// Find the extern users.
vector<string> extern_users;
for (size_t i = 0; i < order.size(); i++) {
Function f = env.find(order[i])->second;
if (f.has_extern_definition() &&
!f.extern_definition_proxy_expr().defined()) {
const vector<ExternFuncArgument> &args = f.extern_arguments();
for (size_t j = 0; j < args.size(); j++) {
if ((args[j].image_param.defined() &&
args[j].image_param.name() == param.name()) ||
(args[j].buffer.defined() &&
args[j].buffer.name() == param.name())) {
extern_users.push_back(order[i]);
}
}
}
}
// Expand the box by the result of the bounds query from each.
for (size_t i = 0; i < extern_users.size(); i++) {
const string &extern_user = extern_users[i];
Box query_box;
Expr query_buf = Variable::make(type_of<struct halide_buffer_t *>(),
param.name() + ".bounds_query." + extern_user);
for (int j = 0; j < dimensions; j++) {
Expr min = Call::make(Int(32), Call::buffer_get_min,
{query_buf, j}, Call::Extern);
Expr max = Call::make(Int(32), Call::buffer_get_max,
{query_buf, j}, Call::Extern);
query_box.push_back(Interval(min, max));
}
merge_boxes(touched, query_box);
}
}
ReductionDomain rdom;
// An expression returning whether or not we're in inference mode
Expr handle = Variable::make(type_of<buffer_t *>(), name + ".buffer",
image, param, rdom);
Expr inference_mode = Call::make(Bool(), Call::buffer_is_bounds_query,
{handle}, Call::Extern);
maybe_return_condition = maybe_return_condition || inference_mode;
// Come up with a name to refer to this buffer in the error messages
string error_name = (is_output_buffer ? "Output" : "Input");
error_name += " buffer " + name;
// Check the type matches the internally-understood type
{
string type_code_name = name + ".type.code";
string type_bits_name = name + ".type.bits";
string type_lanes_name = name + ".type.lanes";
Expr type_code = Variable::make(UInt(8), type_code_name, image, param, rdom);
Expr type_bits = Variable::make(UInt(8), type_bits_name, image, param, rdom);
Expr type_lanes = Variable::make(UInt(16), type_lanes_name, image, param, rdom);
Expr error = Call::make(Int(32), "halide_error_bad_type",
{error_name,
type_code, make_const(UInt(8), (int)type.code()),
type_bits, make_const(UInt(8), type.bits()),
type_lanes, make_const(UInt(16), type.lanes())},
Call::Extern);
asserts_elem_size.push_back(
AssertStmt::make((type_code == type.code()) &&
(type_bits == type.bits()) &&
(type_lanes == type.lanes()), error));
}
if (touched.maybe_unused()) {
debug(3) << "Image " << name << " is only used when " << touched.used << "\n";
}
// Check that the region passed in (after applying constraints) is within the region used
debug(3) << "In image " << name << " region touched is:\n";
for (int j = 0; j < dimensions; j++) {
string dim = std::to_string(j);
string actual_min_name = name + ".min." + dim;
string actual_extent_name = name + ".extent." + dim;
string actual_stride_name = name + ".stride." + dim;
Expr actual_min = Variable::make(Int(32), actual_min_name, image, param, rdom);
Expr actual_extent = Variable::make(Int(32), actual_extent_name, image, param, rdom);
Expr actual_stride = Variable::make(Int(32), actual_stride_name, image, param, rdom);
if (!touched.empty() && !touched[j].is_bounded()) {
user_error << "Buffer " << name
<< " may be accessed in an unbounded way in dimension "
<< j << "\n";
}
Expr min_required = touched.empty() ? actual_min : touched[j].min;
Expr extent_required = touched.empty() ? actual_extent : (touched[j].max + 1 - touched[j].min);
if (touched.maybe_unused()) {
min_required = select(touched.used, min_required, actual_min);
extent_required = select(touched.used, extent_required, actual_extent);
}
string min_required_name = name + ".min." + dim + ".required";
string extent_required_name = name + ".extent." + dim + ".required";
Expr min_required_var = Variable::make(Int(32), min_required_name);
Expr extent_required_var = Variable::make(Int(32), extent_required_name);
lets_required.push_back({ extent_required_name, extent_required });
lets_required.push_back({ min_required_name, min_required });
Expr actual_max = actual_min + actual_extent - 1;
Expr max_required = min_required_var + extent_required_var - 1;
if (touched.maybe_unused()) {
max_required = select(touched.used, max_required, actual_max);
}
Expr oob_condition = actual_min <= min_required_var && actual_max >= max_required;
Expr oob_error = Call::make(Int(32), "halide_error_access_out_of_bounds",
{error_name, j, min_required_var, max_required, actual_min, actual_max},
Call::Extern);
asserts_required.push_back(AssertStmt::make(oob_condition, oob_error));
// Come up with a required stride to use in bounds
// inference mode. We don't assert it. It's just used to
// apply the constraints to to come up with a proposed
// stride. Strides actually passed in may not be in this
// order (e.g if storage is swizzled relative to dimension
// order).
Expr stride_required;
if (j == 0) {
stride_required = 1;
} else {
string last_dim = std::to_string(j-1);
stride_required = (Variable::make(Int(32), name + ".stride." + last_dim + ".required") *
Variable::make(Int(32), name + ".extent." + last_dim + ".required"));
}
lets_required.push_back({ name + ".stride." + dim + ".required", stride_required });
// On 32-bit systems, insert checks to make sure the total
// size of all input and output buffers is <= 2^31 - 1.
// And that no product of extents overflows 2^31 - 1. This
// second test is likely only needed if a fuse directive
// is used in the schedule to combine multiple extents,
// but it is here for extra safety. On 64-bit targets with the
// LargeBuffers feature, the maximum size is 2^63 - 1.
Expr max_size = make_const(UInt(64), t.maximum_buffer_size());
Expr max_extent = make_const(UInt(64), 0x7fffffff);
Expr actual_size = abs(cast<int64_t>(actual_extent) * actual_stride);
Expr allocation_size_error = Call::make(Int(32), "halide_error_buffer_allocation_too_large",
{name, actual_size, max_size}, Call::Extern);
Stmt check = AssertStmt::make(actual_size <= max_size, allocation_size_error);
dims_no_overflow_asserts.push_back(check);
// Don't repeat extents check for secondary buffers as extents must be the same as for the first one.
if (!is_secondary_output_buffer) {
if (j == 0) {
lets_overflow.push_back({ name + ".total_extent." + dim, cast<int64_t>(actual_extent) });
} else {
max_size = cast<int64_t>(max_size);
Expr last_dim = Variable::make(Int(64), name + ".total_extent." + std::to_string(j-1));
Expr this_dim = actual_extent * last_dim;
Expr this_dim_var = Variable::make(Int(64), name + ".total_extent." + dim);
lets_overflow.push_back({ name + ".total_extent." + dim, this_dim });
Expr error = Call::make(Int(32), "halide_error_buffer_extents_too_large",
{name, this_dim_var, max_size}, Call::Extern);
Stmt check = AssertStmt::make(this_dim_var <= max_size, error);
dims_no_overflow_asserts.push_back(check);
}
// It is never legal to have a negative buffer extent.
Expr negative_extent_condition = actual_extent >= 0;
Expr negative_extent_error = Call::make(Int(32), "halide_error_buffer_extents_negative",
{error_name, j, actual_extent}, Call::Extern);
asserts_required.push_back(AssertStmt::make(negative_extent_condition, negative_extent_error));
}
}
// Create code that mutates the input buffers if we're in bounds inference mode.
BufferBuilder builder;
builder.buffer_memory = Variable::make(type_of<struct halide_buffer_t *>(), name + ".buffer");
builder.shape_memory = Call::make(type_of<struct halide_dimension_t *>(),
Call::buffer_get_shape, {builder.buffer_memory},
Call::Extern);
builder.type = type;
builder.dimensions = dimensions;
for (int i = 0; i < dimensions; i++) {
string dim = std::to_string(i);
builder.mins.push_back(Variable::make(Int(32), name + ".min." + dim + ".proposed"));
builder.extents.push_back(Variable::make(Int(32), name + ".extent." + dim + ".proposed"));
builder.strides.push_back(Variable::make(Int(32), name + ".stride." + dim + ".proposed"));
}
Stmt rewrite = Evaluate::make(builder.build());
rewrite = IfThenElse::make(inference_mode, rewrite);
buffer_rewrites.push_back(rewrite);
// Build the constraints tests and proposed sizes.
vector<pair<Expr, Expr>> constraints;
for (int i = 0; i < dimensions; i++) {
string dim = std::to_string(i);
string min_name = name + ".min." + dim;
string stride_name = name + ".stride." + dim;
string extent_name = name + ".extent." + dim;
Expr stride_constrained, extent_constrained, min_constrained;
Expr stride_orig = Variable::make(Int(32), stride_name, image, param, rdom);
Expr extent_orig = Variable::make(Int(32), extent_name, image, param, rdom);
Expr min_orig = Variable::make(Int(32), min_name, image, param, rdom);
Expr stride_required = Variable::make(Int(32), stride_name + ".required");
Expr extent_required = Variable::make(Int(32), extent_name + ".required");
Expr min_required = Variable::make(Int(32), min_name + ".required");
Expr stride_proposed = Variable::make(Int(32), stride_name + ".proposed");
Expr extent_proposed = Variable::make(Int(32), extent_name + ".proposed");
Expr min_proposed = Variable::make(Int(32), min_name + ".proposed");
debug(2) << "Injecting constraints for " << name << "." << i << "\n";
if (is_secondary_output_buffer) {
// For multi-output (Tuple) pipelines, output buffers
// beyond the first implicitly have their min and extent
// constrained to match the first output.
if (param.defined()) {
user_assert(!param.extent_constraint(i).defined() &&
!param.min_constraint(i).defined())
<< "Can't constrain the min or extent of an output buffer beyond the "
<< "first. They are implicitly constrained to have the same min and extent "
<< "as the first output buffer.\n";
stride_constrained = param.stride_constraint(i);
} else if (image.defined() && (int)i < image.dimensions()) {
stride_constrained = image.dim(i).stride();
}
std::string min0_name = buffer_name + ".0.min." + dim;
if (replace_with_constrained.count(min0_name) > 0 ) {
min_constrained = replace_with_constrained[min0_name];
} else {
min_constrained = Variable::make(Int(32), min0_name);
}
std::string extent0_name = buffer_name + ".0.extent." + dim;
if (replace_with_constrained.count(extent0_name) > 0 ) {
extent_constrained = replace_with_constrained[extent0_name];
} else {
extent_constrained = Variable::make(Int(32), extent0_name);
}
} else if (image.defined() && (int)i < image.dimensions()) {
stride_constrained = image.dim(i).stride();
extent_constrained = image.dim(i).extent();
min_constrained = image.dim(i).min();
} else if (param.defined()) {
stride_constrained = param.stride_constraint(i);
extent_constrained = param.extent_constraint(i);
min_constrained = param.min_constraint(i);
}
if (stride_constrained.defined()) {
// Come up with a suggested stride by passing the
// required region through this constraint.
constraints.push_back({ stride_orig, stride_constrained});
stride_constrained = substitute(replace_with_required, stride_constrained);
lets_proposed.push_back({ stride_name + ".proposed", stride_constrained });
} else {
lets_proposed.push_back({ stride_name + ".proposed", stride_required });
}
if (min_constrained.defined()) {
constraints.push_back({ min_orig, min_constrained });
min_constrained = substitute(replace_with_required, min_constrained);
lets_proposed.push_back({ min_name + ".proposed", min_constrained });
} else {
lets_proposed.push_back({ min_name + ".proposed", min_required });
}
if (extent_constrained.defined()) {
constraints.push_back({ extent_orig, extent_constrained });
extent_constrained = substitute(replace_with_required, extent_constrained);
lets_proposed.push_back({ extent_name + ".proposed", extent_constrained });
} else {
lets_proposed.push_back({ extent_name + ".proposed", extent_required });
}
// In bounds inference mode, make sure the proposed
// versions still satisfy the constraints.
Expr max_proposed = min_proposed + extent_proposed - 1;
Expr max_required = min_required + extent_required - 1;
Expr check = (min_proposed <= min_required) && (max_proposed >= max_required);
Expr error = Call::make(Int(32), "halide_error_constraints_make_required_region_smaller",
{error_name, i, min_proposed, max_proposed, min_required, max_required},
Call::Extern);
asserts_proposed.push_back(AssertStmt::make((!inference_mode) || check, error));
// stride_required is just a suggestion. It's ok if the
// constraints shuffle them around in ways that make it
// smaller.
/*
check = (stride_proposed >= stride_required);
error = "Applying the constraints to the required stride made it smaller";
asserts_proposed.push_back(AssertStmt::make((!inference_mode) || check, error, vector<Expr>()));
*/
}
// Assert all the conditions, and set the new values
for (size_t i = 0; i < constraints.size(); i++) {
Expr var = constraints[i].first;
const string &name = var.as<Variable>()->name;
Expr constrained_var = Variable::make(Int(32), name + ".constrained");
std::ostringstream ss;
ss << constraints[i].second;
string constrained_var_str = ss.str();
replace_with_constrained[name] = constrained_var;
lets_constrained.push_back({ name + ".constrained", constraints[i].second });
Expr error = Call::make(Int(32), "halide_error_constraint_violated",
{name, var, constrained_var_str, constrained_var},
Call::Extern);
// Check the var passed in equals the constrained version (when not in inference mode)
asserts_constrained.push_back(AssertStmt::make(var == constrained_var, error));
}
// For the buffers used on host, check the host field is non-null
Expr host_ptr = Variable::make(Handle(), name, image, param, ReductionDomain());
if (used_on_host) {
Expr error = Call::make(Int(32), "halide_error_host_is_null",
{error_name}, Call::Extern);
Expr check = (host_ptr != make_zero(host_ptr.type()));
if (touched.maybe_unused()) {
check = !touched.used || check;
}
asserts_host_non_null.push_back(AssertStmt::make(check, error));
}
// and check alignment of the host field
if (param.defined() && param.host_alignment() != param.type().bytes()) {
int alignment_required = param.host_alignment();
Expr u64t_host_ptr = reinterpret<uint64_t>(host_ptr);
Expr align_condition = (u64t_host_ptr % alignment_required) == 0;
Expr error = Call::make(Int(32), "halide_error_unaligned_host_ptr",
{name, alignment_required}, Call::Extern);
asserts_host_alignment.push_back(AssertStmt::make(align_condition, error));
}
}
// Inject the code that checks the host pointers.
if (!no_asserts) {
for (size_t i = asserts_host_non_null.size(); i > 0; i--) {
s = Block::make(asserts_host_non_null[i-1], s);
}
for (size_t i = asserts_host_alignment.size(); i > 0; i--) {
s = Block::make(asserts_host_alignment[i-1], s);
}
}
// Inject the code that checks that no dimension math overflows
if (!no_asserts) {
for (size_t i = dims_no_overflow_asserts.size(); i > 0; i--) {
s = Block::make(dims_no_overflow_asserts[i-1], s);
}
// Inject the code that defines the proposed sizes.
for (size_t i = lets_overflow.size(); i > 0; i--) {
s = LetStmt::make(lets_overflow[i-1].first, lets_overflow[i-1].second, s);
}
}
// Replace uses of the var with the constrained versions in the
// rest of the program. We also need to respect the existence of
// constrained versions during storage flattening and bounds
// inference.
s = substitute(replace_with_constrained, s);
// Now we add a bunch of code to the top of the pipeline. This is
// all in reverse order compared to execution, as we incrementally
// prepending code.
if (!no_asserts) {
// Inject the code that checks the constraints are correct.
for (size_t i = asserts_constrained.size(); i > 0; i--) {
s = Block::make(asserts_constrained[i-1], s);
}
// Inject the code that checks for out-of-bounds access to the buffers.
for (size_t i = asserts_required.size(); i > 0; i--) {
s = Block::make(asserts_required[i-1], s);
}
// Inject the code that checks that elem_sizes are ok.
for (size_t i = asserts_elem_size.size(); i > 0; i--) {
s = Block::make(asserts_elem_size[i-1], s);
}
}
// Inject the code that returns early for inference mode.
if (!no_bounds_query) {
s = IfThenElse::make(!maybe_return_condition, s);
// Inject the code that does the buffer rewrites for inference mode.
for (size_t i = buffer_rewrites.size(); i > 0; i--) {
s = Block::make(buffer_rewrites[i-1], s);
}
}
if (!no_asserts) {
// Inject the code that checks the proposed sizes still pass the bounds checks
for (size_t i = asserts_proposed.size(); i > 0; i--) {
s = Block::make(asserts_proposed[i-1], s);
}
}
// Inject the code that defines the proposed sizes.
for (size_t i = lets_proposed.size(); i > 0; i--) {
s = LetStmt::make(lets_proposed[i-1].first, lets_proposed[i-1].second, s);
}
// Inject the code that defines the constrained sizes.
for (size_t i = lets_constrained.size(); i > 0; i--) {
s = LetStmt::make(lets_constrained[i-1].first, lets_constrained[i-1].second, s);
}
// Inject the code that defines the required sizes produced by bounds inference.
for (size_t i = lets_required.size(); i > 0; i--) {
s = LetStmt::make(lets_required[i-1].first, lets_required[i-1].second, s);
}
return s;
}
}
}