-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathseuss.py
116 lines (80 loc) · 2.8 KB
/
seuss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import numpy
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.layers import Dropout
from keras.layers import LSTM
from keras.callbacks import ModelCheckpoint
from keras.utils import np_utils
import sys
# # Training Model
# In[2]:
filename = "data/combinedText.txt"
raw_text = open(filename).read()
# In[6]:
list(set(raw_text))[0]
# In[7]:
# create mapping of unique chars to integers
chars = sorted(list(set(raw_text)))
char_to_int = dict((c, i) for i, c in enumerate(chars))
# In[8]:
n_chars = len(raw_text)
n_vocab = len(chars)
print ("Total Characters: ", n_chars)
print ("Total Vocab: ", n_vocab)
# In[9]:
print("9 Initated")
# prepare the dataset of input to output pairs encoded as integers
seq_length = 100
dataX = []
dataY = []
for i in range(0, n_chars - seq_length, 1):
seq_in = raw_text[i:i + seq_length]
seq_out = raw_text[i + seq_length]
dataX.append([char_to_int[char] for char in seq_in])
dataY.append(char_to_int[seq_out])
n_patterns = len(dataX)
print ("Total Patterns: ", n_patterns)
# In[10]:
print('10 initiated')
# reshape X to be [samples, time steps, features]
X = numpy.reshape(dataX, (n_patterns, seq_length, 1))
# normalize
X = X / float(n_vocab)
# one hot encode the output variable
y = np_utils.to_categorical(dataY)
# In[11]:
import datetime
now = datetime.datetime.now()
# define the LSTM model
model = Sequential()
model.add(LSTM(400, input_shape=(X.shape[1], X.shape[2]), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(200))
model.add(Dropout(0.2))
model.add(Dense(y.shape[1], activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam')
with open("character_based/info_{now.strftime('%Y-%m-%d_%H-%M')}.txt", 'w+') as f:
pstr = "{'seq_length': " + str(seq_length) + '}'
modelstr = """
model = Sequential()
model.add(LSTM(400, input_shape=(X.shape[1], X.shape[2]), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(200))
model.add(Dropout(0.2))
model.add(Dense(y.shape[1], activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam')
"""
f.write(pstr)
f.write(modelstr)
print("model compiled")
# In[12]:
# define the checkpoint
filepath=f"character_based/wi-{{epoch:02d}}-{{loss:.4f}}_{now.strftime('%Y-%m-%d_%H-%M')}.h5"
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min')
callbacks_list = [checkpoint]
# In[13]:
print("nuke launching")
history = model.fit(X, y, epochs=500, batch_size=128, callbacks=callbacks_list, verbose=1)
loss_history = history.history
with open("character_based/loss_history_{now.strftime('%Y-%m-%d_%H-%M')}.txt", 'w+') as f:
f.write(str(loss_history))