-
Add the base directory and paths to train and evaluation path files in "data/datasets.yaml".
-
For each experiment we use a separate ".yaml" configuration file. Examples files are providedided in "configs". The default values filled in these files correspond to parameters used in the experiments presented in the paper.
-
activate "deepsatmodels" python environment:
conda activate deepsatmodels
Modify respective .yaml config files accordingly to define the save directory or loading a pre-trained model from pre-trained checkpoints.
`python train_and_eval/segmentation_training.py --config_file configs/**/UNet3D.yaml --gpu_ids 0,1`
`python train_and_eval/segmentation_training.py --config_file configs/**/UNet2D_CLSTM.yaml --gpu_ids 0,1`
-
model pre-training
python train_and_eval/segmentation_cscl_training.py --config_file configs/**/UNet2D_CLSTM_CSCL.yaml --gpu_ids 0,1
-
copy the path to the pre-training save directory in CHECKPOINT.load_from_checkpoint. This will load the latest saved model. To load a specific checkpoint copy the path to the .pth file
python train_and_eval/segmentation_training.py --config_file configs/**/UNet2D_CLSTM.yaml --gpu_ids 0,1
`python train_and_eval/segmentation_training.py --config_file configs/**/UNet3Df.yaml --gpu_ids 0,1`
-
model pre-training
python train_and_eval/segmentation_cscl_training.py --config_file configs/**/UNet3Df_CSCL.yaml --gpu_ids 0,1
-
copy the path to the pre-training save directory in CHECKPOINT.load_from_checkpoint. This will load the latest saved model. To load a specific checkpoint copy the path to the .pth file
python train_and_eval/segmentation_training.py --config_file configs/**/UNet3Df.yaml --gpu_ids 0,1
Please consider citing the following work if you use UNet3Df or CSCL in your project:
@ARTICLE{9854891,
author={Tarasiou, Michail and Güler, Riza Alp and Zafeiriou, Stefanos},
journal={IEEE Transactions on Geoscience and Remote Sensing},
title={Context-Self Contrastive Pretraining for Crop Type Semantic Segmentation},
year={2022},
volume={60},
number={},
pages={1-17},
doi={10.1109/TGRS.2022.3198187}}