forked from satijalab/seurat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRunTSNE.Rd
77 lines (60 loc) · 2.86 KB
/
RunTSNE.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/generics.R, R/dimensional_reduction.R
\name{RunTSNE}
\alias{RunTSNE}
\alias{RunTSNE.matrix}
\alias{RunTSNE.DimReduc}
\alias{RunTSNE.dist}
\alias{RunTSNE.Seurat}
\title{Run t-distributed Stochastic Neighbor Embedding}
\usage{
RunTSNE(object, ...)
\method{RunTSNE}{matrix}(object, assay = NULL, seed.use = 1,
tsne.method = "Rtsne", add.iter = 0, dim.embed = 2,
reduction.key = "tSNE_", ...)
\method{RunTSNE}{DimReduc}(object, cells = NULL, dims = 1:5,
seed.use = 1, tsne.method = "Rtsne", add.iter = 0, dim.embed = 2,
reduction.key = "tSNE_", ...)
\method{RunTSNE}{dist}(object, assay = NULL, seed.use = 1,
tsne.method = "Rtsne", add.iter = 0, dim.embed = 2,
reduction.key = "tSNE_", ...)
\method{RunTSNE}{Seurat}(object, reduction = "pca", cells = NULL,
dims = 1:5, features = NULL, seed.use = 1, tsne.method = "Rtsne",
add.iter = 0, dim.embed = 2, distance.matrix = NULL,
reduction.name = "tsne", reduction.key = "tSNE_", ...)
}
\arguments{
\item{object}{Seurat object}
\item{...}{Arguments passed to other methods and to t-SNE call (most commonly used is perplexity)}
\item{assay}{Name of assay that that t-SNE is being run on}
\item{seed.use}{Random seed for the t-SNE}
\item{tsne.method}{Select the method to use to compute the tSNE. Available
methods are:
\itemize{
\item{Rtsne: }{Use the Rtsne package Barnes-Hut implementation of tSNE (default)}
\item{FIt-SNE: }{Use the FFT-accelerated Interpolation-based t-SNE. Based on
Kluger Lab code found here: https://github.com/KlugerLab/FIt-SNE}
}}
\item{add.iter}{If an existing tSNE has already been computed, uses the
current tSNE to seed the algorithm and then adds additional iterations on top
of this}
\item{dim.embed}{The dimensional space of the resulting tSNE embedding
(default is 2). For example, set to 3 for a 3d tSNE}
\item{reduction.key}{dimensional reduction key, specifies the string before the number for the dimension names. tSNE_ by default}
\item{cells}{Which cells to analyze (default, all cells)}
\item{dims}{Which dimensions to use as input features}
\item{reduction}{Which dimensional reduction (e.g. PCA, ICA) to use for
the tSNE. Default is PCA}
\item{features}{If set, run the tSNE on this subset of features
(instead of running on a set of reduced dimensions). Not set (NULL) by default;
\code{dims} must be NULL to run on features}
\item{distance.matrix}{If set, runs tSNE on the given distance matrix
instead of data matrix (experimental)}
\item{reduction.name}{dimensional reduction name, specifies the position in the object$dr list. tsne by default}
}
\description{
Run t-SNE dimensionality reduction on selected features. Has the option of
running in a reduced dimensional space (i.e. spectral tSNE, recommended),
or running based on a set of genes. For details about stored TSNE calculation
parameters, see \code{PrintTSNEParams}.
}