From 30108509c0bda8021d4ca7224d91de08116200fa Mon Sep 17 00:00:00 2001 From: rasbt Date: Wed, 12 Jun 2019 10:15:53 -1000 Subject: [PATCH] change samples to examples --- ch02/ch02.ipynb | 24 ++++++++++++------------ 1 file changed, 12 insertions(+), 12 deletions(-) diff --git a/ch02/ch02.ipynb b/ch02/ch02.ipynb index 9e6fb27b..6988518b 100644 --- a/ch02/ch02.ipynb +++ b/ch02/ch02.ipynb @@ -287,10 +287,10 @@ "\n", " Parameters\n", " ----------\n", - " X : {array-like}, shape = [n_samples, n_features]\n", - " Training vectors, where n_samples is the number of samples and\n", + " X : {array-like}, shape = [n_examples, n_features]\n", + " Training vectors, where n_examples is the number of examples and\n", " n_features is the number of features.\n", - " y : array-like, shape = [n_samples]\n", + " y : array-like, shape = [n_examples]\n", " Target values.\n", "\n", " Returns\n", @@ -744,7 +744,7 @@ " plt.xlim(xx1.min(), xx1.max())\n", " plt.ylim(xx2.min(), xx2.max())\n", "\n", - " # plot class samples\n", + " # plot class examples\n", " for idx, cl in enumerate(np.unique(y)):\n", " plt.scatter(x=X[y == cl, 0], \n", " y=X[y == cl, 1],\n", @@ -916,10 +916,10 @@ "\n", " Parameters\n", " ----------\n", - " X : {array-like}, shape = [n_samples, n_features]\n", - " Training vectors, where n_samples is the number of samples and\n", + " X : {array-like}, shape = [n_examples, n_features]\n", + " Training vectors, where n_examples is the number of examples and\n", " n_features is the number of features.\n", - " y : array-like, shape = [n_samples]\n", + " y : array-like, shape = [n_examples]\n", " Target values.\n", "\n", " Returns\n", @@ -1178,7 +1178,7 @@ " Weights after fitting.\n", " cost_ : list\n", " Sum-of-squares cost function value averaged over all\n", - " training samples in each epoch.\n", + " training examples in each epoch.\n", "\n", " \n", " \"\"\"\n", @@ -1194,10 +1194,10 @@ "\n", " Parameters\n", " ----------\n", - " X : {array-like}, shape = [n_samples, n_features]\n", - " Training vectors, where n_samples is the number of samples and\n", + " X : {array-like}, shape = [n_examples, n_features]\n", + " Training vectors, where n_examples is the number of examples and\n", " n_features is the number of features.\n", - " y : array-like, shape = [n_samples]\n", + " y : array-like, shape = [n_examples]\n", " Target values.\n", "\n", " Returns\n", @@ -1401,7 +1401,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.3" + "version": "3.7.1" } }, "nbformat": 4,