Skip to content

Latest commit

 

History

History
217 lines (175 loc) · 7.18 KB

README.md

File metadata and controls

217 lines (175 loc) · 7.18 KB

Logo

A Large-scale Knowledge Repository for Understanding Hand-Object Interaction

CVPR, 2022
Lixin Yang* · Kailin Li* · Xinyu Zhan* · Fei Wu · Anran Xu . Liu Liu · Cewu Lu
\star = equal contribution

Paper PDF ArXiv PDF Project Page Youtube Video


This repo contains OakInk Toolkit oikit -- a Python package that provides data loading and visualization tools for the OakInk-Image, OakInk-Shape dataset and Oak base.

Installation

We test the installation with:
Ubuntu PyTorch Python PyTorch

First, clone the repo:

$ git clone https://github.com/lixiny/OakInk.git
$ cd OakInk

There are two different ways to use oikit: stand-alone and import-as-package.

stand-alone

We use conda to manage environment.
The stand-alone mode will create an isolated conda env called: oakink:

$ conda env create -f environment.yaml
$ conda activate oakink
$ pip install -r requirements.txt

This environment provide you a base environment to load and visualize the OakInk dataset.

⚠️ In this case, you must use the oikit inside the OakInk directory.
Otherwise, you will get an error: ModuleNotFoundError: No module named 'oikit'.

import-as-package (recommended)

In most cases, you want to use oikit in other conda env.
To be able to import oikit, you need:

  1. activate the destination env (we suppose that python, cudatookit, and pytorch have already been installed)
  2. go to your OakInk directory and run:
$ pip install .

To test the installation is complete, run:

$ python -c "from oikit.oi_image import OakInkImage"

no error, no worry. Now you can use oikit in this env.

Download Datasets

  1. Download the datasets (OakInk-Image and OakInk-Shape) from the project site. Arrange all zip files into a directory: path/to/data as follow:

     .
     ├── image
     │   ├── anno.zip
     │   ├── obj.zip
     │   └── stream_zipped
     │       ├── oakink_image_v2.z01
     │       ├── ...
     │       ├── oakink_image_v2.z10
     │       └── oakink_image_v2.zip
     └── shape
         ├── metaV2.zip
         ├── OakInkObjectsV2.zip
         ├── oakink_shape_v2.zip
         └── OakInkVirtualObjectsV2.zip
    
  2. Extract the files.

  • For the image/anno.zip, image/obj.zip and shape/*.zip, you can simply unzip it at the same level of the .zip file:
    $ unzip obj.zip
  • For the 11 split zip files in image/stream_zipped, you need to cd into the image/ directory, run:
    $ zip -F ./stream_zipped/oakink_image_v2.zip --out single-archive.zip
    This will combine the split zip files into a single .zip, at image/single-archive.zip. Finally, unzip the combined archive:
    $ unzip single-archive.zip
    After all the extractions are finished, you will have a your directory path/to/data of the following structure:
    .
    ├── image
    │   ├── anno
    │   ├── obj
    │   └── stream_release_v2
    │       ├── A01001_0001_0000
    │       ├── ....
    │
    └── shape
        ├── metaV2
        ├── OakInkObjectsV2
        ├── oakink_shape_v2
        └── OakInkVirtualObjectsV2
    
  1. Set the environment variable $OAKINK_DIR to your dataset folder:

    $ export OAKINK_DIR=path/to/data
  2. Download mano_v1_2.zip from the MANO website, unzip the file and create symlink in assets folder:

    $ mkdir assets
    $ ln -s path/to/mano_v1_2 assets/

Load Dataset and Visualize

we provide three scripts to provide basic usage for data loading and visualizing:

  1. visualize OakInk-Image set on sequence level:

    $ python scripts/viz_oakink_image_seq.py (--help)
  2. use OakInkImage to load data_split: all and visualize:

    $ python scripts/viz_oakink_image.py (--help)
  3. visualize OakInk-Shape set with object category and subject intent

    $ python scripts/viz_oakink_shape.py --categories teapot --intent_mode use (--help)

Download Oak Base

Download the OakBase.zip (containing object parts segmentation and attributes) from the project site. unzip it to path/to/data. The directory structure should be like this:

  ├── image      # OakInk-Image dataset
  ├── shape      # OakInk-Shape dataset
  └── OakBase    # Oak Base

we provide demo script to show how to access the Oak Base:

$ python scripts/demo_oak_base.py --data_dir path/to/data

Citation

If you find OakInk dataset and oikit useful for your research, please considering cite us:

@InProceedings{YangCVPR2022OakInk,
  author    = {Yang, Lixin and Li, Kailin and Zhan, Xinyu and Wu, Fei and Xu, Anran and Liu, Liu and Lu, Cewu},
  title     = {{OakInk}: A Large-Scale Knowledge Repository for Understanding Hand-Object Interaction},
  booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  year      = {2022},
}