forked from NVlabs/curobo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
simple_stacking.py
543 lines (485 loc) · 18.5 KB
/
simple_stacking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
#
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
#
try:
# Third Party
import isaacsim
except ImportError:
pass
# Third Party
import torch
a = torch.zeros(
4, device="cuda:0"
) # this is necessary to allow isaac sim to use this torch instance
# Third Party
import numpy as np
np.set_printoptions(suppress=True)
# Standard Library
# Standard Library
import argparse
## import curobo:
parser = argparse.ArgumentParser()
parser.add_argument(
"--headless_mode",
type=str,
default=None,
help="To run headless, use one of [native, websocket], webrtc might not work.",
)
parser.add_argument(
"--constrain_grasp_approach",
action="store_true",
help="When True, approaches grasp with fixed orientation and motion only along z axis.",
default=False,
)
args = parser.parse_args()
# Third Party
from omni.isaac.kit import SimulationApp
simulation_app = SimulationApp(
{
"headless": args.headless_mode is not None,
"width": "1920",
"height": "1080",
}
)
# Standard Library
from typing import Optional
# Third Party
import carb
from helper import add_extensions
from omni.isaac.core import World
from omni.isaac.core.controllers import BaseController
from omni.isaac.core.tasks import Stacking as BaseStacking
from omni.isaac.core.utils.prims import is_prim_path_valid
from omni.isaac.core.utils.stage import get_stage_units
from omni.isaac.core.utils.string import find_unique_string_name
from omni.isaac.core.utils.types import ArticulationAction
from omni.isaac.core.utils.viewports import set_camera_view
from omni.isaac.franka import Franka
# CuRobo
from curobo.geom.sdf.world import CollisionCheckerType
from curobo.geom.sphere_fit import SphereFitType
from curobo.geom.types import WorldConfig
from curobo.rollout.rollout_base import Goal
from curobo.types.base import TensorDeviceType
from curobo.types.math import Pose
from curobo.types.robot import JointState
from curobo.types.state import JointState
from curobo.util.usd_helper import UsdHelper
from curobo.util_file import get_robot_configs_path, get_world_configs_path, join_path, load_yaml
from curobo.wrap.reacher.motion_gen import (
MotionGen,
MotionGenConfig,
MotionGenPlanConfig,
MotionGenResult,
PoseCostMetric,
)
class CuroboController(BaseController):
def __init__(
self,
my_world: World,
my_task: BaseStacking,
name: str = "curobo_controller",
constrain_grasp_approach: bool = False,
) -> None:
BaseController.__init__(self, name=name)
self._save_log = False
self.my_world = my_world
self.my_task = my_task
self._step_idx = 0
n_obstacle_cuboids = 20
n_obstacle_mesh = 2
# warmup curobo instance
self.usd_help = UsdHelper()
self.init_curobo = False
self.world_file = "collision_table.yml"
self.cmd_js_names = [
"panda_joint1",
"panda_joint2",
"panda_joint3",
"panda_joint4",
"panda_joint5",
"panda_joint6",
"panda_joint7",
]
self.tensor_args = TensorDeviceType()
self.robot_cfg = load_yaml(join_path(get_robot_configs_path(), "franka.yml"))["robot_cfg"]
self.robot_cfg["kinematics"][
"base_link"
] = "panda_link0" # controls which frame the controller is controlling
self.robot_cfg["kinematics"][
"ee_link"
] = "panda_hand" # controls which frame the controller is controlling
# self.robot_cfg["kinematics"]["cspace"]["max_acceleration"] = 10.0 # controls how fast robot moves
self.robot_cfg["kinematics"]["extra_collision_spheres"] = {"attached_object": 100}
# @self.robot_cfg["kinematics"]["collision_sphere_buffer"] = 0.0
self.robot_cfg["kinematics"]["collision_spheres"] = "spheres/franka_collision_mesh.yml"
world_cfg_table = WorldConfig.from_dict(
load_yaml(join_path(get_world_configs_path(), "collision_table.yml"))
)
self._world_cfg_table = world_cfg_table
world_cfg1 = WorldConfig.from_dict(
load_yaml(join_path(get_world_configs_path(), "collision_table.yml"))
).get_mesh_world()
world_cfg1.mesh[0].pose[2] = -10.5
self._world_cfg = WorldConfig(cuboid=world_cfg_table.cuboid, mesh=world_cfg1.mesh)
motion_gen_config = MotionGenConfig.load_from_robot_config(
self.robot_cfg,
self._world_cfg,
self.tensor_args,
trajopt_tsteps=32,
collision_checker_type=CollisionCheckerType.MESH,
use_cuda_graph=True,
interpolation_dt=0.01,
collision_cache={"obb": n_obstacle_cuboids, "mesh": n_obstacle_mesh},
store_ik_debug=self._save_log,
store_trajopt_debug=self._save_log,
)
self.motion_gen = MotionGen(motion_gen_config)
print("warming up...")
self.motion_gen.warmup(parallel_finetune=True)
pose_metric = None
if constrain_grasp_approach:
pose_metric = PoseCostMetric.create_grasp_approach_metric(
offset_position=0.1, tstep_fraction=0.8
)
self.plan_config = MotionGenPlanConfig(
enable_graph=False,
max_attempts=10,
enable_graph_attempt=None,
enable_finetune_trajopt=True,
partial_ik_opt=False,
parallel_finetune=True,
pose_cost_metric=pose_metric,
time_dilation_factor=0.75,
)
self.usd_help.load_stage(self.my_world.stage)
self.cmd_plan = None
self.cmd_idx = 0
self._step_idx = 0
self.idx_list = None
def attach_obj(
self,
sim_js: JointState,
js_names: list,
) -> None:
cube_name = self.my_task.get_cube_prim(self.my_task.target_cube)
cu_js = JointState(
position=self.tensor_args.to_device(sim_js.positions),
velocity=self.tensor_args.to_device(sim_js.velocities) * 0.0,
acceleration=self.tensor_args.to_device(sim_js.velocities) * 0.0,
jerk=self.tensor_args.to_device(sim_js.velocities) * 0.0,
joint_names=js_names,
)
self.motion_gen.attach_objects_to_robot(
cu_js,
[cube_name],
sphere_fit_type=SphereFitType.VOXEL_VOLUME_SAMPLE_SURFACE,
world_objects_pose_offset=Pose.from_list([0, 0, 0.01, 1, 0, 0, 0], self.tensor_args),
)
def detach_obj(self) -> None:
self.motion_gen.detach_object_from_robot()
def plan(
self,
ee_translation_goal: np.array,
ee_orientation_goal: np.array,
sim_js: JointState,
js_names: list,
) -> MotionGenResult:
ik_goal = Pose(
position=self.tensor_args.to_device(ee_translation_goal),
quaternion=self.tensor_args.to_device(ee_orientation_goal),
)
cu_js = JointState(
position=self.tensor_args.to_device(sim_js.positions),
velocity=self.tensor_args.to_device(sim_js.velocities) * 0.0,
acceleration=self.tensor_args.to_device(sim_js.velocities) * 0.0,
jerk=self.tensor_args.to_device(sim_js.velocities) * 0.0,
joint_names=js_names,
)
cu_js = cu_js.get_ordered_joint_state(self.motion_gen.kinematics.joint_names)
result = self.motion_gen.plan_single(cu_js.unsqueeze(0), ik_goal, self.plan_config.clone())
if self._save_log: # and not result.success.item(): # logging for debugging
UsdHelper.write_motion_gen_log(
result,
{"robot_cfg": self.robot_cfg},
self._world_cfg,
cu_js,
ik_goal,
join_path("log/usd/", "cube") + "_debug",
write_ik=False,
write_trajopt=True,
visualize_robot_spheres=True,
link_spheres=self.motion_gen.kinematics.kinematics_config.link_spheres,
grid_space=2,
write_robot_usd_path="log/usd/assets",
)
return result
def forward(
self,
sim_js: JointState,
js_names: list,
) -> ArticulationAction:
assert self.my_task.target_position is not None
assert self.my_task.target_cube is not None
if self.cmd_plan is None:
self.cmd_idx = 0
self._step_idx = 0
# Set EE goals
ee_translation_goal = self.my_task.target_position
ee_orientation_goal = np.array([0, 0, -1, 0])
# compute curobo solution:
result = self.plan(ee_translation_goal, ee_orientation_goal, sim_js, js_names)
succ = result.success.item()
if succ:
cmd_plan = result.get_interpolated_plan()
self.idx_list = [i for i in range(len(self.cmd_js_names))]
self.cmd_plan = cmd_plan.get_ordered_joint_state(self.cmd_js_names)
else:
carb.log_warn("Plan did not converge to a solution.")
return None
if self._step_idx % 3 == 0:
cmd_state = self.cmd_plan[self.cmd_idx]
self.cmd_idx += 1
# get full dof state
art_action = ArticulationAction(
cmd_state.position.cpu().numpy(),
cmd_state.velocity.cpu().numpy() * 0.0,
joint_indices=self.idx_list,
)
if self.cmd_idx >= len(self.cmd_plan.position):
self.cmd_idx = 0
self.cmd_plan = None
else:
art_action = None
self._step_idx += 1
return art_action
def reached_target(self, observations: dict) -> bool:
curr_ee_position = observations["my_franka"]["end_effector_position"]
if np.linalg.norm(
self.my_task.target_position - curr_ee_position
) < 0.04 and ( # This is half gripper width, curobo succ threshold is 0.5 cm
self.cmd_plan is None
):
if self.my_task.cube_in_hand is None:
print("reached picking target: ", self.my_task.target_cube)
else:
print("reached placing target: ", self.my_task.target_cube)
return True
else:
return False
def reset(
self,
ignore_substring: str,
robot_prim_path: str,
) -> None:
# init
self.update(ignore_substring, robot_prim_path)
self.init_curobo = True
self.cmd_plan = None
self.cmd_idx = 0
def update(
self,
ignore_substring: str,
robot_prim_path: str,
) -> None:
# print("updating world...")
obstacles = self.usd_help.get_obstacles_from_stage(
ignore_substring=ignore_substring, reference_prim_path=robot_prim_path
).get_collision_check_world()
# add ground plane as it's not readable:
obstacles.add_obstacle(self._world_cfg_table.cuboid[0])
self.motion_gen.update_world(obstacles)
self._world_cfg = obstacles
class MultiModalStacking(BaseStacking):
def __init__(
self,
name: str = "multi_modal_stacking",
offset: Optional[np.ndarray] = None,
) -> None:
BaseStacking.__init__(
self,
name=name,
cube_initial_positions=np.array(
[
[0.50, 0.0, 0.1],
[0.50, -0.20, 0.1],
[0.50, 0.20, 0.1],
[0.30, -0.20, 0.1],
[0.30, 0.0, 0.1],
[0.30, 0.20, 0.1],
[0.70, -0.20, 0.1],
[0.70, 0.0, 0.1],
[0.70, 0.20, 0.1],
]
)
/ get_stage_units(),
cube_initial_orientations=None,
stack_target_position=None,
cube_size=np.array([0.045, 0.045, 0.07]),
offset=offset,
)
self.cube_list = None
self.target_position = None
self.target_cube = None
self.cube_in_hand = None
def reset(self) -> None:
self.cube_list = self.get_cube_names()
self.target_position = None
self.target_cube = None
self.cube_in_hand = None
def update_task(self) -> bool:
# after detaching the cube in hand
assert self.target_cube is not None
assert self.cube_in_hand is not None
self.cube_list.insert(0, self.cube_in_hand)
self.target_cube = None
self.target_position = None
self.cube_in_hand = None
if len(self.cube_list) <= 1:
task_finished = True
else:
task_finished = False
return task_finished
def get_cube_prim(self, cube_name: str):
for i in range(self._num_of_cubes):
if cube_name == self._cubes[i].name:
return self._cubes[i].prim_path
def get_place_position(self, observations: dict) -> None:
assert self.target_cube is not None
self.cube_in_hand = self.target_cube
self.target_cube = self.cube_list[0]
ee_to_grasped_cube = (
observations["my_franka"]["end_effector_position"][2]
- observations[self.cube_in_hand]["position"][2]
)
self.target_position = observations[self.target_cube]["position"] + [
0,
0,
self._cube_size[2] + ee_to_grasped_cube + 0.02,
]
self.cube_list.remove(self.target_cube)
def get_pick_position(self, observations: dict) -> None:
assert self.cube_in_hand is None
self.target_cube = self.cube_list[1]
self.target_position = observations[self.target_cube]["position"] + [
0,
0,
self._cube_size[2] / 2 + 0.092,
]
self.cube_list.remove(self.target_cube)
def set_robot(self) -> Franka:
franka_prim_path = find_unique_string_name(
initial_name="/World/Franka", is_unique_fn=lambda x: not is_prim_path_valid(x)
)
franka_robot_name = find_unique_string_name(
initial_name="my_franka", is_unique_fn=lambda x: not self.scene.object_exists(x)
)
return Franka(
prim_path=franka_prim_path, name=franka_robot_name, end_effector_prim_name="panda_hand"
)
robot_prim_path = "/World/Franka/panda_link0"
ignore_substring = ["Franka", "TargetCube", "material", "Plane"]
my_world = World(stage_units_in_meters=1.0)
stage = my_world.stage
stage.SetDefaultPrim(stage.GetPrimAtPath("/World"))
my_task = MultiModalStacking()
my_world.add_task(my_task)
my_world.reset()
robot_name = my_task.get_params()["robot_name"]["value"]
my_franka = my_world.scene.get_object(robot_name)
my_controller = CuroboController(
my_world=my_world, my_task=my_task, constrain_grasp_approach=args.constrain_grasp_approach
)
articulation_controller = my_franka.get_articulation_controller()
set_camera_view(eye=[2, 0, 1], target=[0.00, 0.00, 0.00], camera_prim_path="/OmniverseKit_Persp")
wait_steps = 8
my_franka.set_solver_velocity_iteration_count(4)
my_franka.set_solver_position_iteration_count(124)
my_world._physics_context.set_solver_type("TGS")
initial_steps = 100
################################################################
print("Start simulation...")
robot = my_franka
print(
my_world._physics_context.get_solver_type(),
robot.get_solver_position_iteration_count(),
robot.get_solver_velocity_iteration_count(),
)
print(my_world._physics_context.use_gpu_pipeline)
print(articulation_controller.get_gains())
print(articulation_controller.get_max_efforts())
robot = my_franka
print("**********************")
if False:
robot.enable_gravity()
articulation_controller.set_gains(
kps=np.array(
[100000000, 6000000.0, 10000000, 600000.0, 25000.0, 15000.0, 50000.0, 6000.0, 6000.0]
)
)
articulation_controller.set_max_efforts(
values=np.array([100000, 52.199997, 100000, 52.199997, 7.2, 7.2, 7.2, 50.0, 50])
)
print("Updated gains:")
print(articulation_controller.get_gains())
print(articulation_controller.get_max_efforts())
# exit()
my_franka.gripper.open()
for _ in range(wait_steps):
my_world.step(render=True)
my_task.reset()
task_finished = False
observations = my_world.get_observations()
my_task.get_pick_position(observations)
i = 0
add_extensions(simulation_app, args.headless_mode)
while simulation_app.is_running():
my_world.step(render=True) # necessary to visualize changes
i += 1
if task_finished or i < initial_steps:
continue
if not my_controller.init_curobo:
my_controller.reset(ignore_substring, robot_prim_path)
step_index = my_world.current_time_step_index
observations = my_world.get_observations()
sim_js = my_franka.get_joints_state()
if my_controller.reached_target(observations):
if my_franka.gripper.get_joint_positions()[0] < 0.035: # reached placing target
my_franka.gripper.open()
for _ in range(wait_steps):
my_world.step(render=True)
my_controller.detach_obj()
my_controller.update(
ignore_substring, robot_prim_path
) # update world collision configuration
task_finished = my_task.update_task()
if task_finished:
print("\nTASK DONE\n")
for _ in range(wait_steps):
my_world.step(render=True)
continue
else:
my_task.get_pick_position(observations)
else: # reached picking target
my_franka.gripper.close()
for _ in range(wait_steps):
my_world.step(render=True)
sim_js = my_franka.get_joints_state()
my_controller.update(ignore_substring, robot_prim_path)
my_controller.attach_obj(sim_js, my_franka.dof_names)
my_task.get_place_position(observations)
else: # target position has been set
sim_js = my_franka.get_joints_state()
art_action = my_controller.forward(sim_js, my_franka.dof_names)
if art_action is not None:
articulation_controller.apply_action(art_action)
# for _ in range(2):
# my_world.step(render=False)
simulation_app.close()