forked from Denys88/rl_games
-
Notifications
You must be signed in to change notification settings - Fork 0
/
runner.py
79 lines (65 loc) · 2.9 KB
/
runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
from distutils.util import strtobool
import argparse, os, yaml
os.environ["XLA_PYTHON_CLIENT_PREALLOCATE"] = "false"
if __name__ == '__main__':
ap = argparse.ArgumentParser()
ap.add_argument("--seed", type=int, default=0, required=False,
help="random seed, if larger than 0 will overwrite the value in yaml config")
ap.add_argument("-tf", "--tf", required=False, help="run tensorflow runner", action='store_true')
ap.add_argument("-t", "--train", required=False, help="train network", action='store_true')
ap.add_argument("-p", "--play", required=False, help="play(test) network", action='store_true')
ap.add_argument("-c", "--checkpoint", required=False, help="path to checkpoint")
ap.add_argument("-f", "--file", required=True, help="path to config")
ap.add_argument("-na", "--num_actors", type=int, default=0, required=False,
help="number of envs running in parallel, if larger than 0 will overwrite the value in yaml config")
ap.add_argument("-s", "--sigma", type=float, required=False, help="sets new sigma value in case if 'fixed_sigma: True' in yaml config")
ap.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
help="if toggled, this experiment will be tracked with Weights and Biases")
ap.add_argument("--wandb-project-name", type=str, default="rl_games",
help="the wandb's project name")
ap.add_argument("--wandb-entity", type=str, default=None,
help="the entity (team) of wandb's project")
os.makedirs("nn", exist_ok=True)
os.makedirs("runs", exist_ok=True)
args = vars(ap.parse_args())
config_name = args['file']
print('Loading config: ', config_name)
with open(config_name, 'r') as stream:
config = yaml.safe_load(stream)
if args['num_actors'] > 0:
config['params']['config']['num_actors'] = args['num_actors']
if args['seed'] > 0:
config['params']['seed'] = args['seed']
config['params']['config']['env_config']['seed'] = args['seed']
from rl_games.torch_runner import Runner
try:
import ray
except ImportError:
pass
else:
ray.init(object_store_memory=1024*1024*1000)
runner = Runner()
try:
runner.load(config)
except yaml.YAMLError as exc:
print(exc)
global_rank = int(os.getenv("RANK", "0"))
if args["track"] and global_rank == 0:
import wandb
wandb.init(
project=args["wandb_project_name"],
entity=args["wandb_entity"],
sync_tensorboard=True,
config=config,
monitor_gym=True,
save_code=True,
)
runner.run(args)
try:
import ray
except ImportError:
pass
else:
ray.shutdown()
if args["track"] and global_rank == 0:
wandb.finish()