-
Notifications
You must be signed in to change notification settings - Fork 10
/
image_metric.py
61 lines (49 loc) · 1.92 KB
/
image_metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import numpy as np
import cv2
class PSNR:
"""Peak Signal to Noise Ratio
img1 and img2 have range [0, 255]"""
def __init__(self):
self.name = "PSNR"
def compute(self, img1, img2):
mse = np.mean((img1 - img2) ** 2)
return 20 * np.log10(255.0 / np.sqrt(mse))
class SSIM:
"""Structure Similarity
img1, img2: [0, 255]"""
def __init__(self):
self.name = "SSIM"
def compute(self, img1, img2):
if not img1.shape == img2.shape:
raise ValueError("Input images must have the same dimensions.")
if img1.ndim == 2: # Grey or Y-channel image
return self._ssim(img1, img2)
elif img1.ndim == 3:
if img1.shape[2] == 3:
ssims = []
for i in range(3):
ssims.append(self._ssim(img1, img2))
return np.array(ssims).mean()
elif img1.shape[2] == 1:
return self._ssim(np.squeeze(img1), np.squeeze(img2))
else:
raise ValueError("Wrong input image dimensions.")
def _ssim(self, img1, img2):
C1 = (0.01 * 255) ** 2
C2 = (0.03 * 255) ** 2
img1 = img1.astype(np.float32)
img2 = img2.astype(np.float32)
kernel = cv2.getGaussianKernel(11, 1.5)
window = np.outer(kernel, kernel.transpose())
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
mu1_sq = mu1 ** 2
mu2_sq = mu2 ** 2
mu1_mu2 = mu1 * mu2
sigma1_sq = cv2.filter2D(img1 ** 2, -1, window)[5:-5, 5:-5] - mu1_sq
sigma2_sq = cv2.filter2D(img2 ** 2, -1, window)[5:-5, 5:-5] - mu2_sq
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / (
(mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)
)
return ssim_map.mean()