-
Notifications
You must be signed in to change notification settings - Fork 14
/
gen_real.py
322 lines (272 loc) · 13.2 KB
/
gen_real.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import os
import glob
import shutil
import configargparse
import tqdm
import imageio
import numpy as np
import torch
from torch.utils.data import Dataset
import torch.nn.functional as F
import torchvision.transforms as T
from models.render_image import render_single_image
from models.model import VisionNerfModel
from models.sample_ray import RaySamplerSingleImage
from models.projection import Projector
from utils import img_HWC2CHW
def config_parser():
parser = configargparse.ArgumentParser()
# general
parser.add_argument('--config', is_config_file=True, help='config file path')
parser.add_argument('--expname', type=str, help='experiment name')
parser.add_argument('--ckptdir', type=str, help='checkpoint folder')
parser.add_argument('--ckpt_path', type=str, default='',
help='specific weights npy file to reload for coarse network')
parser.add_argument('--outdir', type=str, help='output video directory')
parser.add_argument("--local_rank", type=int, default=0, help='rank for distributed training')
########## dataset options ##########
## render dataset
parser.add_argument('--data_path', type=str, help='the dataset to train')
parser.add_argument('--img_hw', type=int, nargs='+', help='image size for the input')
parser.add_argument("--focal", type=float, default=131.25, help="Focal length")
parser.add_argument("--radius", type=float, default=1.3, help="Camera distance")
parser.add_argument('--data_index', type=int,
default=[],
nargs='+',
help='data index to select from the dataset')
parser.add_argument("--z_near", type=float, default=0.8)
parser.add_argument("--z_far", type=float, default=1.8)
parser.add_argument("--fps", type=int, default=12, help="FPS of video")
parser.add_argument('--no_reload', action='store_true',
help='do not reload weights from saved ckpt (not used)')
parser.add_argument('--distributed', action='store_true', help='if use distributed training (not used)')
parser.add_argument('--num_frames', type=int, default=40, help='how frames to render')
parser.add_argument("--elevation", type=float, default=0.0, help="elevation angle (negative is above)")
########## model options ##########
## ray sampling options
parser.add_argument('--chunk_size', type=int, default=128,
help='number of rays processed in parallel, decrease if running out of memory')
## model options
parser.add_argument('--im_feat_dim', type=int, default=128, help='image feature dimension')
parser.add_argument('--mlp_feat_dim', type=int, default=512, help='mlp hidden dimension')
parser.add_argument('--freq_num', type=int, default=10, help='how many frequency bases for positional encodings')
parser.add_argument('--mlp_block_num', type=int, default=2, help='how many resnet blocks for coarse network')
parser.add_argument('--coarse_only', action='store_true', help='use coarse network only')
parser.add_argument("--anti_alias_pooling", type=int, default=1, help='if use anti-alias pooling')
parser.add_argument('--num_source_views', type=int, default=1, help='number of views')
parser.add_argument('--freeze_pos_embed', action='store_true', help='freeze positional embeddings')
parser.add_argument('--no_skip_conv', action='store_true', help='disable skip convolution')
########### iterations & learning rate options (not used) ##########
parser.add_argument('--lrate_feature', type=float, default=1e-3, help='learning rate for feature extractor')
parser.add_argument('--lrate_mlp', type=float, default=5e-4, help='learning rate for mlp')
parser.add_argument('--lrate_decay_factor', type=float, default=0.5,
help='decay learning rate by a factor every specified number of steps')
parser.add_argument('--lrate_decay_steps', type=int, default=50000,
help='decay learning rate by a factor every specified number of steps')
parser.add_argument('--warmup_steps', type=int, default=10000, help='num of iterations for warm-up')
parser.add_argument('--scheduler', type=str, default='steplr', help='scheduler type to use [steplr]')
parser.add_argument('--use_warmup', action='store_true', help='use warm-up scheduler')
parser.add_argument('--bbox_steps', type=int, default=100000, help='iterations to use bbox sampling')
########## rendering options ##########
parser.add_argument('--N_samples', type=int, default=64, help='number of coarse samples per ray')
parser.add_argument('--N_importance', type=int, default=128, help='number of important samples per ray')
parser.add_argument('--inv_uniform', action='store_true',
help='if True, will uniformly sample inverse depths')
parser.add_argument('--det', action='store_true', help='deterministic sampling for coarse and fine samples')
parser.add_argument('--white_bkgd', action='store_true',
help='apply the trick to avoid fitting to white background')
return parser
def parse_intrinsic(focal, cx, cy):
intrinsic = np.array([[focal, 0, cx, 0],
[0, focal, cy, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]])
return intrinsic
class RealRenderDataset(Dataset):
"""
Dataset for rendering
"""
def __init__(self, args, **kwargs):
"""
Args:
args.data_path: path to data directory
args.img_hw: image size (resize if needed)
"""
super().__init__()
self.base_path = args.data_path
print("Loading real dataset", self.base_path)
assert os.path.exists(self.base_path)
self.rgb_paths = sorted(glob.glob(os.path.join(self.base_path, "*_normalize.jpg"))) + \
sorted(glob.glob(os.path.join(self.base_path, "*_normalize.png")))
self.poses = []
self.intrinsics = []
for i in range(len(self.rgb_paths)):
intrinsic = parse_intrinsic(args.focal, args.img_hw[0]//2, args.img_hw[1]//2)
cam_pose = trans_t(args.radius)
self.poses.append(cam_pose)
self.intrinsics.append(intrinsic)
self.rgb_paths = np.array(self.rgb_paths)
self.poses = np.stack(self.poses, 0)
self.intrinsics = np.array(self.intrinsics)
self.define_transforms()
self.img_hw = args.img_hw
# default near/far plane depth
self.z_near = args.z_near
self.z_far = args.z_far
def __len__(self):
return len(self.rgb_paths)
def define_transforms(self):
self.img_transforms = T.Compose(
[T.ToTensor(), T.Normalize((0.0, 0.0, 0.0), (1.0, 1.0, 1.0))]
)
self.mask_transforms = T.Compose(
[T.ToTensor(), T.Normalize((0.0,), (1.0,))]
)
def __getitem__(self, index):
# Read source RGB
src_rgb_path = self.rgb_paths[index]
src_c2w_mat = self.poses[index]
src_intrinsics = self.intrinsics[index]
img = imageio.imread(src_rgb_path)[..., :3]
mask = (img.sum(axis=-1) != 255*3)[..., None].astype(np.uint8) * 255
rgb = self.img_transforms(img)
mask = self.mask_transforms(mask)
h, w = rgb.shape[-2:]
if (h != self.img_hw[0]) or (w != self.img_hw[1]):
scale = self.img_hw[-1] / rgb.shape[-1]
src_intrinsics[:, :2] *= scale
rgb = F.interpolate(rgb, size=self.img_hw, mode="area")
mask = F.interpolate(mask, size=self.img_hw, mode="area")
depth_range = np.array([self.z_near, self.z_far])
return {
"rgb_path": src_rgb_path,
"img_id": index,
"img_hw": self.img_hw,
"src_rgbs": rgb[None, ...].permute([0, 2, 3, 1]).float(),
"src_masks": mask[None, ...].permute([0, 2, 3, 1]).float(),
"src_c2w_mats": torch.FloatTensor(src_c2w_mat)[None, :],
"src_intrinsics": torch.FloatTensor(src_intrinsics)[None, :],
"depth_range": torch.FloatTensor(depth_range)
}
def trans_t(t):
return torch.tensor(
[[-1, 0, 0, 0], [0, 0, -1, t], [0, -1, 0, 0], [0, 0, 0, 1],], dtype=torch.float32,
)
def rot_theta(angle):
return torch.tensor(
[
[np.cos(angle), -np.sin(angle), 0, 0],
[np.sin(angle), np.cos(angle), 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1],
],
dtype=torch.float32,
)
def rot_phi(phi):
return torch.tensor(
[
[1, 0, 0, 0],
[0, np.cos(phi), -np.sin(phi), 0],
[0, np.sin(phi), np.cos(phi), 0],
[0, 0, 0, 1],
],
dtype=torch.float32,
)
def pose_spherical(theta, phi, radius):
"""
Spherical rendering poses, from NeRF
"""
c2w = trans_t(radius)
c2w = rot_phi(phi / 180.0 * np.pi) @ c2w
c2w = rot_theta(theta / 180.0 * np.pi) @ c2w
return c2w
def gen_video(args):
device = "cuda"
print(f"checkpoints reload from {args.ckptdir}")
dataset = RealRenderDataset(args)
# Create VisionNeRF model
model = VisionNerfModel(args, False, False)
# create projector
projector = Projector(device=device)
model.switch_to_eval()
if not args.data_index:
args.data_index = [x for x in range(len(dataset))]
for d_idx in args.data_index:
out_folder = os.path.join(args.outdir, args.expname, f'{d_idx:06d}')
print(f'Rendering {dataset[d_idx]["rgb_path"][:-15]}')
print(f'videos will be saved to {out_folder}')
os.makedirs(out_folder, exist_ok=True)
# save the args and config files
f = os.path.join(out_folder, 'args.txt')
with open(f, 'w') as file:
for arg in sorted(vars(args)):
attr = getattr(args, arg)
file.write('{} = {}\n'.format(arg, attr))
if args.config is not None:
f = os.path.join(out_folder, 'config.txt')
if not os.path.isfile(f):
shutil.copy(args.config, f)
sample = dataset[d_idx]
pose_index = 0
data_input = dict(
rgb_path=sample['rgb_path'],
img_id=sample['img_id'],
img_hw=sample['img_hw'],
tgt_intrinsic=sample['src_intrinsics'][0:1],
src_masks=sample['src_masks'][pose_index][None, None, :],
src_rgbs=sample['src_rgbs'][pose_index][None, None, :],
src_c2w_mats=sample['src_c2w_mats'][pose_index][None, None, :],
src_intrinsics=sample['src_intrinsics'][pose_index][None, None, :],
depth_range=sample['depth_range'][None, :]
)
input_im = sample['src_rgbs'][pose_index].cpu().numpy()
filename = os.path.join(out_folder, 'input.png')
imageio.imwrite(filename, (input_im*255.).astype(np.uint8))
radius = (dataset.z_near + dataset.z_far) * 0.5
print("> Using default camera radius", radius)
# Use 360 pose sequence from NeRF
render_poses = torch.stack(
[
pose_spherical(angle, args.elevation, radius)
for angle in np.linspace(-180, 180, args.num_frames)[::-1]
],
0,
) # (NV, 4, 4)
# +z is the vertical axis
imgs = []
with torch.no_grad():
for idx, pose in enumerate(tqdm.tqdm(render_poses)):
filename = os.path.join(out_folder, f'{idx:06}.png')
data_input['tgt_c2w_mat'] = pose[None, :]
# load training rays
ray_sampler = RaySamplerSingleImage(data_input, device, render_stride=1)
ray_batch = ray_sampler.get_all()
featmaps = model.encode(ray_batch['src_rgbs'])
ret = render_single_image(ray_sampler=ray_sampler,
ray_batch=ray_batch,
model=model,
projector=projector,
chunk_size=args.chunk_size,
N_samples=args.N_samples,
inv_uniform=args.inv_uniform,
N_importance=args.N_importance,
det=True,
white_bkgd=args.white_bkgd,
render_stride=1,
featmaps=featmaps)
if ret['outputs_fine']:
rgb_im = img_HWC2CHW(ret['outputs_fine']['rgb'].detach().cpu())
else:
rgb_im = img_HWC2CHW(ret['outputs_coarse']['rgb'].detach().cpu())
# clamping RGB images
rgb_im = torch.clamp(rgb_im, 0.0, 1.0).permute([1, 2, 0]).cpu().numpy()
rgb_im = (rgb_im * 255.).astype(np.uint8)
imageio.imwrite(filename, rgb_im)
imgs.append(rgb_im)
torch.cuda.empty_cache()
imgs = np.stack(imgs, 0)
imageio.mimsave(os.path.join(out_folder, f'output.gif'), imgs, fps=12)
if __name__ == '__main__':
parser = config_parser()
args = parser.parse_args()
gen_video(args)