Soccer On Your Tabletop [Project Page]
Konstantinos Rematas, Ira Kemelmacher-Shlizerman, Brian Curless, Steve Seitz, in CVPR 2018
Warning: I am in the process of transferring the repo, so many things will probably not work.
This repository contains:
Upconversion of YouTube Soccer videos to 3D
- Camera Calibration
- Player Analysis (detection/segmentation/tracking)
- Player Depth estimation
- Temporal Game Reconstruction
Scripts for getting training data from video games
- Electronic Arts FIFA 2016 RenderDoc Depth buffer capture
- Depth buffer to point cloud
Visualization tools
- Example Unity project
- Hololens VS Solution
These are the non "pip3 install" dependencies:
- Detectron for detection and (instance) segmentation.
- OpenPose for the players' pose estimation.
- OpenCV 3.1 + OpenCV_contrib for image loading/edge estimation etc. I followed this guide and it worked fine.
- Eigen3 for the instance segmentation
- Boost
- CMake
The pipeline contains parts written or depending on python2, python3, C/C++, which makes it a bit difficult to combine everything in one entity. Therefore we break the pipeline into individual parts that have specific inputs and outputs (eg png to pickle) and communicate through a python3 class that reads and writes intermediate results.