-
-
Notifications
You must be signed in to change notification settings - Fork 107
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
train_2020.py #8
Comments
感谢关注。报错是什么? 有log么? |
感谢郑博回复,代码没有报错,只是准确率为1,损失基本为0,是因为我的数据集划分的问题吗,还是代码?下面是我训练数据集的结构,共有229085张图片 |
你是不是就分了一个文件夹。。导致只有一类? |
是的,我的home/ubuntu-guangzhaodai/Desktop/AICIty-reID-2020/data/2020AICITY/aicity_all中 |
你需要跑一下 python prepare_2020.py |
python prepare_2020.py以及python prepare_cam2020.py都跑了 |
您好!之前跑代码的条件是按照您github中推荐的设置条件:--name SE_imbalance_s1_384_p0.5_lr2_mt_d0_b24+v+aug --warm_epoch 5 --droprate 0 --stride 1 --erasing_p 0.5 --autoaug --inputsize 384 --lr 0.02 --use_SE --gpu_ids 0 --train_virtual --batchsize 8,损失基本为0,准确率接近1
|
郑博士以及各位大神好,代码出现点问题,我一个EPOCH都没跑玩,准确率为1,损失基本为0:
条件是:--name SE_imbalance_s1_384_p0.5_lr2_mt_d0_b24+v+aug --warm_epoch 5 --droprate 0 --stride 1 --erasing_p 0.5 --autoaug --inputsize 384 --lr 0.02 --use_SE --gpu_ids 0 --train_virtual --batchsize 8
下面是代码
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.autograd import Variable
from torchvision import datasets, transforms
import torch.backends.cudnn as cudnn
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
from PIL import Image
import time
import os
from losses import AngleLoss, ArcLoss
from model import ft_net, ft_net_dense, ft_net_EF4, ft_net_EF5, ft_net_EF6, ft_net_IR, ft_net_NAS, ft_net_SE,
ft_net_DSE, PCB, CPB, ft_net_angle, ft_net_arc
from random_erasing import RandomErasing
import yaml
from AugFolder import AugFolder
from shutil import copyfile
import random
from autoaugment import ImageNetPolicy
from utils import get_model_list, load_network, save_network, make_weights_for_balanced_classes
version = torch.version
fp16
try:
from apex.fp16_utils import *
from apex import amp, optimizers
except ImportError: # will be 3.x series
print(
'This is not an error. If you want to use low precision, i.e., fp16, please install the apex with cuda support (https://github.com/NVIDIA/apex) and update pytorch to 1.0')
make the output
if not os.path.isdir('/home/ubuntu-guangzhaodai/Desktop/AICIty-reID-2020/data/outputs'):
os.mkdir('/home/ubuntu-guangzhaodai/Desktop/AICIty-reID-2020/data/outputs')
######################################################################
Options
--------
parser = argparse.ArgumentParser(description='Training')
parser.add_argument('--gpu_ids', default='0', type=str, help='gpu_ids: e.g. 0 0,1,2 0,2')
parser.add_argument('--adam', action='store_true', help='use all training data')
parser.add_argument('--name', default='ft_ResNet50', type=str, help='output model name')
parser.add_argument('--init_name', default='imagenet', type=str, help='initial with ImageNet')
parser.add_argument('--data_dir', default='/home/ubuntu-guangzhaodai/Desktop/AICIty-reID-2020/data/pytorch2020',
type=str, help='training dir path')
parser.add_argument('--train_all', action='store_true', help='use all training data')
parser.add_argument('--train_veri', action='store_true', help='use part training data + veri')
parser.add_argument('--train_virtual', action='store_true', help='use part training data + virtual')
parser.add_argument('--train_comp', action='store_true', help='use part training data + comp')
parser.add_argument('--train_pku', action='store_true', help='use part training data + pku')
parser.add_argument('--train_comp_veri', action='store_true', help='use part training data + comp +veri')
parser.add_argument('--train_milktea', action='store_true', help='use part training data + com + veri+pku')
parser.add_argument('--color_jitter', action='store_true', help='use color jitter in training')
parser.add_argument('--batchsize', default=32, type=int, help='batchsize')
parser.add_argument('--inputsize', default=299, type=int, help='batchsize')
parser.add_argument('--h', default=299, type=int, help='height')
parser.add_argument('--w', default=299, type=int, help='width')
parser.add_argument('--stride', default=2, type=int, help='stride')
parser.add_argument('--pool', default='avg', type=str, help='last pool')
parser.add_argument('--autoaug', action='store_true', help='use Color Data Augmentation')
parser.add_argument('--erasing_p', default=0, type=float, help='Random Erasing probability, in [0,1]')
parser.add_argument('--use_dense', action='store_true', help='use densenet121')
parser.add_argument('--use_NAS', action='store_true', help='use nasnetalarge')
parser.add_argument('--use_SE', action='store_true', help='use se_resnext101_32x4d')
parser.add_argument('--use_DSE', action='store_true', help='use senet154')
parser.add_argument('--use_IR', action='store_true', help='use InceptionResNetv2')
parser.add_argument('--use_EF4', action='store_true', help='use EF4')
parser.add_argument('--use_EF5', action='store_true', help='use EF5')
parser.add_argument('--use_EF6', action='store_true', help='use EF6')
parser.add_argument('--lr', default=0.05, type=float, help='learning rate')
parser.add_argument('--droprate', default=0.5, type=float, help='drop rate')
parser.add_argument('--PCB', action='store_true', help='use PCB+ResNet50')
parser.add_argument('--CPB', action='store_true', help='use Center+ResNet50')
parser.add_argument('--fp16', action='store_true',
help='use float16 instead of float32, which will save about 50% memory')
parser.add_argument('--balance', action='store_true', help='balance sample')
parser.add_argument('--angle', action='store_true', help='use angle loss')
parser.add_argument('--arc', action='store_true', help='use arc loss')
parser.add_argument('--warm_epoch', default=0, type=int, help='the first K epoch that needs warm up')
parser.add_argument('--resume', action='store_true', help='use arc loss')
opt = parser.parse_args()
if opt.resume:
model, opt, start_epoch = load_network(opt.name, opt)
else:
start_epoch = 0
print(start_epoch)
fp16 = opt.fp16
data_dir = opt.data_dir
name = opt.name
if not opt.resume:
str_ids = opt.gpu_ids.split(',')
gpu_ids = []
for str_id in str_ids:
gid = int(str_id)
if gid >= 0:
gpu_ids.append(gid)
opt.gpu_ids = gpu_ids
set gpu ids
if len(opt.gpu_ids) > 0:
cudnn.enabled = True
cudnn.benchmark = True
######################################################################
Load Data
---------
if opt.h == opt.w:
transform_train_list = [
# transforms.RandomRotation(30),
transforms.Resize((opt.inputsize, opt.inputsize), interpolation=3),
transforms.Pad(15),
# transforms.RandomCrop((256,256)),
transforms.RandomResizedCrop(size=opt.inputsize, scale=(0.75, 1.0), ratio=(0.75, 1.3333), interpolation=3),
# Image.BICUBIC)
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]
else:
transform_train_list = [
# transforms.RandomRotation(30),
transforms.Resize((opt.h, opt.w), interpolation=3),
transforms.Pad(15),
# transforms.RandomCrop((256,256)),
transforms.RandomResizedCrop(size=(opt.h, opt.w), scale=(0.75, 1.0), ratio=(0.75, 1.3333), interpolation=3),
# Image.BICUBIC)
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]
if opt.PCB:
transform_train_list = [
transforms.Resize((384, 192), interpolation=3),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]
transform_val_list = [
transforms.Resize(size=(384, 192), interpolation=3), # Image.BICUBIC
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]
if opt.erasing_p > 0:
transform_train_list = transform_train_list + [RandomErasing(probability=opt.erasing_p, mean=[0.0, 0.0, 0.0])]
if opt.color_jitter:
transform_train_list = [transforms.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1,
hue=0)] + transform_train_list
transform_train_list_aug = [ImageNetPolicy()] + transform_train_list
print(transform_train_list)
data_transforms = {
'train': transforms.Compose(transform_train_list),
'train_aug': transforms.Compose(transform_train_list_aug),
'val': transforms.Compose(transform_val_list),
}
train_all = ''
if opt.train_all:
train_all = '_all'
if opt.train_veri:
train_all = '+veri'
if opt.train_comp:
train_all = '+comp'
if opt.train_virtual:
train_all = '+virtual'
if opt.train_pku:
train_all = '+pku'
if opt.train_comp_veri:
train_all = '+comp+veri'
if opt.train_milktea:
train_all = '+comp+veri+pku'
image_datasets = {}
if not opt.autoaug:
image_datasets['train'] = datasets.ImageFolder(os.path.join(data_dir, 'train' + train_all),
data_transforms['train'])
else:
image_datasets['train'] = AugFolder(os.path.join(data_dir, 'train' + train_all),
data_transforms['train'], data_transforms['train_aug'])
if opt.balance:
dataset_train = image_datasets['train']
weights = make_weights_for_balanced_classes(dataset_train.imgs, len(dataset_train.classes))
weights = torch.DoubleTensor(weights)
sampler = torch.utils.data.sampler.WeightedRandomSampler(weights, len(weights))
dataloaders = {}
dataloaders['train'] = torch.utils.data.DataLoader(image_datasets['train'], batch_size=opt.batchsize,
sampler=sampler, num_workers=8,
pin_memory=True) # 8 workers may work faster
else:
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=opt.batchsize,
shuffle=True, num_workers=8, pin_memory=True)
# 8 workers may work faster
for x in ['train']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train']}
class_names = image_datasets['train'].classes
use_gpu = torch.cuda.is_available()
since = time.time()
inputs, classes = next(iter(dataloaders['train']))
print(time.time()-since)
######################################################################
Training the model
------------------
Now, let's write a general function to train a model. Here, we will
illustrate:
- Scheduling the learning rate
- Saving the best model
In the following, parameter
scheduler
is an LR scheduler object fromtorch.optim.lr_scheduler
.y_loss = {} # loss history
y_loss['train'] = []
y_loss['val'] = []
y_err = {}
y_err['train'] = []
y_err['val'] = []
def train_model(model, criterion, optimizer, scheduler, start_epoch=0, num_epochs=25):
since = time.time()
######################################################################
Draw Curve
---------------------------
x_epoch = []
fig = plt.figure()
ax0 = fig.add_subplot(121, title="loss")
ax1 = fig.add_subplot(122, title="top1err")
def draw_curve(current_epoch):
x_epoch.append(current_epoch)
ax0.plot(x_epoch, y_loss['train'], 'bo-', label='train')
# ax0.plot(x_epoch, y_loss['val'], 'ro-', label='val')
ax1.plot(x_epoch, y_err['train'], 'bo-', label='train')
# ax1.plot(x_epoch, y_err['val'], 'ro-', label='val')
if current_epoch == 0:
ax0.legend()
ax1.legend()
fig.savefig(os.path.join('/home/ubuntu-guangzhaodai/Desktop/AICIty-reID-2020/data/outputs', name, 'train.png'))
######################################################################
Finetuning the convnet
----------------------
Load a pretrainied model and reset final fully connected layer.
if not opt.resume:
opt.nclasses = len(class_names)
if opt.use_dense:
model = ft_net_dense(len(class_names), opt.droprate, opt.stride, None, opt.pool)
elif opt.use_NAS:
model = ft_net_NAS(len(class_names), opt.droprate, opt.stride)
elif opt.use_SE:
model = ft_net_SE(len(class_names), opt.droprate, opt.stride, opt.pool)
elif opt.use_DSE:
model = ft_net_DSE(len(class_names), opt.droprate, opt.stride, opt.pool)
elif opt.use_IR:
model = ft_net_IR(len(class_names), opt.droprate, opt.stride)
elif opt.use_EF4:
model = ft_net_EF4(len(class_names), opt.droprate)
elif opt.use_EF5:
model = ft_net_EF5(len(class_names), opt.droprate)
elif opt.use_EF6:
model = ft_net_EF6(len(class_names), opt.droprate)
else:
model = ft_net(len(class_names), opt.droprate, opt.stride, None, opt.pool)
if opt.init_name != 'imagenet':
old_opt = parser.parse_args()
init_model, old_opt, _ = load_network(opt.init_name, old_opt)
print(old_opt)
opt.stride = old_opt.stride
opt.pool = old_opt.pool
opt.use_dense = old_opt.use_dense
if opt.use_dense:
model = ft_net_dense(opt.nclasses, droprate=opt.droprate, stride=opt.stride, init_model=init_model,
pool=opt.pool)
else:
model = ft_net(opt.nclasses, droprate=opt.droprate, stride=opt.stride, init_model=init_model, pool=opt.pool)
##########################
Put model parameter in front of the optimizer!!!
For resume:
if start_epoch >= 60:
opt.lr = opt.lr * 0.1
if start_epoch >= 75:
opt.lr = opt.lr * 0.1
if len(opt.gpu_ids) > 1:
model = torch.nn.DataParallel(model, device_ids=opt.gpu_ids).cuda()
if not opt.CPB:
ignored_params = list(map(id, model.module.classifier.parameters()))
base_params = filter(lambda p: id(p) not in ignored_params, model.parameters())
optimizer_ft = optim.SGD([
{'params': base_params, 'lr': 0.1 * opt.lr},
{'params': model.module.classifier.parameters(), 'lr': opt.lr}
], weight_decay=5e-4, momentum=0.9, nesterov=True)
else:
ignored_params = (list(map(id, model.module.classifier0.parameters()))
+ list(map(id, model.module.classifier1.parameters()))
+ list(map(id, model.module.classifier2.parameters()))
+ list(map(id, model.module.classifier3.parameters()))
)
base_params = filter(lambda p: id(p) not in ignored_params, model.parameters())
optimizer_ft = optim.SGD([
{'params': base_params, 'lr': 0.1 * opt.lr},
{'params': model.module.classifier0.parameters(), 'lr': opt.lr},
{'params': model.module.classifier1.parameters(), 'lr': opt.lr},
{'params': model.module.classifier2.parameters(), 'lr': opt.lr},
{'params': model.module.classifier3.parameters(), 'lr': opt.lr},
], weight_decay=5e-4, momentum=0.9, nesterov=True)
else:
model = model.cuda()
if not opt.CPB:
ignored_params = list(map(id, model.classifier.parameters()))
base_params = filter(lambda p: id(p) not in ignored_params, model.parameters())
optimizer_ft = optim.SGD([
{'params': base_params, 'lr': 0.1 * opt.lr},
{'params': model.classifier.parameters(), 'lr': opt.lr}
], weight_decay=5e-4, momentum=0.9, nesterov=True)
else:
ignored_params = (list(map(id, model.classifier0.parameters()))
+ list(map(id, model.classifier1.parameters()))
+ list(map(id, model.classifier2.parameters()))
+ list(map(id, model.classifier3.parameters()))
)
base_params = filter(lambda p: id(p) not in ignored_params, model.parameters())
optimizer_ft = optim.SGD([
{'params': base_params, 'lr': 0.1 * opt.lr},
{'params': model.classifier0.parameters(), 'lr': opt.lr},
{'params': model.classifier1.parameters(), 'lr': opt.lr},
{'params': model.classifier2.parameters(), 'lr': opt.lr},
{'params': model.classifier3.parameters(), 'lr': opt.lr},
], weight_decay=5e-4, momentum=0.9, nesterov=True)
if opt.adam:
optimizer_ft = optim.Adam(model.parameters(), opt.lr, weight_decay=5e-4)
Decay LR by a factor of 0.1 every 40 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=40, gamma=0.1)
exp_lr_scheduler = lr_scheduler.MultiStepLR(optimizer_ft, milestones=[60 - start_epoch, 75 - start_epoch], gamma=0.1)
######################################################################
Train and evaluate
^^^^^^^^^^^^^^^^^^
It should take around 1-2 hours on GPU.
dir_name = os.path.join('/home/ubuntu-guangzhaodai/Desktop/AICIty-reID-2020/data/outputs', name)
if not opt.resume:
if not os.path.isdir(dir_name):
os.mkdir(dir_name)
# record every run
copyfile('./train_2020.py', dir_name + '/train.py')
copyfile('./model.py', dir_name + '/model.py')
# save opts
with open('%s/opts.yaml' % dir_name, 'w') as fp:
yaml.dump(vars(opt), fp, default_flow_style=False)
model to gpu
if fp16:
# model = network_to_half(model)
# optimizer_ft = FP16_Optimizer(optimizer_ft, dynamic_loss_scale=True)
model, optimizer_ft = amp.initialize(model, optimizer_ft, opt_level="O1")
if opt.angle:
criterion = AngleLoss()
elif opt.arc:
criterion = ArcLoss()
else:
criterion = nn.CrossEntropyLoss()
print(model)
model = train_model(model, criterion, optimizer_ft, exp_lr_scheduler,
start_epoch=start_epoch, num_epochs=80)
The text was updated successfully, but these errors were encountered: