The code is modified from our baseline code (https://github.com/layumi/Person_reID_baseline_pytorch)
EfficientNet-Pytorch https://github.com/lukemelas/EfficientNet-PyTorch
Make a dir and put the AICity2020 data into this folder.
mkdir data
Extract XML information https://github.com/PaddlePaddle/Research/tree/master/CV/PaddleReid/process_aicity_data and rename the file.
|- data
|- 2020AICITY
|- ...
|- 000345_c020_9.jpg
|- ...
|- 002028_c036_4_9_95_2.jpg
Then you could run the following code to prepare the data for pytorch to load data. You may modify the data path.
python prepare_2020.py #used to train the re-id model
python prepare_cam2020.py #used to train the camera-aware model
python train_2020.py --name SE_imbalance_s1_384_p0.5_lr2_mt_d0_b24+v+aug --warm_epoch 5 --droprate 0 --stride 1 --erasing_p 0.5 --autoaug --inputsize 384 --lr 0.02 --use_SE --gpu_ids 0,1,2 --train_virtual --batchsize 24;
python test_2020.py --name SE_imbalance_s1_384_p0.5_lr2_mt_d0_b24+v+aug
python train_ft_2020.py --name ft_SE_imbalance_s1_384_p0.5_lr2_mt_d0_b24+v+aug --init_name SE_imbalance_s1_384_p0.5_lr2_mt_d0_b24+v+aug --droprate 0 --stride 1 --erasing_p 0.5 --inputsize 384 --lr 0.02 --use_SE --gpu_ids 0,1 --train_all --batchsize 24
python submit_result_multimodel.py --name ft_SE_imbalance_s1_384_p0.5_lr2_mt_d0_b24+v+aug
If you want to directly test the result, the extracted features & camera prediction & direction prediction could be dowanloaded from GoogleDrive or OneDrive.
python fast_submit.py