-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathmyCallbacks.py
executable file
·275 lines (229 loc) · 12.8 KB
/
myCallbacks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import sys
import select
import os
import json
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, LearningRateScheduler
from tensorflow.python.keras import backend as K
from tensorflow.python.keras.utils import losses_utils
class Gently_stop_callback(keras.callbacks.Callback):
def __init__(self, prompt="Continue? ([Y]/n)", time_out=3):
super(Gently_stop_callback, self).__init__()
self.yes_or_no = lambda: "n" not in self.timeout_input(prompt, time_out, default="y")[1].lower()
def on_epoch_end(self, epoch, logs={}):
print()
if not self.yes_or_no():
self.model.stop_training = True
def timeout_input(self, prompt, timeout=3, default=""):
print(prompt, end=": ", flush=True)
inputs, outputs, errors = select.select([sys.stdin], [], [], timeout)
print()
return (0, sys.stdin.readline().strip()) if inputs else (-1, default)
class ExitOnNaN(keras.callbacks.Callback):
""" Callback that exit directly when a NaN loss is encountered, avoiding saving model """
def __init__(self):
super().__init__()
self._supports_tf_logs = True
def on_batch_end(self, batch, logs=None):
logs = logs or {}
loss = logs.get("loss")
if loss is not None:
if not tf.math.is_finite(loss):
print("\nError: Invalid loss, terminating training")
self.model.stop_training = True
sys.exit()
class My_history(keras.callbacks.Callback):
def __init__(self, initial_file=None, evals=[]):
super(My_history, self).__init__()
if initial_file and os.path.exists(initial_file):
with open(initial_file, "r") as ff:
self.history = json.load(ff)
else:
self.history = {}
self.evals = evals
self.initial_file = initial_file
self.custom_obj = {}
def on_epoch_end(self, epoch, logs=None):
logs = logs or {}
logs.pop("lr", None)
lr = self.model.optimizer.lr
if hasattr(lr, "value"):
lr = lr.value()
self.history.setdefault("lr", []).append(float(lr))
for k, v in logs.items():
k = "accuracy" if "accuracy" in k else k
self.history.setdefault(k, []).append(float(v))
for ee in self.evals:
self.history.setdefault(ee.test_names, []).append(float(ee.cur_acc))
self.history.setdefault(ee.test_names + "_thresh", []).append(float(ee.acc_thresh))
for kk, vv in self.custom_obj.items():
tt = losses_utils.compute_weighted_loss(vv())
self.history.setdefault(kk, []).append(tt)
if len(self.model.losses) != 0:
regular_loss = K.sum(self.model.losses).numpy()
self.history.setdefault("regular_loss", []).append(float(regular_loss))
self.history["loss"][-1] -= regular_loss
if self.initial_file:
with open(self.initial_file, "w") as ff:
json.dump(self.history, ff)
def print_hist(self):
print("{")
for kk, vv in self.history.items():
print(" '%s': %s," % (kk, vv))
print("}")
class VPLUpdateQueue(keras.callbacks.Callback):
def __init__(self):
super().__init__()
def on_batch_end(self, batch, logs=None):
batch_labels_back_up = self.model.loss[0].batch_labels_back_up
update_label_pos = tf.expand_dims(batch_labels_back_up, 1)
vpl_norm_dense_layer = self.model.layers[-1]
updated_queue = tf.tensor_scatter_nd_update(vpl_norm_dense_layer.queue_features, update_label_pos, vpl_norm_dense_layer.norm_features)
vpl_norm_dense_layer.queue_features.assign(updated_queue)
iters = tf.repeat(vpl_norm_dense_layer.iters, tf.shape(batch_labels_back_up)[0])
updated_queue_iters = tf.tensor_scatter_nd_update(vpl_norm_dense_layer.queue_iters, update_label_pos, iters)
vpl_norm_dense_layer.queue_iters.assign(updated_queue_iters)
class OptimizerWeightDecay(keras.callbacks.Callback):
def __init__(self, lr_base, wd_base, is_lr_on_batch=False):
super(OptimizerWeightDecay, self).__init__()
self.wd_m = wd_base / lr_base
self.lr_base, self.wd_base = lr_base, wd_base
# self.model.optimizer.weight_decay = lambda: wd_m * self.model.optimizer.lr
self.is_lr_on_batch = is_lr_on_batch
if is_lr_on_batch:
self.on_train_batch_begin = self.__update_wd__
else:
self.on_epoch_begin = self.__update_wd__
def __update_wd__(self, step, log=None):
if self.model is not None:
wd = self.wd_m * K.get_value(self.model.optimizer.lr)
# wd = self.wd_base * K.get_value(self.model.optimizer.lr)
K.set_value(self.model.optimizer.weight_decay, wd)
# wd = self.model.optimizer.weight_decay
if not self.is_lr_on_batch or step == 0:
print("Weight decay is {}".format(wd))
class CosineLrSchedulerEpoch(keras.callbacks.Callback):
def __init__(self, lr_base, first_restart_step, m_mul=0.5, t_mul=2.0, lr_min=1e-6, lr_warmup=-1, warmup_steps=0, cooldown_steps=1):
super(CosineLrSchedulerEpoch, self).__init__()
self.warmup_steps, self.cooldown_steps, self.lr_min = warmup_steps, cooldown_steps, lr_min
if lr_min == lr_base * m_mul:
self.schedule = keras.experimental.CosineDecay(lr_base, first_restart_step, alpha=lr_min / lr_base)
self.cooldown_steps_start, self.cooldown_steps_end = np.array([]), np.array([])
else:
self.schedule = keras.experimental.CosineDecayRestarts(lr_base, first_restart_step, t_mul=t_mul, m_mul=m_mul, alpha=lr_min / lr_base)
aa = [first_restart_step * (t_mul ** ii) for ii in range(5)]
self.cooldown_steps_start = np.array([warmup_steps + int(sum(aa[:ii]) + cooldown_steps * (ii - 1)) for ii in range(1, 5)])
self.cooldown_steps_end = np.array([ii + cooldown_steps for ii in self.cooldown_steps_start])
if warmup_steps != 0:
self.lr_warmup = lr_warmup if lr_warmup > 0 else lr_min
self.warmup_lr_func = lambda ii: self.lr_warmup + (lr_base - self.lr_warmup) * ii / warmup_steps
def on_epoch_begin(self, epoch, logs=None):
if epoch < self.warmup_steps:
lr = self.warmup_lr_func(epoch)
elif self.cooldown_steps_end.shape[0] != 0:
cooldown_end_pos = (self.cooldown_steps_end > epoch).argmax()
if epoch >= self.cooldown_steps_end[cooldown_end_pos] - self.cooldown_steps:
lr = self.lr_min # cooldown
else:
lr = self.schedule(epoch - self.cooldown_steps * cooldown_end_pos - self.warmup_steps)
# lr = self.schedule(epoch - self.cooldown_steps * cooldown_end_pos)
else:
lr = self.schedule(epoch)
if self.model is not None:
K.set_value(self.model.optimizer.lr, lr)
print("\nLearning rate for iter {} is {}".format(epoch + 1, lr))
return lr
class CosineLrScheduler(keras.callbacks.Callback):
def __init__(self, lr_base, first_restart_step, steps_per_epoch=-1, m_mul=0.5, t_mul=2.0, lr_min=1e-5, lr_warmup=-1, warmup_steps=0, cooldown_steps=1):
super(CosineLrScheduler, self).__init__()
self.lr_base, self.m_mul, self.t_mul, self.lr_min, self.steps_per_epoch = lr_base, m_mul, t_mul, lr_min, steps_per_epoch
self.first_restart_step, self.warmup_steps, self.cooldown_steps, self.lr_warmup = first_restart_step, warmup_steps, cooldown_steps, lr_warmup
self.init_step_num, self.cur_epoch, self.is_cooldown_epoch, self.previous_cooldown_steps = 0, 0, False, 0
self.is_built = False
if steps_per_epoch != -1:
self.build(steps_per_epoch)
def build(self, steps_per_epoch=-1):
if steps_per_epoch != -1:
self.steps_per_epoch = steps_per_epoch
first_restart_batch_step = self.first_restart_step * self.steps_per_epoch
alpha = self.lr_min / self.lr_base
if self.lr_min == self.lr_base * self.m_mul: # Without restart
self.schedule = keras.experimental.CosineDecay(self.lr_base, first_restart_batch_step, alpha=alpha)
self.cooldown_steps_start, self.cooldown_steps_end = np.array([]), np.array([])
else:
self.schedule = keras.experimental.CosineDecayRestarts(self.lr_base, first_restart_batch_step, t_mul=self.t_mul, m_mul=self.m_mul, alpha=alpha)
aa = [first_restart_batch_step / self.steps_per_epoch * (self.t_mul ** ii) for ii in range(5)]
self.cooldown_steps_start = np.array([self.warmup_steps + int(sum(aa[:ii]) + self.cooldown_steps * (ii - 1)) for ii in range(1, 5)])
self.cooldown_steps_end = np.array([ii + self.cooldown_steps for ii in self.cooldown_steps_start])
if self.warmup_steps != 0:
self.warmup_batch_steps = self.warmup_steps * self.steps_per_epoch
self.lr_warmup = self.lr_warmup if self.lr_warmup > 0 else self.lr_min
self.warmup_lr_func = lambda ii: self.lr_warmup + (self.lr_base - self.lr_warmup) * ii / self.warmup_batch_steps
else:
self.warmup_batch_steps = 0
self.is_built = True
def on_epoch_begin(self, cur_epoch, logs=None):
if not self.is_built:
self.build()
self.init_step_num = int(self.steps_per_epoch * cur_epoch)
self.cur_epoch = cur_epoch
if self.cooldown_steps_end.shape[0] != 0:
cooldown_end_pos = (self.cooldown_steps_end > cur_epoch).argmax()
self.previous_cooldown_steps = self.cooldown_steps * cooldown_end_pos * self.steps_per_epoch
if cur_epoch >= self.cooldown_steps_end[cooldown_end_pos] - self.cooldown_steps:
self.is_cooldown_epoch = True
else:
self.is_cooldown_epoch = False
def on_train_batch_begin(self, iterNum, logs=None):
global_iterNum = iterNum + self.init_step_num
if global_iterNum < self.warmup_batch_steps:
lr = self.warmup_lr_func(global_iterNum)
elif self.is_cooldown_epoch:
lr = self.lr_min # cooldown
else:
lr = self.schedule(global_iterNum - self.warmup_batch_steps - self.previous_cooldown_steps)
# lr = self.schedule(global_iterNum - self.previous_cooldown_steps)
if self.model is not None:
K.set_value(self.model.optimizer.lr, lr)
if iterNum == 0:
print("\nLearning rate for iter {} is {}, global_iterNum is {}".format(self.cur_epoch + 1, lr, global_iterNum))
return lr
def exp_scheduler(epoch, lr_base, decay_rate=0.05, lr_min=0, warmup_steps=0):
if epoch < warmup_steps:
lr = lr_min + (lr_base - lr_min) * epoch / warmup_steps
else:
# decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decaysteps)
lr = lr_base * np.exp(decay_rate * (warmup_steps - epoch))
lr = lr_min if lr < lr_min else lr
print("\nLearning rate for iter {} is {}".format(epoch + 1, lr))
return lr
def constant_scheduler(epoch, lr_base, lr_decay_steps, decay_rate=0.1, warmup_steps=0):
if epoch < warmup_steps:
lr_min = lr_base * decay_rate ** len(lr_decay_steps)
lr = lr_min + (lr_base - lr_min) * epoch / warmup_steps
else:
lr = lr_base * decay_rate ** np.sum(epoch >= np.array(lr_decay_steps))
print("\nLearning rate for iter {} is {}".format(epoch + 1, lr))
return lr
def basic_callbacks(checkpoint="keras_checkpoints.h5", evals=[], lr=0.001, lr_decay=0.05, lr_min=0, lr_decay_steps=0, lr_warmup_steps=0):
checkpoint_base = "checkpoints"
if not os.path.exists(checkpoint_base):
os.mkdir(checkpoint_base)
checkpoint = os.path.join(checkpoint_base, checkpoint)
# model_checkpoint = ModelCheckpoint(checkpoint, verbose=1, save_weights_only=True)
model_checkpoint = ModelCheckpoint(checkpoint, verbose=1)
# model_checkpoint = keras.callbacks.experimental.BackupAndRestore(checkpoint_base)
if isinstance(lr_decay_steps, list):
# Constant decay on epoch
lr_scheduler = LearningRateScheduler(lambda epoch: constant_scheduler(epoch, lr, lr_decay_steps, lr_decay, lr_warmup_steps))
elif lr_decay_steps > 1:
# Cosine decay on epoch / batch
lr_scheduler = CosineLrScheduler(lr, first_restart_step=lr_decay_steps, m_mul=lr_decay, lr_min=lr_min, lr_warmup=lr_min, warmup_steps=lr_warmup_steps)
else:
# Exponential decay
lr_scheduler = LearningRateScheduler(lambda epoch: exp_scheduler(epoch, lr, lr_decay, lr_min, warmup_steps=lr_warmup_steps))
my_history = My_history(os.path.splitext(checkpoint)[0] + "_hist.json", evals=evals)
# tensor_board_log = keras.callbacks.TensorBoard(log_dir=os.path.splitext(checkpoint)[0] + '_logs')
return [my_history, model_checkpoint, lr_scheduler, Gently_stop_callback()]