-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathdata_distiller.py
236 lines (200 loc) · 11 KB
/
data_distiller.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
#!/usr/bin/env python3
import os
import numpy as np
import tensorflow as tf
from tqdm import tqdm
from sklearn.preprocessing import normalize
from data import pre_process_folder, tf_imread
gpus = tf.config.experimental.list_physical_devices("GPU")
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
class Mxnet_model_interf:
def __init__(self, model_file, layer="fc1", image_size=(112, 112)):
import mxnet as mx
self.mx = mx
cvd = os.environ.get("CUDA_VISIBLE_DEVICES", "").strip()
if len(cvd) > 0 and int(cvd) != -1:
ctx = [self.mx.gpu(ii) for ii in range(len(cvd.split(",")))]
else:
ctx = [self.mx.cpu()]
prefix, epoch = model_file.split(",")
print(">>>> loading mxnet model:", prefix, epoch, ctx)
sym, arg_params, aux_params = self.mx.model.load_checkpoint(prefix, int(epoch))
all_layers = sym.get_internals()
sym = all_layers[layer + "_output"]
model = self.mx.mod.Module(symbol=sym, context=ctx, label_names=None)
model.bind(data_shapes=[("data", (1, 3, image_size[0], image_size[1]))])
model.set_params(arg_params, aux_params)
self.model = model
def __call__(self, imgs):
# print(imgs.shape, imgs[0])
imgs = imgs.transpose(0, 3, 1, 2)
data = self.mx.nd.array(imgs)
db = self.mx.io.DataBatch(data=(data,))
self.model.forward(db, is_train=False)
emb = self.model.get_outputs()[0].asnumpy()
return emb
class Torch_model_interf:
def __init__(self, model_file, image_size=(112, 112)):
import torch
self.torch = torch
cvd = os.environ.get("CUDA_VISIBLE_DEVICES", "").strip()
device_name = "cuda:0" if len(cvd) > 0 and int(cvd) != -1 else "cpu"
self.device = self.torch.device(device_name)
self.model = self.torch.jit.load(model_file, map_location=device_name)
def __call__(self, imgs):
# print(imgs.shape, imgs[0])
imgs = imgs.transpose(0, 3, 1, 2).copy().astype("float32")
imgs = (imgs - 127.5) * 0.0078125
output = self.model(self.torch.from_numpy(imgs).to(self.device).float())
return output.cpu().detach().numpy()
class ONNX_model_interf:
def __init__(self, model_file, image_size=(112, 112)):
import onnxruntime as ort
ort.set_default_logger_severity(3)
self.ort_session = ort.InferenceSession(model_file)
self.output_names = [self.ort_session.get_outputs()[0].name]
self.input_name = self.ort_session.get_inputs()[0].name
def __call__(self, imgs):
imgs = imgs.transpose(0, 3, 1, 2).astype("float32")
imgs = (imgs - 127.5) * 0.0078125
outputs = self.ort_session.run(self.output_names, {self.input_name: imgs})
return outputs[0]
def teacher_model_interf_wrapper(model_file):
if model_file.endswith(".h5"):
# Keras model file
mm = tf.keras.models.load_model(model_file, compile=False)
mm.trainable = False
interf_func = lambda imm: mm((imm - 127.5) * 0.0078125)
return interf_func
if model_file.endswith(".pth") or model_file.endswith(".pt"):
# Try pytorch
mm = Torch_model_interf(model_file)
emb_shape = mm(np.ones([1, 112, 112, 3])).shape[-1]
elif model_file.endswith(".onnx"):
# Try onnx
mm = ONNX_model_interf(model_file)
emb_shape = mm(np.ones([1, 112, 112, 3])).shape[-1]
else:
# MXNet model file, like models/r50-arcface-emore/model,1
mm = Mxnet_model_interf(model_file)
emb_shape = mm.model.output_shapes[0][-1][-1]
def interf_func(imm):
emb = tf.numpy_function(mm, [imm], tf.float32)
emb.set_shape([None, emb_shape])
return emb
return interf_func
class Data_distiller:
def __init__(self, data_path, model_file=None, dest_file=None, save_npz=False, batch_size=256, use_fp16=False, limit=-1):
self.data_path, self.model_file, self.batch_size = data_path, model_file, batch_size
self.dest_file, self.save_npz, self.use_fp16, self.limit = dest_file, save_npz, use_fp16, limit
if model_file == None and data_path.endswith(".npz"):
image_names, image_classes, embeddings = self.__init_from_saved_npz__()
self.emb_gen = ([image_names, image_classes, embeddings],)
self.save_npz = False
self.tqdm_desc = "Converting"
elif self.model_file != None:
self.__init_ds_model_dest__()
self.emb_gen = self.__extract_emb_gen__()
self.tqdm_desc = "Embedding"
else:
return
if save_npz:
self.__save_to_npz__()
else:
self.__save_to_tfrecord_by_batch__()
print(">>>> Output:", self.dest_file)
def __init_ds_model_dest__(self):
""" Init dataset """
image_names, image_classes, _, classes, dataset_pickle_file_src = pre_process_folder(self.data_path)
print(">>>> Image length: %d, Image class length: %d, classes: %d" % (len(image_names), len(image_classes), classes))
if self.limit > 0:
image_names, image_classes = image_names[: self.limit], image_classes[: self.limit]
total = len(image_names)
ds = tf.data.Dataset.from_tensor_slices((image_names, image_classes))
ds = ds.batch(self.batch_size)
""" Init model, it could be PyTorch model file / MXNet model file / keras model file """
interf_func = teacher_model_interf_wrapper(self.model_file)
emb_shape = interf_func(np.ones([1, 112, 112, 3])).shape[-1]
""" Init dest filename """
if self.dest_file is None:
src_name = os.path.splitext(dataset_pickle_file_src)[0]
self.dest_file = src_name + "_label_embs_{}".format(emb_shape)
if self.use_fp16:
self.dest_file += "_fp16"
ext_format = ".npz" if self.save_npz else ".tfrecord"
self.dest_file = self.dest_file if self.dest_file.endswith(ext_format) else self.dest_file + ext_format
self.interf_func, self.ds, self.classes, self.emb_shape, self.total = interf_func, ds, classes, emb_shape, total
def __init_from_saved_npz__(self):
print(">>>> Reload data from:", self.data_path)
aa = np.load(self.data_path)
image_names, image_classes, embeddings = aa["image_names"], aa["image_classes"], aa["embeddings"]
classes = np.max(image_classes) + 1
total = len(image_names)
emb_shape = embeddings.shape[-1]
self.use_fp16 = True if embeddings.dtype == np.float16 else self.use_fp16
embeddings = embeddings.astype("float16") if self.use_fp16 else embeddings.astype("float32")
print(">>>> [Base info] total:", total, "classes:", classes, "emb_shape:", emb_shape, "use_fp16:", self.use_fp16)
if self.dest_file is None:
self.dest_file = os.path.splitext(self.data_path)[0]
if self.use_fp16 and "_fp16" not in self.data_path:
self.dest_file += "_fp16"
self.dest_file = self.dest_file if self.dest_file.endswith(".tfrecord") else self.dest_file + ".tfrecord"
self.classes, self.total, self.emb_shape = classes, total, emb_shape
return image_names, image_classes, embeddings
def __extract_emb_gen__(self):
for imm, label in self.ds:
imgs = tf.stack([tf_imread(ii) for ii in imm])
emb = self.interf_func(imgs)
emb = np.array(emb, dtype="float16") if self.use_fp16 else np.array(emb, dtype="float32")
yield imm.numpy(), label.numpy(), emb
def __save_to_npz__(self):
""" Extract embeddings """
steps = int(np.ceil(self.total // self.batch_size)) + 1
image_names, image_classes, embeddings = [], [], []
for imm, label, emb in tqdm(self.emb_gen, self.tqdm_desc, total=steps):
image_names.extend(imm)
image_classes.extend(label)
embeddings.extend(emb)
# imms, labels, embeddings = np.array(imms), np.array(labels), np.array(embeddings)
np.savez_compressed(self.dest_file, image_names=image_names, image_classes=image_classes, embeddings=embeddings)
def __save_to_tfrecord_by_batch__(self):
""" Encode feature definations, save also `classes` and `emb_shape` """
self.encode_base_info = {
"classes": tf.train.Feature(int64_list=tf.train.Int64List(value=[self.classes])),
"emb_shape": tf.train.Feature(int64_list=tf.train.Int64List(value=[self.emb_shape])),
"total": tf.train.Feature(int64_list=tf.train.Int64List(value=[self.total])),
"use_fp16": tf.train.Feature(int64_list=tf.train.Int64List(value=[self.use_fp16])),
}
self.encode_feature = {
"image_names": lambda vv: tf.train.Feature(bytes_list=tf.train.BytesList(value=[vv])),
"image_classes": lambda vv: tf.train.Feature(int64_list=tf.train.Int64List(value=[vv])),
# "embeddings": lambda vv: tf.train.Feature(float_list=tf.train.FloatList(value=vv.tolist())),
"embeddings": lambda vv: tf.train.Feature(bytes_list=tf.train.BytesList(value=[vv.tobytes()])),
}
is_first_line = True
with tf.io.TFRecordWriter(self.dest_file) as file_writer, tqdm(desc=self.tqdm_desc, total=self.total) as pbar:
for imm, label, emb in self.emb_gen:
data = {"image_names": imm, "image_classes": label, "embeddings": emb}
batch_steps = range(len(data["image_names"]))
for ii in batch_steps:
feature = {kk: self.encode_feature[kk](data[kk][ii]) for kk in data}
if is_first_line: # Save base_info in the first line
is_first_line = False
feature.update(self.encode_base_info)
record_bytes = tf.train.Example(features=tf.train.Features(feature=feature)).SerializeToString()
file_writer.write(record_bytes)
pbar.update(1)
if __name__ == "__main__":
import sys
import argparse
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("-D", "--data_path", type=str, required=True, help="Data path, or npz file converting to tfrecord")
parser.add_argument("-M", "--model_file", type=str, default=None, help="Model file, keras h5 / pytorch pth / mxnet")
parser.add_argument("-d", "--dest_file", type=str, default=None, help="Dest file path to save the processed dataset")
parser.add_argument("-b", "--batch_size", type=int, default=256, help="Batch size")
parser.add_argument("-L", "--limit", type=int, default=-1, help="Test parameter, limit converting only the first [NUM]")
parser.add_argument("--use_fp16", action="store_true", help="Save using float16")
parser.add_argument("--save_npz", action="store_true", help="Save as npz file, default is tfrecord")
args = parser.parse_known_args(sys.argv[1:])[0]
Data_distiller(args.data_path, args.model_file, args.dest_file, args.save_npz, args.batch_size, args.use_fp16, args.limit)