-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy patheval_folder.py
238 lines (198 loc) · 11.2 KB
/
eval_folder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
#!/usr/bin/env python3
import os
import cv2
import numpy as np
import pandas as pd
import tensorflow as tf
from tqdm import tqdm
from glob2 import glob
from skimage import transform
from skimage.io import imread, imsave
from sklearn.preprocessing import normalize
from sklearn.metrics import roc_curve, auc
from tensorflow.keras.preprocessing.image import ImageDataGenerator
gpus = tf.config.experimental.list_physical_devices("GPU")
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
class Eval_folder:
def __init__(self, model_interf, data_path, batch_size=128, save_embeddings=None):
if isinstance(model_interf, str) and model_interf.endswith("h5"):
model = tf.keras.models.load_model(model_interf)
self.model_interf = lambda imms: model((imms - 127.5) * 0.0078125).numpy()
else:
self.model_interf = model_interf
self.dist_func = lambda aa, bb: np.dot(aa, bb)
self.embs, self.imm_classes, self.filenames = self.prepare_images_and_embeddings(data_path, batch_size, save_embeddings)
self.data_path = data_path
def prepare_images_and_embeddings(self, data_path, batch_size=128, save_embeddings=None):
if save_embeddings and os.path.exists(save_embeddings):
print(">>>> Reloading from backup:", save_embeddings)
aa = np.load(save_embeddings)
embs, imm_classes, filenames = aa["embs"], aa["imm_classes"], aa["filenames"]
embs, imm_classes = embs.astype("float32"), imm_classes.astype("int")
else:
img_shape = (112, 112)
img_gen = ImageDataGenerator().flow_from_directory(data_path, class_mode="binary", target_size=img_shape, batch_size=batch_size, shuffle=False)
steps = int(np.ceil(img_gen.classes.shape[0] / img_gen.batch_size))
filenames = np.array(img_gen.filenames)
embs, imm_classes = [], []
for _ in tqdm(range(steps), "Embedding"):
imm, imm_class = img_gen.next()
emb = self.model_interf(imm)
embs.extend(emb)
imm_classes.extend(imm_class)
embs, imm_classes = normalize(np.array(embs).astype("float32")), np.array(imm_classes).astype("int")
if save_embeddings:
print(">>>> Saving embeddings to:", save_embeddings)
np.savez(save_embeddings, embs=embs, imm_classes=imm_classes, filenames=filenames)
return embs, imm_classes, filenames
def do_evaluation(self):
register_ids = np.unique(self.imm_classes)
print(">>>> [base info] embs:", self.embs.shape, "imm_classes:", self.imm_classes.shape, "register_ids:", register_ids.shape)
register_base_embs = np.array([]).reshape(0, self.embs.shape[-1])
register_base_dists = []
for register_id in tqdm(register_ids, "Evaluating"):
pos_pick_cond = self.imm_classes == register_id
pos_embs = self.embs[pos_pick_cond]
register_base_emb = normalize([np.sum(pos_embs, 0)])[0]
register_base_dist = self.dist_func(self.embs, register_base_emb)
register_base_dists.append(register_base_dist)
register_base_embs = np.vstack([register_base_embs, register_base_emb])
register_base_dists = np.array(register_base_dists).T
accuracy = (register_base_dists.argmax(1) == self.imm_classes).sum() / register_base_dists.shape[0]
reg_pos_cond = np.equal(register_ids, np.expand_dims(self.imm_classes, 1))
reg_pos_dists = register_base_dists[reg_pos_cond].ravel()
reg_neg_dists = register_base_dists[np.logical_not(reg_pos_cond)].ravel()
label = np.concatenate([np.ones_like(reg_pos_dists), np.zeros_like(reg_neg_dists)])
score = np.concatenate([reg_pos_dists, reg_neg_dists])
self.register_base_embs, self.register_ids = register_base_embs, register_ids
return accuracy, score, label
def generate_eval_pair_bin(self, save_dest, pos_num=3000, neg_num=3000, min_pos=0, max_neg=1.0, nfold=10):
import pickle
p1_images, p2_images, pos_scores = [], [], []
n1_images, n2_images, neg_scores = [], [], []
for idx, register_id in tqdm(enumerate(self.register_ids), "Evaluating", total=self.register_ids.shape[0]):
register_emb = self.register_base_embs[idx]
""" Pick pos images """
pos_pick_cond = self.imm_classes == register_id
pos_embs = self.embs[pos_pick_cond]
pos_dists = self.dist_func(pos_embs, pos_embs.T)
curr_pos_num = pos_embs.shape[0]
# xx, yy = np.meshgrid(np.arange(1, curr_pos_num), np.arange(curr_pos_num - 1))
# triangle_pick = np.triu(np.ones_like(xx)).astype('bool')
# p1_ids, p2_ids = yy[triangle_pick], xx[triangle_pick]
p1_ids = []
for ii in range(curr_pos_num - 1):
p1_ids.extend([ii] * (curr_pos_num - 1 - ii))
p2_ids = []
for ii in range(1, curr_pos_num):
p2_ids.extend(range(ii, curr_pos_num))
# curr_pos_num = 5 --> p1_ids: [0, 0, 0, 0, 1, 1, 1, 2, 2, 3], p2_ids: [1, 2, 3, 4, 2, 3, 4, 3, 4, 4]
pos_images = self.filenames[pos_pick_cond]
p1_images.extend(pos_images[p1_ids])
p2_images.extend(pos_images[p2_ids])
pos_scores.extend([pos_dists[ii, jj] for ii, jj in zip(p1_ids, p2_ids)])
""" Pick neg images for current register_id """
if idx == 0:
continue
neg_argmax = self.dist_func(self.register_base_embs[:idx], register_emb).argmax()
# print(idx, register_id, neg_argmax)
neg_id = self.register_ids[neg_argmax]
neg_pick_cond = self.imm_classes == neg_id
neg_embs = self.embs[neg_pick_cond]
neg_dists = self.dist_func(pos_embs, neg_embs.T)
curr_neg_num = neg_embs.shape[0]
xx, yy = np.meshgrid(np.arange(curr_pos_num), np.arange(curr_neg_num))
n1_ids, n2_ids = xx.ravel().tolist(), yy.ravel().tolist()
neg_images = self.filenames[neg_pick_cond]
n1_images.extend(pos_images[n1_ids])
n2_images.extend(neg_images[n2_ids])
neg_scores.extend([neg_dists[ii, jj] for ii, jj in zip(n1_ids, n2_ids)])
print(">>>> len(pos_scores):", len(pos_scores), "len(neg_scores):", len(neg_scores))
pos_scores, neg_scores = np.array(pos_scores), np.array(neg_scores)
pos_score_cond, neg_score_cond = pos_scores > min_pos, neg_scores < max_neg
pos_scores, neg_scores = pos_scores[pos_score_cond], neg_scores[neg_score_cond]
p1_images, p2_images = np.array(p1_images)[pos_score_cond], np.array(p2_images)[pos_score_cond]
n1_images, n2_images = np.array(n1_images)[neg_score_cond], np.array(n2_images)[neg_score_cond]
""" pick by sorted score values """
pos_pick_cond = np.argsort(pos_scores)[:pos_num]
neg_pick_cond = np.argsort(neg_scores)[-neg_num:]
pos_scores, p1_images, p2_images = pos_scores[pos_pick_cond], p1_images[pos_pick_cond], p2_images[pos_pick_cond]
neg_scores, n1_images, n2_images = neg_scores[neg_pick_cond], n1_images[neg_pick_cond], n2_images[neg_pick_cond]
bins = []
total = pos_num + neg_num
for img_1, img_2 in tqdm(list(zip(p1_images, p2_images)) + list(zip(n1_images, n2_images)), "Creating bins", total=total):
bins.append(tf.image.encode_png(imread(os.path.join(self.data_path, img_1))).numpy())
bins.append(tf.image.encode_png(imread(os.path.join(self.data_path, img_2))).numpy())
""" nfold """
pos_fold, neg_fold = pos_num // nfold, neg_num // nfold
issame_list = ([True] * pos_fold + [False] * neg_fold) * nfold
pos_bin_fold = lambda ii: bins[ii * pos_fold * 2 : (ii + 1) * pos_fold * 2]
neg_bin_fold = lambda ii: bins[pos_num * 2 :][ii * neg_fold * 2 : (ii + 1) * neg_fold * 2]
bins = [pos_bin_fold(ii) + neg_bin_fold(ii) for ii in range(nfold)]
bins = np.ravel(bins).tolist()
print("Saving to %s" % save_dest)
with open(save_dest, "wb") as ff:
pickle.dump([bins, issame_list], ff)
return p1_images, p2_images, pos_scores, n1_images, n2_images, neg_scores
def plot_tpr_far(score, label, new_figure=True, label_prefix=""):
fpr, tpr, _ = roc_curve(label, score)
roc_auc = auc(fpr, tpr)
fpr_show = [10 ** (-ii) for ii in range(1, 7)[::-1]]
fpr_reverse, tpr_reverse = fpr[::-1], tpr[::-1]
tpr_show = [tpr_reverse[np.argmin(abs(fpr_reverse - ii))] for ii in fpr_show]
print(pd.DataFrame({"FPR": fpr_show, "TPR": tpr_show}).set_index("FPR").T.to_markdown())
try:
import matplotlib.pyplot as plt
fig = plt.figure() if new_figure else None
label = "AUC = %0.4f%%" % (roc_auc * 100)
if label_prefix and len(label_prefix) > 0:
label = label_prefix + " " + label
plt.plot(fpr, tpr, lw=1, label=label)
plt.xlim([10**-6, 0.1])
plt.xscale("log")
plt.xticks(fpr_show)
plt.xlabel("False Positive Rate")
plt.ylim([0, 1.0])
plt.yticks(np.linspace(0, 1.0, 8, endpoint=True))
plt.ylabel("True Positive Rate")
plt.grid(linestyle="--", linewidth=1)
plt.title("ROC")
plt.legend(loc="lower right")
plt.tight_layout()
plt.show()
except:
print("matplotlib plot failed")
fig = None
return fig
if __name__ == "__main__":
import sys
import argparse
import tensorflow_addons as tfa
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("-d", "--data_path", type=str, default=None, help="Data path, containing images in class folders")
parser.add_argument("-m", "--model_file", type=str, default=None, help="Model file, keras h5")
parser.add_argument("-b", "--batch_size", type=int, default=64, help="Batch size")
parser.add_argument("-D", "--detection", action="store_true", help="Run face detection before embedding")
parser.add_argument("-S", "--save_embeddings", type=str, default=None, help="Save / Reload embeddings data")
parser.add_argument("-B", "--save_bins", type=str, default=None, help="Save evaluating pair bin")
args = parser.parse_known_args(sys.argv[1:])[0]
if args.model_file == None and args.data_path == None and args.save_embeddings == None:
print(">>>> Please seee `--help` for usage")
sys.exit(1)
data_path = args.data_path
if args.detection:
from face_detector import YoloV5FaceDetector
data_path = YoloV5FaceDetector().detect_in_folder(args.data_path)
print()
ee = Eval_folder(args.model_file, data_path, args.batch_size, args.save_embeddings)
accuracy, score, label = ee.do_evaluation()
print(">>>> top1 accuracy:", accuracy)
if args.save_bins is not None:
_ = ee.generate_eval_pair_bin(args.save_bins)
plot_tpr_far(score, label)
elif __name__ == "__test__":
data_path = "temp_test/faces_emore_test/"
model_file = "checkpoints/TT_mobilenet_pointwise_distill_128_emb512_dr04_arc_bs400_r100_emore_fp16_basic_agedb_30_epoch_49_0.972333.h5"
batch_size = 64
save_embeddings = None