forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocessing.py
279 lines (221 loc) · 10.1 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
# Copyright 2021 DeepMind Technologies Limited.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Pre-processing functions for input data."""
import functools
from absl import logging
import tensorflow.compat.v2 as tf
from galaxy_mergers import losses
CROP_TYPE_NONE = 'crop_none'
CROP_TYPE_FIXED = 'crop_fixed'
CROP_TYPE_RANDOM = 'crop_random'
DATASET_FREQUENCY_MEAN = 4.0
DATASET_FREQUENCY_RANGE = 8.0
PHYSICAL_FEATURES_MIN_MAX = {
'redshift': (0.572788, 2.112304),
'mass': (9.823963, 10.951282)
}
ALL_FREQUENCIES = [105, 125, 160, 435, 606, 775, 850]
VALID_ADDITIONAL_FEATURES = ['redshift', 'sequence_average_redshift', 'mass']
def _make_padding_sizes(pad_size, random_centering):
if random_centering:
pad_size_left = tf.random.uniform(
shape=[], minval=0, maxval=pad_size+1, dtype=tf.int32)
else:
pad_size_left = pad_size // 2
pad_size_right = pad_size - pad_size_left
return pad_size_left, pad_size_right
def resize_and_pad(image, target_size, random_centering):
"""Resize image to target_size (<= image.size) and pad to original size."""
original_shape = image.shape
size = tf.reshape(target_size, [1])
size = tf.concat([size, size], axis=0)
image = tf.image.resize(image, size=size)
pad_size = original_shape[1] - target_size
pad_size_left, pad_size_right = _make_padding_sizes(
pad_size, random_centering)
padding = [[pad_size_left, pad_size_right],
[pad_size_left, pad_size_right], [0, 0]]
if len(original_shape) == 4:
padding = [[0, 0]] + padding
image = tf.pad(image, padding)
image.set_shape(original_shape)
return image
def resize_and_extract(image, target_size, random_centering):
"""Upscale image to target_size (>image.size), extract original size crop."""
original_shape = image.shape
size = tf.reshape(target_size, [1])
size = tf.concat([size, size], axis=0)
image = tf.image.resize(image, size=size)
pad_size = target_size - original_shape[1]
pad_size_left, pad_size_right = _make_padding_sizes(
pad_size, random_centering)
if len(original_shape) == 3:
image = tf.expand_dims(image, 0)
image = tf.cond(pad_size_right > 0,
lambda: image[:, pad_size_left:-pad_size_right, :, :],
lambda: image[:, pad_size_left:, :, :])
image = tf.cond(pad_size_right > 0,
lambda: image[:, :, pad_size_left:-pad_size_right, :],
lambda: image[:, :, pad_size_left:, :])
if len(original_shape) == 3:
image = tf.squeeze(image, 0)
image.set_shape(original_shape)
return image
def resize_and_center(image, target_size, random_centering):
return tf.cond(
tf.math.less_equal(target_size, image.shape[1]),
lambda: resize_and_pad(image, target_size, random_centering),
lambda: resize_and_extract(image, target_size, random_centering))
def random_rotation_and_flip(image):
angle = tf.random.uniform(shape=[], minval=0, maxval=4, dtype=tf.int32)
return tf.image.random_flip_left_right(tf.image.rot90(image, angle))
def get_all_rotations_and_flips(images):
assert isinstance(images, list)
new_images = []
for image in images:
for rotation in range(4):
new_images.append(tf.image.rot90(image, rotation))
flipped_image = tf.image.flip_left_right(image)
new_images.append(tf.image.rot90(flipped_image, rotation))
return new_images
def random_rescaling(image, random_centering):
assert image.shape.as_list()[0] == image.shape.as_list()[1]
original_size = image.shape.as_list()[1]
min_size = 2 * (original_size // 4)
max_size = original_size * 2
target_size = tf.random.uniform(
shape=[], minval=min_size, maxval=max_size // 2,
dtype=tf.int32) * 2
return resize_and_center(image, target_size, random_centering)
def get_all_rescalings(images, image_width, random_centering):
"""Get a uniform sample of rescalings of all images in input."""
assert isinstance(images, list)
min_size = 2 * (image_width // 4)
max_size = image_width * 2
delta_size = (max_size + 2 - min_size) // 5
sizes = range(min_size, max_size + 2, delta_size)
new_images = []
for image in images:
for size in sizes:
new_images.append(resize_and_center(image, size, random_centering))
return new_images
def move_repeats_to_batch(image, n_repeats):
width, height, n_channels = image.shape.as_list()[1:]
image = tf.reshape(image, [-1, width, height, n_channels, n_repeats])
image = tf.transpose(image, [0, 4, 1, 2, 3]) # [B, repeats, x, y, c]
return tf.reshape(image, [-1, width, height, n_channels])
def get_classification_label(dataset_row, class_boundaries):
merge_time = dataset_row['grounded_normalized_time']
label = tf.dtypes.cast(0, tf.int64)
for category, intervals in class_boundaries.items():
for interval in intervals:
if merge_time > interval[0] and merge_time < interval[1]:
label = tf.dtypes.cast(int(category), tf.int64)
return label
def get_regression_label(dataset_row, task_type):
"""Returns time-until-merger regression target given desired modeling task."""
if task_type == losses.TASK_NORMALIZED_REGRESSION:
return tf.dtypes.cast(dataset_row['normalized_time'], tf.float32)
elif task_type == losses.TASK_GROUNDED_UNNORMALIZED_REGRESSION:
return tf.dtypes.cast(dataset_row['grounded_normalized_time'], tf.float32)
elif task_type == losses.TASK_UNNORMALIZED_REGRESSION:
return tf.dtypes.cast(dataset_row['unnormalized_time'], tf.float32)
elif task_type == losses.TASK_CLASSIFICATION:
return tf.dtypes.cast(dataset_row['grounded_normalized_time'], tf.float32)
else:
raise ValueError
def get_normalized_time_target(dataset_row):
return tf.dtypes.cast(dataset_row['normalized_time'], tf.float32)
def apply_time_filter(dataset_row, time_interval):
"""Returns True if data is within the given time intervals."""
merge_time = dataset_row['grounded_normalized_time']
lower_time, upper_time = time_interval
return merge_time > lower_time and merge_time < upper_time
def normalize_physical_feature(name, dataset_row):
min_feat, max_feat = PHYSICAL_FEATURES_MIN_MAX[name]
value = getattr(dataset_row, name)
return 2 * (value - min_feat) / (max_feat - min_feat) - 1
def prepare_dataset(ds, target_size, crop_type, n_repeats, augmentations,
task_type, additional_features, class_boundaries,
time_intervals=None, frequencies_to_use='all',
additional_lambdas=None):
"""Prepare a zipped dataset of image, classification/regression labels."""
def _prepare_image(dataset_row):
"""Transpose, crop and cast an image."""
image = tf.dtypes.cast(dataset_row['image'], tf.float32)
image = tf.reshape(image, tf.cast(dataset_row['image_shape'], tf.int32))
image = tf.transpose(image, perm=[1, 2, 0]) # Convert to NHWC
freqs = ALL_FREQUENCIES if frequencies_to_use == 'all' else frequencies_to_use
idxs_to_keep = [ALL_FREQUENCIES.index(f) for f in freqs]
image = tf.gather(params=image, indices=idxs_to_keep, axis=-1)
# Based on offline computation on the empirical frequency range:
# Converts [0, 8.] ~~> [-1, 1]
image = (image - DATASET_FREQUENCY_MEAN)/(DATASET_FREQUENCY_RANGE/2.0)
def crop(image):
if crop_type == CROP_TYPE_FIXED:
crop_loc = tf.cast(dataset_row['proposed_crop'][0], tf.int32)
crop_size = tf.cast(dataset_row['proposed_crop'][1], tf.int32)
image = image[
crop_loc[0]:crop_loc[0] + crop_size[0],
crop_loc[1]:crop_loc[1] + crop_size[1], :]
image = tf.image.resize(image, target_size[0:2])
image.set_shape([target_size[0], target_size[1], target_size[2]])
elif crop_type == CROP_TYPE_RANDOM:
image = tf.image.random_crop(image, target_size)
image.set_shape([target_size[0], target_size[1], target_size[2]])
elif crop_type != CROP_TYPE_NONE:
raise NotImplementedError
return image
repeated_images = []
for _ in range(n_repeats):
repeated_images.append(crop(image))
image = tf.concat(repeated_images, axis=-1)
if augmentations['rotation_and_flip']:
image = random_rotation_and_flip(image)
if augmentations['rescaling']:
image = random_rescaling(image, augmentations['translation'])
return image
def get_regression_label_wrapper(dataset_row):
return get_regression_label(dataset_row, task_type=task_type)
def get_classification_label_wrapper(dataset_row):
return get_classification_label(dataset_row,
class_boundaries=class_boundaries)
if time_intervals:
for time_interval in time_intervals:
filter_fn = functools.partial(apply_time_filter,
time_interval=time_interval)
ds = ds.filter(filter_fn)
datasets = [ds.map(_prepare_image)]
if additional_features:
additional_features = additional_features.split(',')
assert all([f in VALID_ADDITIONAL_FEATURES for f in additional_features])
logging.info('Running with additional features: %s.',
', '.join(additional_features))
def _prepare_additional_features(dataset_row):
features = []
for f in additional_features:
features.append(normalize_physical_feature(f, dataset_row))
features = tf.convert_to_tensor(features, dtype=tf.float32)
features.set_shape([len(additional_features)])
return features
datasets += [ds.map(_prepare_additional_features)]
datasets += [
ds.map(get_classification_label_wrapper),
ds.map(get_regression_label_wrapper),
ds.map(get_normalized_time_target)]
if additional_lambdas:
for process_fn in additional_lambdas:
datasets += [ds.map(process_fn)]
return tf.data.Dataset.zip(tuple(datasets))