forked from zhanghao-njmu/SCP
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata.R
113 lines (108 loc) · 5.42 KB
/
data.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
#' A subsetted version of mouse 'pancreas' datasets
#'
#' Mouse pancreatic endocrinogenesis dataset from \href{https://doi.org/10.1242/dev.173849}{Bastidas-Ponce et al. (2019)}. A total of 1000 cells were downsampled to form the \code{pancreas_sub} dataset.
#'
#' @format A \code{Seurat} object.
#' @concept data
#' @source \url{https://scvelo.readthedocs.io/scvelo.datasets.pancreas/} \url{https://github.com/theislab/scvelo_notebooks/raw/master/data/Pancreas/endocrinogenesis_day15.h5ad}
#' @examples
#' \dontrun{
#' if (interactive()) {
#' library(reticulate)
#' check_Python("scvelo")
#' scv <- import("scvelo")
#' adata <- scv$datasets$pancreas()
#' pancreas <- adata_to_srt(adata)
#' set.seed(11)
#' pancreas_sub <- subset(pancreas, cells = sample(colnames(pancreas), size = 1000))
#' pancreas_sub <- pancreas_sub[rowSums(pancreas_sub@assays$RNA@counts) > 0, ]
#' pancreas_sub[["CellType"]] <- pancreas_sub[["clusters_coarse"]]
#' pancreas_sub[["SubCellType"]] <- pancreas_sub[["clusters"]]
#' pancreas_sub[["clusters_coarse"]] <- pancreas_sub[["clusters"]] <- NULL
#' pancreas_sub[["Phase"]] <- ifelse(pancreas_sub$S_score > pancreas_sub$G2M_score, "S", "G2M")
#' pancreas_sub[["Phase"]][apply(pancreas_sub[[]][, c("S_score", "G2M_score")], 1, max) < 0, ] <- "G1"
#' pancreas_sub[["Phase", drop = TRUE]] <- factor(pancreas_sub[["Phase", drop = TRUE]], levels = c("G1", "S", "G2M"))
#' pancreas_sub[["PCA"]] <- pancreas_sub[["X_pca"]]
#' pancreas_sub[["UMAP"]] <- pancreas_sub[["X_umap"]]
#' pancreas_sub[["X_umap"]] <- pancreas_sub[["X_pca"]] <- NULL
#' # usethis::use_data(pancreas_sub, compress = "xz")
#' }
#' }
"pancreas_sub"
#' A subsetted version of human 'panc8' datasets
#'
#' Human pancreatic islet cell datasets produced across four technologies, CelSeq (GSE81076) CelSeq2 (GSE85241), Fluidigm C1 (GSE86469), and SMART-Seq2 (E-MTAB-5061) from \href{https://github.com/satijalab/seurat-data}{SeuratData} package. For each data set in `panc8`, 200 cells were downsampled to form the \code{panc8_sub} dataset.
#'
#' @format A \code{Seurat} object.
#' @concept data
#' @source \url{https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81076} \url{https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi} \url{https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-5061/} \url{https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi} \url{https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi}
#' @examples
#' \dontrun{
#' if (interactive()) {
#' data("pancreas_sub")
#' if (!require("SeuratData", quietly = TRUE)) {
#' devtools::install_github("satijalab/seurat-data")
#' }
#' library(SeuratData)
#' library(Seurat)
#' suppressWarnings(InstallData("panc8"))
#' data("panc8")
#' set.seed(11)
#' cells_sub <- unlist(lapply(split(colnames(panc8), panc8$dataset), function(x) sample(x, size = 200)))
#' panc8_sub <- subset(panc8, cells = cells_sub)
#' panc8_sub <- panc8_sub[rowSums(panc8_sub@assays$RNA@counts) > 0, ]
#' panc8_sub <- panc8_sub[toupper(rownames(panc8_sub)) %in% toupper(rownames(pancreas_sub)), ]
#' panc8_sub <- UpdateSeuratObject(panc8_sub)
#' # usethis::use_data(panc8_sub, compress = "xz")
#' }
#' }
"panc8_sub"
#' A subsetted version of 'ifnb' datasets
#'
#' Human PBMC control/IFNB-stimulated dataset
#'
#' @format A \code{Seurat} object.
#' @concept data
#' @source \url{https://www.nature.com/articles/nbt.4042}
#' @examples
#' \dontrun{
#' if (interactive()) {
#' if (!require("SeuratData", quietly = TRUE)) {
#' devtools::install_github("satijalab/seurat-data")
#' }
#' library(SeuratData)
#' library(Seurat)
#' suppressWarnings(InstallData("ifnb"))
#' data("ifnb")
#' set.seed(11)
#' cells_sub <- unlist(lapply(split(colnames(ifnb), ifnb$stim), function(x) sample(x, size = 1000)))
#' ifnb_sub <- subset(ifnb, cells = cells_sub)
#' ifnb_sub <- ifnb_sub[rowSums(ifnb_sub@assays$RNA@counts) > 0, ]
#' ifnb_sub <- UpdateSeuratObject(ifnb_sub)
#' # usethis::use_data(ifnb_sub, compress = "xz")
#' }
#' }
"ifnb_sub"
# ref_scHCL <- scHCL::ref.expr
# ref_scMCA <- scMCA::ref.expr
# ref_scZCL <- scZCL::ref.expr
# colnames(ref_scHCL) <- stringi::stri_trans_general(colnames(ref_scHCL), "latin-ascii")
# colnames(ref_scMCA) <- stringi::stri_trans_general(colnames(ref_scMCA), "latin-ascii")
# colnames(ref_scZCL) <- stringi::stri_trans_general(colnames(ref_scZCL), "latin-ascii")
# ref_scHCL <- as.matrix(log1p(ref_scHCL))
# ref_scMCA <- as.matrix(log1p(ref_scMCA))
# ref_scZCL <- as.matrix(log1p(ref_scZCL))
# save(ref_scHCL, file = "data/ref_scHCL.rda",version = 2,compress = "xz")
# save(ref_scMCA, file = "data/ref_scMCA.rda",version = 2,compress = "xz")
# save(ref_scZCL, file = "data/ref_scZCL.rda",version = 2,compress = "xz")
# load("~/Git/pancreas.rda")
# pancreas_sub <- subset(pancreas, cells = sample(colnames(pancreas),size = 1000));
# ClassDimPlot(pancreas_sub,reduction = "umap",group.by = "CellType")
# save(pancreas_sub, file = "data/pancreas1k.rda",version = 2,compress = "xz")
# lifemap_cell <- readRDS("data/cell_gene_list.rds") %>% bind_rows()
# lifemap_compartment <- readRDS("data/compartment_gene_list.rds") %>% bind_rows()
# lifemap_organ <- readRDS("data/organ_gene_list.rds") %>% bind_rows()
# save(lifemap_cell, file = "data/lifemap_cell.rda",version = 2,compress = "xz",compression_level = 9)
# save(lifemap_compartment, file = "data/lifemap_compartment.rda",version = 2,compress = "xz",compression_level = 9)
# save(lifemap_organ, file = "data/lifemap_organ.rda",version = 2,compress = "xz",compression_level = 9)
NULL