From 18f1035d3e1e3cfe92842e40380c7f70061a1df4 Mon Sep 17 00:00:00 2001 From: yeredh <yered.h@gmail.com> Date: Sat, 18 Apr 2015 23:01:04 -0400 Subject: [PATCH] minor typos --- course4/normalization.Rmd | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/course4/normalization.Rmd b/course4/normalization.Rmd index 0013cd85..4a6a8925 100644 --- a/course4/normalization.Rmd +++ b/course4/normalization.Rmd @@ -226,7 +226,7 @@ mypar(1,1) maplot(log2(y1),log2(y2),ylim=c(-1,1),curve.add=FALSE) ``` -For this type of data, the variance depends on the mean. We seek a transfromation that stabilizies the variance of the estimates of $\theta$ after we subctract the additive background estimate and divide by the estimate of the gain. +For this type of data, the variance depends on the mean. We seek a transformation that stabilizies the variance of the estimates of $\theta$ after we subctract the additive background estimate and divide by the estimate of the gain. ```{r} ny1=(y1-b1)/A1 @@ -247,7 +247,7 @@ $$ \text{arsinh}(y) = \log\left(y + \sqrt{y^2+1} \right) $$ -The `vsn` library implements this apprach. It estimates $\beta$ and $A$ by assuming that most genes don't change, i.e. $\theta$ does not depend on $i$. +The `vsn` library implements this approach. It estimates $\beta$ and $A$ by assuming that most genes don't change, i.e. $\theta$ does not depend on $i$. ```{r} library(vsn)