forked from CorentinJ/Real-Time-Voice-Cloning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hparams.py
44 lines (37 loc) · 1.78 KB
/
hparams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from synthesizer.hparams import hparams as _syn_hp
# Audio settings------------------------------------------------------------------------
# Match the values of the synthesizer
sample_rate = _syn_hp.sample_rate
n_fft = _syn_hp.n_fft
num_mels = _syn_hp.num_mels
hop_length = _syn_hp.hop_size
win_length = _syn_hp.win_size
fmin = _syn_hp.fmin
min_level_db = _syn_hp.min_level_db
ref_level_db = _syn_hp.ref_level_db
mel_max_abs_value = _syn_hp.max_abs_value
preemphasis = _syn_hp.preemphasis
apply_preemphasis = _syn_hp.preemphasize
bits = 9 # bit depth of signal
mu_law = True # Recommended to suppress noise if using raw bits in hp.voc_mode
# below
# WAVERNN / VOCODER --------------------------------------------------------------------------------
voc_mode = 'RAW' # either 'RAW' (softmax on raw bits) or 'MOL' (sample from
# mixture of logistics)
voc_upsample_factors = (5, 5, 8) # NB - this needs to correctly factorise hop_length
voc_rnn_dims = 512
voc_fc_dims = 512
voc_compute_dims = 128
voc_res_out_dims = 128
voc_res_blocks = 10
# Training
voc_batch_size = 100
voc_lr = 1e-4
voc_gen_at_checkpoint = 5 # number of samples to generate at each checkpoint
voc_pad = 2 # this will pad the input so that the resnet can 'see' wider
# than input length
voc_seq_len = hop_length * 5 # must be a multiple of hop_length
# Generating / Synthesizing
voc_gen_batched = True # very fast (realtime+) single utterance batched generation
voc_target = 8000 # target number of samples to be generated in each batch entry
voc_overlap = 400 # number of samples for crossfading between batches