forked from mit-han-lab/gan-compression
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlatency.py
59 lines (48 loc) · 1.5 KB
/
latency.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import sys
import time
import warnings
import torch
import tqdm
from torch.backends import cudnn
from configs import decode_config
from data import create_dataloader
from models import create_model
from options.test_options import TestOptions
def check(opt):
assert opt.serial_batches
assert opt.no_flip
assert opt.load_size == opt.crop_size
assert opt.preprocess == 'resize_and_crop'
assert opt.batch_size == 1
if not opt.no_fid:
assert opt.real_stat_path is not None
if opt.phase == 'train':
warnings.warn('You are using training set for inference.')
if __name__ == '__main__':
cudnn.enabled = True
opt = TestOptions().parse()
print(' '.join(sys.argv))
if opt.config_str is not None:
assert 'super' in opt.netG or 'sub' in opt.netG
config = decode_config(opt.config_str)
else:
assert 'super' not in opt.model
config = None
dataloader = create_dataloader(opt)
model = create_model(opt)
model.setup(opt)
for data in dataloader:
model.set_input(data)
break
# Warm-up times
for i in tqdm.trange(opt.times):
model.test(config)
if len(opt.gpu_ids) > 0:
torch.cuda.synchronize()
start_time = time.time()
for i in tqdm.trange(opt.times):
model.test(config)
if len(opt.gpu_ids) > 0:
torch.cuda.synchronize()
cost_time = time.time() - start_time
print('Cost Time: %.2fs\tLatency: %.4fs' % (cost_time, cost_time / opt.times))