forked from mit-han-lab/gan-compression
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsearch_multi.py
136 lines (118 loc) · 4.35 KB
/
search_multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import copy
import ntpath
import os
import pickle
import random
import sys
import warnings
import numpy as np
import torch
import tqdm
from torch import multiprocessing as mp
from torch import nn
from torch.backends import cudnn
from configs import encode_config
from data import create_dataloader
from metric import get_fid, get_mAP
from metric.inception import InceptionV3
from metric.mAP_score import DRNSeg
from models import create_model
from options.search_options import SearchOptions
from utils import util
def set_seed(seed):
cudnn.benchmark = False # if benchmark=True, deterministic will be False
cudnn.deterministic = True
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def check(opt):
assert opt.serial_batches
assert opt.no_flip
assert opt.load_size == opt.crop_size
assert opt.preprocess == 'resize_and_crop'
assert opt.config_set is not None
if len(opt.gpu_ids) == 0:
raise ValueError("Multi-gpu searching doesn't support cpu. Please specify at least one gpu.")
if opt.phase == 'train':
warnings.warn('You are using training set for evaluation.')
def main(configs, opt, gpu_id, queue, verbose):
opt.gpu_ids = [gpu_id]
dataloader = create_dataloader(opt, verbose)
model = create_model(opt, verbose)
model.setup(opt, verbose)
device = model.device
if not opt.no_fid:
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[2048]
inception_model = InceptionV3([block_idx])
inception_model.to(device)
inception_model.eval()
if 'cityscapes' in opt.dataroot and opt.direction == 'BtoA':
drn_model = DRNSeg('drn_d_105', 19, pretrained=False)
util.load_network(drn_model, opt.drn_path, verbose=False)
if len(opt.gpu_ids) > 0:
drn_model = nn.DataParallel(drn_model, opt.gpu_ids)
drn_model.eval()
npz = np.load(opt.real_stat_path)
results = []
for config in tqdm.tqdm(configs):
fakes, names = [], []
for i, data_i in enumerate(dataloader):
model.set_input(data_i)
if i == 0:
macs, _ = model.profile(config)
model.test(config)
fakes.append(model.fake_B.cpu())
for path in model.get_image_paths():
short_path = ntpath.basename(path)
name = os.path.splitext(short_path)[0]
names.append(name)
result = {'config_str': encode_config(config), 'macs': macs}
if not opt.no_fid:
fid = get_fid(fakes, inception_model, npz, device, opt.batch_size, use_tqdm=False)
result['fid'] = fid
if 'cityscapes' in opt.dataroot and opt.direction == 'BtoA':
mAP = get_mAP(fakes, names, drn_model, device,
data_dir=opt.cityscapes_path,
batch_size=opt.batch_size,
num_workers=opt.num_threads, use_tqdm=False)
result['mAP'] = mAP
print(result, flush=True)
# print('Time Cost: %.2fmin' % ((time.time() - start_time) / 60), flush=True)
results.append(result)
queue.put(results)
if __name__ == '__main__':
mp.set_start_method('spawn')
opt = SearchOptions().parse()
print(' '.join(sys.argv), flush=True)
check(opt)
set_seed(opt.seed)
if 'resnet' in opt.netG:
from configs.resnet_configs import get_configs
elif 'spade' in opt.netG:
# TODO
pass
else:
raise NotImplementedError
configs = get_configs(config_name=opt.config_set)
configs = list(configs.all_configs())
random.shuffle(configs)
chunk_size = (len(configs) + len(opt.gpu_ids) - 1) // len(opt.gpu_ids)
processes = []
queue = mp.Queue()
for i, gpu_id in enumerate(opt.gpu_ids):
start = min(i * chunk_size, len(configs))
end = min((i + 1) * chunk_size, len(configs))
p = mp.Process(target=main, args=(configs[start:end], copy.deepcopy(opt), gpu_id, queue, i == 0))
processes.append(p)
p.start()
for p in processes:
p.join()
results = []
for p in processes:
results += queue.get()
os.makedirs(os.path.dirname(opt.output_path), exist_ok=True)
with open(opt.output_path, 'wb') as f:
pickle.dump(results, f)
print('Successfully finish searching!!!', flush=True)