-
-
Notifications
You must be signed in to change notification settings - Fork 11k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[Bug] 当一个响应包含多个 artifacts 时,只能正常显示第一个 #4618
Comments
👀 @Jazzy96 Thank you for raising an issue. We will investigate into the matter and get back to you as soon as possible. |
Hello @Jazzy96! I'm here to assist you with any bugs, questions, or contributions. Feel free to reach out while we wait for a human maintainer. 这个问题可能与
要解决这个问题,您需要确保所有要显示的 artifacts 的 UI 打开条件正确设置。这可能需要检查状态管理逻辑,以确保 |
能否把响应的回复内容复制出来一下我看看 |
Can you copy the response content and let me see? |
您说得对。我来解释一下 Java 调用 API 的几种常见方式和架构:
1. 直接调用 Flask API(简单方案)
2. 使用 Spring Boot 创建微服务(推荐的企业级方案)
3. 使用 gRPC(高性能 RPC 框架)
我将详细展示这三种方案:
<lobeThinking>这是一个需要创建多个代码示例的场景,我将为不同的 API 调用方式创建 artifacts。</lobeThinking>
<lobeArtifact identifier="flask-python-api" type="application/lobe.artifacts.code" language="python" title="Flask API 实现">
from flask import Flask, request, jsonify
from flask_cors import CORS
import numpy as np
import json
app = Flask(__name__)
CORS(app) # 支持跨域请求
class MeshTopologyGenerator:
def generate_topology(self, device_info):
"""
根据设备信息生成拓扑
:param device_info: 设备信息字典
:return: 生成的拓扑信息
"""
# 模拟拓扑生成逻辑
nodes = [
{"id": i, "x": np.random.uniform(0, 800), "y": np.random.uniform(0, 600)}
for i in range(device_info.get('nodeCount', 16))
]
edges = [
{
"from": nodes[i]['id'],
"to": nodes[j]['id'],
"distance": np.linalg.norm([
nodes[i]['x'] - nodes[j]['x'],
nodes[i]['y'] - nodes[j]['y']
])
}
for i in range(len(nodes))
for j in range(i+1, len(nodes))
]
return {
"nodes": nodes,
"edges": edges
}
@app.route('/generate_topology', methods=['POST'])
def generate_topology():
"""
接收设备信息并生成拓扑
"""
try:
# 接收 JSON 数据
device_info = request.json
# 创建拓扑生成器
generator = MeshTopologyGenerator()
# 生成拓扑
topology = generator.generate_topology(device_info)
# 返回 JSON 响应
return jsonify({
"status": "success",
"data": topology
})
except Exception as e:
return jsonify({
"status": "error",
"message": str(e)
}), 400
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000, debug=True)
</lobeArtifact>
<lobeArtifact identifier="java-flask-api-client" type="application/lobe.artifacts.code" language="java" title="Java 调用 Flask API 示例">
import org.springframework.web.client.RestTemplate;
import org.springframework.http.HttpEntity;
import org.springframework.http.HttpHeaders;
import org.springframework.http.MediaType;
import org.springframework.http.ResponseEntity;
import java.util.HashMap;
import java.util.Map;
public class TopologyApiClient {
// Flask API 地址
private static final String API_URL = "http://localhost:5000/generate_topology";
// RestTemplate 用于发送 HTTP 请求
private final RestTemplate restTemplate;
public TopologyApiClient() {
this.restTemplate = new RestTemplate();
}
/**
* 生成拓扑的方法
*
* @param nodeCount 节点数量
* @return 拓扑数据
*/
public Map<String, Object> generateTopology(int nodeCount) {
// 准备请求头
HttpHeaders headers = new HttpHeaders();
headers.setContentType(MediaType.APPLICATION_JSON);
// 准备请求体
Map<String, Object> requestBody = new HashMap<>();
requestBody.put("nodeCount", nodeCount);
requestBody.put("minDistance", 200);
requestBody.put("maxHops", 5);
// 创建 HTTP 实体
HttpEntity<Map<String, Object>> request =
new HttpEntity<>(requestBody, headers);
try {
// 发送 POST 请求并获取响应
ResponseEntity<Map> response = restTemplate.postForEntity(
API_URL,
request,
Map.class
);
// 检查响应状态
if (response.getStatusCode().is2xxSuccessful()) {
Map<String, Object> responseBody = response.getBody();
// 假设响应体有 data 字段
return (Map<String, Object>) responseBody.get("data");
} else {
throw new RuntimeException("API 调用失败");
}
} catch (Exception e) {
// 异常处理
throw new RuntimeException("网络请求错误", e);
}
}
public static void main(String[] args) {
TopologyApiClient client = new TopologyApiClient();
try {
// 生成 20 个节点的拓扑
Map<String, Object> topology = client.generateTopology(20);
// 打印节点和边的数量
System.out.println("节点数量: " +
((List)topology.get("nodes")).size());
System.out.println("边的数量: " +
((List)topology.get("edges")).size());
} catch (Exception e) {
e.printStackTrace();
}
}
}
</lobeArtifact>
<lobeArtifact identifier="spring-boot-microservice" type="application/lobe.artifacts.code" language="java" title="Spring Boot 微服务实现">
@RestController
@RequestMapping("/api/topology")
public class TopologyController {
@Autowired
private TopologyService topologyService;
@PostMapping("/generate")
public ResponseEntity<TopologyResponse> generateTopology(
@RequestBody TopologyRequest request
) {
try {
TopologyResponse topology = topologyService.generateTopology(request);
return ResponseEntity.ok(topology);
} catch (Exception e) {
return ResponseEntity
.status(HttpStatus.INTERNAL_SERVER_ERROR)
.body(null);
}
}
// 拓扑请求实体
public static class TopologyRequest {
private int nodeCount;
private double minDistance;
private int maxHops;
// Getters and setters
}
// 拓扑响应实体
public static class TopologyResponse {
private List<Node> nodes;
private List<Edge> edges;
// Getters and setters
}
}
</lobeArtifact>
### 三种方案对比
1. Flask API 调用(简单方案)
- 优点:快速开发,部署简单
- 缺点:性能较低,缺乏企业级特性
2. Spring Boot 微服务(推荐)
- 优点:
* 完善的微服务架构
* 强大的生态系统
* 便于扩展和管理
* 支持复杂的业务逻辑
- 缺点:配置相对复杂
3. gRPC(高性能方案)
- 优点:
* 高性能
* 跨语言支持
* 强类型
- 缺点:学习成本高,配置复杂
### 推荐选择
1. 小型项目 → Flask API
2. 中大型项目 → Spring Boot 微服务
3. 对性能要求极高 → gRPC
### 建议的最佳实践
1. 添加认证机制
2. 实现请求日志
3. 添加全局异常处理
4. 使用熔断器(如 Hystrix)
5. 考虑使用 API 网关
选择哪种方案,取决于:
- 项目规模
- 性能需求
- 团队技术栈
- 未来扩展计划
需要我详细解释哪一部分吗?
… 2024年11月6日 11:47,Arvin Xu ***@***.***> 写道:
能否把响应的回复内容复制出来一下我看看
—
Reply to this email directly, view it on GitHub <#4618 (comment)>, or unsubscribe <https://github.com/notifications/unsubscribe-auth/AGGN4NRORAWAXGM6ZMWKFJDZ7GGOLAVCNFSM6AAAAABRH5EUISVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDINJYGY3TCMBWGQ>.
You are receiving this because you were mentioned.
|
盲猜 1 和2 应该能正常展示的吧。3 这个都没生成完整? 我感觉是 haiku 模型的问题,你换成 sonnet 试试呢 |
Blind guessing 1 and 2 should be able to display normally. 3 This is not completely generated? I think it's a problem with the haiku model. Can you try using sonnet instead? |
第二个也不显示,第三个也是被<lobeArtifact>包裹的啊。

用 sonnet 也一样,控制台报错:

… 2024年11月6日 11:56,Arvin Xu ***@***.***> 写道:
盲猜 1 和2 应该能正常展示的吧。3 这个都没生成完整?
我感觉是 haiku 模型的问题,你换成 sonnet 试试呢
—
Reply to this email directly, view it on GitHub <#4618 (comment)>, or unsubscribe <https://github.com/notifications/unsubscribe-auth/AGGN4NWPBAHVB5WPA3DKYCDZ7GHNJAVCNFSM6AAAAABRH5EUISVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDINJYGY3TMOBVHA>.
You are receiving this because you were mentioned.
|
📦 部署环境
Vercel
📌 软件版本
1.28
💻 系统环境
macOS
🌐 浏览器
Chrome
🐛 问题描述
当 clauded 的回答包含多个 artifacts 时,只能正常显示第一个,第二个第三个都会转圈,同时在下面以 plaintext 的形式打印出来📷 复现步骤
任意让 claude 提供两份代码
🚦 期望结果
No response
📝 补充信息
No response
The text was updated successfully, but these errors were encountered: